

Statistika

Načrt

${ }^{\text {p }}$ postopek

- elementi
- napake 1. in 2. vrste
- značilno razlikovanje
- moč statističnega testa
testi
- centralna tendenca
- delež
- varianca

Uvod

postavimo trditev o populaciji,

- izberemo vzorec, s katerim bomo preverili trditev,
${ }^{\text {P }}$ zavrni ali sprejmi trditev.

Postopek testiranja hipoteze

postavi ničelno in alternativno hipotezo,

- izberi testno statistiko,
določi zavrnitveni kriterij,
- izberi naključni vzorec,
*izračunaj vrednost na osnovi testne statistike,
'sprejmi odločitev,
naredi ustrezen zaključek.

Hipoteza

ničelna hipoteza $\left(H_{0}\right)$

- je trditev o lastnosti populacije za katero predpostavimo, da drži,
- je trditev, ki jo test poskuša ovreči.
alternativna (nasprotna) hipoteza $\left(H_{a}\right)$
- je trditev nasprotna ničelni hipotezi,
- je trditev, ki jo s testiranjem skušamo dokazati.

Hipoteza

ničelna hipoteza $\left(H_{0}\right)$

- obtoženec je nedložen, alternativna hipoteza $\left(H_{a}\right)$
- obtoženec je kriv.

Odločitev in zaključek

Zaključimo, da je bilo dovolj dokazov, ki nas prepričajo, da je obtoženec storil kaznivo dejanje.

- Porota je spoznala obtoženca za nedolžnega. Zaključimo, da je ni bilo dovolj dokazov, ki bi nas prepričali, da je obtoženec storil kaznivo dejanje.

Elementi testiranja hipoteze

odločitev

	nedolžen	kriv
nedolžen	pravilna odločitev	napaka 1. vrste (α)
kriv	napaka	moč
	$2 . \operatorname{vrste}$	$(1-\beta)$
	(β)	

Elementi testiranja hipoteze

verjetnost napake 1. vrste (α)

- verjetnost za obtožbo nedolžnega obtoženca.
${ }^{\text {' }}$ značilno razlikovanje (signifikantno) oziroma stopnja značilnosti
- količina dvoma (α), ki ga bo porota še sprejela.
- Kriminalna tožba: "Beyond a reasonable doubt..."
- Civilna tožba: "The preponderance of evidence must suggest..."

Elementi testiranja hipoteze

verjetnost napake 2. vrste: (β)

- verjetnost, da spoznamo krivega obtoženca za nedolžnega,
moč testa: ($1-\beta$)
- verjetnost, da obtožimo krivega obtoženca.

Sodba

breme dokazov,
potrebno je prepričati poroto, da je obtoženi kriv (alternativna hipoteza) preko določene stopnje značilnosti.

- Criminal: "Reasonable Doubt"
- Civil: "Preponderance of evidence"

Obramba

Ni bremena dokazovanja.
> Povzročiti morajo dovolj dvoma pri poroti, če je obtoženi resnično kriv.

Hipoteza

ničelna hipoteza $\left(H_{0}\right)$

- Trditev o lastnosti populacije za katero verjamemo, da je resnična.
- Trditev, ki jo test skuša ovreči.
alternativna hipoteza $\left(H_{a}\right)$
- Trditev, ki je nasprotna ničelni hipotezi.
- Trditev, ki jo test skuša dokazati.

Statistična hipoteza

ničelna hipoteza
$-H_{0}: \theta=\theta_{0}$
alternativna hipoteza
$-H_{a}: \theta$? θ_{0}
$-H_{a}: \theta>\theta_{0}$
$-H_{a}: \theta<\theta_{0}$

Primer testiranja hipoteze

Predpostavimo, da je dejanska mediana (τ) pH iz določene regije 6,0.

Da bi preverili to trditev, bomo izbrali 10 vzorcev zemlje iz te regije, da ugotovimo, če empirični vzorci močno podpirajo, da je dejanska mediana manjša ali enaka 6,0?

Predpostavke

naključni vzorec

- neodvisen
- enako porazdeljen (kot celotna populacija),
vzorčenje iz zvezne porazdelitve,
verjetnostna porazdelitev ima mediano.

Postavitev statističnih hipotez

ničelna hipoteza

- $H_{0}: \tau=\tau_{0}$ (mediana populacije)
alternativna hipoteza
$-H_{a}: \tau=\tau_{0}$
$-H_{a}: \tau>\tau_{0}$
$-H_{a}: \tau<\tau_{0}$

Postavitev statističnih hipotez

ničelna hipoteza

- $H_{0}: \tau=6,0$
alternativna hipoteza
$-H_{a}: \tau$? 6,0
$-H_{a}: \tau>6,0$
$-H_{a}: \tau<6,0$

Izbira testne statistike

$\mathrm{S}_{+}=$število vzorcev, ki so večji od mediane τ_{0} iz hipoteze,
"S_= število vzorcev, ki so manjši od mediane τ_{0} iz hipoteze.

Porazdelitev testne statistike

vsak poskus je bodisi uspeh ali neuspeh,
fiksen vzorec, velikosti n,
naključni vzorci

- neodvisni poskusi,
- konstantna verjetnost uspeha.

Porazdelitev testne statistike

${ }^{\text {b }}$ binomska porazdelitev
$-S_{+} \sim \operatorname{Binomial}(n, p)$,
parameteri
$-n=10$,
$-p=0,5$,
pričakovana vrednost
$-E(X)=n p=5$.

Testiranje hipoteze

odločitev

	FTR $\boldsymbol{H}_{\mathbf{0}}$	zavrni $\boldsymbol{H}_{\mathbf{0}}$
$\boldsymbol{H}_{\mathbf{0}} \mathbf{j e}$ pravilna	pravilna odločitev	
$\boldsymbol{H}_{\mathbf{0}} \mathbf{j e}$ napačna		pravilna odločitev

Napaka 1. vrste

odločitev

		FTR $\boldsymbol{H}_{\mathbf{0}}$	zavrni $\boldsymbol{H}_{\mathbf{0}}$
dejansko stanje	$\boldsymbol{H}_{\mathbf{0}}$ je pravilna		napaka
	$\boldsymbol{H}_{\mathbf{0}}$ je napačna		

Napaka 2. vrste

odločitev

		FTR $\boldsymbol{H}_{\mathbf{0}}$	zavrni $\boldsymbol{H}_{\mathbf{0}}$		
$\boldsymbol{H}_{\mathbf{0}} \mathbf{j e}$ dejansko pravilna					
stanje				\quad	$\boldsymbol{H}_{\mathbf{0}}$ ni
:---					
pravilna	\quad	napaka			
:---					
2. vrste					

Verjetnost napake 1. vrste

odločitev

	FTR $\boldsymbol{H}_{\mathbf{0}}$	zavrni $\boldsymbol{H}_{\mathbf{0}}$
$\boldsymbol{H}_{\mathbf{0}}$ je pravilna	α	
$\boldsymbol{H}_{\mathbf{0}}$ ni pravilna		

Verjetnost napake 2. vrste

odločitev

	FTR $\boldsymbol{H}_{\mathbf{0}}$	zavrni $\boldsymbol{H}_{\mathbf{0}}$
$\boldsymbol{H}_{\mathbf{0}}$ je pravilna		
$\boldsymbol{H}_{\mathbf{0}}$ ni pravilna	β	

Elementi testiranja hipoteze

odločitev

Elementi testiranja hipoteze

verjetnost napake 1. vrste (α)

- Če hipoteza H_{0} drži, kakšna je možnost, da jo zavržemo.
'stopnja značilnosti testa (signifikantnosti)
- Največji α, ki ga je vodja eksperimenta pripravljen sprejeti (zgornja meja za napako 1. vrste).
" verjetnost napake 2. vrste (β)
- Če hipoteza H_{0} ne drži, kakšna je možnost, da je ne zavržemo.
moč statističnega testa: $(1-\beta)$
- Če hipoteza H_{0} ne drži, kakšna je možnost, da jo zavržemo.

Elementi testiranja hipoteze

velikost	napaka	napaka	moč
vzorca	1. vrste	2. vrste	
n	α	β	$1-\beta$
konst.	\uparrow	\downarrow	\uparrow
konst.	\downarrow	\uparrow	\downarrow
povečanje	\downarrow	\downarrow	\uparrow
zmanjšanje	\uparrow	\uparrow	\downarrow

Primer (A) testiranja hipoteze

Predpostavimo, da je dejanska mediana (τ) pH iz določene regije 6,0.

Da bi preverili to trditev, bomo izbrali 10 vzorcev zemlje iz te regije, da ugotovimo, če empirični vzorci močno podpirajo, da je dejanska mediana manjša ali enaka 6,0 ?

Primer (A) testiranja hipoteze

${ }^{>}$Hipoteza
$-H_{0}: \tau=6,0$
$-H_{a}: \tau<6,0$
Testna statistika
$-S_{+}=$število vzorcev večjih od predpostavljene mediane τ_{0}
$-S_{+} \sim \operatorname{Binomial}(n=10, p=0,5)$
$-E\left(S_{+}\right)=5$

Porazdelitev testne statistike

Mean = 5.0 Std Dev $=1.581$ Skewness $=0.000$ Kurtosis $=2.800$

Določimo zavrnitveni kriterij

x	$P(X=x)$	$F(x)$
0	0,000977	0,00098
1	0,009766	0,01074
2	0,043945	0,05469
3	0,117188	0,17188
4	0,205078	0,37695
5	0,246094	0,62305
6	0,205078	0,82813
7	0,117188	0,94531
8	0,043945	0,98926
9	0,009766	0,99902
10	0,000977	1,00000

Določimo zavrnitveni kriterij

Stopnja značilnosti testa $(\alpha)=0,01074$,
Kritična vrednost
$-S_{+}=1$,
Območje zavrnitve

- S_{+}manjši ali enak 1.

Izberemo naključni vzorec

Predpostavimo, da je dejanska mediana (τ) pH iz določene regije 6,0 .

Da bi preverili to trditev, smo izbrali 10 vzorcev zemlje iz te regije in jih podvrgli kemični analizi in na ta način določili pH vrednost za vsak vzorec.

Ali empirični podatki podpirajo trditev, da je dejanska mediana manjša ali enaka 6,0 ?

5,93; 6,08; 5,86; 5,91; 6,12; 5,90; 5,95; 5,89; 5,98; 5,96

Izračunaj vrednost iz testne statistike

pH	predznak	
5,93	-	
6,08	+	
5,86	-	
5,91	-	
6,12	+	
5,90	-	
5,95	-	
5,89	-	$S_{+}=2$
5,98	-	

Naredimo odločitev

${ }^{\text {}}$ Izračunana vrednost S_{+}leži zunaj zavrnitvenega območja.

Ni osnove za zavrnitev hipoteze H_{0}.

P-vrednost

${ }^{\text {D }}$ Sprejemljivost hipoteze H_{0} na osnovi vzorca

- Verjetnost, da je opazovani vzorec (ali podatki bolj ekstremni), če je hipoteza H_{0} pravilna.

Najmanjši a pri katerem zavrnemo hipotezo H_{0}.

- če je p-vrednost $>\alpha$, potem FTR H_{0},
- če je p-vrednost $<\alpha$, potem zavrni H_{0}.

P-vrednost

x	$P(X=x)$	$F(x)$
0	0,000977	0,00098
1	0,009766	0,01074
2	0,043945	0,05469
3	0,117188	0,17188
4	0,205078	0,37695
5	0,246094	0,62305
6	0,205078	0,82813
7	0,117188	0,94531
8	0,043945	0,98926
9	0,009766	0,99902
10	0,000977	1,00000
$p-$ vrednost	$=P\left(S_{+} \leq 2 \mid \tau=6,0\right)=0,05469$	

Izračunaj vrednost iz testne statistike

pH	predznak	
5,93	-	
6,08	+	
5,86	-	
5,91	-	
6,12	+	
5,90	-	
5,95	-	
5,89	-	$S_{-}=8$
5,98	-	

P-vrednost

x	$P(X=x)$	$F(x)$
0	0,000977	0,00098
1	0,009766	0,01074
2	0,043945	0,05469
3	0,117188	0,17188
4	0,205078	0,37695
5	0,246094	0,62305
6	0,205078	0,82813
7	0,117188	0,94531
8	0,043945	0,98926
9	0,009766	0,99902
10	0,000977	1,00000
p-vrednost	$=P\left(S_{-} \geq 8 \mid \tau=6,0\right)=0,05469$	

Sprejmi odločitev

p-vrednost $>\alpha=0,01074$

Ni osnove za zavrnitev hipoteze H_{0}.

Odločitev in zaključek

Zavrni ničelno hipotezo.

- Zaključimo, da empirični podatki sugerirajo, da velja alternativna trditev.

Ni osnove za zavrnitev (angl. fail to reject kratica FTR) ničelne hipoteze.

- Zaključimo, da nimamo dovolj osnov, da bi dokazali, da velja alternativna trditev.

Zaključek

Premalo podatkov, da bi pokazali, da je dejanska mediana $p H$ manjša od 6,0 .

Privzemimo, da je $p H$ enaka $6,0 \mathrm{v}$ tej konkretni regiji.

Testiranje predznaka

test
$-H_{0}: \tau=\tau_{0}$ (mediana populacije)
predpostavke

- naključno vzorčenje
- vzorčenje iz zvezne porazdelitve

Wilcoxon predznačen-rang test

Test

- $H_{0}: \tau=\tau_{0}$ (mediana populacije)
$-H_{0}: \mu=\mu_{0}$ (povprečje populacije)

Predpostavke

- naključni vzorec iz zvezne porazdelitve.
- porazdelitev populacije ima simetrično obliko.
- verjetnostna porazdelitev ima povprečje (mediano).

Testna statistika

$\mathrm{S}_{+}=$vsota rangov, ki ustrezajo pozitivnim številom.

S_= vsota rangov, ki ustrezajo negativnim številom.

Wilcoxonov predznačen-rang test

 Primernaj bo:

- $H_{0}: \tau=500$
- $H_{a}: \tau>500$
postopek:
- izračunaj odstopanje od τ_{0}
- razvrsti odstopanja glede na velikost absolutne vrednosti (tj., brez upoštevanja predznaka).
- seštej range, ki ustrezajo bodisi pozitivnemu ali negativnemu predznaku.

Wilcoxonov predznačen-rang test

Primer

meritve odstopanje abs. vednost rang	+	-			
499,2	$-0,8$	0,8	1		1
498,5	$-1,5$	1,5	2		2
502,6	2,6	2,6	3	3	
497,3	$-2,7$	2,7	4		4
496,9	$-3,1$	3,1	5		5
				$\mathbf{S}_{+}=\mathbf{3}$	$\boldsymbol{S}_{-}=\mathbf{1 2}$

Porazdelitev testne statistike

2^{n} enako verjetnih zaporedij, največji rang $=n(n+1) / 2$.

Porazdelitev testne statistike

S+	1	2	S-	p	F	
0	-	-	3	0,25	0,25	
1	+	-	2	0,25	0,5	
2	-	+	1	0,25	0,75	
3	+	+	0	0,25	1	
S+	1	2	3	S	p	F
0	-	-	-	6	0,125	0,125
1	+	-	-	5	0,125	0,25
2	-	+	-	4	0,125	0,375
3	-	-	+	3	0,125	0,5
3	+	+	-	3	0,125	0,625
4	+	-	+	2	0,125	0,75
5	-	+	+	1	0,125	0,875
6	+	+	+	0	0,125	1

Porazdelitev testne statistike

S+	1	2	3	4	S-	p	F
0	-	-	-	-	10	0,0625	0,0625
1	+	-	-	-	9	0,0625	0,125
2	-	+	-	-	8	0,0625	0,1875
3	+	+	-	-	7	0,0625	0,25
3	-	-	+	-	7	0,0625	0,3125
4	+	-	$+$	-	6	0,0625	0,375
4	-	-	-	+	6	0,0625	0,4375
5	+	-	-	+	5	0,0625	0,5
5	-	+	+	-	5	0,0625	0,5625
6	-	+	-	+	4	0,0625	0,625
6	$+$	$+$	+	-	4	0,0625	0,6875
7	$+$	+	-	$+$	3	0,0625	0,75
7	-	-	+	$+$	3	0,0625	0,8125
8	$+$	-	+	+	2	0,0625	0,875
9	-	+	+	+	1	0,0625	0,9375
10	+	+	+	+	0	0,0625	1

Porazdelitev testne statistike

$\mathbf{S +}$		1	2	3	4	5	S_{-}		p
0	-	-	-	-	-	15	0,03125	0,03125	
1	+	-	-	-	-	14	0,03125	0,0625	
2	-	+	-	-	-	13	0,03125	0,09375	
3	-	-	+	-	-	12	0,03125	0,125	
3	+	+	-	-	-	12	0,03125	0,15625	
4	-	-	-	+	-	11	0,03125	0,1875	
4	+	-	+	-	-	11	0,03125	0,21875	
5	-	-	-	-	+	10	0,03125	0,25	
5	+	-	-	+	-	10	0,03125	0,28125	
5	-	+	+	-	-	10	0,03125	0,3125	
6	+	-	-	-	+	9	0,03125	0,34375	
6	-	+	-	+	-	9	0,03125	0,375	
6	+	+	+	-	-	9	0,03125	0,40625	
7	-	+	-	-	+	8	0,03125	0,40625	
7	-	-	+	+	-	8	0,03125	0,4375	
7	+	+	-	+	-	8	0,03125	0,46875	
8	-	-	+	-	+	7	0,03125	0,5	

P-vrednost

Sprejemljivost hipoteze H_{0} na osnovi vzorca

- možnost za opazovanje vzorca (ali bolj ekstremno podatkov), če je hipoteza H_{0} pravilna.

Najmanjši a pri katerem zavrnemo hipotezo H_{0}

- Če je p-vrednost > α, potem FTR H_{0}.
- Če je p-vrednost $<\alpha$, potem zavrni H_{0}.
- Če je p-vrednost $=(2) P(Z>1,278)=(2)(0,1003)=0,2006$

Odločitev in zaključek

odločitev

- p-vrednost $=P\left(S_{+}\right.$? 3) ali $P\left(S_{-}\right.$? 12)
$-p$-vrednost $=0,15625$
- p-vrednost $>\alpha=0,1$
- FTR H_{0}
zaključek
- privzemimo $\tau=500$.
- ni osnov, da bi pokazali $\tau>500$

Primer (B)

Proizvajalec omake za špagete da v vsako posodo 28 unče omake za špagete. Količina omake, ki je v vsaki posodi je porazdeljena normalno s standardnim odklonom,05 unče.

Podjetje ustavi proizvodni trak in popravi napravo za polnenje, če so posode bodisi

- premalo napolnjene (to razjezi kupce)
- ali preveč napolnjene
(kar seveda pomeni manjši profit).
Ali naj na osnovi vzorca iz 15ih posod ustavijo proizvodno linijo? Uporabi stopnjo značilnosti 0,05 .

Postavimo hipotezo

ničelna hipoteza
$-H_{0}: \mu=28$
alternativna hipoteza

- $H_{a}: \mu<>28$

Z-Test

test

- $H_{0}: \mu=\mu_{0}$ (povprečje populacije)
predpostavke
- naključno vzorčenje
- poznamo varianco populacije
- izbiramo vzorce iz normalne porazdelitve in/ali imamo vzorec pri katerem je n velik.

Določimo zavrnitveni kriterij

Normal Distribution: $\mathrm{Mu}=0$, Sigma $=1$
$\mathrm{f}(\mathrm{z})$

Rezultati testiranja

naredi naključni vzorec

- vzorčno povprečje: 28,0165
izračunaj vrednost testne statistike
$-Z=(28,0165-28) / 0,0129=1,278$
naredi odločitev
- FTR H_{0}
zaključek
- privzami $\mu=28$

P-vrednost

- Sprejemljivost hipoteze H_{0} na osnovi vzorca
- možnost za opazovanje vzorca (ali bolj ekstremno podatkov), če je hipoteza H_{0} pravilna
$-p$-vrednost $=(2) P(Z>1,278)=(2)(, 1003)=, 2006$
* Najmanjši α pri katerem zavrnemo hipotezo H_{0}
- p-vrednost $>\alpha$, zato FTR H_{0}

Primer (C)

Ravnatelj bežigrajske gimnazije trdi, da imajo najboljši PT program v Sloveniji s povprečjem APFT 240.

Predpostavi, da je porazdelitev rezultatov testov približno normalna.

Uporabi $\alpha=0,05$ za določitev ali je povprečje APFT rezultatov šestih naključno izbranih dijakov iz bežigrajske gimnazije statistično večje od 240 ?

Postavimo hipotezo

ničelna hipoteza
$-H_{0}: \mu=240$
alternativna hipoteza
$-H_{a}: \mu>240$

T-test

test

- $H_{0}: \mu=\mu_{0}$ (povprečje populacije)
predpostavke
- naključno vzorčenje
- ne poznamo varianco populacije
- izbiramo vzorce iz normalne porazdelitve in/ali imamo vzorec pri katerem je n velik.

Določimo zavrnitveni kriterij

Student's t Distribution: D.F. $=5$

Rezultati testov

${ }^{\text {}}$ naredi naključni vzorec

- vzorčno povprečje: 255,4
- Vzorčni standardni odklon: 40,07
izračunaj vrednost testne statistike
- $T=(255,4-240) / 16,36=0,9413$
\$ sprejmi odločitev
- FTR H_{0}

zaključek

Bežigrajska gimnazija ne more pokazati, da imajo višje povprečje APFT rezultatov, kot slovensko povprečje.

P-vrednost

' Sprejemljivost hipoteze H_{0} na osnovi vzorca

- možnost za opazovanje vzorca (ali bolj ekstremno podatkov), če je hipoteza H_{0} pravilna
$-p$-vrednost $=P(T>0,9413)=0,1949$.
' Najmanjši α pri katerem zavrnemo hipotezo H_{0}
- p-vrednost $>\alpha$, zato FTR H_{0}.

Primer (D)

Državni zapisi indicirajo, da je od vseh vozil, ki gredo skozi testiranje izpušnih plinov v preteklem letu, 70\% uspešno opravilo testiranje v prvem poskusu.

Naključni vzorec 200ih avtomobilov testiranih v določeni pokrajni v tekočem letu je pokazalo, da jih je 156 šlo čez prvi test.

Ali to sugerira, da je dejanski delež populacije za to pokrajno v tekočem letu različno od preteklega državnega deleža?

Pri testiranju hipoteze uporabi $\alpha=0,05$.

Postavimo hipotezo

ničelna hipoteza
$-H_{0}: p=0,7$
alternativna hipoteza
$-H_{a}: p<>0,7$

Testiranje hipoteze za delež

test

- $H_{0}: p=p_{0}$ (delež populacije)
predpostavke
- naključni vzorec
- izbiranje vzorca iz binomske porazdelitve

Testna statistika

$$
Z=\frac{\hat{p}-p_{0}}{\sqrt{p_{0} q_{0} / n}}
$$

$$
n \hat{p} \geq 4 \quad \text { in } \quad n \hat{q} \geq 4
$$

Določimo zavrnitveni kriterij

Normal Distribution: $\mathrm{Mu}=0$, Sigma $=1$
$\mathrm{f}(\mathrm{z})$

Rezultati testiranja

naredi naključni vzorec

- delež vzorca: 156/200 = 0,78
izračunaj vrednost testne statistike
$-Z=(0,78-0,7) / 0,0324=2,4688$
" naredi odločitev
- zavrni hipotezo H_{0}
zaključek
- Pokrajna ima drugačen kriterij.

P-vrednost

Sprejemljivost hipoteze H_{0} na osnovi vzorca

- možnost za opazovanje vzorca (ali bolj ekstremno podatkov), če je hipoteza H_{0} pravilna
$-p$-vrednost $=(2) * P(Z>2,469)=(2) *(0,0068)$
= 0,0136
* Najmanjši α pri katerem zavrnemo hipotezo H_{0}
- p-vrednost $<\alpha$, zato zavrni hipotezo H_{0}

Primer (E)

Količina pijače, ki jo naprava za mrzle napitke zavrže je normalno porazdeljena s povprečjem12 unčev in standardno deviacijo 0,1 unče.

Vsakič, ko servisirajo napravo, si izberejo 10 vzorcev in izmerijo zavrženo tekočino.

Če je variation zavržene količine prevelika, potem mora naprava na servis. Ali naj jo odpeljejo na servis?
Uporabi $\alpha=0,1$.

Postavimo hipotezo

ničelna hipoteza
$-H_{0}: \sigma^{2}=0,01$,
alternativna hipoteza
$-H_{a}: \sigma^{2}=0,01$.

Testiranje hipoteze za varianco

test

- $H_{0}: \sigma^{2}=\sigma^{2}{ }_{0}$ (varianca populacije),
predpostavke
- naključni vzorec
- vzorčenje iz normalne porazdelitve.

Testna statistika

$$
\chi_{v=n-1}^{2}=\frac{S^{2}(n-1)}{\sigma_{0}^{2}}
$$

Določimo zavrnitveni kriterij

Rezultati testiranja

naredi naključni vzorec

- varianca vzorca: 0,02041
*izračunaj vrednost testne statistike
$\chi^{2}=(0,02041)(9) /(0,01)=18,369$
${ }^{\square}$ naredi odločitev
zavrni H_{0}
zaključek
popravi napravo

P-vrednost

- Sprejemljivost hipoteze H_{0} na osnovi vzorca
- možnost za opazovanje vzorca (ali bolj ekstremno podatkov), če je hipoteza H_{0} pravilna
- p-vrednost $=P\left(\chi^{2}>18,369\right)=0,0311$
* Najmanjši α pri katerem zavrnemo hipotezo H_{0}
- p-vrednost $<\alpha$, zato zavrni hipotezo H_{0}.

