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Abstract

In this paper we present an attack to the BLOKE and BRAKE hash functions,
which are weakened versions of the SHA-3 candidate BLAKE. In difference to
BLAKE, the BLOKE hash function does not permute the message words and
constants in the round computation of the compression function, and BRAKE
additionally removes feedforward and zeroes the constants used in each round of
the compression function. We show that in these cases we can efficiently find, for
any intermediate hash value, a fixed-point block giving us an internal collision,
thus producing collisions for messages of equal length in case of BLOKE, and
internal collisions for BRAKE.
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1. Introduction

Cryptographic hash functions are primitives of fundamental importance for a
wide range of applications such as: efficient digital signature algorithms, MAC,
integrity check, data origin authentication etc. Though during the last three
decades there has been a very active research on this topic, most of the hash
function proposals have been broken (MD4, MD5, SHA-0, SHA-1, . . . ) or they
are considered insecure for providing a long-term security. An attempt to in-
crease the trust in hash functions was initiated by NIST in 2007 through an
open public competition [11] where the candidate hash functions are supposed
to go through stringent public scrutiny before recognizing the proposals as a
new SHA-3 hash function.

The cryptographic strength of a hash function is commonly evaluated through
the resistance to collision, preimage and second preimage attacks [10]. For an
n-bit hash value any collision attack beyond the computational effort corre-
sponding to 2n/2 hash computations, and any preimage or second preimage in
less than 2n hash computations compromises the particular design. Exhibiting
collisions for a given hash function essentially means that the hash value for two
different messages is the same, that is H(IV,m1) = H(IV,m2). Note that there
might be some additional inputs used in the computation, most standard ones
being salt and counter.



The BLAKE hash function family [2] by Aumasson, Henzen, Meier and
Phan is an SHA-3 proposal to the NIST Hash Competition. It is one of the 14
submissions that has advanced to the second round of the contest, without any
attacks to the full version known yet [1]. BLAKE is built upon the LAKE hash
function [4], with HAIFA [7] as the iteration mode and a local wide-pipe as its
internal structure, and the ChaCha stream cipher [6] as its core function.

In this paper we present attacks on BLOKE and BRAKE, weakened versions
of BLAKE that were left by the designers as cryptanalytic challenges. To find
collisions, our method (with a negligible amount of computation) identifies a
message block such that the round function does not change the internal state
when this message block is hashed. Such message blocks are then used to obtain
an intermediate hash value that does not depend on the previous hash value in
the case of BLOKE, and to generate an internal collision for BRAKE. The
attacks given here confirm the necessity of the design criteria of BLAKE that
are removed in BLOKE, namely the use of permutations of the message words
and the use of constants which are XORed to the message words, as well as the
standard requirement to include the message length when hashing the message.

The remainder of the paper is organized as follows. In Section 2, the design
of the BLAKE hash function and its weakened versions together with the related
cryptanalytic results are given. The collisions for weakened versions of BLAKE
based on a fixed point attack are found in Section 3. Finally, Section 4 concludes
the article.

1.1. Related work

In [9], Li and Xu present attacks on BLAKE reduced to 1.5, 2 and 2.5 rounds.
Their method is to control one or two words of the intermediate hash value by
modifying the message and initial hash value. In the case of 1.5 rounds, only the
message is modified to control two words of the hash value, thus obtaining a 2160

(second) preimage attack and a 280 collision attack on BLAKE-32. For 2 and
2.5 rounds, the initial hash value also has to be modified, so the complexities
of free-start (second) preimage attack and free-start collision are 2224 and 2112,
respectively. Hence, a (second) preimage attack on 2 or 2.5 round BLAKE-32
has complexity 2241.

Another result, due to Guo and Matusiewicz [8], gives us near-collisions
(216 bits of the hash) for 4 intermediate rounds of BLAKE-32 with a complex-
ity of 256. They achieve this by linearizing the Gi function and introducing
differentials of the form 0x88888888 by changing the message, the intermediate
hash value, the salt and the counter, making sure that no differences are passed
through the rotations by 7.

On the rump session of ASIACRYPT 2009 [12], Wang, Ohta and Sakiyama
presented free-start preimage attacks on 4 and 4.5 rounds of BLAKE, with
complexities 2224 and 2252, and 232 and 28 memory, respectively.

A recent result due to Aumasson et al. [5], presented at FSE 2010, establishes
differential properties of the permutation Gi used in the compression function of
BLAKE. An efficient algorithm to invert one round and an improved algorithm
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to find a preimage of 1.5 rounds of BLAKE-32 with complexity 2128 are given.
The former algorithm is what the attack in this paper is based on. Furthermore,
Aumasson et al. exploit the differential properties of Gi to find large classes
of impossible differentials for one and two rounds, and some specific cases for
five and six rounds of BLAKE, and also find near-collisions for the compression
function reduced to four rounds.

2. The design of BLAKE

The BLAKE family contains four hash functions: BLAKE-28, BLAKE-32,
BLAKE-48, BLAKE-64, with the bit lengths of their digests being 224, 256,
384, and 512, respectively. The former two operate on 32-bit words, while the
latter two work with 64-bit words.

2.1. BLAKE-32 and BLAKE-64

To hash a message M with the BLAKE-32 hash function, the message is
first padded with at least 66 bits, so that the length of the padded message is
a multiple of 512. The last 64 bits of the padding are a binary representation
of the bit length of the unpadded message. The message is then split into 512-
bit blocks and iteratively input to the compression function together with the
previous hash value, a 64-bit counter of bits hashed so far, and an optional 128-
bit salt. The previous hash value to the first block is the initialization vector
(IV) specified in the documentation. The counter is set to zero in the last block
in the case it only consists of padding.

The compression function compress(h,m, s, t) consists of three stages: ini-
tialization, round iteration and finalization. The initialization establishes the
internal state v:

v =


v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

 =


h0 h1 h2 h3
h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7


After the initialization, the function roundr(v,m) is called ten times, for r =
0, . . . , 9. This function consists of eight calls of the function Gi, which operates
on the words of v:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)
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The functionGi(a, b, c, d) is a modified version of the stream cipher ChaCha [6]:

a ← a+ b+ (mσr(2i) ⊕ cσr(2i+1))

d ← (d⊕ a) ≫ 16

c ← c+ d

b ← (b⊕ c) ≫ 12

a ← a+ b+ (mσr(2i+1) ⊕ cσr(2i))

d ← (d⊕ a) ≫ 8

c ← c+ d

b ← (b⊕ c) ≫ 7

Here, cj for j = 0, . . . , 15 are constants, and σr for r = 0, . . . , 9 are permutations
of Z16. Both are defined in the BLAKE documentation. Finally, the output
hash value h′ is computed:

h′i ← hi ⊕ si mod 4 ⊕ vi ⊕ vi+8 for i = 0, . . . , 7.

The main difference between BLAKE-32 and BLAKE-64 is that the latter
uses 64-bit words instead of 32-bit words. As a consequence the length of the
message block, internal state, hash values, salt, counter and constants are dou-
bled. Two other important differences are the number of rounds, which is raised
to 14, and the rotations in the Gi function, which are by 32, 25, 16 and 11 bits
in BLAKE-64. For further details the interested reader is referred to the spec-
ification of BLAKE [2]. A description of shortened versions of BLAKE-32 and
BLAKE-64, named BLAKE-28 and BLAKE-48 respectively, is also found there.

2.2. Weakened versions

The authors of BLAKE have also published a document describing weakened
versions of BLAKE for cryptanalysis [3]. The first one, called BLOKE, substi-
tutes all the permutations σr with an identity permutation, thus making the
function roundr independent of r. As a direct consequence, BLOKE can also
be seen to have zero constants in the Gi function if we reencode the message
by XORing the appropriate constant to each message word. This is also the
version our main attack works on.

In FLAKE, the feedforward is removed from the finalization of the compres-
sion function, which is then only:

h′i ← vi ⊕ vi+8 for i = 0, . . . , 7.

In BLAZE, the constants cj , j = 0, . . . , 15 are all set to zero in the Gi function,
and finally, all three changes are made in BRAKE.
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3. Collisions for weakened versions of BLAKE

Throughout the rest of the paper the following notations are used. When
considering a single Gi function, a, b, c, d will denote its input values, a′, b′, c′, d′

the values they take when they are first assigned a new value, and a′′, b′′, c′′, d′′

their final values. In other words, these variables satisfy the following equations
in the case of BLAKE-32:

a′ = a+ b+ (mσr(2i) ⊕ cσr(2i+1))

d′ = (d⊕ a′) ≫ 16

c′ = c+ d′

b′ = (b⊕ c′) ≫ 12

a′′ = a′ + b′ + (mσr(2i+1) ⊕ cσr(2i))

d′′ = (d′ ⊕ a′′) ≫ 8

c′′ = c′ + d′′

b′′ = (b′ ⊕ c′′) ≫ 7

Here, + denotes the 32-bit addition, ⊕ the 32-bit bitwise XOR operation, and
≫ the 32-bit cyclical rotation towards the least significant bits: the number 3 is
represented as 0x00000003 in the hexadecimal notation, so 0x00000003 ≫ 1 =
0x80000001. The operators are defined similarly for the 64-bit case.

The / operator is used for integer division, so x = y/z ⇔ x =
⌊
y
z

⌋
. The

mod operator is standard: if x = y mod z, then x ∈ Zz and x ≡ y (mod z).
If m is a message block, then mi, 0 ≤ i ≤ 15 represents its i-th word.

Similarly, vi, 0 ≤ i ≤ 15 is the i-th word of the state v, and hi, 0 ≤ i ≤ 7 is the
i-th word of the hash value h.

Let roundr be the round function for the r-th round. Then we can write v′′ =
roundr(v,m), where v is the state before the current round, v′′ the state after
it and m the message block being hashed. In the BLAKE documentation [2] it
is shown that for a fixed message m the Gi functions are bijective. It follows
then that also the roundr(·,m) function is bijective and thus a permutation
of {0, 1}512. In [5], the same is shown for roundr(v, ·) – so there is a unique
message input that will transform a fixed initial state into a fixed final state.
We give the equations needed to compute the message block used as the input
to the compression function, given the initial and final states of the r-th round:

b = (c′′ − d′′)⊕ (c′′ ≫ 20)⊕ (b′′ ≫ 13) (1)

c = c′′ − d′′ − (a′′ ⊕ (d′′ ≫ 24)) (2)

d′′ = c′′ − (b⊕ (c′′ ≫ 20)⊕ (b′′ ≫ 13)) (3)

a′′ = (c′′ − d′′ − c)⊕ (d′′ ≫ 24) (4)

a′ = d⊕ (a′′ ≫ 16)⊕ (d′′ ≫ 8) (5)

mσr(2i) = cσr(2i+1) ⊕ (a′ − b− a) (6)

mσr(2i+1) = cσr(2i) ⊕ (a′′ − (c′′ ⊕ (b′′ ≫ 25))− a′) (7)
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First, the intermediate state v′ after the column step is computed with the Eqs.
(1) and (2) for the Gi functions in the diagonal step, and with the Eqs. (3) and
(4) for the Gi functions in the column step. Once v′ is fully known, the message
words can be computed with (5–7) for all the Gi functions in the r-th round.

3.1. Collisions for BLOKE-32 with an arbitrary number of rounds

First we observe that for a fixed state v we can compute the message block
m, such that v = roundr(v,m), by using the method described above. Since
the permutations σr are all identity in BLOKE, the function roundr does not
depend on r. Hence, the message block m – let’s call it the fixed-point block
for v – preserves the state v after an arbitrary number of rounds.

We will use a fixed-point block to obtain a collision for BLOKE. Let h be
the intermediate hash value before hashing the fixed-point block and h′ the
intermediate hash value after it. We now express the words h′i and h′i+4 for
i = 0, . . . , 3:

h′i = hi ⊕ si ⊕ hi ⊕ (si ⊕ ci) = ci

h′i+4 = hi+4 ⊕ si ⊕ hi+4 ⊕ (ti/2 ⊕ ci+4) = si ⊕ ti/2 ⊕ ci+4

We can see that the intermediate hash value h′ only depends on the salt and
counter and it does not depend on the previous hash value h. Hence we can
take any two messages of length k · 512 and append a fixed-point block for the
intermediate hash value after the original k blocks of the message have been
hashed, for each of the two messages. The intermediate hash value after the
fixed-points blocks will then be equal for both messages. Since both messages
have equal length, the final hash value will be the same even with a padding
block.

To demonstrate the collision we produce two messages, each of them two
blocks long. The first blocks contain example messages, while the second blocks
are fixed-point blocks for the intermediate hash values after the first blocks.
The two colliding messages found are

5468697320697320616E206578616D706C6520626C6F636B207573656420746F

2070726F64756365206120636F6C6C6973696F6E20666F7220424C4F4B453332

0AD8F28C7A8FA271D4110C49592B0A48C5703CF58F07E042E47731724F1349B1

3C80AA3BE14D4017C6DA5E7B93F3E877955ED5B08F078B9C125AB666366AEC0A

and

616E64207468697320697320616E6F7468657220626C6F636B20757365642074

6F2070726F64756365206120636F6C6C6973696F6E20666F7220424C4F4B4521

22BA5209EC48A6BCF0A620BE4581738432F35EDE4CF73121C34D57AB4CB49626

AB700F7678E21C418C01497962A847B239EB418A87694D63B9FE8405269A6DB6

The ten-round BLOKE-32 hash of both messages with a padding block and
zero salt is
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F499BEEE73AB52747EDD0EFEE9F739C46E83C33623FDBBF40C25DEE8BD616DFF

We can see that using this technique, large multicollision sets can be effi-
ciently computed: we start with an arbitrary set of messages, extend them to
the same length k · 512, and then append the fixed-point block to each message.

3.2. Internal collisions for BRAKE-32 with an arbitrary number of rounds

Let h0 be an intermediate hash value after n message blocks have been
hashed. Let m1,m2, . . . , mk be the following k message blocks and h1, h2, . . . , hk

the intermediate hash values after each of the message blocks has been hashed.
Since no feedforward is used in BRAKE, each word of hi is computed as hij =

vij ⊕ vij+8, where vi is the state after the chosen number of rounds have been

performed for the message block mi. If mi for i = 1, . . . , k are all fixed-point
blocks for vi, then we can express vi as

vi =


hi−10 hi−11 hi−12 hi−13

hi−14 hi−15 hi−16 hi−17

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
ti0 ⊕ c4 ti0 ⊕ c5 ti1 ⊕ c6 ti1 ⊕ c7

 ,

where ti0t
i
1 is a 64-bit big-endian representation of (n + i) · 512. If the message

length is smaller than 232 bits, then ti1 = 0 for all i and ti0 = (n + i) · 512.
We will now express the words hi0 and hi4 of the intermediate hash values. The
expressions for other words are similar.

h10 = h00 ⊕ s0 ⊕ c0 h14 = h04 ⊕ (n+ 1) · 512⊕ c4
h20 = h00 h24 = h04 ⊕ ((n+ 1)⊕ (n+ 2)) · 512

. . . . . .

h2i−10 = h00 ⊕ s0 ⊕ c0 h2i−14 = h04 ⊕ (
⊕2i−1

j=1 (n+ j)) · 512⊕ c4
h2i0 = h00 h2i4 = h04 ⊕ (

⊕2i
j=1(n+ j)) · 512

We want to find a pair (n, k) of integers such that hk = h0. If k is even,

the only condition to satisfy is
⊕k

j=1(n + j) = 0. Taking a look at the binary
representations of four consecutive numbers, we observe that their two least
significant bits are 00, 01, 10 and 11, which XOR together to 00. The remaining
bits change at most once – when the two least significant bits change from 11 to
00. Hence, if n is an odd number, then (n+ 1)⊕ (n+ 2)⊕ (n+ 3)⊕ (n+ 4) = 0.
By consequence, any sequence of 4r consecutive numbers starting with an even
number will XOR to 0.

Now we can derive an internal collision attack for BRAKE. We choose an
arbitrary message with an odd block length, and extend it by 4r fixed-point
blocks for their initial state. The intermediate hash value before the padding
block will be the same for both messages. Note that the padded messages would
have different hash values, as the two messages have different lengths.

Again we produce two messages to demonstrate the collisions. The first mes-
sage here is an example one-block message, while the second one is its extension
by four fixed-point blocks. The two colliding messages found are

7



5468697320697320616E206578616D706C6520626C6F636B207573656420746F

2070726F64756365206120636F6C6C6973696F6E20666F72204252414B453332

and

5468697320697320616E206578616D706C6520626C6F636B207573656420746F

2070726F64756365206120636F6C6C6973696F6E20666F72204252414B453332

D04D56B8295BC1349F6A576F3D77EF8E5655A4E96F82143781BEE53A4FD47772

D832A666A6E9D1234FD3C42ACE387D1F550FB1E15DAC3848147AAD5A96BE5499

8D3B34DBC85A63898709C18749C10583243491CDCDBABFDD017BF830B95B78AA

413E0F937A68FACFB501B9657D27D033DC1B1968EBA0C92A287A24E1E5D475AF

524D20F82A1E72AC1D6A5D6FBDF56986565644E9CF77778881BFCB7AE971B18E

D6C850AB1594A51E9192F81E8DFBFF2BF51130945DAAB2440AAEA103F6BF5494

C33AF29D0D9369DFA909C38A275123B8245531CDED801C5A016919F025FC4701

754D2D4ADB1A16D8F5ACD5713CEC5627BC1E76DFEB9D5B366B1E28CF85CF75AA

The ten-round BRAKE-32 intermediate hash value of both messages with
zero salt before the padding block is

9EFF3121C2F2256C9D02DE38A65111513AAB290709B43AA3356EF46262F19E37

Finally, we note that both attacks also work for the 64-bit versions of BLOKE
and BRAKE, with the difference that the Eqs. (1)–(7) are changed to reflect
the changes of the rotations in the Gi function.

4. Conclusion

We have presented a very efficient method for producing an arbitrary number
of collisions for full-round BLOKE, a weakened version of BLAKE in which the
message words and constants are not permuted in each round of the compression
function, as well as an internal collision attack on the further weakened version
BRAKE. The presented attacks thus confirm the necessity of permuting the
order in which the message words are used in each round of the compression
function of BLAKE, as well as the already established practice for hash functions
to include the message length in the padding.
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