Testiranje hipotez

Testiranje hipotez

- 1. Postavimo trditev.
- 2. Izberemo vzorec, da preverimo trditev.
- 3. Sprejmemo ali zavrnemo trditev.

Hipoteza je testirana z določanjem verjetja, da dobimo določen rezultat, kadar jemljemo vzorce iz populacije s predpostavljenimi vrednostmi parametrov.

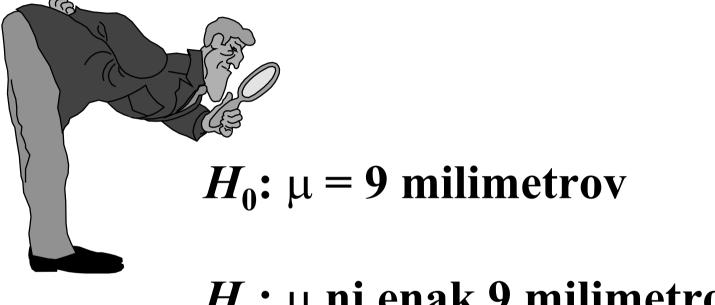
Ničelna HIPOTEZA

$$H_0$$
: $\mu = 9$ mm
Premer 9 milimeterskega kroga,

$$H_0$$
: μ = 600 km Proizvajalec trdi, da je to doseg novih vozil,

$$H_0$$
: $\mu = 3$ dnevi
Čas odsotnosti določenga artikla
pri neposredni podpori.

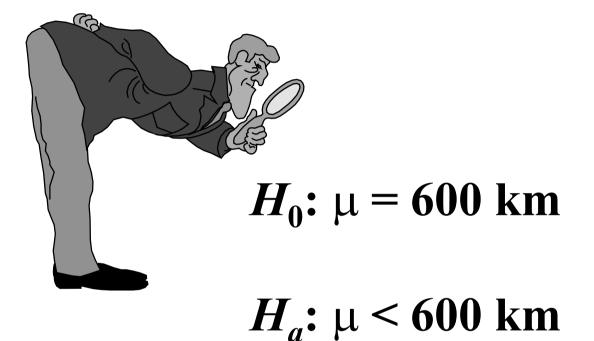
Ne-usmerjena alternativna hipoteza



 H_a : μ ni enak 9 milimetrov

Premer 9 milimetrskega kroga

Manj kot alternativna hipoteza



Proizvajalec trdi, da je to doseg novih vozil

Več kot alternativna hipoteza

 H_0 : $\mu = 3$ dnevi

 H_a : $\mu > 3$ dnevi

Čas odsotnosti določenga artikla pri neposredni podpori.

dejansko stanje

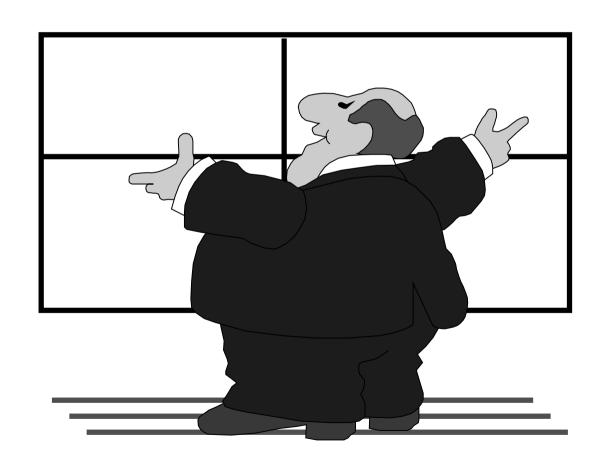
 H_0 drži

 H_0 ne drži

zavrni H_0

odločitev

 ${\tt ni}$ osnove za zavrnitev ${\it H}_0$



zavrni H_0

odločitev ni osnove za zavrnitev H_0

dejansko stanje

H₀ ne
drži drži

pravilna
odločitev

pravilna
odločitev

ni osnov za

zavrnitev H_0

dejansko stanje

 H_0 H_0 ne drži drži napaka 1.stopnje P (napaka 1.vrste) = α

Zavrni H₀

Odločitev ni osnov za zavrnitev H_0

dejansko stanje

H_0 drži	H_0 ne drži	
	napaka 2. stopnje	
	P(napaka 2.vrste)= β	

dejansko stanje

 H_0 drži H_0 ne drži

zavrni H_0

odločitev ni osnove za zavrnitev H_0

napaka	pravilna
1.vrste	odločitev
pravilna	napaka
odločitev	2.vrste

Definicije

1. Zavrnitev ničelne hipoteze, če je le-ta pravilna, je napaka 1. vrste.

Verjetnost, da naredimo napako 1. vrste, označimo s simbolom α in ji pravimo stopnja tveganja, (1- α) pa je stopnja zaupanja.

2. Če ne zavrnemo ničelno hipotezo, v primeru, da je napačna, pravimo, da gre za napako 2. vrste.

Verjetnost, da naredimo napako 2. vrste, označimo s simbolom β .

Definicije

3. Moč statističnega testa, $(1 - \beta)$, je verjetnost zavrnitve ničelne hipoteza v primeru, ko je le-ta v resnici napačna.

Naloga 9.4 na strani 429

Pascal je visoko-nivojski programski jezik, ki smo ga nekoč pogosto uporabljali na miniračunalnikih in microprocesorjih.

Narejen je bil eksperiment, da bi ugotovili delež Pascalovih spremenljivk, ki so tabelarične spremenljivke (v kontrast skalarim spremenljivkam, ki so manj učinkovite, glede na čas izvajanja).

20 spremenljivk je bilo naključno izbranih iz množice Pascalskih programov in y, število array spremenljivk je bilo zabeleženo.

Predpostavimo, da želimo testirati hipotezo, da je Pascal bolj učinkovit jezik kot Algol, pri katerem je 20% spremenljivk tabelaričnih spremenljivk. To pomeni, da bomo testirali H_0 : p = 0,20, proti H_a : p > 0,20, kjer je p verjetnost da imamo array spremenljivko na vsakem poskusu.

(Predpostavimo, da je _____

20 poskusov neodvisnih.)

a. Določi α za območje zavrnitve $y \geq 8$.

b. Določi α za območje zavrnitve $y \ge 5$.

c. Določi β za območje zavrnitve $y \ge 8$, če je p = 0,5.

[Pozor: Dosedanje izkušnje so pokazale, da je približno polovica spremenljivk v večini Pascalskih programov tabelaričnih spremenljivk.]

d. Določi β za območje zavrnitve $y \ge 5$, če je p = 0.5.

e. Katero od območij zavrnitve:

y > 8 ali y > 5 je bolj zaželjeno,

če želimo minimizirati

verjetnost napako 1. stopnje?

Napako 2. stopnje?

f. Določi območje zavrnitve oblike $y \ge a$ tako, da je α približno 0,01.

g. Za območje zavrnitve določeno v točki (f), določi moč testa, če je v resnici p = 0,4.

h. Za območje zavrnitve določeno v točki (f), določi moč testa, če je v resnici p = 0,7.

Formalen postopek za testiranje hipotez

1. Postavi hipotezo:

ničelna, alternativna.

- 2. Določi odločitveno pravilo.
- 3. Zberi/manipuliraj podatke.
- 4. Izračunaj testno statistiko.
- 5. Primerjaj in naredi zaključek.

$$H_0: \mu = \mu_0$$

Če poznamo odklon σ, potem

T.S. =
$$\frac{\overline{y} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

sledi z-porazdelitev.

II. $H_0: \mu = \mu_0$

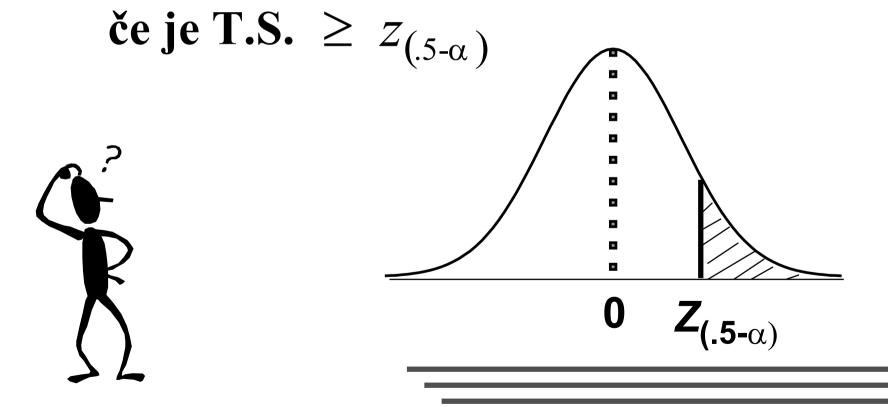
Če ne poznamo odklona σ in je n večji ali enak 30, potem

T.S. =
$$\frac{y - \mu_0}{\frac{S}{\sqrt{n}}}$$
 sledi z-porazdelitev.

 $\operatorname{Za} H_a: \mu > \mu_0$

odločitveno pravilo: zavrni H_0

odiocit veno pravno. Zavrim 11



Za $H_a: \mu < \mu_0$

odločitveno pravilo: zavrni H_0

če je T.S.
$$\leq -Z_{(.5-\alpha)}$$

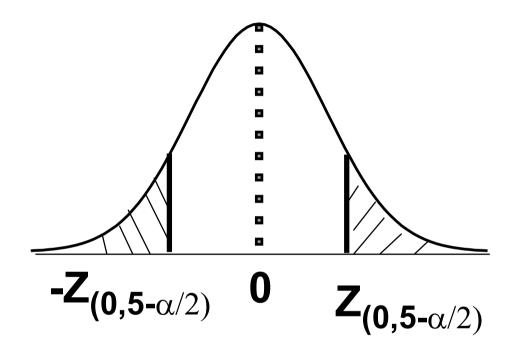
$$-Z_{(.5-\alpha)}$$

Za $H_a: \mu \neq \mu_0$

odločitveno pravilo: zavrni H_0

$$\mathbf{\check{c}e}\;\mathbf{je}\;\mathbf{T.S.}\qquad \leq -z_{(0,5-\alpha)}$$

ali če je T.S.
$$\geq z_{(0,5-\alpha)}$$



p-vrednost

p-vrednost ali ugotovljena bistvena stopnja za določen statistični test je verjetnost (ob predpostavki, da drži H_0) da ugotovimo vrednost testne statistike, ki je vsaj toliko v protislovju z ničelno hipotezo, in podpira alternativno hipotezo kot tisto, ki je izračunana iz vzorčnih podatkov.

III.

$$H_0: \mu = \mu_0$$

Če ne poznamo odklona σ, populacija je normalna, in je *n* manjši od 30, potem

T.S.
$$= \frac{\overline{y} - \mu_0}{\frac{S}{\sqrt{n}}}$$

sledi *t*-porazdelitev z *n*-1 prostostnimi stopnjami.

Data into Minitab

Ex9-23.MTW

C1

T-Test of the Mean

Test of mu = 2500.0 vs mu > 2500.0

N	MEAN	STDEV	SE MEAN
C1 7	2571.4	115.1	43.5

T p-VALUE1.64 0.076

Razlaga p-vrednosti

 Izberi največjo vrednost za α, ki smo jo pripravljeni tolerirati.

2. Če je p-vrednost testa manjša kot maksimalna vrednost parametra α , potem zavrni ničelno hipotezo.

IV.
$$H_0: \mu_1 - \mu_2 = D_0$$

Če poznamo σ_1 in σ_2 in jemljemo vzorce neodvisno, potem

T.S. =
$$\frac{(v_1 - v_2) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
 sledi z-porazdelitev.

 $W_0: \mu_0: \mu_1 - \mu_2 = D_0$

Če ne poznamo σ_1 in/ali σ_2 , ter jemljemo vzorce neodvisno, n_1 je večji ali enak 30 in/ali n_2 je večji ali enak 30, potem

T.S. =
$$\frac{(v_1 - v_2) - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 sledi z-porazdelitev.

VI.
$$H_0: \mu_1 - \mu_2 = D_0$$

Če ne poznamo σ_1 in/ali σ_2 , vzorce jemljemo neodvisno, populacija je normalno porazdeljena, varianci obeh populacij sta enaki, n_1 je manj kot 30 ali n_2 je manj kot 30, potem

T.S.=

$$\frac{\left(\overline{y}_{1} - \overline{y}_{2}\right) - D_{0}}{\sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

sledi t-porazdelitev z n_1+n_2-2 stopnjami prostosti.

Privzeli smo:

- 1. Populaciji iz katerih jemljemo vzorce imata obe približno normalno relativno porazdelitev frekvenc.
- 2. Varianci obeh populacij sta enaki.
- 3. Naključni vzorci so izbrani neodvisno iz obeh populacij.

VII. $H_0: \mu_1 - \mu_2 = D_0$

Če ne poznamo σ_1 in/ali σ_2 , vzorce jemljemo neodvisno, populaciji sta normalno porazdeljeni, varianci populacij nista enaki, n_1 je manj kot 30 ali n_2 je manj kot 30, potem

T.S. =
$$\frac{\left(\overline{y}_{1} - \overline{y}_{2}\right) - D_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$$

sledi *t*-porazdelitev z v prostostnimi stopnjami.

kjer je

$$v = \frac{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}} + \frac{\left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{n_{1} - 1}$$

Če v ni naravno število, zaokroži v navzdol do najbližjega naravnega števila za uporabo *t* tabele.

VIII. $H_0: \mu_d = D_0$

Če vzorce ne jemljemo neodvisno, in je *n* večji ali enak 30, potem je

T.S.
$$= \frac{\overline{d} - D_0}{\frac{S_d}{\sqrt{n}}}$$

sledi z-porazdelitev.

IX. Če vzorce ne jemljemo neodvisno, potem je populacija razlik normalno porazdeljena in je *n* manjši od 30, potem __

T.S. =
$$\frac{\overline{d} - D_0}{\frac{S_d}{\sqrt{n}}}$$

sledi *t*-porazdelitev z *n*-1 prostostnimi stopnjami.

	človek.	avtomatizirana	
naloga	urnik	metoda	_
	4.0-		_
1	185,4	180,4	
2	146,3	248,5	
3	174,4	185,5	
4	184,9	216,4	
5	240,0	269,3	
6	253,8	249,6	
7	238,8	282,0	_
8	263,5	315,9	

človek. avtomatizirana

Naloga	urnik	metoda	razlika	
1	185,4	180,4	5,0	
2	146,3	248,5	-102,2	
3	174,4	185,5	-11,1	
4	184,9	216,4	-31,5	
5	240,0	269,3	-29,3	
6	253,8	249,6	4,2	
7	238,8	282,0	-43,2	
8	263,5	315,9	-52,4	

Data into Minitab

Ex9-40.MTW

C 1	C2

185,4	180,4
146,3	248,5
174,4	185,5
184,9	216,4
240,0	269,3
253,8	249,6
238,8	282,0
263,5	315,9

T-test za parjenje in interval zaupanja

Parjen T za C1 - C2

	N	povpr.	StDev	SE povpr.
C 1	8	210,9	43,2	15,3
C2	8	243,4	47,1	16,7
Razlika	8	-32,6	35,0	12,4

95% IZ za razliko povprečja: (-61,9; -3,3)

T-Test za razliko povpr. = 0 (vs ni = 0):

T-vrednost = -2,63 P-vrednost = 0,034

X. $H_0: p = p_0$

Če je n dovolj velik, potem

T.S. =
$$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$$
 sledi z-porazdelitev.

Kot splošno pravilo, bomo zahtevali, da velja

$$n\hat{p} \ge 4$$
 in $n\hat{q} \ge 4$.

Velik vzorec za testiranje hipoteze o p_1 - p_2

Kot splošno pravilo, bomo zahtevali, da velja

$$n_1 \hat{p}_1 \ge 4$$
, $n_1 \hat{q}_1 \ge 4$,
 $n_2 \hat{p}_2 \ge 4$ in $n_2 \hat{q}_2 \ge 4$.

XI. Velik vzorec za testiranje hipoteze o p_1 - p_2 kadar je D_0 enak 0

T.S. =
$$\frac{(\hat{p}_{1} - \hat{p}_{2})}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$
 kjer je
$$\hat{p} = \frac{y_{1} + y_{2}}{n_{1} + n_{2}}$$

Testne statistike sledijo z-porazdelitev.

XII. Velik vzorec za testiranje hipoteze o p_1 - p_2 kadar D_0 ni enak 0

T.S. =
$$\frac{(\hat{p}_{1} - \hat{p}_{2}) - D_{0}}{\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}} + \frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}}$$

Testne statistike sledijo z-porazdelitev.

Primer

Neka tovarna cigaret proizvaja dve znamki cigaret. Ugotovljeno je, da ima 56 od 200 kadilcev raje znamko *A* in da ima 29 od 150 kadilcev raje znamko *B*.

Testiraj hipotzo pri 0.06 level of significance, da bo prodaja znamke *A* boljša od prodaje znamke *B* za 10% proti alternativni hipotezi, da bo razlika manj kot 10%.

Ničelna hipoteza

$$H_0$$
: $\sigma^2 = \sigma_0^2$

Če je
$$H_a$$
: $\sigma^2 > \sigma_0^2$,

potem je odločitveno pravilo zavrni ničelno hipotezo, če je test statistike večji ali enak $\chi^2_{(\alpha, n-1)}$.

Če je
$$H_a$$
: $\sigma^2 < \sigma_0^2$,

potem je odločitveno pravilo zavrni ničelno hipotezo, če je test statistike manjši ali enak $\chi^2_{(1-\alpha, n-1)}$.

Če je H_a : σ^2 ni enaka σ_0^2 ,

potem je odločitveno pravilo

zavrni ničelno hipotezo, če je test statistike manjši ali enak $\chi^2_{(1-\alpha/2,\,n-1)}$ ali če je test statistike večji ali enak

$$\chi^2_{(\alpha/2, n-1)}$$

Test statistik

T.S. =
$$\frac{(n-1) s^2}{\sigma_0^2}$$

XIV. Testiranje hipoteze o razmerju varianc dveh populacij neodvisnih vzorcev

Ničelna hipoteza

$$H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1$$

Test hipoteze o razmerju varianc dveh populacij neodvisnih vzorcev

Če velja
$$H_a: \frac{\sigma_1^2}{\sigma_2^2} > 1$$
,

potem je test statistik enak

$$\frac{S_1^2}{S_2^2}$$

in odločitveno pravilo je

zavrni ničelno hipotezo, če velja

T.S.
$$\geq F_{(\alpha, n_1 - 1, n_2 - 1)}$$

Test hipoteze o razmerju varianc dveh populacij neodvisnih vzorcev

Če velja
$$H_a: \frac{\sigma_1^2}{\sigma_2^2} < 1$$
,

potem je test statistik enak

$$\frac{S_2^2}{S_1^2}$$

in odločitveno pravilo je

zavrni ničelno hipotezo, če velja

T.S.
$$\geq F_{(\alpha, n_2-1, n_1-1)}$$
.

Test hipoteze o razmerju varianc dveh populacij neodvisnih vzorcev

Če velja
$$H_a: \frac{\sigma_1^2}{\sigma_2^2} \neq 1$$
,

potem je test statistik enak

varianca večjega vzorca

varianca manjčega vzorca

in odločitveno pravilo je

zavrni ničelno hipotezo, če velja $s_1^2 > s_2^2$ in T.S. $\geq F_{(\alpha/2, n_1 - 1, n_2 - 1)}$ ali

zavrni ničelno hipotezo, če velja $s_2^2 > s_1^2$ in T.S. $\geq F_{(\alpha/2, n_2 - 1, n_1 - 1)}$.