Testiranje hipotez

Testiranje hipotez

1. Postavimo trditev.
2. Izberemo vzorec,
da preverimo trditev.
3. Sprejmemo ali zavrnemo trditev.

Hipoteza je testirana z določanjem verjetja, da dobimo določen rezultat, kadar jemljemo vzorce iz populacije s predpostavljenimi vrednostmi parametrov.

Ničelna HIPOTEZA

$$
\begin{aligned}
& \boldsymbol{H}_{0}: \mu=9 \mathrm{~mm} \\
& \quad \text { Premer } 9 \text { milimeterskega kroga, }
\end{aligned}
$$

$\boldsymbol{H}_{\mathbf{0}}: \mu=\mathbf{6 0 0} \mathrm{km}$

Proizvajalec trdi, da je to doseg novih vozil,
$\boldsymbol{H}_{\mathbf{0}}: \mu=\mathbf{3}$ dnevi
Čas odsotnosti določenga artikla pri neposredni podpori.

Ne-usmerjena alternativna hipoteza

$H_{0}: \mu=9$ milimetrov

$H_{a}: \mu$ ni enak 9 milimetrov

Premer 9 milimetrskega kroga

Manj kot alternativna hipoteza

Proizvajalec trdi, da je to doseg novih vozil

Več kot alternativna hipoteza

$H_{0}: \mu=3$ dnevi

$H_{a}: \mu>3$ dnevi

Čas odsotnosti določenga artikla pri neposredni podpori.

dejansko stanje

zavrni H_{0}
odločitev
ni osnove za
zavrnitev H_{0}

H_{0}	H_{0} ne
drži	drži

dejansko stanje

$$
\text { zavrni } H_{0}
$$

odločitev ni osnove za zavrnitev H_{0}

dejansko stanje

Odločitev
ni osnov za zavrnitev H_{0}

H_{0}	H_{0} ne
drži	drži

dejansko stanje

-	$H_{0} \mathrm{drži}$	ne drži
odločitev	napaka 1.vrste	pravilna odločitev
ni osnove za	pravilna	napaka
zavrnitev H_{0}	odločitev	2 .vrste

Definicije

1. Zavrnitev ničelne hipoteze, če je le-ta pravilna, je napaka 1. vrste.

Verjetnost, da naredimo napako 1. vrste, označimo s simbolom α in ji pravimo stopnja tveganja, (1- α) pa je stopnja zaupanja.
2. Če ne zavrnemo ničelno hipotezo, v primeru, da je napačna, pravimo, da gre za napako 2. vrste.

Verjetnost, da naredimo napako 2. vrste, označimo s simbolom β.

Definicije

3. Moč statističnega testa, ($1-\beta$),
je verjetnost zavrnitve ničelne hipoteza v primeru, ko je le-ta v resnici napačna.

Naloga 9.4 na strani 429

Pascal je visoko-nivojski programski jezik, ki smo ga nekoč pogosto uporabljali na miniračunalnikih in microprocesorjih.

Narejen je bil eksperiment, da bi ugotovili delež Pascalovih spremenljivk, ki so
tabelarične spremenljivke
(v kontrast skalarim spremenljivkam, ki so manj učinkovite, glede na čas izvajanja).

20 spremenljivk je bilo naključno izbranih iz množice Pascalskih programov in y, število array spremenljivk je bilo zabeleženo.

Predpostavimo, da želimo testirati hipotezo, da je Pascal bolj učinkovit jezik kot Algol, pri katerem je 20\% spremenljivk tabelaričnih spremenljivk. To pomeni, da bomo testirali $\boldsymbol{H}_{0}: p=0,20$, proti $H_{a}: p>0,20$, kjer je p verjetnost da imamo array spremenljivko na vsakem poskusu.
(Predpostavimo, da je 20 poskusov neodvisnih.)
a. Določi α za območje zavrnitve $\boldsymbol{y} \geq 8$.

b. Določi α za območje zavrnitve $y \geq 5$.

c. Določi β za območje zavrnitve

$$
y \geq 8, \text { če je } p=0,5
$$

[Pozor: Dosedanje izkušnje so pokazale, da je približno polovica spremenljivk v večini
Pascalskih programov tabelaričnih spremenljivk.]

d. Določi β za območje zavrnitve $y \geq 5$, če je $\boldsymbol{p}=\mathbf{0 , 5}$.

e. Katero od območij zavrnitve:

$y \geq 8$ ali $y \geq 5$ je bolj zaželjeno, če želimo minimizirati verjetnost napako 1. stopnje?

Napako 2. stopnje?

f. Določi območje zavrnitve oblike $y \geq a$ tako, da je α približno 0,01.

g. Za območje zavrnitve določeno v točki (f), določi moč testa, če je v resnici $\boldsymbol{p}=\mathbf{0 , 4}$.

h. Za območje zavrnitve določeno

\mathbf{v} točki (f), določi moč testa, če je v resnici $\boldsymbol{p}=\mathbf{0 , 7}$.

Formalen postopek za testiranje hipotez

1. Postavi hipotezo:
ničelna, alternativna.
2. Določi odločitveno pravilo.
3. Zberi/manipuliraj podatke.
4. Izračunaj testno statistiko.
5. Primerjaj in naredi zaključek.

$$
\text { I. } \quad H_{0}: \mu=\mu_{0}
$$

Če poznamo odklon σ, potem

sledi
z-porazdelitev.

$$
\text { II. } \quad H_{0}: \mu=\mu_{0}
$$

Če ne poznamo odklona σ in je \boldsymbol{n} večji ali enak 30, potem

$$
\text { T.S. }=\frac{y-\mu_{0}}{\frac{s}{\sqrt{n}}}
$$

sledi

z-porazdelitev.

$\mathrm{Za} H_{a}: \mu>\mu_{0}$

odločitveno pravilo: zavrni $\boldsymbol{H}_{\mathbf{0}}$
če je T.S. $\geq z_{(.5-\alpha)}$
8

Za $H_{a}: \mu<\mu_{0}$

odločitveno pravilo: zavrni $\boldsymbol{H}_{\mathbf{0}}$

če je T.S. $\leq-Z_{(.5-\alpha)}$

Za $H_{a}: \mu \neq \mu_{0}$
odločitveno pravilo: zavrni \boldsymbol{H}_{0}
če je T.S. $\quad \leq-z_{(0,5-\alpha)}$
ali če je T.S. $\quad \geq z_{(0,5-\alpha)}$

p-vrednost

p-vrednost ali ugotovljena bistvena stopnja
za določen statistični test je verjetnost (ob predpostavki, da drži $\boldsymbol{H}_{\mathbf{0}}$) da ugotovimo vrednost testne statistike, ki je vsaj toliko v protislovju z ničelno hipotezo, in podpira alternativno hipotezo kot tisto, ki je izračunana iz vzorčnih podatkov.
III.

$$
H_{0}: \mu=\mu_{0}
$$

Če ne poznamo odklona σ, populacija je normalna, in je \boldsymbol{n} manjši od 30, potem

$$
\begin{array}{ll}
\text { T.S. }=\frac{y-\mu_{0}}{\frac{s}{\sqrt{n}}} & \begin{array}{l}
\text { sledi } t \text {-porazdelitev } \\
\mathrm{z} n \text { - } \mathbf{1} \text { prostostnimi } \\
\text { stopnjami. }
\end{array}
\end{array}
$$

Data into Minitab

C1

Ex9-23.MTW

2610
2750
2420
2510
2540
2490
2680

T-Test of the Mean

Test of $\mathbf{m u}=\mathbf{2 5 0 0 . 0} \mathbf{v s} \mathbf{~ m u}>\mathbf{2 5 0 0 . 0}$

	\boldsymbol{N}	MEAN	STDEV	SE MEAN
C1				
7	2571.4	115.1	43.5	

$$
T \quad P \text {-VALUE }
$$

1.64
0.076

Razlaga p-vrednosti

1. Izberi največjo vrednost za α, ki smo jo pripravljeni tolerirati.
2. Če je p-vrednost testa manjša kot maksimalna vrednost parametra α, potem zavrni ničelno hipotezo.

$$
\text { IV. } \quad H_{0}: \mu_{1}-\mu_{2}=D_{0}
$$

Če poznamo σ_{1} in σ_{2} in jemljemo vzorce neodvisno, potem

$$
\text { T.S } .=\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)-D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \quad \text { sledi } \quad \text { z-porazdelitev. }
$$

V. $H_{0}: \mu_{1}-\mu_{2}=D_{0}$

Če ne poznamo σ_{1} in/ali σ_{2}, ter jemljemo vzorce neodvisno, n_{1} je večji ali enak 30 in/ali $\boldsymbol{n}_{\mathbf{2}}$ je večji ali enak 30, potem

$$
\text { T.S. }=\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)-D_{0}}{\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}} \quad \begin{aligned}
& \text { sledi } \\
& z \text {-porazdelitev. }
\end{aligned}
$$

VI. $H_{0}: \mu_{1}-\mu_{2}=D_{0}$

Če ne poznamo σ_{1} in/ali σ_{2}, vzorce jemljemo neodvisno, populacija je normalno porazdeljena, varianci obeh populacij sta enaki, \boldsymbol{n}_{1} je manj kot 30 ali \boldsymbol{n}_{2} je manj kot 30, potem

$$
\begin{aligned}
& \text { T.S. }= \\
& \frac{\left(y_{1}-\bar{y}_{2}\right)-D_{0}}{\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
\end{aligned}
$$

sledi \boldsymbol{t}-porazdelitev $\mathrm{z} \boldsymbol{n}_{1}+\boldsymbol{n}_{2}$-2 stopnjami prostosti.

Privzeli smo:

1. Populaciji iz katerih jemljemo vzorce imata obe približno normalno relativno porazdelitev frekvenc.
2. Varianci obeh populacij sta enaki.
3. Naključni vzorci so izbrani neodvisno iz obeh populacij.
VII. $\quad H_{0}: \mu_{1}-\mu_{2}=D_{0}$

Če ne poznamo σ_{1} in/ali σ_{2},
vzorce jemljemo neodvisno, populaciji sta normalno porazdeljeni, varianci populacij nista enaki, n_{1} je manj kot 30 ali \boldsymbol{n}_{2} je manj kot 30, potem

$$
\text { T.S. }=\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)-D_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

sledi t-porazdelitev
$z \vee$ prostostnimi stopnjami.
kjer je

$$
v=\frac{\left(\frac{\mathrm{s}_{1}^{2}}{n_{1}}+\frac{\mathrm{s}_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{n_{1}-1}+\frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}-1}}
$$

Če v ni naravno število, zaokroži v navzdol do najbližjega naravnega števila za uporabo \boldsymbol{t} tabele.
VIII. $\quad H_{0}: \mu_{d}=D_{0}$

Če vzorce ne jemljemo neodvisno, in je \boldsymbol{n} večji ali enak 30, potem je

$$
\text { T.S. }=\frac{\bar{d}-D_{0}}{\frac{s_{d}}{\sqrt{n}}}
$$

sledi z-porazdelitev.
IX. Če vzorce ne jemljemo neodvisno, potem je populacija razlik normalno porazdeljena in je \boldsymbol{n} manjši od 30, potem

$$
\text { T.S. }=\frac{\bar{d}-D_{0}}{\frac{s_{d}}{\sqrt{n}}}
$$

sledi \boldsymbol{t}-porazdelitev z \boldsymbol{n} - $\mathbf{1}$ prostostnimi stopnjami.
človek. avtomatizirana
naloga

1	185,4	180,4
2	146,3	248,5
3	174,4	185,5
4	184,9	216,4
5	240,0	269,3
6	253,8	249,6
7	238,8	282,0
8	263,5	315,9

človek. avtomatizirana

Naloga	urnik	metoda	razlika
1	185,4	180,4	5,0
2	146,3	248,5	$-102,2$
3	174,4	185,5	$-11,1$
4	184,9	216,4	$-31,5$
5	240,0	269,3	$-29,3$
6	253,8	249,6	4,2
7	238,8	282,0	$-43,2$
8	263,5	315,9	$-52,4$

Data into Minitab

C1
 C2

Ex9-40.MTW

185,4 180,4
146,3 248,5
174,4 185,5
184,9 216,4
240,0 269,3
253,8 249,6
238,8 282,0
263,5 315,9

T-test za parjenje in interval zaupanja

Parjen T za C1-C2

N povpr. StDev SE povpr.
C1
C2
Razlika
8 210,9 43,2
15,3
8 243,4 47,1 16,7
$8 \quad \mathbf{- 3 2 , 6} \quad 35,0 \quad 12,4$
95\% IZ za razliko povprečja: ($-61,9 ;-3,3$)
T-Test za razliko povpr. $=0(v s n i=0)$: T-vrednost $=\mathbf{- 2 , 6 3} \quad$ P-vrednost $=0,034$

Če je \boldsymbol{n} dovolj velik, potem

$$
\mathrm{T} . \mathrm{S} .=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}} \quad \begin{aligned}
& \text { sledi } \\
& \text { z-porazdelitev. }
\end{aligned}
$$

Kot splošno pravilo, bomo zahtevali, da velja

$$
n \hat{p} \geq 4 \quad \text { in } \quad n \hat{q} \geq 4
$$

Velik vzorec za testiranje hipoteze o $p_{1}-p_{2}$

Kot splošno pravilo, bomo zahtevali, da velja

$$
\begin{array}{lr}
n_{1} \hat{p}_{1} \geq 4, & n_{1} \hat{q}_{1} \geq 4 \\
n_{2} \hat{p}_{2} \geq 4 & \text { in } \quad n_{2} \hat{q}_{2} \geq 4
\end{array}
$$

XI. Velik vzorec za testiranje hipoteze

 o $p_{1}-p_{2}$ kadar je D_{0} enak 0$$
\text { T.S. }=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)}{\sqrt{\hat{p} \hat{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \quad \begin{aligned}
& \text { kjer je } \\
& \hat{p}=\frac{\mathrm{y}_{1}+y_{2}}{n_{1}+n_{2}}
\end{aligned}
$$

Testne statistike sledijo \boldsymbol{z}-porazdelitev.

XII. Velik vzorec za testiranje hipoteze

 o $p_{1}-p_{2}$ kadar D_{0} ni enak 0$$
\text { T.S. }=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-D_{0}}{\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}}
$$

Testne statistike sledijo z-porazdelitev.

Primer

Neka tovarna cigaret proizvaja dve znamki cigaret. Ugotovljeno je, da ima 56 od 200 kadilcev raje znamko A in da ima 29 od 150 kadilcev raje znamko B.

Testiraj hipotzo pri 0.06 level of significance, da bo prodaja znamke \boldsymbol{A} boljša od prodaje znamke B za 10% proti alternativni hipotezi, da bo razlika manj kot $\mathbf{1 0 \%}$.

XIII. Testiranje hipoteze o varianci σ^{2} populacije

Ničelna hipoteza

$$
\boldsymbol{H}_{0}: \sigma^{2}=\sigma_{0}^{2}
$$

Testiranje hipoteze o varianci σ^{2} populacije

Če je $\boldsymbol{H}_{a}: \sigma^{2}>\sigma_{0}{ }^{2}$,
potem je odločitveno pravilo
zavrni ničelno hipotezo, če je test statistike večji ali enak $\chi_{(\alpha, n-1)}^{2}$.

Testiranje hipoteze o varianci σ^{2} populacije

Če је $\boldsymbol{H}_{a}: \sigma^{2}<\sigma_{0}{ }^{2}$,
potem je odločitveno pravilo zavrni ničelno hipotezo, če je test statistike manjši ali enak $\chi_{(1-\alpha, n-1)}^{2}$.

Testiranje hipoteze o varianci σ^{2} populacije
 Če je $\boldsymbol{H}_{a}: \sigma^{2}$ ni enaka $\sigma_{0}{ }^{2}$,

potem je odločitveno pravilo
zavrni ničelno hipotezo, če je test statistike manjši ali enak $\chi^{2}{ }_{(1-\alpha / 2, n-1)}$ ali če je test statistike večji ali enak $\chi^{2}{ }_{(\alpha / 2, n-1)}$.

Testiranje hipoteze o varianci σ^{2} populacije

Test statistik

$$
\text { T.S. }=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}
$$

XIV. Testiranje hipoteze o

 razmerju varianc dveh populacij neodvisnih vzorcevNičelna hipoteza

$$
H_{0}: \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=1
$$

Test hipoteze o razmerju varianc dveh populacij neodvisnih vzorcev

Če velja $H_{a}: \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}>1$,
potem je test statistik enak $\frac{s_{1}^{2}}{s_{2}^{2}}$

in odločitveno pravilo je

zavrni ničelno hipotezo, če velja

$$
\text { T.S. } \geq F_{\left(\alpha, n_{1}-1, n_{2}-1\right)^{\bullet}}
$$

Test hipoteze o razmerju varianc dveh populacij neodvisnih vzorcev

Če velja $H_{a}: \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}<1$,
potem je test statistik enak $\frac{s_{2}{ }^{2}}{s_{1}{ }^{2}}$

in odločitveno pravilo je

zavrni ničelno hipotezo, če velja

$$
\text { T.S. } \geq F_{\left(\alpha, n_{2}-1, n_{1}-1\right)^{\bullet}}
$$

Test hipoteze o razmerju varianc dveh populacij neodvisnih vzorcev

Če velja $\quad H_{a}: \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \neq 1$,
potem je test statistik enak
varianca večjega vzorca
varianca manjčega vzorca

in odločitveno pravilo je

zavrni ničelno hipotezo, če velja
$s_{1}{ }^{2}>s_{2}{ }^{2}$ in T.S. $\geq F_{\left(\alpha / 2, n_{1}-1, n_{2}-1\right)}$
ali

zavrni ničelno hipotezo, če velja
$s_{2}{ }^{2}>s_{1}{ }^{2}$ in T.S. $\geq F_{\left(\alpha / 2, n_{2}-1, n_{1}-1\right)}$ •

