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1) The Petersen graph is hidden inside the dodecahedron. Where?
For more on distance-regular graphs with ������� for small � see Theorem
7.1.1, which is a joint work with Araya and Hiraki.
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2) The generalized quadrangle �
	�������� with a spread deleted (dashed). Its
point graph is a unique distance-regular cover of ��� , cf. Section 3.1, Table
3.1 and Brouwer’s Theorem 3.3.1.

3) The distance-regular cover of ��� (with one antipodal class deleted). Each
of the three missing vertices is connected to one of the three ‘bold’ hep-
tagons. This cover is called the Klein graph and it is a unique distance-
regular graph which is locally a heptagon, cf. Section 3.2 (Lemma 3.2.2)
and Mathon’s construction on page 27. Distance-regular graphs which are
locally strongly regular are studied in Chapter 4, see Theorem 4.5.7, which
is a joint work with Koolen.

4) The cyclic cover of ��� is described by orienting some lines of the affine
plane ������������ , cf. Theorem 3.3.2 by Brouwer and Wilbrink, Section 3.4
and Godsil’s Theorem 3.5.4. The other distance-regular cover of ��� can
be obtained by ‘switching’ any directed line with three directed loops, cf.
Section 3.5 (Theorem 3.5.3).

5) A unique spread of the symplectic generalized quadrangle ������� has been
find by studying the generalized quadrangle �
	 ����"!#� , cf. Payne’s Con-
struction 3.5.1, Section 3.6 and Section 3.7.

6) A unique double-cover of the 4-cube 	
$ with no quadrangles is described
by a 2-colouring of 	%$ , cf. Proposition 6.1.5 by Cohen and Tits and
Chapter 6, where antipodal covers (of strongly regular graphs), which are
not necessarilly distance-regular, are studied.

7) Merging (skew arrows) in & -cubes which cover folded & -cubes is realized
by connecting vertices at maximum distance, cf. Chapter 5, which contains
a characterization of certain distance-regular antipodal covers with regular
near polygons (Theorem 5.3.3).
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We study antipodal distance-regular graphs. We start with an investigation
of cyclic covers and spreads of generalized quadrangles and find a switching,
which uses some known infinite families of antipodal distance-regular graphs
of diameter three to produce new ones. Then we examine antipodal distance-
regular graphs of diameter four and five. P. Terwilliger has shown, using the
theory of subconstituent algebras, that in a 	 -polynomial antipodal distance-
regular graph the neighbourhood of any vertex is a strongly regular graph. We
use representations of graphs to extend this result and to derive from that new
nonexistence conditions for covers. This study relates to the above switching
and to extended generalized quadrangles.

In an imprimitive association scheme there always exists a merging (i.e.,
a grouping of the relations) which gives a new nontrivial association scheme.
We determine when merging in an antipodal distance-regular graph produces
a distance-regular graph. This leads to our main result, a characterization of
certain antipodal distance-regular graphs with regular near polygons containing
a spread. In case of diameter three we get Brouwer’s characterization of certain
distance-regular graphs with generalized quadrangles containing a spread.

Finally, antipodal covers of strongly regular graphs which are not neces-
sarily distance-regular are studied. In most cases, the structure of short cycles
provides a tool to determine the existence of an antipodal cover. A relationship
between antipodal covers of a graph and its line graph is investigated. Antipo-
dal covers of complete bipartite graphs and their line graphs (lattice graphs) are
characterized in terms of weak resolvable transversal designs which are, in the
case of maximal covering index, equivalent to affine planes with a parallel class
deleted.

We conclude by mentioning two results which indicate the importance of
antipodal distance-regular graphs.
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First, equitable partitions are used to define distance-regular graphs and
antipodal covers. Then we explain why distance-regular antipodal covers are
interesting and finally we give a summary of our main results.

As it is quite natural to introduce new subjects through examples, we
start with two remarkable combinatorial objects, the Petersen graph and the
dodecahedron,

Figure 1.1: The Petersen graph and the dodecahedron.

and explain how they are related through equitable partitions. These are par-
titions � �	��
� ������� ��
���� of the vertex set of a graph � , such that for all �
and � the number � ��� of neighbours, which a vertex in 
 � has in the cell 
 � ,
is independent of the choice of the vertex in 
 � . In other words each cell 
 �
induces a regular graph of valency � � � , and between any two cells 
 � and 
 �
there is a biregular graph, with vertices of the cells 
 � and 
 � having valencies
� ��� and ��� � respectively. The antipodal pairs of vertices of the dodecahedron,
determine one such partition. Another example is the distance partition, i.e.,
partition of the vertices corresponding to their distances from a particular vertex,
of the dodecahedron, the Petersen graph, or its line graph.

Equitable partitions give rise to quotient graphs ����� , which are directed
multigraphs with cells as vertices and � ��� arcs going from 
 � to 
 � . From the
distance partitions of the dodecahedron, the Petersen graph and its line graph,
and the partition of dodecahedron into antipodal pairs of vertices we get the
following quotients, see Figure 1.2 and Figure 1.3.
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Figure 1.2: The quotients corresponding to the distance and antipodal partitions of the
dodecahedron, and the distance partition of the Petersen graph.

One of the most important properties of the equitable partitions is that the
eigenvalues of the quotient graph ����� are also the eigenvalues of the original
graph � , thus all the eigenvalues of the Petersen graph are also eigenvalues of
the dodecahedron.

A graph of diameter � has at least ��� � eigenvalues (cf. Theorem 2.2.2),
and in many cases this lower bound is tight. If a distance partition is equitable for
each vertex � of a connected graph � and the parameters ��� � of these equitable
partitions do not depend on choice of � , then � is called distance-regular graph.
Suppose that a graph � is distance-regular and that 
 � is the set of vertices at
distance � from � , then � ��� � 
 for � ��� ����� � , and the parameters � � � , � � � �
	 �
and � � � ��� � are denoted by #� , � � and � � respectively. Since for a distance-regular
graph the quotient graph corresponding to the distance partition inherits all the
eigenvalues of the original graph, the above lower bound on the number of
eigenvalues is tight in this case. Distance-regular graphs of diameter two are
called strongly regular graphs. Some examples of distance-regular graphs are
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complete graphs, complete multipartite graphs, cycles, & -cubes, 1-skeletons of
the Platonic solids, the Petersen graph and its line graph. The intersection arrays
� ��� ��� � ������� ����� � ��� � � � � 	 ������� � ��� � of the last two graphs and of the dodecahedron
are respectively � ���� � � � ��� , � ! ���� � � � � � �"!�� , and � ������ � � � � � � � � � � � � �� � � .

1 20 3

Figure 1.3: The quotient corresponding to the distance partition of the line graph of
the Petersen graph. For example, the ‘2’ in the intersection array means that each
green vertex (i.e., a vertex at distance one from a chosen vertex) has exactly two blue
neighbours (i.e., two neighbours at distance two from the chosen vertex).

There are also many infinite families of distance-regular graphs, for example
Johnson and Hamming graphs, which offer, through the study of distance-
regular graphs, a unifying approach to design and coding theories. For a detailed
treatment of distance-regular graphs see Biggs [13], Bannai and Ito [8], Brouwer,
Cohen and Neumaier [27] and Godsil [64].

A distance transitive graph, i.e., a graph where any two vertices can be
mapped by an automorphism to any other two vertices at the same distance,
is obviously distance-regular. Although all the above examples are distance
transitive there are also distance-regular graphs which are not distance transitive,
see for example Shrikhande [123] or Figure 3.3. We can consider distance-
regularity as a weakening of the condition of distance transitivity; instead of
complete symmetry of a graph, there is just a numerical regularity. In this sense
distance-regularity is a combinatorial approximation of the algebraic property
of ‘being distance transitive’. This correctly forecasts an interlacing of the
combinatorial and the algebraic approach.

Distance-regular graphs also have important connections with areas other
than algebra: in combinatorics with finite geometries, coding theory, design
theory, and in functional analysis with orthogonal polynomials. These graphs
are a special class of association schemes, one of the most important unifying
concepts in algebraic combinatorics.

The above relation between the Petersen graph and the dodecahedron is the
central theme of this thesis, so let us explore some additional properties of the
partition corresponding to the diagonals of the dodecahedron. First observe that
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in this particular case � � � � 
 for each � , and � ��� either is zero or one when � �� � .
In other words, the cells must be independent sets and there is either a 1-factor
or nothing between any two cells. A graph with such a partition is called a cover
of its quotient ����� and the cells are called fibres. If � ��� is connected then all
the fibres have the same size called covering index and usually denoted by � .
This terminology comes from topology, since the geometric realization of these
covers are covering spaces in the usual topological sense.

A graph � of diameter � is antipodal if the vertices at distance � from a given
vertex are all at distance � from each other. Then ‘being at distance � or zero’
induces an equivalence relation on the vertices of � , and the equivalence classes
are called antipodal classes. Antipodal distance-regular graphs of diameter
at least three are covers with antipodal classes as fibres (diameter two case is
excluded because of complete multipartite graphs, e.g., the octahedron). A cover
of index � , in which the fibres are antipodal classes, is called antipodal r-cover
of its quotient. For example, the cube is the unique distance-regular antipodal
double-cover of the tetrahedron, i.e., � $ , the line graph of the the Petersen graph
is the unique distance-regular antipodal triple-cover of � � , the icosahedron is
a distance-regular antipodal double-cover of ��� , and the dodecahedron is a
distance-regular antipodal double-cover of the Petersen graph.

In the line graph of the Petersen graph, each edge lies in a unique maximal
clique, which is a triangle in this case. A graph with this property is a collinearity
graph (also called the point graph) of the partial linear space, formed by the
vertices of the graph as points and the maximal cliques of it as lines, see
Figure 1.4.

Figure 1.4: The line graph of the Petersen graph together with its antipodal classes is a
collinearity graph of a near polygon (called generalized quadrangle �
	 ������� , since
the incidence structure does not contain triangles, there are 2+1 points on each line and
2+1 lines through each point).
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The line graph of the Petersen graph, together with its antipodal classes actually
determines an incidence structure called near polygon, since additionally for
each vertex � and a maximal clique 
 with � � � ��

� less then the diameter of
the graph, there is a unique vertex of 
 nearest to � . This property is modeled
after a property of ordinary polygons.

In general, antipodal distance-regular graphs of small diameter give rise to
various important combinatorial structures such as projective planes, Hadamard
matrices, and even to more general objects such as symmetric group divisible
designs and resolvable transversal designs, see Gardiner [59], Drake [57], De-
lorme [53], Shad [121], Shawe-Taylor [122]. Distance-regular graphs serve as
an alternative approach to these interesting combinatorial objects and allow the
use of graph eigenvalues, graph representations and the theory of association
schemes. Inspired by this, we investigate (distance-regular) antipodal covers of
small diameter.

Our goal is to gain insight into the structure of antipodal distance-regular
graphs, to construct new antipodal distance-regular graphs (an infinite family
or some sporadic example) or to prove that for certain intersection arrays there
are no such graphs, as well as to characterize certain antipodal distance-regular
graphs, or to find some new technique which could be used in the study of
distance-regular graphs in general.

New constructions usually lead to constructions of some other combinato-
rial objects (mentioned above), while sporadic examples show the true nature of
this field. For the latest advances in the construction business of distance-regular
graphs see de Caen, Mathon and Moorhouse [38].

Strong characterizations, which, with some luck, eventually lead to new
constructions or provide a tool to prove uniqueness of a certain object, are very
rare. In diameter three case, there are only a few characterizations of this kind.
Two should be mentioned: distance-regular double-covers are characterized
by (regular) two-graphs, and Brouwer’s characterization by near polygons of
diameter two, i.e., generalized quadrangles, containing a set of lines which
partition the point set, called a spread. The second characterization is especially
strong in conjunction with results on geometric graphs, see Cameron, Goethals
and Seidel [46]. In diameter four case, strong characterizations have been
known only for covers of complete bipartite graphs, for larger diameter no
characterizations are known.

A graph � is said to be locally
�

, where
�

is a graph or a class of graphs,
when for each vertex � of � the neighbours of � induce a graph isomorphic
to (respectively a member of)

�
. For example, the icosahedron is locally a

pentagon, and the point graphs of generalized quadrangles is locally a union
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of cliques. Local graphs of a distance-regular graph are regular, and in some
special cases provide an alternative tool to study distance-regular graphs.

After having introduced some basic results about distance-regular graphs
in Chapter 2, we start an investigation of antipodal distance-regular graphs with
diameter three case in Chapter 3. We find a switching, an operation which uses
some known infinite families of antipodal distance-regular graphs of diameter
three, to produce new ones. A similar idea (switching on a regulus) has been used
to construct non-Desarguesian planes from Desarguesian ones. Additionally,
we prove uniqueness of some distance-regular covers of small complete graphs
(more precisely � � , ��� � ), and geometric distance-regular cover of � � � .

In Chapter 4, we examine antipodal distance-regular graphs of diameter
four and five. Their intersection numbers, Krein and absolute bounds are
determined. We parametrize 	 -polynomial antipodal distance-regular graphs
of diameter four with two parameters. Among these graphs we investigate
those which are locally generalized quadrangles ��� � � ��� � � � (there are two
known examples: � � ���� ). This study relates to the above switching and
to extended generalized quadrangles. Terwilliger showed, using the theory of
Krein modules, that a 	 -polynomial antipodal distance-regular graph is locally
strongly regular. Together with J. Koolen we use graph representations to extend
this result and to derive from that a new nonexistence conditions for covers. For
example, from the set of feasible intersection arrays of antipodal distance-regular
graphs one quarter of those which are 	 -polynomial are ruled out.

In Chapter 5, we study mergings (i.e., groupings of the relations) in an im-
primitive association scheme, which give new nontrivial association schemes.
Merging was, for example, used to construct some new strongly regular graphs,
see Brouwer and Van Lint [31]. We determine when merging the first and the
last classes in an antipodal distance-regular graph (i.e., joining all the pairs of an-
tipodal vertices with edges) produce a distance-regular graph. Conversely, given
a distance-regular graph with the same intersection array as the merged graph
and a certain clique partition, an antipodal distance-regular graph is constructed.
This leads to the main result of this thesis, a characterization of certain antipo-
dal distance-regular graphs (of arbitrary diameter) with regular near polygons
containing a spread. In the case of diameter three, we get Brouwer’s char-
acterization of certain distance-regular graphs, with generalized quadrangles
containing a spread. For example, certain distance-regular antipodal double-
covers of strongly regular graphs are equivalent to certain triangle-free strongly
regular graphs. As there are only a few such graphs known, this means that it will
be extremely difficult to find such covers. Known examples of distance-regular
graphs in which mergings works are: the

K
-cube as the double-cover of the
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folded
K

-cube and the folded � K � � � -cube as the merged graph; the bipartite
double of the coset graph of the binary Golay code merges to the coset graph of
the extended binary Golay code; the coset graph of the shortened ternary Golay
code is a distance-regular antipodal three-fold cover with diameter four of the
point graph of the truncated ternary Golay code and the Berlekamp- Van Lint-
Seidel graph (the coset graph of ternary Golay code) as the merged graph. We
find new infinite families of feasible parameters of distance-regular antipodal
covers with diameter four.

Finally, in Chapter 6, antipodal covers of strongly regular graphs, which
are not necessarily distance-regular, are studied. In most cases the structure of
short cycles provides a tool to determine the existence of an antipodal cover. A
relationship between antipodal covers of a graph and its line graph is investigated.
Antipodal covers of complete bipartite graphs and their line graphs (the lattice
graphs) are characterized in terms of weak resolvable transversal designs, which
are, in the case of maximal covering index, equivalent to affine planes with a
parallel class deleted.

At the end we mention two results which indicate the importance of an-
tipodal distance-regular graphs. The first one is the result of collaboration with
Araya and Hiraki. Let � be a distance-regular graph of diameter � and valency� �  . If �  � � and  ��� � , then � is an antipodal double-cover. Consequently,
if � �  is the multiplicity of an eigenvalue of the adjacency matrix of � and if
� is not an antipodal double-cover, then ��� �� � � . This result is an improve-
ment of Godsil’s diameter bound, which is very important for the classification
of distance-regular graphs with an eigenvalue of small multiplicity (as opposed
to a dual classification of distance-regular graphs with small valency). The sec-
ond result is joint work with Godsil. We show that distance-regular graphs, that
contain maximal independent geodesic paths of short length, are antipodal. A
new infinite family of feasible parameters of antipodal distance-regular graphs
of diameter four is found. As an auxiliary result, we use equitable partitions to
show that the determinant of a Töplitz matrix can be written as a product of two
determinants of approximately half the size of the original one.

In tables “!” means that a graph is uniquely determined by its parameters,
“//” means that no graph realizes this particular parameter set, and “?” means
that nothing is known.
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In this Chapter we introduce some basic result about distance-regular graphs,
eigenvalues of graphs, association schemes, antipodal graphs and generalized
quadrangles, which are not our own and which are needed later in the thesis for
reference purposes.

��� 	�
��������������������� �!�"�#������$�%��

Let � be a graph. The distance between vertices � and & of a graph � will
be the length of a shortest path between � and & , denoted by dist ' � � �(& � or
just by dist � � �(& � when this is not ambiguous. Let � be a vertex of a graph � .
Then )+* � � � denotes the set of vertices at distance exactly � from � . We call
)�* � � � a sphere of radius � centered at � , or the � -th neighbourhood of � . In
particular, we use ) � � � for ) � � � � and call it the neighbourhood of a vertex � .
Let , * � � �.- � ��� �./0) � � � ��/213131�/�) * � � � be called a ball of radius � centered
at � .

Let � be a distance-regular graph of diameter � . For vertices � and & at
distance � and integers � , � let 4 ��� � � � denote the value �5) � � � �768) � �9& � � . The
numbers 4 ��� � � � are called the intersection numbers of � . The valency of �
is then 4 � � � 
 � � �5) � � � � and is usually denoted by

�
. Some other intersection

numbers also have special names:

� * �:4 *;* � 
 � � �5) * � � � � � for �
��
 � � ������� � � �
 * �:4 * � � ��� � �5) �9& �<6�) * � � � � � for �
� � ���������� � � �

�=* �:4>* 	 � � � � � � � �5) �9& �<6#)+* 	 � � � � � � for �
��
 � � ������� � � � � �
�?* �:4�* � � � � � � � � �5) �9& �@6#)+* � � � � � � � for �%� � ���������� � � �

and 	 �  � , A � � 	 . Set  � � � � � � � � 
 , then  * � � * � � * � �
for

�
� 
 ������� � � and � � � � , � � � � .
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All the intersection numbers are determined by the numbers in the inter-
section array

� � � ��� � ������� ��� � � � � � � � � 	 ������� � � � �
of � . This can be proved by induction on � using the following recurrence
relation:

� � 	 � 4 � � � 	 � � � � �  � 4 ��� � � ��� � � � � 4 � � � � � � � � �
� �
	 � 4 �
	 � � � � � � � #� 4 � � � � ��� � ��� � 4 ��� � � � � ���

obtained by counting for vertices � and & at distance � the edges with one end
in ) � � � � and another in ) � �9& � in two different ways. Therefore the intersection
numbers do not depend on the choice of � and & at distance � . Note that a
distance-regular graph need not be uniquely determined by its parameters, the
smallest such example is the Shrikhande graph, see [27, p. 104] or Figure 3.3.,
which has the same parameters as the !�	�! -grid graph.

Distance-regular graphs of diameter two are called strongly regular graphs.
They were introduced by Bose [19] and have been intensively studied since, see
e.g. Seidel [118], Cameron and Van Lint [48], and Brouwer and Van Lint [31].

The following result gives us the basic properties of the parameters  � , � � ,
� � and

� � of a distance-regular graph, see Brouwer et al. [27, pp. 127, 133, 167]:

2.1.1 LEMMA. Let � be a distance-regular graph with valency
�

and diam-
eter � . Then the following holds:
(a)

� ��� � � ��� � � � � � � , for � � � ��� � � � � .
(b) � � � � � � 	 � 13131 � ��� .
(c)

� � � � � � � � 13131 � � � � � � 
 .
(d) if � � � � � then � � � � � .
(e) if � � � � � and � � � , then

� � � � � .
(f) the sequence

� � is unimodal, i.e.,
� � � 13131 � ��� � 13131 � ��� � 13131�� �

�
for some � and � with � ��� �	� � � .

For a graph � of diameter � we define the � -th distance graph � � to be
the graph with the same vertex set as � , and with two vertices adjacent if
and only if they are at distance � in the graph � . We call � imprimitive if
for some � , � ��� � � , the graph � � is disconnected. A graph which is not
imprimitive is called primitive. Smith [126] has proved the following theorem
for distance transitive graphs, but the proof can be easily extended to arbitrary
distance-regular graphs.
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2.1.2 THEOREM (Smith [126]). An imprimitive distance-regular graph with
valency greater than two is either bipartite or antipodal (or both).

If � is a connected bipartite graph of diameter at least two, then � 	 has
two components. The graphs induced on these components are called halved
graphs of the graph � and they are distance-regular if � is, see Biggs and
Gardiner [16] or Brouwer et al. [27]. If � is distance transitive, the two halves
are isomorphic, but in general this is not necessarily so. An example is Tutte’s
12-cage, see Brouwer et al. [27].

For an antipodal graph � we define the folded graph of � , also called
the antipodal quotient of � , to be the graph 	 with the antipodal classes as
vertices, where two components are adjacent if they contain adjacent vertices.
The graph 	 is distance-regular whenever � is distance-regular, see Gardiner
[60] or Hensel [83]. The only antipodal graphs of diameter two are complete
multipartite graphs � ����� , i.e., the complement of � cliques of size � , and they
are bipartite only when � �  .

An imprimitive distance-regular graph � with valency greater than two,
gives us, after halving at most once and folding at most once, a primitive
distance-regular graph. For a more precise statement and proof see Biggs and
Gardiner [16], Brouwer et al. [27] or Hensel [83].

� � �.
 � � ������� �@�<� ����� ������$�% �=�"$��=�<��� �<���@� 
������

The adjacency matrix � � � � � � of a graph � with vertex set � � ������� �"& � is the
& 	�& matrix with the � � -entry equal to � if the vertex � is adjacent to the vertex
� and equal to 
 otherwise. Since � is loopless, diagonal entries are zero, and
since � is a symmetric matrix, all the eigenvalues of � are real. They will be
referred to as the eigenvalues of � . In vector/matrix equations we will use � to
denote the identity matrix, � to denote the square matrix with all entries equal
to one.

By an easy induction argument we get the fundamental property of the
adjacency matrix: the number of walks in � from the vertex � to the vertex �
with length

�
is equal to the � � -entry of the matrix ��� . Some other properties

of a graph can also be expressed very elegantly in algebraic way, for example,
regularity of a graph:

2.2.1 LEMMA. Let � be a connected graph. Then G is
�

-regular if and only
if
�

is its eigenvalue with multiplicity one and eigenvector � � � � ������� � � ��� .
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The valency
�

is the spectral radius of � � � � . The following two results
can be found, for example, in Godsil [64, Lemma 2.5.2 and Lemma 11.2.2],

2.2.2 THEOREM. A connected graph � of diameter � on & vertices has at
least � � � and at most n distinct eigenvalues.

The rank of & 	 & matrix � is one, thus zero is an eigenvalue with multiplic-
ity & �
� . Since � � � � � � � � � , we have � � � � � ����� � ��� � � � � � ����� . Therefore
� � has for its eigenvalues �
� with multiplicity & � � and by Lemma 2.2.1
also its valency & � � with multiplicity one. The corresponding eigenvectors
are � � � � ������� � � � � and the & � � vectors obtained from the regular & -simplex
in � & � � � -dimensional space with the center of mass at the origin. The &
projections of its vertices to the � -th coordinate define one such vector.

If � is a graph of diameter � , then we define the � -th distance matrix � � to
be the adjacency matrix of � � . We set � � � � and � * � 
 for � � � or � ��

and � � ��� . Now the ��& -entry of � � � � is equal to the number of vertices
at distance � from � and � from & . This provides an equivalent definition of
distance regularity:

2.2.3 THEOREM. A connected graph � of diameter � is distance-regular if
and only if there are numbers  � , � � and � � such that

� � � � � ��� � � ��� � � #� � � � � �
	 � � �
	 � for 
 � � � � �
If � is a distance-regular graph, then � � � & � � ��� for some polynomial & � ��� �
of degree � , for 
 � � � ��� � .
Using this identity for a distance-regular graph we find that ��� ��� is a linear
combination of distance matrices which are linearly independent. The coeffi-
cient at � * is 4 � ��� � � . We have already pointed out once, this means that, in
order to check if some graph is distance-regular it is enough to verify if for any
vertices � and &��2) � � � � the numbers �5) �
	 � � � ��6#) �9& � � and �5) ��� � � � ��6�) �9& � � ,
i.e., the members of intersection array, are independent of the choice of � and & .

The sequence of polynomials & � ��� � is determined with & � � ��� � � 
 ,
& � ��� � � � , &�� ��� � ��� and with the recurrence relation

� �
	 �(& �
	 � ��� � � ��� �  � � & � ��� � � � � � �(& ��� � ��� � � � ��
 � � ������� � � �
In this sense distance-regular graphs are combinatorial representation of orthog-
onal polynomials, see [64] for further details. Damerell [52] has proved the
following:
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2.2.4 COROLLARY. If G is a distance-regular graph of diameter � , then it
has precisely ��� � distinct eigenvalues, namely zeros of & � 	 � ��� � .

The converse does not hold in general, but it is true for diameter two strongly
regular graphs. The next lemma gives us a connection between eigenvectors of
� and � � which has an important consequence, cf. Theorem 2.4.4).

2.2.5 LEMMA. Let � be a distance-regular graph and
�

an eigenvalue with
eigenvector � . Then & � � � � is an eigenvalue of � � with eigenvector � .

The characteristic matrix � � ��� � � of a partition � � ��
 � ������� ��
���� of a
set of & elements is the & 	�� matrix with columns formed by the characteristic
vectors of the elements of � (i.e., the � � -entry of � is 0 or 1 according to � being
contained in 
 � or not).

2.2.6 LEMMA. A partition � of
� � �
� with the characteristic matrix � is

equitable if and only if there exists a � 	�� matrix , such that � � � � � � � , .
If � is equitable then , � � � ����� � .

Here is one important result of this kind due to Haynsworth [80]:

2.2.7 COROLLARY. Let � be a graph with an equitable partition ���
��
 � ������� ��
 � � , and let

�
be an eigenvalue of ����� with eigenvector � , then

�
is

also an eigenvalue of � (with multiplicity at least as large as its multiplicity in
� ��� ), and � extends to an eigenvector of � which is constant on cells of � .
If � is an eigenvalue of � but not of � ��� then the sum of coordinates of any
eigenvector of � corresponding to the eigenvalue � equals zero on each cell 
 � .

1
b

c
c c c

b b
aaaa
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Figure 2.1: The quotient graph corresponding to the distance partition.
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Having developed this machinery, it is time to apply it. Let � be a distance-
regular graph of diameter � and � a vertex of � . Then the distance partition
corresponding to a vertex � is an equitable partition and gives rise to a quite
simple graph (see Figure 2.1) which inherits all the eigenvalues of � . The
quotient graph ������� does not depend on the choice of a vertex � , since �
is distance-regular, so we can omit index � . It has just � � � vertices, so by
Theorem 2.2.2 its adjacency matrix

� � � ��� � �

�������
�


 � �
� �  � � � 


� 	  	 � 	. . .
. . .

. . .

 � � � �  � � � � � � �

���  �

��������
�

which is determined by intersection array of � , has exactly � ��� distinct
eigenvalues and they are precisely all the eigenvalues of � � �
� . The vector
& �
	 & ��� � � ������� �(& ��� � �"� � is a left eigenvector of this matrix corresponding to
the eigenvalue

�
. Similarly a vector � � ��� � � � � ������� �� � � � �"� � defined by� � � ��� � � 
 , � � ��� ��� � , � � ��� � ����� � and by the recurrence relation

��� � ��� � � � � � ��� � ��� � �  � � � ��� ��� � � � �
	 � ��� � � � ��
 � � ������� � �

is a right eigenvector of this matrix, corresponding to the eigenvalue
�
. There is

the following relation between coordinates of vectors � and & : � � ��� � � � � & � ��� � .
The sequence 	�� � � � � ������� �� � � � �"� is fundamental for the study of distance-
regular graphs and is called the standard sequence (or also a sequence of cosines)
corresponding to

�
. Using Sturm’s theorem (see Brouwer et al. [27, p. 129] or

[140]) the following result is obtained.

2.2.8 THEOREM. Let
�
� � 13131 � �

� be the eigenvalues of a distance-
regular graph. The sequence of cosines corresponding to the � -th eigenvalue

� �
has precisely � sign changes.

Now, we will obtain the sequence of cosines by graph representations.
Let � be a distance-regular graph with vertex set � � ������� �"& � , and let

�
be an

eigenvalue of � � � � �
� with multiplicity � . Let ��� be an & 	 � matrix with
columns forming an orthonormal basis for the eigenspace associated with

�
. Let

� � � � � be the � -th row of � � . Then this defines a mapping from
� � � � into IR


,
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called a graph representation corresponding to
�
. We have � ����� � � � and

therefore, �

��� �
� � � ����� � � � � � � �

We mention two results which demonstrate that this concept is natural. All this
and more on representations can be found in Godsil [64, Ch. 13] and Brouwer
et al. [27, Ch. 3].

2.2.9 LEMMA. Let � be a distance-regular graph and let
�

be an eigenvalue
of � . If � and � are two vertices of � then � � � � � � � � � � �#�"� is determined by the
distance between � and � in � .

This result implies that the vectors � � � � � all have the same length. Now it
is not difficult to derive from Theorem 2.2.3 that for � � dist � � � ��� we have:

� � � � � � � � � � � � � � � � ���"�� � ��� � � � � ��� � �"� �
2.2.10 THEOREM. Let � be a distance-regular graph of diameter � and
valency

� �  . Let
�

be an eigenvalue of � . Then � � is not injective if and only
if
(a)

� � � , or
(b)

� � � � and � is bipartite, or
(c) � is antipodal and

�
is not an eigenvalue of its antipodal quotient.

This result implies that � � is locally injective when � is not complete
multipartite graph and

�
is not

�
or � � .

� � 	 ��� � ��
 �@� 
���� � �@%���
 �<�

The set of � graphs � � ������� � � � with the vertex set � , for which we have:

(a) for any pair of vertices � and  exactly one graph � � contains the edge �� ,
(b) for any pair of vertices � ,  and any integers � , � the number

� ��� ��� � ��� � � � and �� � � � � � � � -34 ����� � �"�
depends only on � , � and the distance graph � � which contains the edge
�� (and not on the edge �� itself),
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is called a � -class (symmetric) association scheme on the set � with intersec-
tion numbers 4 ��� � � � . Note that each graph � � could be substituted with the
corresponding relation � � . A � -class association scheme on � is essentially a
colouring of the edges of the complete graph ��� ��� with � colours, such that the
number of triangles with a given colouring on a given edge depends only on the
colouring and not on the edge.

If we denote the adjacency matrices of graphs � � by � � and the identity
matrix of order � � � by � � , the condition (a) translates to � ���� � � � � (all
ones matrix) and the condition (b) to � � � � ��� �� � � 4

�
��� � � . The algebra 	

generated by matrices � � ������� � � � is called the Bose-Mesner algebra of the
association scheme. Since the 
 � -matrices of 	 which are idempotents for
the Schur product (i.e., the entry-wise product, also known as the Hadamard
product), and with minimal number of ones are uniquely determined, we us
usually denote an association scheme just by � � �
	 � . It can be shown that 	
is an association scheme if and only if the matrices � � ������� � � � span a � � � � � -
dimensional commutative subalgebra of symmetric complex matrices � � � � ,
where � is the index set. Furthermore, it can be shown that this algebra admits
a basis of � � � pairwise orthogonal symmetric idempotents � � , � ��� ������� � � ,
with � � � � � � � � � and � ���� � � � � � . These � � ’s are in fact projections onto
� � � pairwise orthogonal eigenspaces common to all elements of 	 .

If the graph � is distance-regular then its distance graphs � � ������� � � � form
an association scheme and for ��� � ������� � � the matrix � � is a polynomial
of degree � in � � , Such an association scheme is said to be � -polynomial.
Equivalently, ��	�� � � is � -polynomial if for all integers � , � , � ( 
 � � � ��� � � � ),
4 ��� � � ����
 (resp. 4 ����� � � ���
 ) whenever one of � , � , � is greater than (resp. equal
to) the sum of the other two. Similarly, an association scheme is 	 -polynomial
if there are polynomials � � of degree � such that � �
� � ���� � � , i.e., if for all
integers � , � , � ( 
 � � � � � � � � ), � ��� � � � � 
 (resp. � � � � � � �� 
 ) whenever one
of � , � , � is greater than (resp. equal to) the sum of the other two.

The definition of primitivity is extended from distance-regular graphs to
association schemes. An association scheme is primitive if all the graphs � � are
connected, and imprimitive otherwise. The condition (b) implies that the graphs
� � are regular. Let us denote their valency by

� � . We will use some well known
identities for the intersection numbers 4 ��� � � � :

2.3.1 LEMMA. (a) 4 � � � ��� ��� ��� , (b) 4 ��� � � � � 4 � � � � � , (c) � �
� � 4��  � � � � � � ,

(d) 4 � � � � � � � �:4 � � � �#� � � �:4 � � � � � � � .
Before we finish this section let us mention the Krein condition on intersec-
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tion numbers of association schemes discovered by Scott [117] and the absolute
bound discovered by Neumaier [106].

2.3.2 THEOREM (Krein condition). Let � be a distance-regular graph with
& vertices, diameter � and eigenvalues

�
� � � � � 13131 � �

� with multiplicities
� � ������� � � � . Let the polynomials & ����� � and the numbers

� � be as above. Then
the Krein parameters (also called the dual intersection numbers)

� � � � � ��� � � � �
&

��
� � �

& � � � � � & � � � � � & � � � � �
�
	�

are nonnegative for all � � � � � � � 
 ������� � � � .

2.3.3 THEOREM (Absolute bound). Let � be a distance-regular graph of
diameter � . Then the multiplicities � � ������� � � � of its eigenvalues satisfy

�

����� � � ���� � �
� �

� �
	 ����� ��� � � � if � � �
��� � � if � �� �

where the � ��� � � � are the Krein parameters.

	 � 	2�<� 
 $ � � ��� ��
�������@�+�����=����� �!�"� � ���7$ %��

Let � be a graph with a partition � of its vertices into cells satisfying the
following conditions:
(a) each cell is an independent set,
(b) between any two cells there are either no edges or there is a matching.

Let � ��� be the graph with the cells of � as vertices and with two of them
adjacent if and only if there is a matching between them. Then we say that �
is a cover of � ��� and we call the cells and the matchings the fibres of vertices
and the fibres of edges respectively. If � ��� is connected, then all cells have the
same size which is called the index of the cover, and is denoted by � . In this
case � is called an � -cover of � ��� . In this thesis we will always require that
� � � .

We can give an equivalent definition of a cover 
 of � using the projection
map 4 from

� ��
 � to
� � � � . We say that 
 is a cover of � if there is a

map 4 - � ��
 �� � � �
� called a projection which is a graph morphism, i.e.,
preserves adjacency, and a local isomorphism, i.e., for each vertex � of 
 the
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map 4 restricted to ��� � /2) � � � is bijective. Then �(4 � � � � � � � � � � is the set
of fibres and � � � 4 � � � � � � is the index of the covering. If we consider our
graphs as simplicial complexes, coverings graphs are covering spaces in the
usual topological sense.

If a graph � is a cover of ����� and � consists of its antipodal classes, then �
is called an antipodal cover. Furthermore, if the graph � is also distance-regular,
we say that � is a distance-regular antipodal cover.

2.4.1 LEMMA. A distance-regular antipodal graph � of diameter d is a cover
of its antipodal quotient with components of � � as its fibres unless � �  .

To prove the above result we need only the facts that � is antipodal,
connected and that � � � � � � �(& � � 
 for any vertex � and & �2) � � � � � � .

In order to gain more insight into the structure of the distance-regular
antipodal covers of distance-regular graphs let us first prove the following ex-
tension of a result due to Gardiner [60]. The part (i) is new, and (ii) modified,
however the proofs of (i) � (ii) and (i)&(ii) � (iii) are motivated by his proof.

For each vertex � of a cover 
 we denote the fibre which contains � by� � � � . A geodesic in a graph � is a path � � ������� ���  , where dist ��� � ���  � � � .

2.4.2 THEOREM. Let � be a distance-regular graph of diameter � with
parameters � � , � � and 
 its � -cover of diameter

K �  . Then the following
statements are equivalent:

(i) The graph 
 is antipodal with its fibres as the antipodal classes (hence an
antipodal cover of � ) and each geodesic of length at least �"� K � � � � 	� in
 can be extended to a geodesic of length

K
.

(ii) For any � � � ��
 � and � � � 
 � � ������� �
� K � 	� � we have

)�� � ��� � � � / � � �9& �� � & � - & � ) ��� � ��� �
(iii) The graph 
 is distance-regular with

K
� �  � �� � � ��� and intersection

array� � � ������� ��� � � � � � * � � �����* � � � � � ������� � ��� � ��� ������� � � � � � � ���* ��� � � � ������� ��� �
�
for

K
even, and� � � ������� ��� � � � � � � � � � � � � � ������� � � � � ��� ������� � � � � � ��� � � � ������� ��� � �

for
K

odd and some integer � .

Proof. Let 
 be an antipodal cover. If two paths both have length less thanK
and they go through the same fibres in the same order, then we will say that
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they are parallel. Note that two parallel paths have the same length and that one
of them and a vertex from the other one uniquely determine the other path. By
antipodality, a path of length less than

K
contains at most one vertex from each

fibre, therefore two parallel paths are either disjoint or equal corresponding to
their intersection being empty or not. Finally, the parallelism is an equivalence
relation, each parallel class corresponds bijectively to a path in the antipodal
quotient of 
 , and each parallel class contains � elements. The last, for example,
implies that for two distinct fibres any vertex from them lies in a shortest path
between them (cf. [27, Lemma 11.1.4]).

(i) � (ii): Let � and & be any two vertices of 
 which are at distance � � � K � 	� .
Since

� �9& � is an antipodal class, the distance from � to any vertex of
� �9& � is at

least � . Let � be a path of length � between � and & . Then � is a shortest path
between

� � � � and
� �9& � . Note that the set of all ends of paths from the parallel

class of � equals
� � � �3/ � �9& � , and consider the distance partition corresponding

to � . Let �
�

be a parallel path of � which has one end in ) � � � � and the other
end in ) � � � � for some � � K � � . The required property of geodesics implies
the existence of a path of length

K � � between
� ��� � � 6 ) � � � � and ) � � � � .

But this is also a path between
� �9& � and

� � � � , so
K � � � � . Therefore

� � K � � and ) � �9& � � ) � � � � � � . Now let � be any vertex in ) � � � � � � . Then
the extension of a geodesic from � to � to ) � � � � is a shortest path between� � � � and

� ��� � and a path from its parallel class starting at � has to end in
) � � � � . Hence / � ) � �9& � -�& � ) � � � ��� � ) � � � � � � .
(i) � (ii): ��� 
 implies that the graph 
 is antipodal with its fibres as the
antipodal classes and therefore ) � � � � � � � / � ) � �9& � - & �:) � � � ��� . The rest
is now straightforward.

(i)&(ii) � (iii): A geodesic � of length � corresponds to a parallel class of
geodesics of length � �

K
. These are the shortest paths between two fibres

since � is a geodesic. Therefore by (ii)
K �  � . If

K �  � �  then by (ii)
there exists a geodesic in 
 of length � � � which is the shortest path between
two fibres and therefore diam � �
� � � � � . Contradiction! The remainder of
this part of the proof is only sketched. Suppose

K �  � and let ��� � ������� � � * �
be an antipodal class of 
 . Then the balls , � � � � � � � of radius � � � centered
at � � (i.e., ��� � � / ) � � � � � / ����� / ) � � � � � � � ) for ��� � ������� � � are disjoint and
there are no edges between any two of them. Their induced graphs are parallel
in the above sense and therefore isomorphic to their projection. This implies
the desired parameters of 
 . The case when

K
is odd can be treated similarly.

(i) � (iii) It suffices to prove that, for a vertex � �
� ��
 � , any two distinct

vertices & and � in ) � � � � are at distance at least
K

. Suppose that , � �9& �76
, � ��� � ��� and that there are no edges between , ��� � �9& � and , ��� � ��� � for some
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� � � � ������� �
� K � 	� � . This is certainly satisfied for � � � , since  � ��
 ����
 and
��� � � ��
 � � � . If � � � K � � � �  our work is done, otherwise  � � � ��
 � � #����
 �
implies that there is no edges between ) ���9& � and ) ������� . If � � K �  our work is
done again, otherwise by � � � ��� � ��
 � � � � 	 � ��
 � the sets ) � 	 � �9& � and ) � 	 � �����
are disjoint. So the induction assumption is satisfied for � � � .
Remarks: Statement (ii) gives us an idea how to draw the distance partition
of an antipodal cover over the corresponding distance partition of its antipodal
quotient and why we say that a distance-regular antipodal cover folds to its
antipodal quotient (see Figures 3.1, 4.1 and 4.3).

(i) In
K �  � case the integrality of entries in the intersection array implies

� � ��� . By the monotonicity of parameters ,�� and 
 � there is also ��� � � � ���*
and � � � �* � � � � � � � � .

(ii) In
K �  � � � case the integer � satisfies the conditions ��� � � � � �

min ��� � � � �  � � and � � � � .
The following corollary can again be found in Gardiner [60].

2.4.3 COROLLARY. If 
 is a distance-regular antipodal graph, then 
 has
a distance-regular antipodal cover only if 
 is either a cycle, a complete graph
or a complete bipartite graph.

In the reminder of this section we determine also the eigenvalues of antipo-
dal distance-regular graphs and their multiplicities.

2.4.4 THEOREM. Let � be a distance-regular graph and 
 a distance-
regular antipodal r-cover of � . Then every eigenvalue

�
of � is also an

eigenvalue of 
 with the same multiplicity.

The above result can be proved by combining the properties of the antipodal
partition of 
 and the quotient graph of 
 , but it can also be derived as a
consequence of the following theorem of Biggs [14]:

2.4.5 THEOREM. The multiplicity of an eigenvalue
�

of a distance-regular
graph � with diameter � and & vertices is equal to

&
� ���� � � � � � � � � 	 �

Now we can finally state a result due to Biggs and Gardiner [16]:
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2.4.6 THEOREM. Let 
 be a distance-regular antipodal � -cover with diam-
eter

K
of the distance-regular graph � with diameter � and parameters  � , � � ,

� � . The
K � � eigenvalues of 
 which are not eigenvalues of � are, in the case

when
K �  � , the eigenvalues of the � 	 � matrix

�������
�


 ���
���  � � � 


� 	  	 � 	. . .
. . .

. . .

 ��� � 	  � � 	 ��� � 	� � � �  � � �

��������
�

and, in the case when
K �� � � � , the eigenvalues of the � � � � � 	 � � � � �

matrix �������
�


 � �
� �  � � � 


� 	  	 � 	. . .
. . .

. . .

 � � � �  � � � � � � �

� �  � � � �

��������
�

If
�
�
� � � � 13131 � � � are the eigenvalues of 
 and � � � � � � 13131 � � � are

the eigenvalues of � , then

� � � �
� ��� � � �

	 �813131 ��� � �
�
	 �

i.e., the eigenvalues of � interlace the ‘new’ eigenvalues of 
 .

Thus, in the even case the new eigenvalues do not depend on � and are
the roots of � � � � � � 
 . Their multiplicities are proportional to � � � . In the
odd diameter case the new eigenvalues depend only on � � and are the roots of
��� � � � � � � � � � �#� � ���  � � � � � � � ��
 .
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� � � � �@� ����� 
������������ ����� �@� � ���

A quadratic form 	���� � � � � ������� � � � � over � � ����� is a homogeneous polynomial
of degree 2, i.e., for � ����� � � � � ������� � � � � and an � & � � � 	 � & � � � matrix 

over � � ����� :

	���� � �
��

� � � � �
� ��� � � � � � ��
 � � �

A quadric in � � � & ����� is the set of isotropic points

	 � �����	� -#	 ��� � ��
 ���
where ���
� is the one-dimensional subspace of � � ����� � generated by � �
� � ����� � . Two quadratic forms 	 � ��� � and 	 	 ��� � are projectively equivalent
if there is an invertible matrix � and a nonzero 	 such that

	 	 ��� ��� 	 	 � ��� � � �

The rank of a quadratic form is the smallest number of indeterminates that occur
in a projectively equivalent quadratic form. A quadratic form 	 ��� � ������� � � � �
(or the quadric 	 in � � � & ����� determined by it) is nondegenerate if its rank
is & � � . For � odd a subspace � is degenerate whenever � 6 ��� �� � , i.e.,
whenever its orthogonal complement �� is degenerate, where � denotes the
inner product on the vector space

� � & � � ����� defined by

��� �  � - � 	 ��� �  � � 	���� � � 	 �  � �

A flat of a projective space � � � & ����� defined over � &�� � � -dimensional space
�

consists of 1-dimensional subspaces of
�

that are contained in some subspace of
�

, and it is said to be isotropic when all its points are isotropic. In Theorem 3.7.1
the dimension of maximal isotropic flats is determined.

A generalized quadrangle an incidence structure of points and lines with
� � � points on each line, � � � lines through each point, and for a point 4 not on
a line � there is exactly one point of � collinear with 4 . Let us now give a brief
description of classical generalized quadrangles, which are all associated with
classical groups and are due to J. Tits, see [113].

An orthogonal generalized quadrangle 	 � � ����� is determined by isotropic
points and lines of a nondegenerate quadratic form in � ��� � ����� , for � �
� ���"! ��� � . An orthogonal generalized quadrangle 	�� ! ��� � has parameters ��������� .
Its dual is called symplectic (or null) generalized quadrangle ������� (since it can
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be defined on points of � � ��������� , together with the self-polar lines of a null
polarity), and it is isomorphic to 	 � ! ����� for even � .

Let 
 be a nondegenerate hermitian variety (e.g.,
� ��� � 	 �� � 13131 � �

� 	 �
� � )

in � ��� � ��� 	 � . Then its points and lines form a generalized quadrangle called
a unitary (or Hermitean) generalized quadrangle � � � ��� 	 � . A unitary general-
ized quadrangle ��������� 	 � has parameters ��� 	 ����� and is isomorphic to a dual of
orthogonal generalized quadrangle 	 � ������� .

Finally, we describe one construction found by Ahrens and Szekeres [1]
and independently by M. Hall, Jr [77]. Let � be a hyperoval of the projective
plane � � �������� , � � 

�
, i.e., a set of ��� � �� points meeting every line in zero

or two points, and let � � �������� � 
 be imbedded as a plane in � ��������� ��� � .
Define a generalized quadrangle ���	 ��� � with parameters ��� � � ��� � � � by taking
for points just the points of �  
 , and for lines just the lines of � which are not
contained in 
 and meet � (necessarily in a unique point).

For a systematic combinatorial treatment of generalized quadrangles see
the book by Payne and Thas [113]. The order of each known generalized
quadrangle or its dual is one of the following: � � � � � for �

� � ; ������� � , ������� 	 � ,
��� 	 ���
	 � , ��� � � ��� � � � , for � a prime power.





�

� � � � � � � ��� ������� � � � � ��� � � � � �

� � � � � � � � � � � ��� � ���

In this chapter we investigate distance-regular covers of the complete graphs
� � for small & . Our main goal is to use known infinite families of these graphs
to produce new ones. Before we start with the first section a short introduction
and the summary of sections are to be given. The introduction explains why we
study this particular case of distance-regular covers.

In 1982 Biggs [15] set up a classification scheme for distance-regular
graphs of diameter three. They fall into three classes: antipodal, bipartite,
and primitive. The antipodal distance-regular graphs of diameter three share
many properties with certain graphs derived from finite geometries and in some
cases they are even equivalent to them. Group divisible designs (see Godsil
and Hensel [68, Theorems 5.2 and 5.3]), projective planes and generalized
quadrangles with a spread are such examples. The last two families correspond
to distance-regular graphs with parameters � � � � � �� � � � � � � � � , see Biggs [15],
Godsil and Hensel [68, Construction 4.2] or Brouwer et al. [27, p. 387],
and � � � � ��� � � � � � � � � � � � � � ����� , see Brouwer [24] [27, p. 385]. Since the
antipodal distance-regular graphs of diameter one and two are complete graphs
and complete multipartite graphs (e.g., the octahedron), the antipodal distance-
regular graphs of diameter three are the first nontrivial case of antipodal distance-
regular graphs. They cover complete graphs. Note that Theorem 2.4.2 implies
that a distance-regular cover of a complete graph is always antipodal with its
fibres as antipodal classes, i.e., an antipodal cover of a complete graph. Godsil
and Hensel [68] refined the classification scheme for the antipodal distance-
regular graphs of diameter three and made a survey of the known constructions
of them. For a complete survey of constructions of antipodal distance-regular
graphs of diameter three and isomorphisms between them, see Brouwer, Godsil
and Wilbrink [29] (cf. Gardiner [61] and [62]).

In Section 3.1 we mention two characterizations, which correspond to
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the extreme values of the covering index, and Mathon’s construction. Using
the feasibility conditions from Godsil and Hensel [68] a list of small feasible
parameters was made by Godsil and Hensel. In the next section we study small
cases of locally cyclic graphs.

In Section 3.3 we introduce Brouwer’s characterization and give an ele-
mentary proof of the uniqueness of the distance-regular three-fold covers of � � .
There are two of them and they correspond to the two nonisomorphic spreads
of a generalized quadrangle �
	�����"!#� . Noticing that one of the two covers is
cyclic we investigate, in Section 3.4, the cyclic covers of complete graphs. A
generalized quadrangle � 	 ����"!#� with a spread can be constructed from a gen-
eralized quadrangle � 	 ��������� with a regular point. By exploring this relation
we finally find, in Section 3.5, an operation, called switching, which yields new
infinite families of distance-regular covers.

In Section 3.6 we use the cyclic spread of the generalized quadrangle
� 	 ����"!#� to show that there is a unique spread of the symplectic generalized
quadrangle �
	���������� . In the following section we present a geometric proof
(due to Brouwer and Wilbrink) of the same result. In the last section we discuss
some open problems.

��� � � 
 � � ������� � �@��� 
������

Since distance-regular covers of complete graphs (i.e., antipodal distance-regular
graphs of diameter three) motivate the study of antipodal distance-regular graphs
with larger diameter and give considerable insight into the structure of these
graphs, we provide some fundamentals, the most important constructions or
characterizations and their connections.

Let � be a distance-regular antipodal � -cover of the complete graph � � .
By Theorem 2.4.2, its intersection array is

� & � � � � ��� � � � 	 � � � � � � 	 �"& � �����

so it depends only on the parameter set � & � � � � 	 � , and the distance partition of a
distance-regular cover of a complete graph corresponding to an antipodal class
has the following shape (see Figure 3.1):
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Figure 3.1: A distance-regular graph of diameter three and index six (the distance
partition corresponding to an antipodal class).

Note that if we deleted the distinguished antipodal class, this would remind us
of a figure of a complete multipartite graph, but in a complete multipartite graph
shaded sets would be antipodal classes, while here each shaded area contains
one vertex from each antipodal class.

The distance-regular double-covers � & ���� � � are equivalent to certain de-
signs, called (regular) two-graphs and they can be derived from the strongly
regular graphs with parameters � & �  � � � ���  � � � � & �  � � � �  � , see Biggs
[15, Thm. 5]. They have been surveyed by Taylor [129] and Seidel and Taylor
[120]. The case when the covering index is equal to the valency, was inves-
tigated by Gardiner [60]. He has shown that in this case the distance-regular
covers of complete graphs are equivalent to the Moore graphs of diameter two
(i.e.,

�
-regular graphs of diameter two and girth five, and they can exist only for�

� � ��������#����� � ).
We present explicitly only Mathon’s construction [103] of a distance-

regular � -cover of � � 	 � , where �%� � � � � is a prime power and either � is even
or � � � is a power of two, mainly because it covers so many parameter sets. The
following is a neat version of the construction, due to Neumaier [15]. Let � be
a subgroup of the multiplicative group of � � ����� of index � . Let � be the equiv-
alence relation for the elements of � � ����� 	 � 
 � defined by �9& � �(& 	 � � � � � � � 	 �
if and only if there exists � � � such that �9& � � �(& 	 � �
� � � � � � 	 � . Then the
graph � with the equivalence classes &�� , & � � � ����� 	  � 
 � of � as vertices,
and �9& � �(& 	 � ��� � � � � � 	 � � if and only if & � � 	 � & 	 � � � � , is an antipodal
distance-regular graph of diameter three, with � ��� � � � � ��� 	 � � � ��� vertices,
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index � and � 	 � � . � is vertex transitive, and when � is prime and the charac-
teristic of � � ����� is a primitive element modulo � , also distance transitive, see
Biggs [15] and Brouwer et al. [27, p. 386]. The smallest example is the line
graph of the Petersen graph as the distance-regular three-fold cover of � � . For
�
�  the double-cover comes from the Paley graph �  � � � � � � � � , and for � � �
Bondy [15] has shown that a graph with this parameters implies the existence of
a projective plane of order � . This suggests that the general problem of finding
all the covers of complete graphs will be hard to solve.

Let us now summarize the feasibility conditions from Godsil and Hensel
[68]:

(F1) & � � � � 	 are integers with 
 �  � � & � � , i.e., � � � � � � � � 	 � & �  ,
(F2) if & is even then � 	 is even,
(F3) the multiplicities of the nontrivial eigenvalues are integers.

Krein conditions for a distance-regular cover with parameters � & � � � � 	 � and
� �  imply only one restriction:

� 	 � & � � � Using the feasibility conditions
(F1), (F2), (F3), the Krein and the absolute bounds, the group divisible design
condition [68, Thm. 5.4], and [68, Lemma 3.5], Godsil and Hensel have obtained
a list of small feasible parameter sets. The only distance-regular covers of
complete graphs which are also bipartite are the graphs � ��� � minus a perfect
matching with parameters � & � � �"& � �� � � � �"& � ��"& � ��� (e.g., the 3-cube is
a double-cover of the tetrahedron), and are omitted from the following table:

& �  � � 	 a cover � of � � ����� G
� � � � L(Petersen) ��    Icosahedron �
� � 
 � ) 	 (Hoffman-Singleton) �� �   Klein graph �
� � � � �
	�����"!#�� spread 
� � � � equivalent to the unique � � ���� � � �
��
  ! ! Johnson graph ��� � ����� �
��
 !   �
	����������� unique spread, Thm. 3.3.1

� �
Table 3.1: List of small distance-regular covers of complete graphs.

The � -th subconstituent graph corresponding to a vertex � is the graph
induced by the set ) ��� � � . The first three parameter sets uniquely determine the
line graph of the Petersen graph [27, p. 2], the icosahedron [27, Prop. 1.1.4] and
the second subconstituent graph of the Hoffman-Singleton graph (i.e., the Moore
graph of valency seven). Next, there is only one feasible intersection array of
distance-regular covers of ��� : � �#�"! � � � � ������ � . Biggs [15], cf. Brouwer et al.
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[28, p. 386], mentioned that this parameter set is realized by the Klein graph,
i.e., the dual of the famous Klein map on a surface of genus 3. Further, in
Brouwer et al. [27, p. 386], it is mentioned that there is only one such graph, so
it must be the one coming from Mathon’s construction. We give our own proof
of this uniqueness in the following section as the part of the treatment of locally
cyclic graphs, since it gives us an idea (see Figure 3.4(a) how to study larger
locally cyclic distance-regular graphs with A �  .
� � � ������� ��� ���<��� 
 � ������$�%��

Let � be a graph which is locally a cycle of length
�

. Then this is a
�

-regular
graph with 	 �  , and it defines an imbedding in a surface. Let � � be the
crosscap number � � � � if the surface is nonorientable, and twice the genus � � �
�
otherwise. Euler’s formula, which relates the number of vertices & , the number
of edges � and the number of faces � of this embedding, gives us together with� & �  � � � � the following relation:

& � � � � � & �
� &
 �

� &
� �  � � � � i � e � � &�� � � � � � � ���� � � � �

If
�
�
�

then � � � 
 is equivalent to & � �  � � � � � � . Therefore
� � � implies

& � ! , � � ��
 ; � � ! implies & � �
, � � � 
 ; and

� � � implies & � �  , � � ��
 .
As � � ��
 in all three cases we must have the 1-skeleton of a Platonic solid with
triangles as faces, i.e., the graph � is the tetrahedron, the octahedron and the
icosahedron for

� � � , � � ! and
� � � respectively, cf. [27, Prop. 1.1.4 and

Prop. 1.1.5].
For

� � �
an infinite example of � is a tiling of a plane by equilateral

triangles. The above relation implies that in the finite case the orientable genus
equals one. This suggests quotienting of the plane to a torus, and we obtain this
way a two parameter family of graphs which are locally a hexagon, see Figure
3.2 and Figure 3.3(a). For general solution see Thomassen [138]. We will show
that there exist only two examples when we restrict to distance-regular graphs.
Before we do that, let us make a few general remarks about locally cyclic graphs.

Remarks: Let � be a distance-regular graph of diameter � , which is locally a�
-cycle. Then:
(i) A is a proper divisor of � � � ��� � , since the number of edges between the

first and the second neighbourhood of a vertex is � � ��	 � � � � � A � 	 , A
is less then

�
, and because of 	 �  also greater than one.

(ii) � � � � � � � � � ! , by [27, Corollary 5.2.2], since A �  implies an existence
of a quadrangle.
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(iii) Let � be a vertex of � and a
�

-cycle � � ������� � � � be its local graph. Then
) � � � ��6 ) 	 � � � induces a path � � with

� � � vertices. Since 	��  , the paths
� � and � � 	 � have exactly one vertex in common, and thus

�
	
�  � � � .

Therefore A � � � � � ��� � �� � � � � . The paths � � ������� � � � guarantee an
existence of at least

� � � ��!#� �  edges in ) 	 � � � and thus  	
� � � � � !#� � � 	 .

Let � be a prime power congruent 1 (modulo 4). The Paley graph �������
has the elements of the finite field � � ����� for vertices and two adjacent if their
difference is a non-zero square. Note that � � is a square in

�
, so this graph is

undirected. Furthermore, it is a strongly regular graph of valency
� � ��� ��� � �  ,

	 � ��� � ��� � ! and A � ��� � � � � ! . Seidel [119] showed that this graphs are
uniquely determined with their parameters for � � � � .
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Figure 3.2: The Paley graph � � � ��� . In order to get an embedding we identify the sides with the

same type of arrows.

3.2.1 LEMMA. The Shrikhande graph and the Paley graph � � � ��� are the
only distance-regular graphs which are locally a hexagon (the first one has
A �  and the second one has A � � ).
Proof. Let � be a vertex of a distance-regular graph which is locally a hexagon
and let the cycle � � ������� � � � be the local graph of � , see the darker shaded
hexagon on Figure 3.3 (a). Then the above Remark (i) implies that A is either
three or two. As 	 �  the edge � � � �
	 � lies in two triangles: �
� � � � 	 � and
& � � � � �
	 � for some vertex & � of � , � � � ������� � � (where indices are taken modulo
six, with representatives � ������� � � ). If A � � then

�
	 � A � 	 � � implies, by [27,

Thm. 1.5.5] and the fact that there is no double-cover of ��� , that diameter is two
and the parameters correspond to the Paley graph ��� � ��� . In the neighbourhood
of zero we find a hexagon � �"! ����� � � � � ! � � � .
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It remains to consider the case A �  . Then the vertices & � ������� �(& � are
distinct. Furthermore,

�
	 � � , so there exist exactly three more vertices � � , � 	

and � 	 of ) 	 � � � , and we can label them so that � � is a common neighbour of
� � and � �
	 	 for � � � ������ . Since the local graphs of � � and � �
	 	 are hexagons,� � is adjacent to & � , & � � � & �
	 	 and & �
	 	 for � � � ������ . So far we already have
all the edges in the lighter shaded hexagon on Figure 3.3 (a).

Now, & � has already one common neighbour with � �
	 	 , therefore & �
	 	 has
to be the other common neighbour for � � � ������� � � , the local graphs of � � and & �
are hexagons as well, and we really obtained the Shrikhande graph, see Figure
3.3.
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Figure 3.3: The Shrikhande graph drawn on two ways: (a) on a torus, (b) with imbedded four-cube.

The Shrikhande graph is not distance transitive, since some A -graphs, i.e.,
the graphs induced by common neighbours of two vertices at distance two, are
� 	 (e.g., for a pair � � , � �
	 	 ) and some are �� � � (e.g., for a pair � � , � �
	 	 ). A
similar approach works also when we study graphs which are locally a heptagon.

3.2.2 LEMMA. The Klein graph is the unique distance-regular graph which
is locally a heptagon. In particular, it is a unique distance-regular cover of � � .

Proof. Suppose that � is a distance-regular graph which is locally a heptagon.
Then, by the above Remark (i), A is either two or four. If A � ! then Remark
(iii) implies  	 � � , however, this is not possible, since � has an odd valency
and would have an odd number of vertices (1+7+7) as well. Therefore A �  .

Let � be a vertex of � with a heptagon � � ������� � � � as its local graph,
and its second neighbourhood & � ������� �(& � �� � ������� �� � . Since 	 �  , we can
assume that & � is adjacent to both ends of the edge � �
	 	 � � �
	 $ , for � � � ������� ��� ,
where indices are taken modulo seven, with representatives � ������� ��� . Vertices
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� � and � �
	 	 are at distance 2 and must have beside � exactly one more common
neighbour, which can be without loss of generality � ��� 	 , for � ��� ������� ��� , see
Figure 3.4(a).

Since the neighbourhood of � � induces a heptagon, and & �
	 	 , � �
	 � , � , � � 	 � ,
& �
	 $ is a path in this neighbourhood, the vertices � �
	 	 and � �
	 � are adjacent,
for � � � ������� ��� , (see the smallest bold heptagon on Figure 3.4.(b)). Further,
since ) � � � �
	 � � 6 ) � ��� �
	 � � � � � �
	 � � � � � , vertices & �
	 $ and � �
	 � are adjacent,
for � � � ������� ��� . Now, there is already a path of length six in the neighbourhood
of � � , so also vertices & �
	 	 and � �
	 	 are adjacent, for � � � ������� � .
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Figure 3.4: (a) (b) The distance-regular cover of � � minus a fibre

The neighbourhood of � �
	 	 contains paths � � , � �
	 � , & � 	 	 and & �
	 $ , � � 	 � ,� � 	 � , therefore vertices & � 	 	 and & �
	 $ are adjacent, for � � � ������� � (this gives
us the third bold cycle on Figure 3.4(b)).

Finally, all the vertices & � ������� �(& � �� � ������� � � � have already a path of length
six in their neighbourhood, so � has only two more vertices & and � and their
first neighbourhoods are & � ������� �(& � and � � ������� �� � respectively.

If � is a distance-regular cover of � � , then � � ������� is the only feasible
parameter set and a local graph is a union of cycles. Since A �  , there are no
four-cycles in the local graph and � must be locally a heptagon.

The graph � is antipodal with antipodal classes ��� �(& �� � and ��� � �(& � �� � �
for ��� � ������� ��� (see Figure 3.4, where each vertex from the missing fibre
��� �(& ���� should be joined to all the vertices of its own bold heptagon). This
graph is not distance transitive, for the same reason as the Shrikhande graph.

There is no feasible parameter set for a distance-regular cover of � � or
� � � with 	��  , however inspired by the Shrikhande graph we searched also for
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distance-regular graphs which are locally an octagon or a decagon, and obtained
as an immediate consequence of the above Remark (ii) and [27, Ch. 14] the
following result. There is no distance-regular graph which is locally an octagon
or decagon. Furthermore, there is no distance-regular graph which is locally
a nine-gon. The second result has been proved by first using Remark (ii) and
Brouwer et al. [27, Ch. 14] to show that the graph must be a distance-regular
cover of � � � , and then start with setting similar as on Figure 3.4(a). The
important step was to show that antipodal classes must lie on axis of symmetry
of the regular nine-gon.

We conclude this section by mentioning that the distance-regular covers
coming from Mathon’s construction are locally a

�
-cycle when

�
is a prime

(e.g., (12,2,2), (14,2,2), (18,2,2)).

� � � � ����� � ���9�8�@%��"���"��� �7�?
������ 
����

Let � � �
	 � , be a � -class association scheme. Brouwer [24] derived from 	
a new association scheme � � �
	 � � with two classes by merging its classes:
� � � - � � � � � 	 and � � 	 - � � 	 . Then 	 � is an association scheme if and only
if � � 	��� � � ��� � 	 � �

�
	 � 	

�
, i.e.,

4 � � � � � � =4 � 	 � � � �04 	 	 � � � �:4 � � ������ =4 � 	 ������04 	 	 ���� �
4 � 	 � � ��� 4 	 	 � � � � 4 � 	 ������ 4 	 	 ���� and 4 	 	 � � � �:4 	 	 ���� �

By Lemma 2.3.1(c), the sum of entries in the � -th row of the matrix � � , defined
by ��� � � � �  � 4�� �  � � � , equals

� � . Now, the left-hand side of the first two equations
equals to the sum of the entries of the first two rows of � � minus one, and the
the right-hand side of the first two equations equals to the sum of entries of the
first two rows of � 	 minus one. Therefore the first two of the above conditions
are equivalent. similarly, by considering the third rows of matrices � � and � 	 ,
we derive that also the last two conditions are equivalent. Hence we need to
check only one of the above conditions.

If � � is the � -th distance matrix of an antipodal distance-regular graph 
 of
diameter three, then � � � determines a nontrivial strongly regular graph � only
when we merge � � and � 	 and 4 	 	 � � � �:4 	 	 ����� , i.e.,  	 � � � �  	 �  	 �  � � � 	
(by Lemma 2.3.1). The last equality is equivalent to & � � � � � 	 � � ��� ��� � �
and it implies that for ��- � � � � and � - � � 	 � � intersection array of 
 is
� � � � �#� � � � � � � � � � � � � � � ��� and of � is � ��� � � � � � � � � � � � � ��� . (Instead of
using Lemma 2.3.1 we can obtain 4 	 	 ����� �

� � 	 from Figure 3.1 of an antipodal
distance-regular graph of diameter three, so that by 4 	 	 � � � � � ��� � � 4 	 � ���� �
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� � � � ��� � � � � � 	 � we immediately get & � ��� � � 	 � � ��� � � � � .) Graphs
with the same parameter set as 
 were characterized by Brouwer [24] [27,
Prop. 12.5.2]:

3.3.1 THEOREM (Brouwer). Let � � ��� � be a generalized quadrangle of
order � � � � � , (where � � � ) with a spread � . Then the point graph 

of � � ��� �� � is distance-regular, of diameter three and with intersection array
� � � � �#� � � � � � � � � � � � � � � ��� , i.e., an antipodal � � � � � -cover of the complete graph
� �  	 � . More generally, given a strongly regular graph � with intersection
array � ��� � � � � � ��� � � � � � ��� such that a partition � of its vertices into � � �
� � -cliques exists, we obtain a distance-regular graph of diameter three with
intersection array as given above, by deleting the edges with both ends in the
same member of � . Conversely, any graph 
 with these parameters arises this
way.

Note that the above discussion is actually a proof of the converse. In this
case “unmerging” (or splitting) is deleting the edges of � � � � � -cliques in �
whose vertex sets partition

� ��� � .
The generalized quadrangles which are known to have spreads have orders

����� � � , � � ����� , ��������� , ������� 	 � , ��� � � ��� � � � for all � and ��� � � ��� � � � for even � .

Now we return to our list of feasible parameters. There are two possible
parameter sets for distance-regular covers of � � . A cover with parameters
� �����#� � � is equivalent to the unique projective plane � � ���� � � , see Brouwer et
al. [27, p. 40] or Koolen [96, Thm. 7.33.]. So it remains to consider covers
with parameters � ����������� . In 1982 Biggs [15] pointed out that this was still
an open question. Cameron, Goethals and Seidel [46, Thm. 7.9] have proved
that any strongly regular graph with the same parameters as the point graph of
� 	 ������� 	 � must be a point graph of a generalized quadrangle. Furthermore, it
is known that there is a unique generalized quadrangle �
	�����"!#� , see Payne and
Thas [113, p. 123] or Brouwer et al. [27, Thm. 1.15.2]. Therefore Brouwer’s
Theorem 3.3.1 implies that covers � ����������� are equivalent to spreads of the
generalized quadrangle � 	 ����"!#� . Brouwer and Wilbrink [34] (cf. Cameron,
Hughes and Pasini [47], in the solution of Lemma 3.18) have used orthogonal
geometries (see Batten [11], Cameron [39], Higman [84], Hirschfeld [85], [86],
Hirschfeld and Thas [87], Van Lint and Wilson [101]) to prove the following:
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3.3.2 THEOREM (Brouwer and Wilbrink). There are, up to isomorphism,
two distinct spreads in the generalized quadrangle �
	�����"!#� .

Additionally, they have explained the relation between the two spreads of
� 	 ����"!#� in the dual by describing an operation, which applies to a planar ovoid
in the unitary generalized quadrangle � 	 ��� 	 ����� , and produces a non-planar
ovoid. An ovoid is a set of points, no two collinear, which intersects all the lines
(i.e., the dual of a spread).

Since this is the first time that we have two covers for the same parameter
set, we have decided to investigate this situation more carefully. The driving
idea has been to see if the above operation can be ‘modified’ or generalized to
some other situation or to determine when covers occur in ‘twin pairs’. So first
we have not been able to resist a temptation to try to find a more elementary way
of constructing the above twin covers. Our attempt has been successful and we
have used only the following observation:

Let us take � copies of a graph 
 , say ��
 � � ������� � ��
 �  and let
a vertex & � of 
 � corresponds to a vertex & of 
 . Now, let us choose
for each vertex � of a graph � a subset ��� � � of vertices of 
 and
join � with & � for each � and & � ��� � � . Then only our labeling of the
obtained graph distinguishes the � copies of 
 .

We will construct distance-regular covers with parameters � ����������� the
same way we have constructed the Shrikhande graph and the Klein graph. First,
we will label all the 27 vertices of such a cover, and then we will continue by
making the list of their adjacencies (starting with empty list and adding a few
entries at each step). When we say that the corresponding vertices of some
subgraphs have the same neighbours, we mean that our labeling of the vertices
and edges, which has been recorded so far, has this property (this will be evident
from Table 3.2). As the above subgraphs will have only one or two vertices, it
will be easy to find out which vertices correspond to which vertices.

Proof. Let � be a distance-regular cover with parameters � ����������� .
Step 1: Let �  ��� � � � be an antipodal class of � and let us denote by � � ������� � � �
the neighbours of � , so that � � � � 	 , � 	 � � $ , � � � � � and � � � � � for
� �  ��� � � . Since  � � �
� � � , these are the only edges in ) ��� � , � �  ��� � � .
Note the following properties of � :

(1) Each vertex lies in exactly four triangles that have pairwise no common
edges (i.e.,

� � �
and  � � �
� � � ). This means that we know the graph

locally.

(2) Two vertices at distance two have three common neighbours
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(i.e., � 	 � �
� � � ).
(3) There are no antipodal vertices in any neighbourhood. So let � � � � � �

� � ������� � � � be such integers that � � � � �� � � � � is an antipodal class, when
� � �  � ��� � �  ��� � � � . Then (1) and (2) imply that � � is adjacent to exactly
one vertex of each pair of adjacent vertices in ) � �#�  ��� � � , and  � is
adjacent to the remaining vertices of these three pairs (cf. the definition of
the generalized quadrangle).

So far we have recorded 36 edges and the vertices  , � , � already satisfy the
condition (1). All the other vertices lie in exactly one triangle. From here on we
will record our construction in Table 3.2, so that it will be easier for the reader
to follow the construction. Each step will be marked in the table.
Step 2: Without loss of generality we can choose �  � ��� � � � � � to be an antipodal
class. Since the vertices � 	 ��� � and � 	 � have the same neighbours, for � �
������"! and � � �  ��� � � � , we take by (3) that  � � � $ ��� � ��� � ; � � � � $ � � � � � � ;
��� �  $ �  � �  � . It implies, again by (3) that:  � � � 	 � � � � � � ; � � �  	 � �� �  � ;� � � � 	 ��� � ��� � .

Now we consider two cases:

Case 1: dist ' �  	 ��� 	 � � � . Step 3: By dist ' �  	 ��� � � �  and (2), we have
 	 � ��$ � � � � � � . So  	 , � 	 , � 	 are antipodal. Because of symmetry among
 , � , � , we get similarly  	 � � 	 ��� � ��� � ; � 	 � #$��  � �  � � � 	 � � � � � � and � 	 � 	 �  � �  � ��� $ ��� � ��� � as well.

Step 4: Note that for � � �  ��� � � � the corresponding vertices of the three edges
��� 	 ��� � � � 	 � � , � � ������"! , have the same neighbours, therefore we can choose
vertices  	 , � 	 , � 	 to be antipodal without loss of generality. Since for ���  ��� � �
the corresponding vertices of the two edges ��� � � � � � and ��� � � � � � have the same
neighbours, by (2) and by  � � �
� � � we take  	 � � � ��� � � � � � � � ; � 	 �  � �  � .
By (3) it follows that � 	 � � � � � � and � 	 �  � �  � ��� � ��� � .
Step 5: Now we use (1) for  � ,  	 ,  	 to get � � � � � � ��� � � $ ; � � � ��� � � $ � � � ;
� � � � � respectively. As there is still a symmetry among  , � and � , we also
have  � � � � �  � � � $ ;  $ � � � � �� � � � ;  � � � � and � � �  � � � � �  $ ;
� $ �  � � ��� �  � ; � � �  � . Therefore �  � ��� � � � � � and �  � ��� � � � � � are
antipodal classes and (1) holds for all their vertices.

Step 6: Each of the vertices � $ , � � , � � , for � � �  ��� � � � , has to lie in exactly
one more triangle, therefore we need three more triangles. The condition
 � � � � � � implies that the only possible triangles are the triangles �  � ��� � � � � � ,
where � � � � � � � is an even permutation of � � � � �"!#� , and the triangles �  � ��� � � � � � ,
where � � ! � � � � . (This is equivalent to the fact that there are exactly two
mutually orthogonal Latin squares of size three and also that � 	 	 � 	 is a self
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complementary graph.) These three triangles have to be disjoint, thus we either
take the first set of triangles, in this case the vertices of the triangles of the
second set determine the remaining antipodal classes, or the other way around.

The two obtained graphs are regular, antipodal, have diameter three and
satisfy the condition (1). By Godsil and Hensel [68, Lemma 3.1], it remains
to check if � 	 � � . These two graphs can be completed to the same graph
of diameter two by joining the vertices in each antipodal class. Let us denote
this graph by 
 , then because of (2) we only have to prove that � 	 ��
 �
� � .
By (1) each vertex of 
 lies in exactly five triangles therefore � 	 ��
 � � � . If
� � � ��
 � , then �5) � � � �#� �

, �5) 	 � � � ��� �
�

and � � ��
 � � � ��
 � � � �  ����
 ��� �
.

By counting the edges between ) � � � and ) 	 � � � we conclude that � 	 ��
 � � � .
(Thus 
 is a strongly regular graph with parameters � ��
 � � � � ��� � and hence,
by Cameron, Goethals and Seidel [46], it is the point graph of the generalized
quadrangle � 	 ����"!#� .)

a  b  c  a  b  c  

b  c  a
b  c  a
b  c  a
c  a  b
c  a  b
c  a  b

b  c  a
b  c  a
b  c  a
c  a  b

c  a  b

b  c  a
b  c  a

c  a  b

c  a  b

c  a  b
c  a  b

a    b    c a  b  c  a    b    c a  b  c  a    b    c
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c    a    b c    a    b

b    c    a
b    c    a

b    c    a

b    c    a b    c    a
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b  c  a
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Step 6

b    c    a
c    a    b

1    1    1

4    4    4

6    6    6

8    8    8

3    3    3

5    5    5

7    7    7

2    2    2

3    3    3

5    5    5

7    7    7

4    4    4

6    6    6

8    8    8

1    1    1

2    2    2

6    6    6

7    7    7

3    3    3

5    5    5

8    8    8

a  b  c  5    5    5

1    1    1

2    2    2

3    3    3

4    4    4

8    8    8

7    7    7

7    7    7

1    1    1

2    2    2

3    3    3

6    6    6

4    4    4

5    5    56,4    6,4    6,4

4      4        4

8,4    8,4    8,4

8,6    8,6    8,6

4,6    4,6    4,6 6,8    6,8    6,8

4,8    4,8    4,8

1      1        1

2      2        2

5      5        5

7      7        7

6      6        6

1      1        1

2      2        2

3      3        3

7      7        7

8      8        8

1      1        1

2      2        2

3      3        3

5      5        5

S(X)

x   

Step 2
Step 3
Step 4
Step 5

Table 3.2: The distance-regular covers of ���

Case 2: For all � �  � �  ��� � � � such that dist ' ��� � �  � � � � , we have
dist ' ��� 	 �  	 � � � . In this case we get a contradiction, by the same approach
as in the first case. For the sake of completeness we shall consider this case in
detail too.

Step 3: Without loss of generality we choose �  	 ��� 	 � � $ � to be an antipodal
class. By (3) and  � � � � � � we have  	 ��� 	 ��� � ��� � � � 	 � � � � � � and then also
� 	 � � � � � � ; ��$ � � � ��� � . By observing that the corresponding vertices of the
edges �  	 � �$ � , �  � �  � � , �  � �  � � have the same neighbours, and by (1) for
��� , � $ , we also take � 	 �  	 � �� �  � , thus by (3) � $ �  $ �  � �  � . Therefore
) 	 ��� 	 �<6#) �  �

� �  $ �  � � �� � .
(a) If dist ' ��� 	 �  � � � � then � 	 � ) 	 ��� 	 �<6�) 	 �  � � (for  � see paths through
� 	 and for � 	 see paths through � � or  	 ). Step 4: Since the corresponding
vertices of the edges �  	 �  $ � , �  � �  � � ; ��� � ��� � � , ��� � ����� � ; � � � � � � � , � � � � � � � )
have the same neighbours, and by (2), (3) we get � 	 � � 	 � � � � � � �  $ �  � ;
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� 	 � � $ ����� ��� � �  	 �  � ;  � � � � � � � ��� � ��� � . Step 5: Now because of (1) for
 � and since the corresponding vertices of the edges ��� � ��� � � and ��� � ��� � �
have the same neighbours, we take � � � � � and � � � � � . But then (1) for  �
yields � � � � � , so we get two triangles on the edge � � � � � � � . Contradiction!

(b) Because the corresponding vertices of the edges �  	 �  $ � and � ����  � � have
the same neighbours, it remains to consider the case when dist ' ��� 	 �  $ � �� . Step 4: As the corresponding vertices of the edges � � � � � � � , � � � � � � � have
the same neighbours, by the assumption of Case 2, we take � � � ) 	 ��� 	 ��6) 	 �  $ � . Now, the corresponding vertices of the edges ��� � ��� � � , ��� � ����� �
have the same neighbours, so by (2) and (3) we get � 	 � � 	 � � 	 � � � �  � �  � ; $ ��� $ ��� � ����� � � � ; � � �  � �  � ��� � ��� � . Step 5: Finally (1) for � 	 and � �
implies � 	 �  � ;  � � � � and  	 � � � ;  � � � � respectively. But then
dist ' �  � � � � � �  (since � 	 is a common neighbour of them) and thus  �
has no antipodal vertices in ) � � � . Contradiction!

After this construction a quote of Peter Cameron [39, pp. 117-118] is appropri-
ate:

“As a general principle, a good construction of an object leads to a
proof of its uniqueness (by showing that it must be constructed this
way), thence to a calculation of its automorphism group (since the
object is uniquely built around a starting configuration, and so any
isomorphism between such starting configurations extends uniquely
to an automorphism), and gives on the way a subgroup of the auto-
morphism group (consisting of the automorphism group of the starting
configuration).”

We will not try to determine the full automorphism group of the twin covers.
As Brouwer’s and Wilbrink’s construction suggests their automorphism groups
are related to projective geometries, our combinatorial setting is probably not
appropriate for such a task. But we can still make a meaningful use of the
obvious symmetry among  , � and � which leads us to the following section.
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If a group of automorphisms of an � -cover � which fixes each fibre, is cyclic
of order � , then we call � a cyclic cover. Let � be a cyclic cover of a complete
graph � � with parameters � & � � � � 	 � . Then we can describe � by orienting
the edges of ��� and labeling them, for example by using a function � , with
the elements of � � ���������� ��� *

	
� � . So let vertices of � be �9& � � � ������� � �9& � � � , for

� � � ������� � � . For a directed edge � � �(& � (with & as its head) of � � labeled by
� � � �(& � in the corresponding fibres precisely the vertices � � � � and �9& � � 	��
� � � � �
are adjacent for � � � ������� � � (where indices are taken modulo � with � ���������� � �
as representatives).

We can assume without loss of generality that all the edges incident with
some fixed vertex, � say, are labeled by zero. Sometimes a graph induced by
) �"� � � � � is determined up to isomorphism by parameters of � . For example,
for  � � �
� � � it is a perfect matching. In this case we label by zero also the
edges of a perfect matching of � �  ��� � . The edges of � that are not incident
with vertices � � � � 	 ������� � � * and do not have both ends in the set ) �"� � � � � for
some � , connect vertices from different ) �"� � � � � , so the remaining edges of ���
have nonzero labels. If furthermore � � � , there is only one label (number
one). Thus in this case the covering graph � can already be described by some
orientation of � � � � with a perfect matching deleted.

3.4.1 LEMMA. Let � be a distance-regular cover of � � . Then  � ��� and
�
� � implies & � � or � .

Proof. Let � be a distance-regular cover of � � with  � ��� and � � � . Then
� 	 � � & � ��� �  and & must be odd. Using Krein condition (

� 	 � & � � )
we get � � & . We also have  � ��& � � , so & � � �����#� � � . By Godsil and
Hensel [68, Theorem 3.4(a)], & � � is impossible too. Therefore & � � and
� & � � � � 	 � � � ������� � � or & ��� and � & � � � � 	 � � � ����������� .

We will show that a unique cyclic distance-regular three-fold cover of � �
exists and we will construct it. Let

K
be the directed complete graph � � minus a

matching which determines such a cover. The condition  � � � � � � is equivalent
to the fact that each vertex of

K
lies in exactly three cyclically oriented triangles

with no common edges. Since
K

is 6-regular this eight triangles partition the
edges of

K
. Now we put back the ‘ninth’ vertex � and all four triangles incident

with it (actually we observe
K

embedded in � � ). We orient these four triangles
cyclically. We now have nine vertices (

� � � ), twelve cyclically oriented
triangles ( , � �  ), each vertex lies in four cyclically oriented triangles ( � ��! ),
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each triangle has three vertices ( � � � ) and finally because of �� � � ��� �
each edge lies in exactly one cyclically oriented triangle ( � � � ). Therefore
the incidence structure of vertices as points and triangles as lines is an affine
plane � � �������� . But an affine plane of order three is unique, so it remains to
cyclically orient these triangles. There is a unique way to do this. Without loss
of generality we choose � � �"! ����� as the orientation of the triangle �9& � �(& $ �(& � �
(see Figure 3.5). Because of  � � � for the edges in the fibre �9&�� �(& 	 � we also
get �������� � � and analogously �������� � � and � � � � ��� � . Now because of  � � �
for the edges in the fibre �9& � �(&�� � we have ������#�"!#� and analogously � � � � ����� ,
�������#����� and � ! � � � � � .

Figure 3.5: The cyclic cover with parameters � ����������� .

Remarks: As we know there are two kinds of spreads in the generalized
quadrangle �
	 ����"!#� , and we can always change one kind of spread to the other
kind just by substituting three triangles. So if we substitute the edges of any
cyclically oriented triangle with directed loops with label one at its vertices,
we get the other distance-regular cover � ����������� . Using the software package
Graphs and Groups by Kocay [95], it was verified that the cyclic cover is
distance transitive, and the other one is not.
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This section is the culmination of the chapter. We will succeed in interpreting
the relation between the twin covers of � � in a way different from Brouwer
and Wilbrink, and will generalize it to a switching on a regular spread (defined
below) of any � 	 � � � �"� . For example, all known generalized quadrangles
� 	 ����� � ��� � � � derived from generalized quadrangles �
	 ��������� with a regular
point have such spreads.

Let � � ��� � � � be an incidence structure, where the elements of � and
� are called points and lines respectively (lines are considered as subsets of
points). For � � � we define a star of � , denoted by � � , to be the set of points
collinear with � . similarly for � � � we define � � - � 6 � � � � � � ��� . In a
generalized quadrangle �
	�� ��� � � we have � � � �  � � � � � � � or � � � depending
on whether � and  are collinear or not. For noncollinear points � and  , the
set � � �  � � � is called a hyperbolic line on � and  and has cardinality at most
� � � . The point � is regular if the set � � �  � � � has size � � � for each  �� �
(i.e., if � � � and all the hyperbolic lines on � have size � � � ). A regular spread
is a spread ) such that for each line � � ) , for any two points � and  on � and
for each line � on � , there is a line � � on  so that � and � � intersect the same
elements of ) .

Payne [109] [113, p. 38, p. 58] used a generalized quadrangle � of order
��������� with a regular point � to construct a generalized quadrangle � 	 ������� ��� �
� � with a spread, denoted by � � � � � � . In [112] he showed further that the spread
of ��� � � � � is a regular spread, and that starting with a generalized quadrangle
� 	 ��� � � ��� � � � with a regular spread, we can construct a generalized quadrangle
� 	 ��������� with a regular point. Therefore these two objects are equivalent. For
yet another approach see De Soete and Thas [124].

3.5.1 CONSTRUCTION (Payne). Let � be a regular point of a generalized
quadrangle � 	 ��������� with the point set � and the line set � . Then the set of
points �  � � together with all the hyperbolic lines on � and the lines of � not on
� with the points of � � delete, form a generalized quadrangle �
	���� � � ��� � � � .
The set of hyperbolic lines on � is a regular spread of this generalized quad-
rangle. Conversely, starting with a regular spread of a generalized quadrangle
� 	 ��� � � ��� � � � the same generalized quadrangle �
	 ��������� with a regular
point can be reconstructed. Therefore a generalized quadrangle �
	����#����� with
a regular point is equivalent to a generalized quadrangle �
	���� � � ��� � � � with
a regular spread.

In [110] or [113, p. 48] Payne has shown further that all known infinite



F * # � 2I
 1 � '(,98:�-,<;=%=� 1 �>'?! @ ,.�.2>!G� 
&D , '?! /0+ �I,I
&,>;=� 17+ D

families of generalized quadrangles � 	 ����� � ��� � � � are special cases of the
general construction ��� � � � � .

The last part of the above proof, which is dealing with general �
	�� ��� � �
containing a regular spread, is due to the author, and its conclusion is summarized
in the following lemma.
Proof. Suppose that ��� � � � is a generalized quadrangle �
	����#����� with � as a
regular point. Let �

� - � �  � � , and let �
�
consist of all the hyperbolic lines on

� and all the lines of � which are not on � with the points of the star � � deleted.
We omit the proof that ��� � � � � � is a generalized quadrangle �
	���� � � ��� � � �
and the hyperbolic lines on � form a spread ) of it (see Payne and Thas [113,
p. 48]), and continue with our own proof of the rest of the statement. Let
us prove that ) is a regular spread. Let � � � intersect the hyperbolic lines
� � ������� � � � on � and the star �
� in the points � � ������� � � � and  respectively. Then
 � ��� � � � � � for each � , and therefore, by the definition of a hyperbolic line,
the star  � contains all the points on the lines � � ������� � � � . Thus the lines of �

�
which correspond to the lines on  are the ones we were looking for.

Conversely, suppose that ��� � � � � � is a generalized quadrangle � 	 � � � �"�
minus a regular spread ) (note that this time �

�
does not contain lines of ) ).

Identify the points of �
�
which are on the same line of ) , and identify the lines

of �
�

which intersect the same elements of ) . This way ��� � � points and
� � � ��� � � � � ��� � � lines are obtained. Each line has � � � points, there are �
lines on each point and any two points determine a unique line. Hence, this is a
2-design with parameters �9& � � � 	 ��� � � � � � � � � � � � � . Let us set � � � � � and
� � � � � to obtain an affine plane of order � . Let �

� �
be the set of lines of this

affine plane together with a new point � , and let �
� �

be the family of parallel
classes (considered as sets of lines of the affine plane) extended with the point
� . Finally, let �

� � �
be the set of lines �

�
where we extend each line with its

class (a corresponding line of the affine plane). Now, we can easily show that
��� � / � � � � � � � /� � � � � is a generalized quadrangle �
	����#����� with � as a regular
point.

Let ��� � � � be a generalized quadrangle with a spread )�� � . Then we
define a new incidence structure, called the quotient of ��� � � � over ) , by taking
for the points the lines of ) , and for the lines the lines of � �) in which we
substitute each point with the line of ) through it. Alternatively, we can delete
the lines of ) , identify the points of � which were on the same line of ) , and
then identify the lines with the same points.

3.5.2 LEMMA. A generalized quadrangle �
	�� ��� � � with � � � quotients over
a regular spread to a 2-design with parameters � ����� � � � � � � � � .
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We can rephrase this result in graph theory language: the incidence graph
of a generalized quadrangle minus a regular spread covers the incidence graph
of a 2-design.

Here is now our main result of the Chapter.

3.5.3 THEOREM. If a regular spread of a generalized quadrangle �
	�� ��� � � ,
� � � , exists, then a spread which is not a regular one also exists.

Proof. Choose any line � of �
	�� ��� � � and let � � ������� � ��� 	 � be the lines of the
regular spread whose union � contains � . By the definition of a regular spread
there exists for each point 4 � of � �  � a line � � which is also contained in the union� . Lines � , � � ������� � � � are disjoint by the definition of a generalized quadrangle,
therefore these � � � lines partition � . The spread obtained from the regular
spread by switching (substituting) the first set of � � � lines by the second one
is again a spread, but it is clearly not a regular one. For, let � be a line on � � 6 �
distinct from � � and � . So � � 6 � � � � . Let �

�
be the line on 4 � which intersects

the same elements of the regular spread. Then after the switching the lines �
and �

�
do not intersect the same elements of the new spread.

We have already seen that generalized quadrangles � 	 ��� � � ��� � � � have
regular spreads. Another infinite family of examples will be shown after we
consider some small examples.

The above result implies that there is up to isomorphism a unique regular
spread of the generalized quadrangle �
	�����"!#� , which comes from a regular
point in �
	���������� . Hence the two kinds of spreads of � 	 ����"!#� are related by
this switching (cf. the remark after the construction of the cyclic cover with
parameters � ����������� ).

There is another small example. A generalized quadrangle � 	 � ! �"!#� is
isomorphic to the orthogonal generalized quadrangle 	 � ! �"!#� , which is self dual
by Payne and Thas [113, Proposition 3.2.1], and its dual is known also as the
symplectic generalized quadrangle � � !#� , see Payne and Thas [113, p. 129]. By
Payne and Thas [113, Propositions 3.3.1(i), 3.4.1], the symplectic generalized
quadrangle ��� !#� has regular points, and spreads which induce spreads in the
generalized quadrangle �
	���������� coming from Payne’s construction 3.5.1, cf.
Payne and Thas [113, Proposition 3.4.3]. A generalized quadrangle �
	���������� is,
by Payne and Thas [113, Propositions 3.2.6 and 6.2.4] and by the uniqueness of
the generalized quadrangle � 	 � ! �"!#� , isomorphic to ��� ��� !#� � � � , for a regular
point � , therefore it comes from the Payne’s construction. This implies that
the generalized quadrangle � 	 ��������� has a regular spread, and therefore, by
Theorem 3.5.3, there are at least two nonisomorphic covers with parameters
� � � �"! �"!#� .
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In [112] Payne actually determined all the spreads in the generalized quad-
rangles � 	 ��������� , �
	�� ! �"!#� and �
	 � ������� . There are 4608 of the first, 120
of the second and 24 of the third kind. The 4608 spreads were divided into
360 ones coming from planar ovoids of � 	 � ������� , 216 ones related to a regular
spread by the above switching, and 4032 serendipitous spreads, constructed by
J. A. Thas (whose construction works in any � 	 �� * �� * � ). Brouwer and Koolen
(private communication, October 1993) have shown there are exactly five non-
isomorphic spreads in � 	 ��������� , with exactly one of them corresponding to a
planar ovoid in �
	�� ������� and exactly one serendipitous spread.

Let ) be a spread in a generalized quadrangle �
	�� ��� � � such that the group
of automorphisms of the generalized quadrangle which fixes each component of
) is cyclic of order ��� � . Then ) is called a cyclic spread. A cyclic spread ) is
always a regular spread, since for each line � �2) and for any two points � and
 on � there is an automorphism which fixes each line of ) and maps � to  , so
for each line on � there is a corresponding line on  which intersects the same
elements of ) . We can apply the above switching to any cyclic distance-regular
cover of a complete graph coming from a generalized quadrangle �
	�� ��� � � with
a spread in order to obtain a non-isomorphic distance-regular graph with the
same intersection array. Since, by Godsil and Hensel [68, Thm. 9.2], in a cyclic
� -cover of � � the index � has to divide & , in this case ����� has to divide
� ��� � . Beside the generalized quadrangles with parameters ����� � ��� � � � the
only other candidates are the generalized quadrangles with parameters ������� 	 � .
Godsil [65, Lemma 6.1] has shown that for every prime power � there is a
generalized quadrangle �
	�������� 	 � with a cyclic spread. In the same article
Godsil has mentioned a generalization of the construction of the cyclic cover
with parameters � ����������� . As the proof of this result has not been published, we
present it here.

3.5.4 THEOREM (Godsil). There is up to isomorphism a unique cyclic spread
in the dual of the unitary generalized quadrangle � 	 ������� 	 � .
Proof. We will prove the dual statement. Let 
 be a nondegenerate hermi-
tian variety in � ��������� 	 � . Then its points and lines form a unitary generalized
quadrangle ��������� 	 � with parameters ��� 	 ����� . Let � be an ovoid of this gen-
eralized quadrangle. Then � � � � � 	 � � . Since a line of � � ������� 	 � contains
� 	 � � points, we can choose for distinct points � � and � 	 of � the third
point � 	 � �  � � � � � 	 � so that the points � � � � 	 � � 	 generate a plane � . Let
� $ � �  � � � � � 	 � � 	 � . Suppose that � $ �� � . Then the identity is the only linear
mapping of � � ������� 	 � fixing the points � � � � 	 � � 	 and � $ . By Tits, see Cameron
[39, Theorem 7.6.2], an automorphism of a classical generalized quadrangle,
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which is not symplectic or orthogonal, extends to a semilinear mapping of the
underlying vector space. Therefore if the ovoid � is cyclic, then � � � , i.e.,
� � � 6 
 . By Godsil [65, Lemma 6.1], plane ovoids (i.e., intersections of a
nondegenerate hermitian variety in � � ������� 	 � with any non-degenerate plane)
are cyclic ovoids.

� � � $"���<� � � ��� � � �@� ����� 
������ ����� ����� �@� �!�<� ��� ��� � � � � %7�=�<�

A generalized quadrangle �
	���������� is either the orthogonal generalized quad-
rangle 	�� ! ����� or its dual, the symplectic generalized quadrangle ������� , see
Payne and Thas [113, p. 55]. The first one has no spreads and the second one
does have them. In this section we prove that there is up to isomorphism a
unique spread in the symplectic generalized quadrangle � ����� .

In the generalized quadrangle ������� all points are regular, by Payne and
Thas [113, p. 51], so � � � ����� � � � is the generalized quadrangle �
	 ����"!#� with
a spread ) for a point � of ������� . Let ) � be any spread of the generalized
quadrangle ������� and let ) � � be the set of nonempty lines obtained from the
lines of ) � by deleting the points of � � . Then ) � � is a spread in ��� ������� � � �
disjoint from ) , see Payne and Thas [113, p. 58]. We have learned in the
previous section that ) is a regular spread, so no two lines of ) � � intersect the
same elements of ) . By the construction in Theorem 3.5.1 any spread ) � � of
� � � ����� � � � with this property uniquely determines a spread in ������� . Hence
the spreads of ������� and the spreads of � � � ����� � � � , whose lines do not intersect
the same elements of the regular spread, are in one to one correspondence.

3.6.1 THEOREM. There is up to isomorphism only one spread of the sym-
plectic generalized quadrangle ������� .

Proof. We start with the generalized quadrangle � 	 ����"!#� minus the cyclic
spread ) (we have shown after Lemma 3.4.1 that this object is unique) and we
try to find all possible spreads ) � � such that no two elements of ) � � intersect
exactly the same elements of ) . Therefore the nine lines of ) � � project one-to-
one into the lines of the affine plane ������������ . There are four parallel classes of
lines in ������������ (all together twelve lines). Since the three lines of � � �������� ,
which are not images of lines from ) � � , have to cover all the points of � � �������� ,
they form a parallel class. There is an automorphism � of the directed � � ��������
which rotates it for � �  radians (see Figure 3.5), further there is an automorphism
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which exchanges the pair of skew parallel classes with the horizontal and the
vertical parallel classes (see Figure 3.6).

τ
yw

d z c

a bx a

b

y

c

z

d

w x

Figure 3.6: The automorphism � , which exchanges the vertical and the horizontal
classes with the skew ones.

Therefore we can assume, without loss of generality, that ) � � projects to the
vertical, to the horizontal and to one of the two skew parallel classes. Since )
is a cyclic spread we can assume that ) � � contains the line 	�� ���� � � �

�
(this is only

a convenient form to write two equations, and the top equation determines the
line corresponding to the image under projection), see Figure 3.8, where in the
two dimensional case the lines of the spread ) � � are presented in a different style
at different levels, 
 – solid, � – dashed, � � – dotted.

x= -1 x=0 x=1

y=x-1

1

y=-1

y= 0

y=x+

1y=

y=x

Figure 3.7: The automorphism �
	 .

Since the automorphism �
	 preserves the sets of skew lines, see Figure 3.7,
we can choose the line 	 � � �� � �

�
to be an element of ) � � . This implies that the line	 � � �� � �

�
is an element of ) � � too. We now have two choices where to lift the line

 � �
� : to the line 	 � � � �� 	�� � �
�

or to the line 	 � ��� �� 	�� � � �
�
.
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y=x

y=x+1

y=1

y=0

y=-1

x=-1 x=0 x=1

-1y=x

Figure 3.8: The unique spread of the generalized quadrangle ������� drawn in three
and two dimensions.

Let us proceed with the first choice. Then ) � � must contain the lines	 � ��� �� �
�
� �
�
, 	 �

� �
� � � � � �

�
, 	 � � �
� 	
�
� � �

�
, 	 � � � � �� ���

�
, 	 � � � � �� 	�� � � �

�
, and ) � � is uniquely deter-

mined. Since the automorphism � 	 maps the line 	 � � �� ��� � �
�

to the line 	 � � � �� � � ��� �
�

and preserves previously chosen lines for ) � � , the second choice renders an
isomorphic spread ) � � .

� � � �;� %��7� ������� � � �@� ����� 
������ ����� ����� �@� �!�<�

In this section we give an alternative proof, due to Brouwer and Wilbrink (private
communication, February 1993), of Theorem 3.6.1. We present an extended
version of their proof, as the original version has only eight sentences. We will
use the following classical result which can be found, for example, in Hirschfeld
[85], or Van Lint and Wilson [101].

3.7.1 THEOREM. Any nondegenerate quadratic form 	���� � ������� � � � � over
� � ����� is projectively equivalent

(i) for & even to

� � ��� � � � 	� � � � � 	 � � 	 � $ � 13131 � � � � � � � �

in which case the quadric 	 contains ��� � � � � � ��� � � � points and the
maximum projective dimension of a flat

� � 	 is & �  � � ;
(ii) for & odd to

�
� ��� � ��� � � � � � 	 � 	 � 13131 � � � � � � � �

or �
� ��� ����� � � � � � 	 � 	 � 13131 � � � � 	 � � � 	 �04 ��� � � � � � � � �
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where 4 ��� � � � � � � � is an irreducible quadratic form, and the quadric 	
contains ��� � � 	�� ��� 	 � � ����� � � ��� ��� 	 � � � � ��� � � � points and the maximum
projective dimension of a flat

�
of 	 is � & �  ��� � �  , with � ��� in the

hyperbolic case and � � �
� in the elliptic case.

Quadratic forms equivalent to � , 
 and � are called parabolic, hyperbolic,
and elliptic respectively. It is worthwhile mentioning that all elliptic quadratic
forms are projectively equivalent (i.e., we can choose 4 ��� �  ��� � � 	 � �� �  	
with ��� � for � even and � � ! � a nonsquare for � odd. The above result can
be quite easily derived from elementary facts, see the books by Cameron [39,
p. 76], and by Van Lint and Wilson [101, Ch. 26]. For the following proof it is
crucial to remember that the intersection of a quadric with a flat

�
of � ��� & ��� �

is a quadric in that flat.

Second proof of Theorem 3.6.1 (Brouwer and Wilbrink): The dual statement
will be proved:

There is a unique ovoid in the orthogonal generalized quadrangle 	 � ! ����� .
Brouwer calls this ovoid )�4 � ! ����� . Let 	 ��� � be a nondegenerate quadratic form
in � ��� ! ����� (cf. Van Lint and Wilson [101, Example 26.E]). Then its isotropic
points and lines determine the orthogonal generalized quadrangle 	�� ! ����� . Let
� , � and � respectively be the set of isotropic points (i.e., 	 � � � 
 � ), 	 � � � � �
and 	 � � ���� . As we know (see Van Lint and Wilson [101, p. 318]), a line � of
� � � ! ����� can intersect the quadric � in four different ways:

(1) � � 6 � � � ! ( � is an isotropic line), i.e., ��� � � � 	 � � 
 for distinct
� � � � 	 �
� 6 � .

(2) � � 6 � ���  ( � is a hyperbolic line), i.e., ��� � � � 	 � �� 
 for distinct
� � � � 	 �
� 6 � , i.e., � � 6	� � � � � � � 6
� � .

(3) � � 6 � � � � ( � is a tangent line), i.e., either
(a) � � 6�� ��� � , i.e., �  � �  	 � ���
 for distinct  � �  	 �
� 6�� , or
(b) � � 6�� � � � , i.e., � � � � � 	 � ���
 for distinct � � � � 	 �
� 6
� .

(4) � � 6 � � ��
 ( � is an elliptic line), i.e., � � 6	� � � 
� � � 6
� � , i.e., �  � �  	 � ��

for distinct  � �  	 �
� 6	� , i.e., � � � � � 	 � ��
 for distinct � � � � 	 �
� 6
� .

Let � be an ovoid, i.e., the set of ten isotropic points, no two orthogonal and
let � be the plane spanned by distinct points � � , � 	 and � 	 of � . Then it
is nondegenerate, since it contains more than two nonisotropic points and not
all the points are isotropic (cf. Van Lint and Wilson [101, Example 26.3]).
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Therefore � 6 � is a parabolic quadric of � and it consists of four isotropic
points, say � � , � � , � 	 and � 	 that are pairwise orthogonal.

Let us now prove that � � � � . Let � be some isotropic point orthogonal to
� � . The space 
 generated by � and � is not degenerate, i.e., 
 � ���� , since
otherwise the lines on � , � � and 
 � would form a triangle in the generalized
quadrangle. Because 
 contains the isotropic line � � � , it is a hyperbolic 3-
space. This implies that isotropic points of 
 form the generalized quadrangle
� 	 ����� � � , i.e., ! 	
! grid. The points � � � � � � � 	 � � 	 are pairwise nonorthogonal,
so no two of them lie in the same column or row. Since the points on a vertical
line through � � cannot be in � , � � must be.

Let ) be a 3-space generated by the plane � and any point of �  � . Since
the generalized quadrangle �
	 ����� � � does not contain five pairwise noncollinear
points, ) is not hyperbolic, and since the first neighbourhood of a vertex in the
point graph of a generalized quadrangle �
	 ��������� has at most four pairwise
noncollinear points, ) is not degenerate. Therefore ) is an elliptic 3-space (cf.
Van Lint and Wilson [101, Example 26.5]). As a subspace � is degenerate
whenever � 6 � � �� � , i.e, whenever its orthogonal complement � � is degen-
erate, the line � � is either hyperbolic or elliptic. It is not completely trivial
(see Higman [84, p. 22]) to show that for any nonisotropic point � there exists a
linear transformation preserving 	 ��� � , which maps � to any other point & with
	��9& � � 	 � � � . So the action of the group � � � � ������� on nonisotropic points has
two orbits � and � , and the same is true for their orthogonal complements, i.e.,
elliptic and hyperbolic hyperplanes. In the case when � � is a hyperbolic line,
there exists a unique elliptic 3-space containing � . Since an elliptic quadric in
� � ��������� has ten points, the ovoid � is the elliptic quadric of ) determined by
� 6 � . In the case when � � is an elliptic line, there are two possibilities for
) , and �  � is an independent set of size six in a bipartite subgraph on 6+6
vertices (six vertices in each choice for ) ) of the point graph of the orthogonal
generalized quadrangle 	�� ! ����� . The valency of this graph is at least four, since
the set of ten isotropic points of ) intersects each isotropic line. Hence the set
�  � must be one of the two bipartite halves. So the only ovoids are the elliptic
quadrics of � � ��������� .

� � � �����<�9��� 
 ���

While we determined geometric and locally cyclic covers with parameters
� ��
 �"! ���� , work on nongeometric covers is still not finished (cf. Haemers [73],
Peeters [114]). For & � ��
 a few classical constructions or characterizations
(Bondy in Biggs [15], Brouwer [24] (Thm. 3.3.1), Mathon [103], Thas-Somma
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[127], [136]) are known, see Table 3.3. For most of these graphs we do not
know if they uniquely realize their parameters. Many infinite families of fea-
sible parameter sets also exist, communicated to me by de Caen and Godsil.
One has, for example, parameters ��  ��  � � � � ���� and seems to be related to
design theory, while another one has parameters �� 	  �� 	  � � ���� . For this one a
new infinite family of covers was constructed quite recently and it was related
to coding theory, see de Caen, Mathon and Moorhouse [38].

We close this chapter by mentioning that the double-covers of � � � and
� � � will be constructed in Section 5.5.

& �  � � 	 a cover � of � � � of �
� � � � � does not exist ( � � (2,10)) 

�  �   Mathon’s construction [103]

� �
� � � � � � open ( � � (2,12)) �
��!  � �

equivalent to Paley graph � � ��� � � ��� � �
��! � ! ! Mathon’s construction [103]

� �
��! �   Mathon’s construction [103]

� �
� �  � �

[38], [127] and [136] �
� �  � �

unique two-graph �
� � !  ! �
	 (3,5)  spread, Thm. 3.3.1, [38]

� �
� � � !  � 	 (5,3)  spread, Thm. 3.3.1

� �
� � �   OPEN �
� � � 
  [38]

� �
� � � � � Mathon’s construction [103]

� �
� � � � � �
	 (4,4)  unique spread, [103], Thm. 3.3.1

� 
� � � � � � equivalent to � � (2,16), Mathon’s construction [103]

� �
� �  � �

Mathon’s construction [103] �
� � ! ! ! Mathon’s construction [103]

� �
� � �   Mathon’s construction [103]

� �
��� !  � [74] ( � 	 (3,6) does not exist [113, p. 124]) 

��� � �  [66] ( �
	 (6,3) does not exist [113]) 

��� � � � � open ( � � (2,18)) �

Table 3.3: List of distance-regular covers of complete graphs � � for & � � � ������� � ��� .
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In this chapter we begin to study antipodal distance-regular graphs of diameter
4 and 5. Their antipodal quotients are distance-regular by Theorem 2.4.2 and
have diameter two, i.e., they are strongly regular graphs. So we can regard
these graphs as distance-regular antipodal covers of strongly regular graphs.
This study is a natural step following the previous chapter, where we have been
investigating antipodal distance-regular graphs of diameter three, i.e., distance-
regular (antipodal) covers of complete graphs.

In general there was not much known about antipodal distance-regular
graphs of diameter four and five when we started to work on this problem,
with the exception of covers of complete bipartite graphs of course. It is quite
difficult to decide even which families of strongly regular graphs are more
interesting than others. In Brouwer et al. [27, Ch. 14] a table of parameters
of these graphs, which pass certain criteria, is given. We have determined
a minimal set of such criteria and then study some of them in detail. This
has motivated a parametrization of 	 -polynomial covers of diameter four with
two parameters. Terwilliger has shown that all � - and 	 -polynomial antipodal
graphs of diameter at least five are already known. Further he proved that � - and
	 -polynomial antipodal graphs are locally strongly regular. Inspired by this we
study local structure of distance-regular graphs and find that also in some other
cases intersection parameters force a graph to be locally strongly regular. From
this we derive some new uniqueness and nonexistence results. In particular a
quarter of possible � - and 	 -polynomial antipodal graphs of diameter four and
many feasible intersection arrays from the above mentioned table are ruled out.

In Section 4.1 we have established basic facts about strongly regular graphs.
The intersection numbers and the dual intersection numbers (also called the
Krein parameters) are essential when we study feasibility of an intersection
array. The intersection numbers have to be integers and the dual intersection
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numbers have to be, by Krein bounds, non-negative. This is the theme of Section
4.2. In Section 4.3 we devote special attention to bipartite antipodal distance-
regular graphs. In Section 4.4 we explain when we call an intersection array of
antipodal distance-regular graphs of diameter four and five feasible, and list all
known examples. Local structure of antipodal distance-regular graphs is studied
in Section 4.5. In the last section we present some infinite families of feasible
intersection arrays of antipodal distance-regular graphs of diameter 4 and 5 as
future challenges.

��� ��� � ����� � � ������� �!�"� ���=�7$�%@�

We have defined a strongly regular graph in Chapter 2 as distance-regular graphs
of diameter two. Here we give more general definition. A graph is strongly
regular if it is a

�
-regular graph with the property that the number of common

neighbours of two vertices � and & is either 	 or A depending on whether �
and & are adjacent or not. Some examples of these graphs are the quadrangle,
the pentagon, the direct product of two triangles, the Petersen graph and Paley
graphs. Equivalently, a strongly regular graph is an association scheme with
at most two classes. We will see that a connected regular graph is strongly
regular if and only if it has three eigenvalues. Let 	 � �� , A � � 	 , and let
� � � � ��	 � � � � �(A � be an intersection array of a strongly regular graph. Then
by Lemma 2.1.1(a) the number of its vertices is equal to

& � � � � � � � � � 	 � � � � A � � � � � � � 	 � � � A � � A
and � & � � � 	 �(A � are the parameters which are traditionally given for a strongly
regular graph. It can be easily seen that the complement of a strongly regular
graph with parameters � & � � � 	 �(A � is also strongly regular and has parameters

� & � � � 	 � A � � � & �"& � � � � �"& �  � � A � ��"& �  � � 	 � �
The only disconnected strongly regular graphs are the disjoint unions of a
number of isomorphic complete graphs; these are the only strongly regular
graphs with A ��
 . We will usually not consider covers of disconnected strongly
regular graphs nor their complements (these are the complete multipartite graphs
������� ), in which case

max � 
 �� � � & � ��� ��	 � � �  and max � � �� � � & �  � � A � � � � �
Strongly regular graphs satisfying these inequalities will be called nontrivial
strongly regular graphs. The following result can be found in [27, Thm. 1.3.1].
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4.1.1 PROPOSITION. A graph � on & vertices is strongly regular if and
only if its adjacency matrix � satisfies � 	 � � � � 	 � � A�� � � � � � � and
� � � � � for some integers

�
, 	 and A . Its eigenvalues are then

�
�
� �

with
multiplicity one and

� � ��� �
�
	 �8A���� � 	 � A � 	 � ! � � �8A ��� �

with multiplicities

� � � � & ��� � � � �

� � � � ��� � � �
� � � � � �

A���� � � � and ���
� & � � � � � �
They satisfy

� � � � 
 � � � � � .

In the next section we study distance-regular antipodal covers of diameter
four, for which, by Theorem 2.4.4 (or 2.4.6), the eigenvalues with even indices
are also the eigenvalues of the antipodal quotient, which is a strongly regular.
So we have

�
	 �

�
and

� $ � � .
In the case of strongly regular graphs with A � 
 all the parameters can be

determined from their eigenvalues:

& � � �
� � � � � � � � � �

� � � � � � � �
� � � ��� � � � �� � � � �

	 � � � � � � � � � � A � � � � � �
so we can use the eigenvalues for the classification of strongly regular graphs as
well.

The nontrivial Krein bounds (corresponding to � 		 	 and �
$$ $ ) are:

� � � 	 ��� � 	 � � 	 � � 	 � � A 	 � � ��� � 	 � and � � � 	 ��� � 	 � � 	 � � 	 � � A 	 ��� ��� � 	 �
for an alternative form see Seidel [118], Brouwer and Van Lint [31]. The
nontrivial absolute bounds are:

& � � ��� � � � � �  � � � � �� and & � � � � � � � � �  � 	 � � ��
where � � is one if the equality holds in the � -th of the above Krein bounds and
zero otherwise.

The following statement is a direct consequence of the fact that the se-
quences � � � � and � � � � � are decreasing, and it is due to Godsil, Schade and the
author [69].
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4.1.2 PROPOSITION. Let � be a strongly regular graph with parameters
� & � � � 	 �(A � , i.e., intersection array � � � � � 	 � � � � �(A � , and suppose that it has
a distance-regular antipodal � -cover 
 . Then

(i)
� � � � � �

	
�

for diam ��
 � � � ,
(ii)

� ��� *�� � � � �	 * � ��� for diam ��
 � � ! .

In the second case the bound is attained for the octagon, which is the
double-cover of the quadrangle. There are no other such examples, so we
conjecture that for

� ��  the following holds:

� ��� & � � � � i � e � � � � 	 � A � � � i � e � � � 	 � �
� � � � � �
� �

with only one parameter set attaining this bound, cf. Brouwer et al. [27,
Thm 1.5.5] (and remember that � 	 ��
 �
� A � � ). For small parameter sets all
potential examples are ruled out by a single integrality condition: � � � � � � IN,
where

� � is the smallest new eigenvalue of the cover. This condition is nontrivial
only for 	 �� 
 , in which case it is equivalent to � ��� 	 	 � ! � � IN, cf.
Proposition 4.2.1, and we could use � to parametrize

� � � � 	 � 	 	 � � ! .

� � 	 �<��� �=������� 
���� $@�"��� 
 ����� ����
�����@
 � � ��� ���@� � �9�<����� ���7���7�
In this section we determine all the intersection numbers of antipodal distance-
regular graphs of diameter four and five, and Krein and absolute bounds in
diameter four case. Theoretically we could determine all the intersection num-
bers from the intersection array by using the recurrence relation mentioned at
the beginning of Chapter 2. However, calculations become messy quite soon,
so it is more convenient to use Theorem 2.4.2 and Figures 4.1 and 4.3 for this
purpose.

Throughout this section we will assume that 
 is a distance-regular an-
tipodal � -cover of a strongly regular graph � with parameters � & � � � 	 �(A � and
eigenvalues

�
� � �

	 �
� $ .

We start with the case when the cover 
 has diameter four. Then all its
parameters are determined by � � � � � 	 �(A � or if you prefer by � � � � � � � 	 �

� $ � :

� � � � � 	 � � � � ��� � � A � � � � � � �(A � � � � � 	 � � � � � �
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Let us define for � � � 
 � � ��������"!�� the symmetric 4 by 4 matrix � � � � with its
� � -entry being equal to 4 ��� � � � . Then:
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 ���
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where � � � � � � � 	 ,
�
	 � �

� � � � A ,  	 �
� �8A and � 	 � � � � � � A � � .
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Figure 4.1: A distance-regular graph of diameter four (the distance partition corre-
sponding to an antipodal class).

An immediate consequence of Theorem 2.4.6 is the following result (men-
tioned already in Van Bon and Brouwer [17]).
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4.2.1 PROPOSITION. Let 
 be an antipodal distance-regular graph of di-
ameter four. The two new eigenvalues

� � and
�
	 of 
 are the two roots of

� 	 � 	 � � � � 
 and they occur with multiplicity

� ��� � � � � � � � &
 � 	 � � � � i � e � � � � � &�� � � � �

�
	�

	 �
� � and � 	 � &�� � � � � � � �

Consequently, either 	 � 
 or 	 	 � ! � is a square and these eigenvalues are
integral.

Remark: This result immediately implies that the conference graphs (with the
exception of the pentagon) and the lattice graphs (with the exception of the
quadrangle) cannot have distance-regular antipodal covers of diameter four (see
Godsil, Jurišić and Schade [69, Corollaries 4.5 and 3.10]).

By Theorem 2.4.6 we have
�
� � � � � �

	 �
� 
 � � �

	 � � $ and these
are all the eigenvalues of 
 (with equality only if 
 covers the complete
bipartite graph). The matrix of eigenvalues of 
 , defined by ��� � � ��� & ��� � � �
(Lemma 2.2.5), has the following form:

����
 ���
����
�
� �

� �
�
� � � � A �

� � � � � � � � �
� � � 
 � � � � �
� �

	 � � � � 	 � � �
�
	 � � � � � � � �

� �
	 
 � � 	 � �

� � $ � � � � $ � � � � $ � � � � � � � �

�����
� �

After straightforward computation we find that there are only three nontrivial
Krein bounds: � 	 	 ����

� 
 , � $ $ � !#� � 
 , and � ��� � !#� � 
 . The first two come
from the strongly regular graph � , and the last one translates to

� 		
� � � $ .

Furthermore, we find that � � 	 ���� ��� � 	 � !#� ��� � $ � !#� ��� 	 	 ����� ��� 	 	 � !#� ��� 	 $#� !#� � 
 ,
and � �  if and only if � � � � � � ��� ��� ����� ��� � 	 ����� ��� 	 	 ����� � 
 . All the other Krein
parameters are strictly positive. Recall [131], [27, Thm. 2.11.6], that a � -class
association scheme is 	 -polynomial if and only if the representation diagram
� � for � ���� being a minimal idempotent, is a path. The representation
diagram � � is the undirected graph with vertices 
 � � ������� � , where we join two
distinct vertices � and � whenever � ��� � � � � � � � � � � �� 
 . For ��� � and �
�  we
get the following graph:
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Figure 4.2: The representation diagram � � .

which implies:

4.2.2 PROPOSITION. Let 
 be an antipodal distance-regular graph of di-
ameter four. Then

� 		
� � � $ . For � �  the equality holds if and only if 
 is

	 -polynomial.

The equality case is a special case of a result of Terwilliger [133, Thm. 3].
We will study further 	 -polynomial antipodal distance-regular graphs of diam-
eter four in Section 5.

Based on the above information it is not difficult to determine all the
absolute bounds as well. Let � � � � !#� be one if � � � � !#� is zero and zero otherwise.
Similarly, let � be one if � �  is zero and zero otherwise. Since � � � � 	 ,� 	 � � $ � & ��� and � � � � 	 � &�� � � � � the absolute bounds reduce for

� � �
to the nontrivial absolute bounds of � and to the additional three inequalities:

� � � � � & � � � � 	 � i � e � � � � � � � 		 � � 	 �
� � � � � & � � � � � $ � � � � � !#�"� � i � e � � � � � � � 		 � � $ � � � � � !#� �

& � � � � � � & � � � � � � � � � � �  � � $ � � � � !#� �

In the case when the cover 
 has diameter five the intersection array is
determined by five parameters:

� � � � � 	 � � � � ��� � � � �(A � � � � �(A � � � � � 	 � � � � � �
and we have:
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where � � � 	 , � � �
� ��� � 	 ,  	 �

� ��� � � � � � � A ,  	 �
� � A � � , � 	 �

� � � � A ,�
	 � � � � � �

�
	 , 4 		 	 � � �  	 �  	 � 	 � � A , 4 		 	 �

�
	 � � �  	 � 4 	 	 �����

�
	 �
�
	 ��� � �� � � , 4 		 	 �

�
	 �  	 � � � � ��4 	 	 ����� , and 4 		 	 � � ��� � �

� � � � A �  	 � � � � ��4 	 	 ����� .
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Figure 4.3: A distance-regular graph of diameter five (the distance partition corre-
sponding to an antipodal class).
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There are cases in which the existence of antipodal distance-regular graph and
its antipodal quotient are equivalent. For an illustrative example we need one
more definition. A generalized Odd graph with diameter � (also called regular
thin near �� � � � � -gon) is a distance-regular graph � with diameter � such that
 � � � � �  	 � �
� � 13131 �  � � � � � � ��
 and  �#� �
� � 
 .

4.3.1 PROPOSITION. If 
 is a bipartite antipodal distance-regular graph
with odd diameter, then it is the bipartite double of its antipodal quotient � (i.e.,
� 	

� � ), which is a generalized Odd graph. Conversely, the bipartite double
of a generalized Odd graph � is a bipartite distance-regular antipodal cover of
� , with odd diameter.

Proof. Let 
 has diameter  � � � and index � . From the fact that  � ��
 ���
 � 	 � ��
 � � 
 , it follows that � �  (see Gardiner [60] or [27, p. 142]). If we
add � �  to the assumptions of the statement we get the known result from
Brouwer et al. [27, Thm. 4.2.11]. The converse is also known, see Brouwer et
al. [27, Thm. 1.11.1(vi)]. Therefore we omit the remainder of the proof.

Biggs and Gardiner [16] have mentioned in the proof of Proposition 5.9(3)
that a bipartite antipodal distance-regular graph of odd diameter must have index
two, but nobody concluded that there is a natural bijection between bipartite
antipodal distance-regular graphs of odd diameter and their antipodal quotients
as implied by the above result (see Jurišić [92, Theorem 6.1]).

The known examples are the Desargues graph as the bipartite double of
the Petersen graph, the five-cube, the double Hoffman-Singleton, the double
Gewirtz, the double 77-graph (i.e., the bipartite double of the unique strongly
regular graph with intersection array �  � �� 
 � � �"!�� , see Brouwer [25]), and the
double Higman-Sims.

If a distance-regular antipodal cover 
 with diameter four of a strongly
regular graph � with intersection array � � � � � 	 � � � � �(A � is bipartite, then
 	 ��
 � � 
 implies

� � A . It means that � is the complete multipartite graph
with � classes of size � , i.e., � ����� , and  � ��
 � � 
 implies � �  , i.e., � is
the complete bipartite graph � � � � . In this case 
 is an incidence graph of a
resolvable transversal design, cf. Theorem 6.3.1.



� � 1 � 
 ��+ !G# 1 � # � 2I
 1 � '(,68 ��, ;�%=� 1 � ;=� 17+ D 2 J � 
&DLK M F3P E

	 � �"�<��� 
 �"
9�
!� � ��� � � 
��� �����@��� �8� � � ��� ���

Schade and the author have used the properties of parameters of strongly regular
graphs mentioned in Section 1 to obtain a list of small intersection arrays
of possible nontrivial strongly regular graphs. Then we used the following
conditions:

(F1) the upper bound on valency implied by Proposition 4.1.2,

(F2)  � � � �
,

(F3) the multiplicities of the new eigenvalues of the cover are integers,

(F4) Krein conditions,

(F5) absolute bounds,

and in the case of diameter four also

(F6) � � A ,

(F7) if A �  , and
�
�
�
	 	 � 	 ����� , then � 	 � � � � � (see Brouwer et al. [27, p. 6]),

to obtain lists of small intersection arrays of possible antipodal distance-regular
graphs of diameter four and five, see Godsil, Jurišić and Schade [69]. The
following are the only five intersection arrays in our list which were known not
to exist.

� � � ��
 � � �"! � � � � ����� � � � 
 � �
�� � ��
 � ��� � � � � � � � � � � � 
 � �
��� � ��
 � ���"! ���� � � � �� �"! � � � ��
����
!#� �  � � � ��� � � � � � ����� � � �� � � �
��� � � � �"! ��� � � � � � � � � �"! ��� � � � �

The first one should be a distance-regular antipodal cover of the comple-
ment of the triangular graph � � � � . Van Bon and Brouwer [17] have shown that
such a graph has no distance-regular antipodal cover of diameter four (alterna-
tively: such a graph would be locally Petersen graph, but for this parameter set
this is not possible by Hall [75], cf. Brouwer et al. [27, Thm. 1.16.5]). The
fourth one has

� � � � � � � and A � � , so by Brouwer et al. [27, Thm. 4.4.11] it
does not exist. The second and the third one should be distance-regular antipodal
covers of the Gewirtz graph, but the only distance-regular antipodal cover of this
graph is its bipartite double with intersection array � ��
 � ��� � ���� � � � �� � � � ��� ��
�� ,
see Brouwer et al. [27, Proposition 11.4.5]. The nonexistence of the fifth one
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has been shown by Brouwer (private communication). Modulo these five inter-
section arrays and Bagchi’s parameters our lists agree with the one of Brouwer,
Cohen and Neumaier [27, pp. 417-418, 421-425]. We will call the intersection
arrays which satisfy the above conditions feasible intersection arrays of antipo-
dal distance-regular graphs of diameter four and five. Corresponding to the
previous section we list only all known non-bipartite distance-regular antipodal
covers of strongly regular graphs.

� � & � 	�A 
 � � � &
1 ! Folded 5-cube 16 5 0 2 ! Wells graph 2 32

2 ! � � 6 � 15 6 1 3 ! 3 � Sym(6).2 3 45

3 ! � � 7 � 21 10 3 6 ! 3 � Sym(7).2 3 63

4 folded � (4,8) 35 16 6 8 ! Johnson graph � (4,8) 2 70

5 ! truncated 3-Golay code 81 20 1 6 shortened 3-Golay code 3 243

6 ! folded halved 8-cube 64 28 12 12 ! halved 8-cube 2 128

7 ) 	 � ) 	 ��� � � � �"� 105 32 4 12 ) 	 � Soicher graph � 3 315

8 Zara graph (126,6,2) 126 45 12 18 3 ��� �
� (3) 3 378

9 ! ) 	 (McLaughlin graph) [26] 162 56 10 24 ! Soicher graph 3 486

10 hyperbolic pts. of � � (6,3) 378 117 36 36 3 ��� �
� (3) 3 1134

11 Suzuki graph 1781 416 100 96 Soicher [125] 3 5346

12 306936 31671 3510 3240 3 � � � �	 $ 3

Table 4.1: Non-bipartite antipodal distance-regular graphs of diameter four.

The strongly regular graph on 81 vertices is unique by Brouwer and
Haemers [37], and for the construction of its cover see Brouwer et al. [27,
p. 365].

The second subconstituent of the McLaughlin graph on 275 vertices is
strongly regular and it is uniquely determined by its intersection array, see
Cameron, Goethals and Seidel [46]. Soicher [125] constructed a distance-
transitive antipodal three-fold cover of it, and Brouwer [26] has proved that
it is uniquely determined by its intersection array. Soicher has shown further
that the second subconstituent of this graph is a distance-regular antipodal
three-fold cover of the second subconstituent of the second subconstituent of
the McLaughlin graph. The third antipodal cover constructed by Soicher is
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distance-transitive and its antipodal quotient is Suzuki graph. The other five
three-fold covers can be obtained from Fisher groups, see Brouwer et al. [27,
p. 397]. For their explicit constructions and their uniqueness see Brouwer et
al. [27, pp. 397-400]. The two covers on 45 and 63 vertices are unique, see
Brouwer et al. [27, Theorem 13.2.1 and 13.2.3], and they are called the halved
Foster graph and the Conway-Smith graph respectively.

The Wells graph was first constructed by Biggs and Gardiner [16], and for
its uniqueness see Brouwer et al. [27, Thm. 9.2.9]. The remaining two double-
covers are the Johnson graph ��� ! � � � and the halved eight-cube, whose unique-
ness is well known, see Terwilliger [132] and Brouwer et al. [27, Thm. 9.2.7].
However, note that the intersection arrays of the folded halved eight-cube and
of the folded Johnson graph ��� ! � � � do not uniquely determine them; the block
graph of any transversal design � K � ! � � � has the same parameters (but is not
isomorphic) as the first graph, see Chapter 6, and there are at least 1853 noniso-
morphic strongly regular graphs with the same parameters as the second graph,
see Bussemaker, Mathon and Seidel [35] or [27].

� � & � 	 A 
 � � � � &
1 ! Petersen graph 10 3 0 1 ! Dodecahedron 2 1 20

2 3-Golay code 243 22 1 2 short. ext. 3-Golay code 3 9 729

3 folded Johnson graph � (10,5) 126 25 8 8 ! Johnson graph � (10,5) 2 9 252

4 folded halved 10-cube 256 45 16 6 ! halved 10-cube 2 15 512

Table 4.2: Non-bipartite antipodal distance-regular graphs of diameter five.

The situation for the last two covers is the same as in the case of diameter
four, cf. Brouwer et al. [27, p. 259 and p. 265]. Graphs related to Golay codes
will be revisited in the next chapter.
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9$ � � �7� ��
 ����� �@�+��������� � � �"�#������$�%��

Theorem 2.4.2 (cf. Figures 4.1 and 4.2) implies that the neighbourhood of a
vertex of a distance-regular antipodal cover of diameter at least four projects
to the neighbourhood of the projected vertex. Therefore, if we know locally
some graph of diameter at least two, then we know locally its distance-regular
antipodal cover as well. As we have seen in Section 3.2, this is a very strong
condition on a graph (cf. Blokhuis and Brouwer [21], [22] and Hall [76]), for
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example, a connected graph that is locally a pentagon must be the icosahedron,
see Brouwer et al. [27, p. 5].

We first examine what are the local graphs of all known antipodal distance-
regular graphs of diameter four and five. Then we use graph representation to
give an alternative proof in diameter four case of Terwilliger’s result that 	 -
polynomial antipodal distance-regular graphs are locally strongly regular. This
enables us to extend this result to antipodal distance-regular graphs which are
not necessarily 	 -polynomial or antipodal.

Sometimes the local strongly regular graph has the same parameters as the
point graph of a generalized quadrangle �
	���� � � ��� � � � . The graph for which
the local strongly regular graph is the point graph of a generalized quadrangle
forms an incidence structure called an extended generalized quadrangle (EGQ).
These combinatorial objects have already been extensively studied for almost
ten years by several authors (see Thas [137], Cameron, Hughes and Pasini [47],
Cameron and Fisher [44], Hobart and Hughes [88], Del Fra, Ghinelli and Hughes
[55], Blokhuis, Kloks and Wilbrink [23], and Del Fra, Ghinelli, Meixner and
Pasini [56]) and Cameron [43] has constructed some new antipodal distance-
regular graphs of diameter three. Therefore there is a hope that this connection
will provide some interesting ideas for new constructions of antipodal distance-
regular graphs. At the end of this section we mention one such result, again due
to Terwilliger. This section, with exception of Corollary 4.5.4, is joint work
with J. Koolen [94].

Here is the status of local graphs for all strongly regular graphs for which
an example of a distance-regular antipodal cover is known:

� � & � 	 A ���������	�	

� �������������������� ����� ��
 � 
 � � � � �
� �! #" �$�	�%
&�'��( �  ! ��  �  � � � � 	� ) �$�	( � (+*��$� �,� � �-�.� �.�/� � � ��
 ����� �  �  � � � �
	 � ! � � �
0 ) �$�	( � (1�2�.�	3 � ( ��45 ��627 �  � � ! � � � � � � ��
 �

Table 4.3: Local graphs of strongly regular graphs with covers of diameter five.
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� � & � 	 A locally

1 ! Folded 5-cube 16 5 0 2 � � � �
2 ! � � 6 � , 15 6 1 3 � � � 	
3 ! � � 7 � 21 10 3 6 Petersen graph [75]

4 folded � (4,8) 35 16 6 8 �
	 (3,1) [27, p. 256]

5 ! truncated 3-Golay code 81 20 1 6 ��
 � � 	
6 folded halved 8-cube 64 28 12 12 � (8) [27, p. 267]

7 � ) 	 ��� ) 	 ��� � � � ��� ��� 105 32 4 12 � � (2,4)  parallel class [125]

8 Zara graph (126,6,2) 126 45 12 18 �
	 (4,2) [27, p. 399]

9 ! � ) 	 (McLaughlin graph)] 162 56 10 24 Gewirtz graph [26] [125]

10 hyperbolic points of � � (6,3) 378 117 36 36 SRG(117,36,15,9)

11 Suzuki graph 1781 416 100 96 SRG(416,100,36,20) [125]

Table 4.4: Local graphs of strongly regular graphs with covers of diameter four.

The seventh graph of Table 4.4 is locally the point graph of ��������"!#� minus
a parallel class deleted, which is further a distance-regular antipodal cover of
� $�� $ . All the other graphs are locally strongly regular. If one of the Krein
parameters �

�� � , � � � ��"!�� , in the antipodal quotient equals zero, then for each
vertex the first and the second subconstituent graphs are strongly regular as well,
see Cameron, Goethals and Seidel [46]. The results of Terwilliger [133] imply
a similar conclusion for 	 -polynomial antipodal distance-regular graphs.

4.5.1 THEOREM (Terwilliger). If an antipodal distance-regular graph 

of diameter � and with eigenvalues

�
� � � � � 13131 � �

� , is 	 -polynomial,
then each first subconstituent graph is strongly regular with eigenvalues 	 ,
� 	 � � � � � � � � � � � � � and � � � �
� � � � � � � � � � � .

Both double-covers from Table 4.1 satisfy the conditions of this theorem.
Terwilliger used the theory of Krein modules, see Brouwer et al. [27, Section
2.11] and Terwilliger [134], to prove this result (private communication, March
1992). We will rather use his result from graph representations, see Terwilliger
[130] or [27, Thm. 4.4.3 and Thm. 4.4.4], to prove it in the case of diameter
four. This simplifies the proof and motivates our generalization.



F � E �	��� ��� � � � � � � � � � �7� � ��� ��� � ��� � � � � � � � ��8���� �9��� � �A�������
	 � ��E

4.5.2 THEOREM (Terwilliger). Let � be a distance-regular graph of diam-
eter � � � , with eigenvalues

� � �
� � � � � 13131 � �

� and corresponding
multiplicities ��� � � � � � ������� � � � . Then for each first subconstituent graph
the smallest eigenvalue is at least � � � �
� ��� � � � � � � � � and the second largest
eigenvalue is � 	 � � � � � � � � � � � � � at most (here the second eigenvalue is
taken to be the valency 	 in case the local graph is disconnected). If � � � �

for
some � �� 
 then � � � � � � � and each first subconstituent graph has eigenvalue
� � � � � � � � � � � � with multiplicity at least

� � � � .
Note that for an antipodal distance-regular graph of diameter four � 	 � �

	
and � � � �

	 .
Proof of Theorem 4.5.1 in the case of diameter four: We already know that
every subconstituent graph has & � � �

vertices and valency
� � � 	 . In order

to prove that a subconstituent graph � � is strongly regular we basically need to
determine one more parameter.

For
�
	 � 4 and

�
	 � � � Proposition 4.2.2 implies

� $ � � � 	 . By
Proposition 4.2.1, we have � � � � � � 	 and

� � � � 	 � 	 , and thus
� � � 4 � � 4 � � ,

& � � � � �
� � � � 4 � � 4 � ��� , � � � 	 � 4 ��� � � � , A � � � 4 � � � and � � � ��� 	��

� ��� 4 � � � . Straightforward calculations yield
� � � � � �=4 � 4 � � ����� � � � � � 4��

��� � 
 (where we recognize the multiplicity of the second largest eigenvalue of
the point graph of a generalized quadrangle �
	�� 4 ����� ). By Theorem 4.5.2, the
smallest eigenvalue of the graph � � is �
� � � � � � � � � � � � � � with multiplicity
at least

� � � � and the second largest eigenvalue is �
� � � � � � � $ � � � � 4 at
most. The trace of the adjacency matrix equals zero, hence:


 �
��
�� �

� �� � �� � � � � � � � 4 � 13131 � � � � �
� � � � � & � � � � � � � � � �"� 4 � � � � � � � �

Using the above expression for
� � � � we obtain that the last expression in the

above inequality equals zero. Therefore the trace of the adjacency matrix of � �
equals zero only if 4 is the second largest eigenvalue of � � with multiplicity
& � � � � � � � � � � . This means that the graph � � is strongly regular and with
eigenvalues 	 , 4 and � � , and so the antipodal quotient is locally strongly regular.

The parameters � � � 	 �(A � of strongly regular graphs whose distance-regular
antipodal covers are 	 -polynomial and of their local graphs are:

�
� � 4 � �04 � ��� � 4 ��� � � � ��� � 4 � ���"� and

�
4 ��� � � � ��=4 � �#� 4 � �
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Although we were not able to make use of the fact that
� � � � is an eigenvalue

multiplicity of a generalized quadrangle �
	�� 4 ����� , there are still situations
when the local graph can be the point graph of a generalized quadrangle. Since
the eigenvalues of � 	 � � � �"� are ��� � � � � , � � � and � � � � , we must have� � � � � � ��� � ��� � � �	 � � � 4 � � � � , and thus 4 � � , in which case the local graph
is a generalized quadrangle � 	 ��� � � ��� � � � .

Studying the literature on extended generalized quadrangles we learn that
in many cases local restrictions are still not enough to uniquely determine a
graph (or even just to construct some). Sometimes it suffices to forecast the
right A -graphs, i.e., the graphs induced by common neighbours of two vertices
at distance two. Terwilliger observes the following.

4.5.3 LEMMA (Terwilliger). In a distance-regular graph, which is locally
strongly regular with parameters � & � � � � �(A � � , the A -graphs are regular (with the
parameter A � as its valency).

We will need one more definition in the proof of the following result. A
graph on & vertices is called a Zara graph with parameters �9& � � � � � when every
maximal clique has size � , and for every maximal clique 
 and every vertex �
not in 
 , there are exactly � vertices in 
 adjacent to � .

4.5.4 COROLLARY. A strongly regular graph which is locally �
	�� ! ����
has a unique distance-regular antipodal cover (the distance-regular graph with
parameters

� ! ����� �� � �� � � � � � ��� �� ! � � constructed in Brouwer et al. [27, p. 399]).

Proof. Let � be a strongly regular graph which is locally �
	�� ! ���� and let
 be its distance-regular antipodal cover. As 
 is locally the same as � , the
maximal cliques in both graphs have size six, and the Delsarte’s clique bound
(often called Hoffman’s clique bound) is met in it, see Godsil [64, p. 276], [66]
or Brouwer et al. [27, Prop. 4.4.6], so each point not in some maximal clique
has exactly zero or two neighbours in that maximal clique. We will prove that in
the antipodal quotient � the zero case cannot occur and that the covering index
� equals three.

Let � be a vertex of the quotient graph, let & be one of its neighbours, and
let 
 be some maximal clique containing � but not & . Then, by the property
of generalized quadrangles, & has exactly one neighbour in 
 62) � � � � , hence
precisely two neighbours in 
 . Now let � be a vertex in ) 	 � � � . We want
to show that � has two neighbours in 
 6 ) � � � � . Since this is supposed
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to be true, for any maximal clique containing � , it suffices to prove that the
common neighbours of � and � consist of two disjoint ovoids of the generalized
quadrangle �
	 ��� � � ����� � � . Remember that, by Lemma 4.5.3, any A -graph
has valency � , which is three in this case. Thus A has to be even, and by the
tables from Brouwer et al. [27, pp. 421-425], it can only be six, i.e., ��� � .
Therefore, by Van Bon and Brouwer [17], any A -graph of the antipodal quotient
has to have three components of equal size, which is six in our case. Now,
there is only one graph on six vertices, which has no triangles and the valency
three, the complete bipartite graph � 	 � 	 . Therefore the A -graph must consist of
three copies of � 	 � 	 . But then, by taking three independent vertices from each
copy, we get the set of nine independent vertices, which means that we have
got an ovoid of � 	 � ! ���� . The other nine vertices also correspond to an ovoid.
Therefore the vertices of A -graph of � and � correspond to two disjoint ovoids,
and thus � has precisely two neighbours in each maximal clique containing the
vertex � .

Finally, the antipodal quotient graph � must be the Zara graph with pa-
rameters �9& � � � � � � � �  � � � ���� . Uniqueness of the Zara graph with these
parameters has been proved by Blokhuis and Brouwer [20], and in the reference
[89] of Brouwer et al. [27] (A. Blokhuis and A. E. Brouwer, Graphs that are
locally a generalized quadrangle, with complete bipartite A -graphs, unpublished
manuscript (1983), which unfortunately I was not able to obtain).

Remarks: (i) As soon as we have realized that A���
 � � �
and 
 is locally

� 	 � ! ���� we could have referred to Brouwer et al. [27, p. 399].
(ii) There is perhaps one more important aspect of this proof, namely, the part
where we have ruled out �
�  and �
� �

cases. For that we did not use the fact
that the local graph is the point graph of some particular incidence structure.
The valency of a A -graph is determined solely by the fact that the local graph is
strongly regular. We will use this in the Corollary 4.5.8.

Let us look for distance-regular antipodal � -covers of diameter four which
are locally �
	���� � � ��� � � � . Then the A -graphs have valency � . For ��� 
we get the fourth graph of Table 4.1. The Johnson graph � � � �"!#� is a unique
example. For � � � the cover from the above corollary is a unique example
again. Since in both cases the A -graphs are isomorphic to � copies of � � � � , we
try our luck with the same A -graphs also for � � ! . Unfortunately there are no
such examples. We can see this by going in the dual of � 	 � ������� . Note that
in the dual the A -graph corresponds to � copies of the grid graphs on � 	 points.
Remember that �
	 ��������� has been proved to be unique by Dixmier and Zara
[113, p. 125]. Now take � �	 ��� � model of a generalized quadrangle, cf. the last
section of Chapter 2 or Payne and Thas [113, p. 38]. The ovoid � (in � ������"!#� )
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has six points, the grid graphs have to be planar, and four of them have to lie on
planes intersecting in a line through two points of the ovoid, so there are only
15 different ! � ��$ � $ subgraphs in the first subconstituent graph and we needed
� � 	 of them.

Note that our proof of the special case of Theorem 4.5.1 worked mainly
because

� � � � � �
�
	 , which is, of course, equivalent to � � � � !#��� 
 and

� �  . Therefore it is not easy to extend Theorem 4.5.1 in order to cover
some cases which are not 	 -polynomial. However, it seems quite reasonable
that antipodal distance-regular graphs with antipodal quotients which have the
same intersection array are locally the same. We will show two result in this
direction.

4.5.5 THEOREM. If we have for a distance-regular graph of diameter at
least three � 	 � � � � and

� 	�� 	 	 � � � � � ����� � � 	 , then the first subconstituent
graph is strongly regular with eigenvalues 	 , � 	 and � � .

Proof. The first condition means that that the lower and the upper bounds for the
nontrivial eigenvalues from Theorem 4.5.2 have equal magnitude. Note that the
trace of the square of the adjacency matrix of the local graph equals & � � � � � 	 ,
and it also equals the sum of squares of all eigenvalues (where each eigenvalue
appears as many times as it is its multiplicity). But then, by the second condition,
all nontrivial eigenvalues have to have the same magnitude, which implies that
the local graph has only three distinct eigenvalues, as it cannot be the complete
graph, cf. Brouwer et al. [27, Lemma 1.1.7].

For the above two-parameter family these conditions are both equivalent
to 4�� � .
Problem: Can we use the above theorem to prove that a unique antipodal
distance-regular graph with intersection array � ! ����� �� � �� � � � � � � �  �"!�� � exists,
i.e., a distance-regular antipodal cover of a strongly regular graph with intersec-
tion array � ! �����  � � � � � � ?

4.5.6 LEMMA. Let  , � and � be real numbers and � � � . If real numbers
� � �313131 � � � from the interval � � � � � sum to  and we have

��

�� �
� 	� � max �

��

��� �
 	� � � �  � � � �

��

��� �
 � �  ���

then ��� � � ������� � � � � ���
 for at most one � � � � ������� �"& � .



F � E �	��� ��� � � � � � � � � � �7� � ��� ��� � ��� � � � � � � � ��8���� �9��� � �A�������
	 � � 4

Proof. Suppose that ��� � � � ����� � � � ����� � � � ����� � � � � ���
 for � �� � and � � � � � .
Then for � � 	 � � � � � � min ��� � � � � � � � � ��� , � � � � � � and �

� � � � � � we
have � 	� � � 	� � � 	 � �

�
	 , and � � � � � � � � , which is impossible.

4.5.7 THEOREM (Jurišić and Koolen). Let � be a distance-regular graph
of diameter at least three, valency

�
, & vertices, and let � � � � 	 � 13131 � � �

be its eigenvalues. Then for 	 �  � , � � � �
� � � � � � � 	 � � � and � 	 �
� � � � � � � � � � � � the graph � is locally strongly regular with 	 , � 	 and � � as
its eigenvalues if and only if there exist non-negative integers � and � such that

� � � � � � � � � � � � �"� 	 � � 	 and �#��� � � 	 � ����� 	 � 	 � 	 � � � 	 � �
Proof. Suppose that the above system has a non-negative integral solution
� � � � � � � � � � � � � . Let us first prove that in this case

	 � � � 	 � � max � �
� ��

��� �
 	� � � � �  � � � 	 � �

� ��

�� �
 � � � 	 ��� - � �

Suppose that real numbers � � ������� � � � from the interval � � � ��� 	 � sum to � 	
and that we have � ���� � � 	� � � and suppose that � � 	 � � � 	 � . Then, by
Lemma 4.5.6, we have � � � � � for �

� �
indices � , and � � � � 	 for �

� �
indices � ,

where �
� � � �

� � � � � � � � for � � � 
 � ��� . Suppose that � ��� . Then we have
for � � ��� � ��� 	 �

�
� � � �

� � � � � �� �
� � � � � �

� � � 	 � �%� � 	
and

�
� � ��� � � 	 � �

� � ��� 	 � 	 � � 	 � 	 � � � 	 � �
and thus � � � � � � � � ��� � � � � � � � � � , and � � � � � � � � � � ��� � � � � � � � � 	 � � . This implies
��� � � � � � � � � � � ����� 	 � � � � � which is not possible, since 
 � ��� � � � � 	 � � �
and �
� � �
� �

is an integer. It follows that � � 
 , and as the first two equations of
the above system have a unique solution also � � � � � � � � � � � � � � � � � .

By Theorem 4.5.2, all the eigenvalues of a local graph, except the eigen-
value 	 , lie in the interval � � � ��� 	 � and their sum (where each eigenvalue appears
as many times as it is its multiplicity) is � 	 . Note that the trace of the square
of the adjacency matrix of the local graph equals

� 	 , and also equals the sum
of squares of all the eigenvalues (where each eigenvalue appears as many times
as it is its multiplicity). Therefore all the eigenvalues of the local graph except
	 lie in the two-element set � � � ��� 	 � , and the local graph is strongly regular.

The converse follows from the fact that � and � are the multiplicities of the
nontrivial eigenvalues of the local graph.
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Remarks: (i) Let a strongly regular graph � with parameters

� � � 	 �(A ���
�
� � 4 � �04 � ��� � 4 ��� � � � ��� � 4 � ���"�

has a distance-regular antipodal cover 
 , and let � � � � ��
 � � � � � � � be an
integer, i.e., � 4 � ��� � � 	 ��� 	 � � � . (Note that � 4 � � � � � 	 ��� 	 � � ������� � � follows
from

�
	 being an integer.) Then � � � � � � � � � � � � � � � solves the above

system of equations, and therefore � is locally strongly regular. Since � � � � �
and � 	 �:4 , its parameters are

� � � � 	 � �(A � � �
�
4 ��� � � � ��=4 � ��� 4 � �

For � �  this shows that an antipodal distance-regular graph, which is 	 -
polynomial is locally strongly regular.

(ii) By Theorem 4.5.1, for an antipodal distance-regular graph, which is 	 -
polynomial (i.e., � - and 	 -polynomial antipodal cover), the above system of
equations has a non-negative solution. By relatively straightforward calculations
we can show the same in the case of diameter three (cf. [27, Prop. 8.3.2]) and
four (cf. Remark (i)) without using Theorem 4.5.1.

(iii) Another two examples, for which we do not need to use Theorem 4.5.1,
are the Johnson graph ���� ������� and the halved & -cube, & even. The first graph is
locally the lattice graph � � 	 � � (i.e., the Hamming graph 
 �������� ), cf. [27, p.
256], whose nontrivial eigenvalues are � 	 � � �  and � � � �  . The second
graph is locally the triangular graph � � & � (i.e., the Johnson graph ��� & ���� ), cf.
[27, p. 267], whose nontrivial eigenvalues are � 	 � & � ! and � � � �  .
(iv) Suppose that the assumptions of Theorem 4.5.5 holds. Then the second
condition in Theorem 4.5.5 is equivalent to the third equation in Theorem 4.5.7.
However, it is not clear how to derive the second equation in Theorem 4.5.7
from the assumptions of Theorem 4.5.5 without using Theorem 4.5.7. So
although Theorem 4.5.5 does not give us any examples, which are not also the
examples of Theorem 4.5.7, it is sometimes still more convenient to test the
assumptions of Theorem 4.5.5, than to look for a non-negative integral solution
of Theorem 4.5.7.

Now we derive from Theorem 4.5.7 a nonexistence result for antipodal
distance-regular graphs of diameter four.

4.5.8 COROLLARY (Jurišić and Koolen). A strongly regular graph with
parameters

� � � 	 �(A � �
�
� � 4 � ��4 � ��� � 4 ��� � � � ��� � 4 � ���"� �
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where � 4�� ��� � � 	 ��� 	 � � � , has no distance-regular antipodal � -covers of diameter
four when either the numbers 4 and � � 4 � ��� � � are odd or �?4 � � � 4 � ��� .
Proof. Suppose that a strongly regular graph with the above parameters has a
distance-regular � -cover. Then, by Theorem 4.5.7 and Remark (i), we know that
its local graph is strongly regular, with parameters � � � 	 �(A � ��� 4 ��� � � � ��=4 �
��� 4 � . Since the parameter A of an � -cover equals � � 4 � ��� � � , and its A -graphs
have valency 4 , at least one of these two integers must be even (as their product
is twice the number of edges in a A -graph), and 4 � � � 4 � � � � � (as the valency
must be smaller than the number of vertices in a graph).

The above corollary implies that the ten-th graph of Table 4.4 is locally
strongly regular. This was not known before and could serve as a hint to prove
the uniqueness of the cover. Many infinite families of feasible intersection
arrays and in particular the following parameters from the tables in Brouwer et
al. [27, pp. 421-425] are ruled out.

# intersection array 4 � � ruled out by

1) � ! ����� �� ��� � � � � ���������! � � 3 3 2 parity
2) � ! ����� �� � ��� � � � ��� ���  �"!�� � 3 3 6 parity or bound
3) � � � ��� � �� ! � � � � ��� ��� � � � ��� 6 3 9 bound
4) � � � ��� ���� � � � � � �"! ��� � � � ��� 4 4 8 bound
5) � � � ��� � � ��� ��� � � � ��� � � � � ��� � � 3 5 8 parity
6) � � � �#� � 
 ����#� � � � � � � � 
 � ��� � � 9 3 4 parity or bound
7) � � � �#� � 
 ��� 
 � � � � � � � � 
 � ��� � � 9 3 6 bound
8) � � � �#� � 
 ��� �� � � � �"! � � 
 � ��� � � 9 3 9 bound
9) � � � ��� ��! ! �� ��� � � � �� ��� ��! ! � � � � � 5 5 2 parity

10) � � � � � � � ���"! 
 � � � ��� � � � � ��� � � � � 8 4 6 bound
11) � � � ��� �  � �"! ��� � � ��� � � �  � � � � � � 15 3 6 parity or bound
12) � � � ��� �  � ����#� � � � �� �#� �  � � � � � � 15 3 2 parity
13) �  � � � � � � ��� ! � � � � � � � � � � � �  � � � 21 3 4 bound
14) � ! ��! ��� � 
 �"! ��� � � � �"!���� � � 
 � ! ��! � 9 6 2 parity

Table 4.5: Intersection arrays of antipodal distance-regular graphs of diameter four which are ruled out.

Koolen observes further that for the following intersection array

� ��� � � � ��� � � ��� ��� � � � � ! � � � � ��� � � �
A � A � � � , i.e., each A -graph is complete, which means that this graph is a
Terwilliger graph, cf. [27, p. 34], and therefore, by [27, Theorem 1.16.3], it
cannot exist.

We finish this section with one more result of Terwilliger (private commu-
nication, March 1992):
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4.5.9 THEOREM (Terwilliger). If an antipodal distance-regular graph 

of diameter four is 	 -polynomial, then each second subconstituent graph is
either disconnected or of diameter four and it has six eigenvalues at most. In
the second case the second subconstituent graphs are antipodal covers (not
distance-regular unless � 	 is defined).

There is hope that this result can also be extended, since, for example, it does
not include the Wells graph whose second subconstituent is the dodecahedron
(i.e., the non-bipartite distance-regular antipodal double-cover of the Petersen
graph), see Brouwer et al. [27, Thm. 9.2.9].

The above result is one reason to study antipodal covers which are not nec-
essarily distance regular. There are many cases when the second subconstituent
graph of a strongly regular graph is strongly regular again, in which case we
have an antipodal cover of a strongly regular graph. We will study such covers
in Chapter 6.

� � � �����<�9��� 
 ���

Little is known about antipodal distance-regular graphs of diameter four and five
in general. A milestone would be attained if an infinite family of such graphs
was constructed. So let us discuss some known infinite families of feasible
parameters of such graphs, which are known only in diameter four:

The first family comes from Brouwer et al. [27, p. 421], cf. Cameron and
Van Lint [48, pp. 29]. The parameters of their quotient graphs are, for � � � ,

� � � 	 �(A � �
�
��� � 	 � � ��� � � � 
 � � � � � � �"� �

and � is any divisor of A . For � � � , we have the first graph from Table 4.1, for
� �  , the antipodal quotient must be the Higman-Sims graph.

The next family is one of the remaining two open questions stated in Van
Bon and Brouwer [17, pp. 155, 156, 164]. These are distance-regular antipodal
covers of diameter four of the Hermitean forms graphs of diameter two. Let 

be a set of  	  Hermitean matrices over � � ��� 	 � with � a prime power. Then
the Hermitean forms graph is the graph with elements of 
 as vertices and two
of them being adjacent if the rank of their difference is one. It turns out that this
graph is isomorphic to the second subconstituent graph of the point graph of a
� 	 ������� 	 � , see Van Bon and Brouwer [17, p. 156]. Then

� & � � � 	 �(A � �
�
�
$ � ��� 	 � � ������� � � ��� � ���� ��� � � �"� �
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The feasibility conditions imply for � ��  that ! � � � is a perfect square, i.e.,
�%� � 	 � ��� � for some positive integer � . For � �  and �%� � we get the first
graph and the fifth graph of Table 4.1 respectively. For larger � (e.g., 7, 13, 31)
nothing is known.

We derive the next family from the previously mentioned two parameter
family of � - and 	 -polynomial antipodal covers. The second subconstituent of
antipodal quotient has

� ��� � A vertices, therefore � 4 � ��� � ��� � � � 	 � 	 ��� � � � . The
most interesting case is an infinite family of feasible parameters of antipodal
distance-regular graphs of diameter four whose local graphs have the same
parameters as the point graphs of generalized quadrangles �
	 ����� � ��� � � � .
Their antipodal quotients and their local graphs (which must be strongly regular)
have the following parameters:

� � � 	 �(A � �
�
� 	 ��� � �� ��� ��� � � � �� � 	 � �

and
� & � � � � � 	 � �(A � � �

�
� 	 ��� � �� ��� ��� � � � ���#����� �

We have already mentioned that examples are known only for �%� ���� .
The last family, which we expose here, is again from Brouwer et al. [27,

p. 417] and corresponds to double-covers of diameter five and � � A 	 . Parame-
ters of their quotient graphs are,

� & � � � 	 �(A � �
�
 A 	 �� A � ��� �� A 	 � A � 
 �(A � �

For A � � we obtain the Petersen graph with the dodecahedron as its cover, and
for A � ��"! Brouwer et al. [27, p. 372] and Koolen (private communication,
September 1993) respectively have shown that there are no examples.

In the following chapters we will find new, simpler, families of feasible
parameters.
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One of the more important results in Chapter 2 was Brouwer’s theorem, where
the idea of merging was used for the characterization of certain distance-regular
covers of complete graphs. In this chapter we study merging in more gen-
eral context and obtain the main result of this thesis, Theorem 5.3.3, which
generalizes Brouwer’s theorem. First, let us explain more precisely what we
mean by merging. Let ��	 � � � be an association scheme formed by the matrices
� � ������� � � � and let � be a partition of the set � � ������� � � � with � cells. Let
� � � ������� � � � be the 01-matrices

�

�����
� �

where 
 ranges over the cells of � and let � � � � � . Since these matrices lie in the
Bose-Mesner algebra ��	�� � � , they commute and sum to � . In many cases the
matrices � � � ������� � � � form an association scheme. A scheme constructed this
way is said to be obtained from 	 by merging classes (or by fusion). Merging
was, for example, used to construct some new strongly regular graphs (see the
survey paper about strongly regular graphs by Brouwer and Van Lint [31]). For
example, take all three element sets of a seven element set as vertices and define
two to be adjacent if they intersect in two elements. We obtain the Johnson
graph ��� �#����� . Connecting also all the vertices which are at distance three, i.e.,
merging the first and the third class, results in a strongly regular graph, which is
the line graph of � � �������� . For general references on merging, subalgebras of
Bose-Mesner algebra and subschemes of an association scheme see Bannai [7],
Bridges and Mena [36], Faradžev, Ivanov and Klin [58] and Muzychuk [104].

In the first section it is shown that a merging which results in an association
scheme always exists in an imprimitive association scheme. In Section 5.2 we
study merging in distance-regular graphs of diameter four. This results in the
characterization of some diameter four antipodal distance-regular graphs with
certain triangle free strongly regular graphs, and we obtain new infinite families
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of feasible parameters of antipodal distance-regular graphs of diameter four. In
Section 5.3 we determine, for any diameter, when merging the first and the last
class in an antipodal distance-regular graph produces a distance-regular graph.
In the merged graph � � � � � � 	 � � � � � for all � less than diameter � (a property
of regular near polygons, cf. Brouwer et al. [27, Thm. 6.4.1]) and � � � � , � less
than diameter � , ��� is equal to � or

� � � 	 � � � . Conversely, given a distance-
regular graph with the same intersection array as the merged graph and a certain
clique partition, we construct an antipodal distance-regular graph. In Section
5.4 we investigate merging in antipodal distance-regular graphs of diameter five.
It enables us to construct two distance-regular covers of complete graphs. In the
last section Brouwer’s generalization of Proposition 5.3.2 is mentioned.

��� 	 
 $"�?
 
 
 � 
���� �@� � � ��
��� 
���� � ��%@� 
 �<�

In this short section we explain how to obtain from an imprimitive association
scheme two smaller schemes. All the results in this section and their proofs can
be found in both Bannai and Ito [8, Propositions 4.5 and 9.4 ] and Godsil [64,
pp. 232-234], however we present them, since we feel that they are important
for the motivation and understanding of the whole chapter.

5.1.1 PROPOSITION. Let � � �
	 � be a � -class association scheme and let
us for a fixed � � � � ������� � � � define a relation � on � by � �  if and only if
they are connected in � � . Then � is an equivalence relation which is a union
of some association relations �� .

Proof. (Godsil and Martin [70]) Suppose that � � is disconnected. Let � and
 be � -related vertices in a component of � � and let � be � -related to some & .
Since � and  are joined by a path with all its edges in � � , it follows that � and
& are also joined by a path with edges in � � , i.e., they lie in the same component
of � � . This implies that the graph on � with two vertices adjacent if and only
if they are in the same component of � � is the union of graphs from 	 .

The following argument is taken from Godsil [64, pp. 232-234]. Let
� � �
	 � be a � class imprimitive association scheme, where � � is not connected.
If 
 is a vertex set of a component of � � , then the above result implies that the
non-empty restrictions of the graphs � � to the component 
 form an association
scheme. If � is a partition of � corresponding to the connected components
of � � , then the above result means that � � � is a 01-matrix contained in the
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Bose-Mesner algebra of 	 and without loss of generality we can also assume
that � � � � � � � ��* . Let [0] denote a subset of � 
 ������� � � � such that

� � � �
�

� � � ���
� � �

Let � be the relation on � 
 ������� � � � defined by ��� � if and only if 4 � � � �#� �� 

for some  � � 
 � . Then this is an equivalence relation and 
 � � 
 � . If � � � is the
equivalence class of � , then there exists a matrix , � such that

�

� � � ���
� � � , � � ��* �

The matrices , � define an association scheme which is called the quotient
scheme of 	 . Suppose that , � � � � . Then the matrices � � * , � , �

� � * � � � � *
and , � � ��* for all � �� 
 define an association scheme as well. Since its span
is a subspace of the Bose-Mesner algebra of 	 which contains � and � , and
it is closed with respect to both matrix and Schur multiplication, we call this
association scheme a subalgebra of 	 (or also a fusion scheme).

Suppose that � � �
	 � defines an antipodal distance-regular graph, and that
the graph � � is a union of cliques on the antipodal classes. Then ��� � � ��� � � ,
which means that � � does not merge in the above merging (i.e., � � remains a
Schur idempotent in the above fusion scheme). Despite this fact there are still
some examples when � � can merge. This is the topic of the next sections.

� � 	2�<� 
 $ � � ��� ��
�������@�+�����=����� �!�"� � ���7$ %�� ��� ��
 � 
 ����� � � ���7�

Since merging � � and � 	 in antipodal distance-regular graphs of diameter three
has been already studied by Brouwer (see Theorem 3.3.1), and since this is the
only nontrivial merging in such graphs, we start by investigating the diameter
four case. Merging � � with one of the remaining three classes in a distance-
regular graph with diameter four forces the other two classes to merge too.

5.2.1 PROPOSITION. Let 
 be a distance-regular graph of diameter four.
If we merge � � and � � for � � � ������"!�� then �

�
and � � , where � � �  � �����

� ������"!�� , merge as well. This results in a strongly regular graph if and only if
(i)

� � A for ��� � ,
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(ii) A � 
� 	 �  and � is 2 or 	 �  for ��� ! or ���  respectively.

Proof. The above merging results in an association scheme if and only if for
� � � � - � 4 � � � � � � =4 � � � � � �:4 � � � � � we have � � � � � � ��� � and � �  � � � � ��� .
This can be obtained by a direct verification of the condition (b) in the definition
of an association scheme and by the use of Lemma 2.3.1(c) in order to get
down to only two conditions. The translation of these conditions to the above
is now straightforward. Since the new association scheme has two classes, it
determines a strongly regular graph.

Suppose that � � is the adjacency matrix of an antipodal distance-regular
graph 
 of diameter four, and that � is its antipodal quotient. Suppose that �
is the merged graph 
 � / 
 � . Let us use the same notation for the parameters of
 and � as in the previous chapter. In the case when ��� � the merged graph �
is strongly regular if and only if

� � A , i.e., � is a complete multipartite graph
� ����� . Since among complete multipartite graphs only the complete bipartite
graphs allow distance-regular antipodal covers, see Proposition 6.1.7, we have
� �  . In this case the merged graph is the complete bipartite graph with valency
�
�

. Here “unmerging” is deleting the edges of the distance three graph 
 	 in
� . However the identity � 	 ��
 � � � � ��
 � � $���
 � , where 
�$ is a union of
cliques (i.e., � $ ��
 ��� � � * � � * � � � ), suggests that unmerging most probably
does not help to find � � ��
 � . These covers have already been characterized
by resolvable transversal designs, see Drake [57] or Theorem 6.3.1, and many
constructions are known.

When � is equal to 2 or 4 the merging produces a strongly regular graph
for many feasible parameters of antipodal distance-regular graphs of diameter
four from tables in Brouwer et al. [27, p. 421] or Godsil, Jurišić and Schade
[69]. We list those with valency of � at most 100 in Tables 5.1 and 5.2.

� & � 	 A 
 �

� � 	 ,
�

� � $ & � 	 A
! � $�� $ � ! 
 ! !4-cube !halved and folded 5-cube � � � 
 
// Krein  � � 
 ! // !Gewirtz graph � � ��
 
 

? � � �  � 
 ! ? ? � �   � 
 
? � �  � � 
 ! ? ? � 
 ! ��� 
 
?

� � � ! � 
 ! ? ? � �� � � 
 
 
? � � 
� � ��
 ! ? ? � ! 
 ! �  
 
?  ��� � ��
 
 
 ! ? ? � � �  ��
 � 
 

Table 5.1: Merging in distance-regular graphs with 	���
 .



E�� * 1 � ��� ��� � ��� � � � � � � � ��8���� �9��� � �A�������
	 �7�	� � � � � ��� �	�"� ����� ��4

� & � 	 A �

� � 	
�

� � 	 &
� 	 A �

� � $
�

� � $ & � 	 A
!Golay 81 20 1 6 ? ? 162 21 0 3 Golay BLS 243 22 1 2) 	 � ) 	 ��� � � � �"� 105 32 4 12 ? ? 210 33 0 6 ? ? 630 37 4 2

? 196 45 4 12 ? ? 392 46 0 6 ? ? 1176 50 4 2
? 325 54 3 10 ? ? 650 55 0 5 ? ? 1625 58 3 2

! ) 	 ��� � � � � 162 56 10 24 // ? 324 57 0 12 // ? 1944 67 10 2
? 276 75 10 24 ? ? 552 76 0 12 ? ? 3312 86 10 2
? 540 77 4 12 ? ?1080 78 0 6 ? ? 3240 82 4 2
? 400 84 8 20 ? ? 800 85 0 10 ? ? 4000 93 8 2
? 825 96 4 12 ? ?1650 97 0 6 ? ? 4950 101 4 2

Table 5.2: Merging in distance-regular graphs with 	 �� 
 .

In the case � �  the complement of � (denoted by � ) has intersection
array � � � � � � � � � 	 �  � , so � is the complement of a triangle free strongly
regular graph. In the case � � ! the merged graph � has intersection array
� � � 	 � � � � � � �� � . The integrality of the multiplicities of a strongly regular
graph � with A � 
� 	 �  implies that the discriminant of the quadratic equation
which determines the nontrivial eigenvalues of � , i.e.,

� 	 � A � 	 � ! � � � A � � 	 	 � ! �

is a perfect square, say � 	 �   � 	 for some integer  �  (since �� � would
imply � � � 
 ). Therefore

� �  � 	 �  � . The discriminants of the quadratic
equations which determine the “new” eigenvalues of 
 and the nontrivial eigen-
values of � are also equal to 	 	 � ! � . No wonder we get so many feasible
parameter sets when A � 
� 	 �  .

Now, we find some infinite families of feasible parameters of strongly
regular graphs which allow feasible parameters of covers. (They seem to be
“simpler” than the families from the conclusion of the previous chapter, but on
the other hand it can be even more difficult to construct them.) For example,
	���
 renders the family �  	 �  	 � � � � �"!�� , where  is an integer not equal to three
and not divisible by four, cf. Cameron and Van Lint [48, p. 27], and the family
of intersection arrays of their distance-regular antipodal double-covers. When
� is 4 or 2, merging gives a graph � with intersection array �  	 � � �  	 � � �� � or
the graph with intersection array of � respectively (see Table 5.1). For ��  ,
the four-cube is the double-cover of its antipodal quotient, the folded four-cube.
The merged graph is the folded five-cube � ���"! � � �� � (i.e., the complement of
the halved 5-cube, also known as the Clebsch graph). Note that in this case
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� � �� � 	 , see Figure 5.1 and Brouwer et al. [27, p. 265, Remark (i)]. Therefore
� � � � $ � �� � � � � 	 � . This is actually true for any triangle-free double-cover of
diameter four, by Brouwer et al. [27, Prop. 4.2.13]. Unfortunately, apart from
the case  � � , when we get the Gewirtz graph � ��
 � � � � �� � , no other examples
are known.

For 	�� ! we get another infinite family
� �  � !#�  � �  � � ���  � ��� � � � �  �

where  �  is an integer greater or equal to six and not divisible by four, with
distance-regular antipodal double- and six-covers. Merging yields a strongly
regular graph with intersection array

�
 � �� !#��� � �  �  � !#� � � � � � in the case

� �  and
� �  � �� 	 �  �  � !#� � � �� � in the case � � ! . An example of �

is known for  � ! , see Hubaut [90, S.4] and no examples of 
 or � are
known. Note that if we know � does not exist, this implies that antipodal
distance-regular graph 
 does not exist either.

Figure 5.1: The four-cube and its distance three graph, which is again the four-cube.

Unmerging in the case ���  is equivalent to finding the distance two graph
 	 as a subgraph of � . At this moment this does not seem promising. And even
if it did there are only six triangle free strongly regular graphs known which are
not complete multipartite graphs: the 5-cycle, the Clebsch graph, the Petersen
graph, the Gewirtz graph, the Higman-Sims graph �  ��� � � � � � � and the second
subconstituent of the Higman-Sims graph � � � � � � � � �"!�� . Intersection array of
 is feasible only for the Clebsch graph and the 4-cube is the double-cover of
� $�� $ . Unmerging in the case ��� ! is described in the following theorem:

5.2.2 THEOREM. Let � be a strongly regular graph with intersection array
� � � 	 � � � � � � �� � , 	 � � � � �  , and a partition of its vertex set into � 	 � �� -
cliques such that there is a perfect matching or nothing between any pair of
these cliques. Then the graph 
 obtained from � by deleting the edges of
these cliques is a distance-regular antipodal � 	 � �� -cover of a strongly regular
graph � with intersection array � � � � � 	 � � � � �� � 	 � ���� . Conversely, any
graph with the same parameters as 
 arises this way.
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The assumption that in a partition of
� ��� � into � 	 � �� -cliques there

is either a perfect matching or nothing between any two of these cliques is
necessary. For example the Gewirtz graph � ��
 � � � � �� � is ten-regular and ten-
edge-connected by Brouwer and Mesner [32], therefore by Tutte’s theorem
it contains a perfect matching, i.e., a partition into two-cliques, but it cannot
be unmerged since there is no strongly regular graph with intersection array
� ��� � � � �"!�� (the absolute and the Krein bounds both fail). On the other hand, if
a strongly regular graph with intersection array

� � � � ���� 	 � � � � � � � � ��� 	 �
� � � � � � �  � has a partition of

� ��� � into � 	 � �� -cliques, then by Brouwer’s
theorem the above condition always holds.
Proof. Let 
 � ������� ��
 � be a clique partition of � as required and let � be the
quotient graph of � corresponding to this partition. For the first part it is, by
Theorem 2.4.2 enough to prove that the graph � has the required parameters,
that 
 is an antipodal graph of diameter four with the vertex sets of the cliques as
its antipodal classes, and that in 
 each geodesic of length two can be extended
to a geodesic of length four. The required property for the clique partition
implies

� � � � � � ��� ��� � 	 � � � � �
. Let � � � � 
� � and relabel the cliques


 	 ������� ��
 � so that 
 	 ������� ��
 � 	 � are the neighbours of 
� in � ). Then each of
the cliques 
 	 ������� ��
 � 	 � contains exactly one vertex of ) � � � �� � � 
 � � and this
vertex is not adjacent to any vertex in

� � 
 � � 62) � � � � . Since � 	 ��� � �  no
vertex in

� � 
 � ��60) 	 � � � for � � �������� � � � � has a neighbour in ) � � � � in the
graph 
 . Thus dist � � � �(& � � � and also 	 � �
� � 	 . The set

) 	 � � ��
� 	 ��

��� 	

� � 
 � �

is non-empty since  	 ��� � �  	��
� � 	 � ��� 
 . Since a vertex in this set has

no neighbours in
� � 
 � � we have � 	 � �
�

� � 	 ��� � �
� � 
 � � � �  � 	 � �� and �

has diameter two. The number of edges between ) � � 
 � � and ) 	 � 
 � � is at least

�5) 	 � 
 � � � � 	 ����  �
� � � � 	 � � � �� � � 	 � � � � � � � � 	 � � � � �5) � � 
 � � � � � � �
�

But this is the number of all edges between these two sets, therefore � 	 � �
� � � 	 � �� and � is strongly regular. The required properties of 
 are now
easy to be seen. The converse follows from Theorem 2.4.2 and the fact that
the parameters of 
 imply that � � ��
 � � � $ ��
 � is the adjacency matrix of a
strongly regular graph.

There are only four strongly regular graphs with A �  known: the four-
cycle, the folded five-cube, the Gewirtz graph and the Berlekamp- Van Lint-
Seidel graph with intersection array �  ��� 
 � � �� � (the coset graph of the ternary
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Golay code), see Berlekamp, Van Lint and Seidel [12], Brouwer et al. [27, pp.
360]. The last one has the above partition into cliques, because the coset graph
of the shortened ternary Golay code is a distance-regular antipodal three-fold
cover with diameter four of the point graph of the truncated ternary Golay code.
This point graph is the only graph with intersection array �  
 � � � � � � � � , see
Brouwer and Haemers [37].

5.2.3 COROLLARY. Distance-regular antipodal double-covers of strongly
regular graphs with intersection array �  	 �  	 � � � � �"!�� , where  is an integer
not equal to three and not divisible by four, are equivalent to strongly regular
graphs with intersection array �  	 � � �  	 � � �� � and a perfect matching such
that any two edges of it induce a four-cycle or  � 	 . All these intersection arrays
with  �� � are feasible.

5.2.4 COROLLARY. Distance-regular antipodal six-covers of strongly regu-
lar graphs with intersection array

� �  ��!#�  � �  � � ���  � ��� � � � �  � where  � 
is an integer greater or equal to six and not divisible by four, are equivalent to
strongly regular graphs with intersection array

� �  � �� 	 �  �  � !#� � � �� � and
a partition into four-cliques such that there is a perfect matching or nothing
between any pair of these cliques. All these intersection arrays are feasible.

� � � %@�"��������� �?
 �>�@� 
���� ��� �+� �;��� 
 � � �<� 
9$ � � ��� � � ��� ���

Let � � �
	 � be a � -class � -polynomial association scheme and suppose that
merging is applied in order to get a new association scheme. If � � is a polynomial
of degree � in � � , the matrix � � has to be merged with at least one of the matrices
� 	 ������� � � � in order to reduce the dimension of Bose-Mesner algebra 	 which
is of course smaller after merging. It is known when merging of � � and � 	 in
a distance-regular graph produces a distance-regular graph, see Brouwer et al.
[27, Prop. 4.2.18]:

5.3.1 PROPOSITION. Let 
 be a distance-regular graph with diameter
K

.
Then the graph � determined by the adjacency matrix � � ��
 � � � 	 ��
 � is
distance-regular if and only if we have

� � � � � 	 � � � � ��� � even � 
 � � � K � � �
and

� � � � � 	 � � � � � A � � odd � � � � � K � � �
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(or equivalently � � � ��� � � 	 � �  � � � �8A � 	 ). If this is the case, then 
 has
diameter � � K � � � � 	� , and parameters

� � ��� � � � 	 � � � � 	 � � A � �
� � � �

	 if � ��
 � �
������� � � � 	 � � � � 	 ��� A

� � � � � � � A � 	 �  � � � � � � � � A if � � � K � � � � �� �

We determine when merging of � � and � � in an antipodal distance-regular
graph with diameter

K
results in a distance-regular graph.

5.3.2 PROPOSITION. Let 
 be a distance-regular antipodal � -cover with
diameter

K �  of a graph � with diameter � and �%� ��� 	 � ��
 � . Then the
graph � with the adjacency matrix � � ��
 � � � � ��
 � is distance-regular if and
only if �%� 	 �  and � has the following intersection array

� � � � � � 	 � � � ������� � � � � � � � ��� 	 � � � � � ���������� � � � � � � 	 � �� � �
for

K
even �� � � � ����� 	 � � � � � � � � � � ��� 	 � � � ������� � � ��� � ��� 	 � � � � � ���������� � � �

for
K

odd �

The graph � has valency � � � �
� � � � � and diameter � equal to � � K � � � � 	� .
When � is distance-regular its intersection numbers are

� � ��� � � � � ��� � � � � 	 � � � for � � � ������� � � � �
� � ��� � � � for � � � ������� � �

and for
K

odd also �  ��� ��� ������� � � � 	 � � � .

Proof. To simplify the notation we will use � � instead � � � � � . First note
that � � � 
 � � 
 � implies that the diameter � � of � is � � K � � � � 	� and
� � � 
 � � 
 � 	 � � � for � � � ������ � � � � � ��� (for

K
odd also � ��� � 
 ��� ). Hence,

for � � � � � � and for � equal to two when � � � K � � � �  and 1 otherwise, we
have:

� � � � � � ��
 ��� 
 � ����
 � � 
 � 	 � � � �
� 
 � 
 � � 
 � 
 � 	 � � � � 
 � 	 � � � 
 � � 
 � 
 � �
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Since 
 is an antipodal graph with diameter larger than two, a vertex � at
distance � � � K � 	� from a vertex & is at distance

K � � from all the other vertices
in a fibre containing & , cf. Theorem 2.4.2. Therefore 
�� 
 � is equal 
 � � � for
� � K �  , � � ��� ��
 � � � for �#� K �  and � � ��� ��
 � � � � � � � ���
 � for � � K �  .
This implies that for intersection numbers � � , , � and 
 � of the graph 

� � � � � � , ��� � 
 � � � � � � 
 � � 
 � 	 � 
 �
	 �

� , � � � 
 � � � � � � 	 � � � 
 � 	 � � � � 
 � 	 	 � � 
 � 	 	 � �� � � � � ��
 ��� � � � � � ���
 � 	 � � �
� 
 � � �

� � : � � K � 
� � � : � � K � 

�
� 
 �

�

 : � � K � 
� �  : � � K � 

�

First, let us suppose that
K

is even (i.e.,
K �� � , i.e., � � � � ). Since � � � �

(i.e., � � � �
K � � �  ) for � � � the coefficients at 
 ��� � and 
 � � �
	 	 are

equal, thus for � � �������� � � :

, ��� � � � � � � ��� 
 � 	 	 � � � � � �
If � � � � � � (i.e., � � � � K ��� ) then the coefficients at 
 � and 
 � � �
	 � ; 
 �
	 �
and 
 � � � are pairwise equal, therefore for � � � ������� � � � � :

� � � � � 	 � � � � � � � �� and 
 � 	 � � , � � � � � ����
For � � � � the coefficients at 
 � � 	 � and 
 � � are also equal, so (1) holds in
this case too. By Theorem 2.4.2 
 is distance-regular antipodal if and only if
, � � 
 � � � for � � 
 ������� � � � � � � � � ������� K (and �
� � � , ��� 
 � � � ), so the
conditions obtained are equivalent to:

, � � , � � � � � � � � for � � � ������� � � � � and 
 � � � for � � � ������� � � �
which means that 
 is a � 	 � �� -cover of a distance-regular graph � with
intersection arrays as desired.

Now, suppose that
K

is odd (i.e.,
K �  � � � , i.e., � � � � � � ). For � � � �

the coefficients at 
 � � � � and 
 � � 	 � are equal which implies (1) for � � � � .
Since ��� � � � � is equivalent to � � � � K � � the equation (1) also holds for
� � ���� � � � � � � � , the first equation in (2) holds for � � � ������� � � � � � and the
second for � � � ������� � � � �  . The obtained conditions are equivalent to

, � � , � � � � � � � � and 
 � � � for � � � ������� � � �
If we denote 
 � 	 � with � (

� � by monotonicity of 
 � ), then �%� � �2, � � 
 � � �
implies , � � � � � � � � ��� � � � � and therefore 
 is an � 	 � �� -cover with
parameter � of a distance-regular graph � (i.e., �"� 	 � �� � �
�  ) with intersection
arrays as desired. (Brouwer has noted that the use of matrices can be avoided by
observing the distance partition of 
 corresponding to a vertex and, as above,
using Theorem 2.4.2)
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Now, we reverse merging. This provides, together with Proposition 5.3.2,
a characterization of the antipodal distance-regular graphs in which merging
of the first and the last class gives a distance-regular graph. This generalizes
Brouwer’s theorem (Theorem 3.3.1) and our Theorem 5.2.2.

5.3.3 THEOREM (Jurišić [93]). If � is a distance-regular graph with the
same intersection array as in Proposition 5.3.2, � � ��� � � � 	 � � � � � �  and
a partition � of its vertex set into � 	 � �� -cliques such that there is a perfect
matching or nothing between any pair of these cliques, then the quotient graph
� � � is distance-regular with the same intersection array as � . Deletion of
the edges contained in the members of � produces a distance-regular antipodal
cover of the quotient graph with the same intersection array as the graph 
 in
Proposition 5.3.2.

Proof. Let � be a distance-regular graph of diameter � �  with intersection
array and clique partition 
� ������� ��
 � as required. Let � be the quotient graph
of � corresponding to the clique partition. We use induction to prove that � is
distance-regular. Consider the distance partition of � corresponding to a vertex
� � � � 
 � �

1
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Figure 5.2: The distance partition of the graph � corresponding to the vertex � .
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and define
K � - � ) � � � �<6 �

� ��� � � ��� � � � 

� and � � - � ) � � � �<6 �

� ��� ��� � � ��� � � � 
 �
for � ��
 ��� � � � � . Let us state:

(i) � � � 
 � �76:) � � � � � � � and � � � 
 � �76 ) � 	 � � � � � � 	 � � for each clique

 � �2) � � 
 � � ,

(ii) there are no edges between
K � and � � ,

(iii) � � � �
� � � .
For � � 
 these conditions evidently hold. Since  � ��� � � � � � 
 ��� � � 
we have ����� � � � � � ��� � . Now, suppose that the above conditions hold for
� � 
 ������� � � � � �  (see Figure 5.2). Since � � � �
� � � � � � 	 � ��� � , all
edges between � � 	 � and

K �
lie in the cliques of ) � � 
 � � . Therefore for � � �

the assumption (ii) implies that  � � � ��� 	 � . From this and from  � 	 � ��� ���
	 � � � � � the condition (ii) follows for � � � � � . Since � � 	 � ��� � �� 
 we
have ) � 	 � � � �� � � 	 � � K � 	 � . There are clearly no edges between the sets
) � � � � 
 � � and ) � 	 � � 
 � � , so no vertex of

K � 	 � has neighbours in � � . Thus, by
(ii) for ��� � � � , it follows � � 	 � � �
� � � � 	 � ��� � � � � � , i.e., the condition
(iii) is satisfied for � � � ��� . If � � � 

�36 ) � 	 � � � � � �  for some 
 � ) � 	 � � 
 � � ,
then � � 	 � � �
� �  � � 	 � ��� � . Therefore (i) is satisfied for � � ��� � as well. By
induction � � � � � � � for � � � ������� � � � � and � � � � � � � � � � ��� � � 	 � � � for
� ��
 ������� � � �  .

For � - � 	 � � and 4�- � ������� � � � the cardinality of the set
K  equals

� �
�
��� �

� � ��� ��� � � � � �
�
� �

�� ��

��� �
� � � �
�	�

� � �
�� ��

��� �
�
��
 4
��� � � 
74 � �

� � ��� 4
�  ��� �

� � � � � �
�
� �

�� ��

��� �
�
� 
 4 � �

� � �
�

�� ��

��� �
�
��
 4
��� � � 
 4 � �

� � ��� 4
� ���� �

�
�� ��

��� �
�
� � 
 4 � �

� � � 
 4 � �
� � � � � � �  
 4 � �

� � � �
� �


 4 � �
� � ����� 4����  ��� � � ��� �
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When
K

is odd we have �  ��� � � 4 , hence
K  � � , i.e., � has diameter

� � � and is distance-regular. When
K

is even � ���� � � � . Similarly
as before ��� � � � ��� 	 � � � � � . The assumption ������� � � � � 	 ��� � is
equivalent to 4 � � therefore

K  �� � , i.e., the diameter of � is � . Clearly
�  � �
� � � 
 � � �  ��� � � � 	 � �� � . Since

K  � / � � � 
 � - 
 � )  � 
 � ���
the number of edges between ) �� � � 
 � � and )  � 
 � � is at least

�5)  � 
 ��� � � 	 ���� � � � K  � � � � 
 4 ���
� ����� � 4 � � � � �5) �� � � 
 ��� � � �� � � �
� �

Since this is the number of all edges between these two sets, we have �  � �
� �
� 	 � �� � , which means that � is distance-regular in the case when

K
is even

as well. (Note that this implies � � ��� ��� ����� �
� � �  � �
� , i.e., ������� � �
� � � � ��� 	 � �� � � .)

Let 
 be a graph obtained from � by deletion of the edges contained in

 � ������� ��
 � . Remember that (ii) states that no vertex in � � is adjacent to a vertex
in
K � for � ��
 ������� � � � � . Further, in the graph 
 no vertex of � � is adjacent

to a vertex in
K ��� � or

K �
	 � for � � 
 ������� � � � � and � � � (with
K  	 � ��� )

for
K

even. Therefore the diameter
K

of 
 is at least �� for
K

even and at
least �� � � for

K
odd. Since the assumption � � ��� � � � 	 � � � � � implies

�  ��� � � � �� � � � � � � for
K

odd and �  � � � ���
 �� � �� � � �
� for
K

even, the
diameter

K
reaches the lower bound, 
 is antipodal with

� � 
 � � ������� � � � 
 � �
as its antipodal classes and each geodesic in 
 of length at least � can be
extended to a geodesic of length

K
. Hence by Theorem 2.4.2 the graph 
 is

distance-regular.

Remarks. (i) For 	 ��
 and
� � K we have the

K
-cube as the double-cover of

the folded
K

-cube and the folded � K � � � -cube as the merged graph.

quotient
merge merge merge

quotient

Figure 5.3: Merging in & -cubes.

(ii) In the case when
K

is odd the assumption � � ��� � � � 	 � � � � � is not needed
for the construction of � .
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(iii) For all four intersection arrays mentioned above � � � � � � 	 � � � � � for all
� � � , so they include regular near polygons with � � � � , � � � , see Brouwer
et al. [27, Thm. 6.4.1]. When

K
is odd note also

� ��� � ��� 	 ��� ��� � � ������� � ,
therefore in this case the regular near polygons are even. If

K � ! then � is a
regular near polygon if and only if � is a regular near polygon. For, triangles
of � lift to triangles in 
 , so the same is true for � � � 	 � � .
(iv) All these graphs are of Hamming type (i.e., � � � � for � � � ������� � � and
 � � � 	 for � � � ������� � � ��� , where � is an integer less or equal to the
diameter), cf. Nomura [107], [108]. For

K � �
Nomura [107, Corollary]

implies 	 � � 
 �� � . Rifà and Huguet [116] classified all graphs of Hamming
type with diameter � at least three, 	 � 
 and � � � � � . The only known
example beside (i) is provided by the binary Golay code, cf. Brouwer et al. [27,
pp. 360–362]. Its coset graph is the only distance-regular graph with intersection
array �  ���� ��� � � � ������ � . Its bipartite double merges to the coset graph of the
extended binary Golay code with intersection array �  ! �� ���� ��� � � � ���� ���  ! � .
Koolen [97] pointed out that there are no examples for 	��  .

I would like to thank Brouwer for careful reading of an earlier version
of the above proof. He encouraged me to shorten the proof, overcome some
inconsistencies and add a few remarks.
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In this section we consider merging in diameter five case. An immediate
corollary of Theorem 2.4.2 and Theorem 5.3.1 is the following result:

5.4.1 PROPOSITION. Let 
 be such an antipodal distance-regular graph
that merging 
 � and 
 	 results in a distance-regular graph � . Then � is
antipodal distance-regular graph (of the same covering index as 
 ) if and only
if the diameter of 
 is odd.

In Brouwer et al. [27, p. 150] it is remarked that the assumptions of
the above proposition imply that the covering index must be two, and that the
merging of the first two classes in the antipodal quotient of 
 results in a
distance-regular graph again.

In particular, if 
 in the above proposition has diameter five, then merging
 � and 
 	 results in a strongly regular graph � if and only if � � � � � � . If
this is the case then the merged graph is a distance-regular graph of diameter
three, i.e., a distance-regular cover of a complete graph.
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Figure 5.4: Merging in antipodal distance-regular graphs of odd diameter.

Let us further assume that 
 is bipartite. Then it must be, by Proposi-
tion 4.3.1, the bipartite double of its antipodal quotient. This implies ���� ,
	���
 and � � � 	 �

� � � 	 �
� � A and thus

� �  A � � . Now, the integrality of
multiplicity � 	 � �� A � � ����� A ���� � �9A ���� of � implies that A � � � ����"! � ��
 � .
For A ��� the quotient is the Petersen graph which has the Desargues graph as
the bipartite double-cover and the merged graph is the Johnson graph ��� � ����� ,
i.e., the unique double-cover of � � � (this is a special case of merging in the
bipartite doubles of Odd graphs, see Remark (ii) after Proposition 4.2.18 by
Brouwer et al. [27, p. 150]). For A �  the quotient is the folded five-cube, and
the merged graph is the unique double-cover of � � � , see Bussemaker, Mathon
and Seidel [35], i.e., halved 6-cube. This is a special case of merging in & -cubes,
see Remark (i) after Proposition 4.2.18 by Brouwer et al. [27, p. 150]. The last
graph also corresponds to the unique strongly regular graph � � ��� � � �"!�� which
is the complement of the point graph of the generalized quadrangle �
	�������� ).
In the remaining two cases ( A � ! � ��
 ) intersection arrays of 
 are not feasible.

The lists of antipodal distance-regular graphs of diameter five in Brouwer
et al. [27] or Godsil, Jurišić and Schade [69] suggest that the graph 
 must be
bipartite.

When we merge 
 � and 
 � we get a distance-regular graph if and only if
� has intersection array �#� 	 � � ��� � � �� � � 	 � � ��� � � � � � � �� � and the covering
index of 
 is 	 �  . The graph � then has the following intersection array:

�#� 	 � � ��� � � ��� � � 	 � � ��� � � �� � � 	 � � ��� ��� � � � � ���� � � � � for � � � �
Merging 
 � and 
 $ cannot result in a distance-regular graph, since oth-

erwise A � �
, i.e., � is a complete multipartite graph and these graphs have

no distance-regular antipodal covers of diameter five, see Proposition 6.1.7.
Similarly merging 
 � and 
 	 cannot yields a distance-regular graph. For, if
we suppose that � �  , we get  � ��� � ���  ��� ��� �� A � � �  � � � from
� � � � � 	 � , but then equality has to hold, i.e., � � � � , � � � � and by the
monotonicity of intersection array � � � � � � � � � � �  � � , we obtain a contra-
diction. In the case �%�  the product � � � 	 cannot be a linear combination of
� � , � 	 , � 	 and we get a contradiction again.
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Let 
 be a distance-regular graph of diameter
K

. Brouwer (private communi-
cation, 1992) noticed that when we define � � 
 ��� 
 � in order to conclude
that � � � 
 � � 
 � 	 � � � it is not necessarily to require that 
 is antipodal. It
suffices that 4 � � � � � � ��
 for � ���
 � � ���� K � � � K .

5.5.1 PROPOSITION (Brouwer). Let 
 be a distance-regular graph of
diameter

K
with 4 � � � � � ��� 
 for � �� 
 � � ���� K . Then � � 
 � � 
 � is

distance-regular if and only if

� � �04 � � � � ��� � � �:4 � � �
	 � � K � � � � ��� � � 	 � � � for � � � ������� � � � � �
� � � 4 � � � 	 	 � � � � � �:4 � � ��� � �

K � � � � ��� � � 	 � � � for � �������� � � �

where � � � K � 	� and � � � � K � � � � 	� . If this holds, then � has parameters

� � ��� � � � � � 4 � � � � � � � � for � � � ������� � � � � ,
� ����� � � � � �04 � � � 	 	 � ��� � � for � � � ������� � � ,
�  ��� � � �  � 4 � � �� � � � � � �  � 4 � �  	 � � � � if

K � �� � � .
This generalizes Proposition 4.2.17(i) in Brouwer et al. [27] and the

merging in Section 2 of this chapter when � � ! .



�

� � � ����� � � � � ��� � � � � �

� � ��� � � ��� ������� � � � ��� � ��� �

Perhaps the problem of looking for distance-regular antipodal covers is easier
when studied in a more general setting. For example, many questions about
distance transitive graphs can be answered more elegantly by techniques devel-
oped for distance-regular graphs (which contain all distance transitive graphs).
In Chapter 4 we have seen Terwilliger’s result which demonstrates that in some
cases knowledge of antipodal covers (not necessarily distance-regular) could be
used to construct distance-regular antipodal covers of diameter four. In addition,
M. Brown (private communication, 1994) showed that subquadrangles in the
generalized quadrangle 	�� ! ����� with parameters ��������� are equivalent to certain
antipodal double-covers (not necessarily distance-regular) of certain strongly
regular graphs.

We will demonstrate that very often the condition for covers to be antipodal
is restrictive enough to rule them out or to give their characterizations or some
particular constructions. On the other hand, maybe there are too many strongly
regular graphs and our problem of saying something about their (distance-
regular) antipodal covers in general does not have a solution. For example,
to determine all distance-regular covers of complete graphs is still an open
problem. Therefore it would be good to identify which families of strongly
regular graphs are of particular interest to us. We have mentioned some of them
at the end of Chapter 4. In this chapter we will study antipodal covers of some
large families of strongly regular graphs.

Let us introduce two such infinite families of strongly regular graphs which
come from designs. The line graph (also called the block graph) of a design
is the graph with lines (i.e., blocks) as vertices and two of them being adjacent
whenever there is a point incident to both lines. The line graph of a 2- �9& � � � � �
design with & � � � ��� ��� � � � 
 is strongly regular. As these designs are
also called Steiner systems, their line graphs ) � � �(& � are known as the Steiner
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graphs. The point graph of a Steiner system is a complete graph, thus the line
graph of the Steiner system ) ����(& � is the line graph of the complete graph � � ,
also called the triangular graph � �9& � . The line graph of a transversal design
� K � � �(& � is also strongly regular for  � � � & . For � �  we get the lattice
graph � � 	 � � .

Strongly regular graphs with the same parameters as their complements
are called conference graphs. They are the only strongly regular graphs that
could have irrational eigenvalues. Since the multiplicities of eigenvalues are
integral, the only distance-regular antipodal cover of a conference graph is the
decagon. This has been first proved by Van Bon, see Brouwer et al. [27, p. 180].
Furthermore, it can be shown that the smallest eigenvalue of a strongly regular
graph must be negative and cannot be �
� . The strongly regular graph with the
smallest eigenvalue � � , � �  integral, is with finitely many exceptions, either
a complete multipartite graph, a Steiner graph, or the line graph of a transversal
design, see Neumaier [105].

In Section 1, the structure of short cycles in an antipodal cover is investi-
gated. It provides a tool to determine when the above two infinite families of
strongly regular graphs allow antipodal covers. With one trivial exception, none
of these covers is distance-regular. Analysis of this cycle structure also allows
us to construct some antipodal covers. Under a mild restriction a bijective corre-
spondence between antipodal covers of a graph and its line graph is established
in Section 2. Antipodal covers of the lattice graphs and the complete bipartite
graphs are characterized in Section 3.

��� � �<���!�<� � ��� ���������@
 ��� �7�@�+� ��� ������
 $ � � ��� � � ��� ���

In this section an argument that implies new existence conditions for antipodal
covers is given. We apply it to the complete multipartite graphs, the line graphs
of transversal designs and the Steiner graphs.

It is sometimes convenient to record an � -cover of a graph by arbitrarily
orienting its edges and then defining an arc function from the set of arcs to a
set of permutations of order � , cf. Section 3.4. We can change orientation of
any edge, if we replace the corresponding permutation with its inverse. We can
choose this function to be the identity on a spanning tree. The following two
results have been pointed out to me by Godsil.

6.1.1 LEMMA (Godsil). Let � be a graph and 
 its antipodal cover of
diameter

K
. Let 
 be a cycle in � with length less than

K
. Then the matchings
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between the fibres of 
 corresponding to the edges of 
 form a disjoint union
of � cycles, all of the same length.

Proof. The definition of an � -cover implies that the matchings corresponding to
the edges of any path in � form in 
 a disjoint union of � paths of the same
length as the path from � .

Now, suppose that there is an edge � between the beginning and the end
of some path � of length less than

K � � in � . Then the matching in 

corresponding to � matches the vertices of fibres of the beginning of � with the
fibre of the end of � . This matching cannot extend the paths in 
 corresponding
to � to paths, since they would begin and end in the same fibre and they would
have length less than

K
. Hence these paths in 
 must be extended to the cycles

we have wanted.

In other words this lemma states that the product of the values of an arc function
which determines 
 on the edges of any cycle of length less than

K
in � is the

identity.
Van Bon and Brouwer [17], [27, p. 144] found necessary conditions for

a distance-regular graph to have a distance-regular antipodal cover. They have
dealt with the even and the odd diameter cases separately. They have shown that
most of the classical distance-regular graphs have no distance-regular antipodal
covers, cf. Terwilliger [135]. We first used their results together with Godsil and
Schade [69] to rule out almost all distance-regular antipodal covers of Steiner
graphs and the line graphs of transversal designs. However, the above tool
allows more general study and shorter proofs.

6.1.2 COROLLARY (Godsil). Let � be a graph of diameter � , girth � and
with a spanning tree of diameter � . If 
 is an antipodal cover of diameter

K
,

then � � K � � � � . In particular, � has no antipodal covers of diameter
greater than  ��� � .

Gardiner [59], [60] has shown that in an antipodal distance-regular graph the
size of an antipodal class is bounded by the valency, and studied the cases when
the bound is attained. Recall that  � (resp. � 	 ) denotes the number of common
neighbours of two adjacent vertices (resp. two vertices at distance two). For
antipodal covers with diameter three we obtain the following result.

6.1.3 LEMMA. Let � be a strongly regular graph with an antipodal � -cover
 of diameter three. Then � �  � � �
� � � . If the diameter of � is at least two,
then also � � � 	 � �
� .



4	F 17� 
 ��+ !$# 1 � '?!A@&,B�.2>!$�026
&�)! � ;���� �-,<;=%=� 1 � ;=� 17+ D 2

Proof. Let � and & be adjacent vertices of 
 and let
�

be the fibre containing
& . Since the diameter of 
 is three, the vertex � is at distance two from each of
the � � � vertices in

�  � & � . The middle vertices of the corresponding paths of
length two between � and vertices of

�  � & � induce distinct common neighbours
of the two adjacent vertices of � , thus � � � �  � � �
� . The proof of the second
part is similar.

This lemma implies that the index of an antipodal cover with diameter three of
the complete graph � � is & � � at most. When the covering index is & � � the
antipodal cover is distance-regular. This forecasts that antipodal covers with
maximum covering index are interesting objects.

6.1.4 PROPOSITION. An antipodal cover of the line graph � of a transversal
design � K � ���(& � , � � & , has diameter four when � �  , and diameter three
otherwise.

Proof. Let 
 be an antipodal � -cover of � determined by an arc function � on
� . Suppose that ���  , i.e., � is the lattice graph � � 	 � � , and 
 has diameter
three. Then & �  , and Lemma 6.1.3 implies � �  � � 	 � � � . Moreover
(remember the proof of Lemma 6.1.3) this implies that each four-cycle in �
has to lift to an eight-cycle in 
 . Hence there exists a colouring of the edges of
� with red and blue colours (corresponding to the identity and the nonidentity
permutations of � ) such that each quadrangle contains an odd number of red
edges. Then � 	 	 � 	

� � is coloured this way as well. This graph has
nine quadrangles and each edge lies in two of them (for, 
 	 	 
 	 is naturally
embedded on the torus). If � is the number of quadrangles with three red edges,
then ��� � � � � � � �  is the number of all the red edges. Contradiction!

Now, suppose that �
�  and 
 has diameter five. Then by Lemma 6.1.1

the product of values of � on any triangle or quadrangle is the identity. Let us
choose a spanning tree of diameter two in all the ‘horizontal’ and one ‘vertical’
copy of � � . Then their edges determine a spanning tree � of � . We choose an
arc function � so that it is the identity on � , therefore it must be the identity on
all the edges of those copies of � � . Further, since each edge lies in a quadrangle
with at least three edges in those copies of � � , � must be the identity on all the
edges.

Finally, let � �  , the diameter of 
 be at least four, and � be the identity
on � . Then � is the identity on all the copies of � � which contain edges of � ,
i.e., on all the horizontal and one vertical copy of � � . Any skew edge of � � � �
(i.e., not horizontal or vertical) lies in a triangle with two edges in those copies
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of � � , so � is the identity on all the skew edges. But now, for the same reason,
� has to be the identity on all the vertical edges as well.

It is easy to construct many antipodal double-covers with diameter three of
the line graph � of a transversal design � K � � �(& � , � �  , We can accomplish
this by assigning the identity permutation to the horizontal and the vertical edges
of � and the non-identity permutation to all the other edges of � .

Let us verify this construction. By the definition of a cover any two vertices
from the same fibre are automatically at distance three. Consider vertices � and
& of � . There exists a path of length two at most, which uses only identity
edges. On the other hand, choose a skew edge incident with � whose other end,� say, has at least one coordinate equal to & . Since such an edge always exists
we can extend the path � �� to the path between � and & of length two at most.
The product of permutations assigned to the edges of this path is not the identity
since it contains exactly one skew edge. Thus any two vertices from distinct
fibres are at distance two at most and our cover must be antipodal.

Alternatively, if we switch the permutations on some small set of vertical
edges from the same clique we can get another antipodal cover. For example,
a switching on the edges of any matching of some vertical clique will do.
Therefore it seems, that there are many nonisomorphic antipodal double-covers
with diameter three and that there is no sense in classifying them. Note that a
line graph of � K � � �(& � is a conference graph when & �  � � � .

The two-colouring of edges mentioned in the first part of the above proof
exists for the & -cube, & ��� . We show how this can be used to obtain a very
straightforward and elementary proof of the following result of Cohen and Tits
[51], [27, Prop. 9.2.10(i)], who used the fundamental group and the homology
group of the & -cube.

6.1.5 PROPOSITION (Cohen and Tits). There is the unique double-cover
of the & -cube 	 � , & � � , having no quadrangles.

Proof. Let us have 	 � ��	 	 � 13131 � 	 � and let � be the spanning tree of
	 � with the following edges: ��� 	 � � , the edges of 	 	 with one end in 	 � ,
the edges of 	 	 with one end in 	 	 , ����� , and the edges of 	 � with one end in
	 � � � . Let � be an arc function on 	 � which determines a double-cover having
no quadrangles and is the identity on � . It suffices to prove that there exists
a unique two-colouring of edges of 	 � (black for the identity permutation and
white for the nonidentity permutation) such that each quadrangle contains an
odd number of edges of each colour (i.e., each quadrangle lifts to an eight-cycle)
and that the edges of � � ��� are black. Note that if we know the colours of three
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edges of some quadrangle, then we know the colour of the remaining edge as
well. 	 	 has already three black edges, so the remaining edge is white. Suppose
that we already know the colour of each edge in 	%� , � � � � & . Each edge of the
set ��� 	 � 	 � �� �� � 	 � �@/�� � � �"� lies in a unique quadrangle with the remaining
edges in ��� 	 � �"/ � � � � , thus we know a colour of each edge in 	 �
	 � . Note
that the two-colouring of 	 � 	 �  � � 	�� � is the opposite of the two-colouring of
	 � . By induction we know the whole two-colouring of 	 � . Since we have
checked along the way that all quadrangles contain an odd number of edges of
each colour, this is a unique double-cover of 	 � having no quadrangles.

2

3

Q

Q1

4

Q

Q

Figure 6.1: A two-colouring of the four-cube.

Note that the first part of the proof of Proposition 6.1.4 implies that no
other Hamming graph allows a double-cover, having no quadrangles.

6.1.6 PROPOSITION. Antipodal covers of Steiner graphs have diameter
three.

Proof. Let us choose a spanning tree � of a Steiner graph � which contains all
the edges incident with � � � � � � and no edges from ) 	 � � � . Let an arc function
� which determines an antipodal cover with diameter at least four be the identity
on the edges of this tree. By Lemma 6.1.1 � is the identity on all the edges with
both ends in ) � � � � .

Now, let � � be any element of ) 	 � � � and � � ) � � � ��60) � � � � � . Denote the
intersections of the line � with the lines � and � � by � and , respectively. If
� � � is not an edge of � , then there is � � � � ) � � � � such that � � � � � is an edge of
� . Denote � 6 � � � and � � 6 � � � by 
 and

K
respectively. The line through � and
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K
, denoted by �

�
, is adjacent to � , � � , � (or equal to � when ,�� K

) and � � �
(or equal to � � � when � � 
 ). Since �

�
�2) � � � � , we conclude that, in all these

cases, � is the identity on edges � � � � and � � � . This implies that � is the identity
on all the edges between ) � � � � and ) 	 � � � .

Finally, since every edge in ) 	 � � � lies in a triangle with a vertex in ) � � � � ,
Lemma 6.1.1 implies that � is the identity on all the edges of � .

An infinite family of antipodal covers of the Steiner graphs will be constructed
in the next section. A straightforward consequence of Lemma 6.1.1 is also the
next statement.

6.1.7 PROPOSITION. An antipodal cover of the complete multipartite graph
� ����� , with � � � �  , has diameter four for � �  and diameter three otherwise.

Antipodal double-covers with diameter three of � ����� with � �  , can be
constructed easily as well. For example, for natural labeling of the vertices of
� ����� with � � � ��� for � � � ������� � � and � � � ������� � � , choose � to be the identity
on all the edges except � � � �#��� � � � �#� for � �� � � , � ��� ������� � � , when � �  and
� ��� � ��� � � � ���� for � � � ������� � � when � �  .

The octagon is the only distance-regular antipodal cover of Hamming
graphs, see Van Bon and Brouwer [17]. Therefore it is also the only pos-
sible distance-regular antipodal cover of the lattice graphs. This follows from
Lemma 6.2.2 and the characterization of distance-regular line graphs in Brouwer
et al. [27, pp. 148] or, if you prefer, from the fact that multiplicities of eigen-
values are integral.

Gardiner [60] has proved that the diameter of distance-regular antipodal
covers of a graph with diameter � can only be  � or  � � � . Hence the graphs
with diameter two can only have distance-regular antipodal covers of diameter
four or five.

Results in this section are particularly interesting because they yield the fol-
lowing conclusion: only finitely many strongly-regular graphs with the smallest
integral eigenvalue � � , � �  , can have distance-regular antipodal covers.

Let � be a graph and ) a subset of its edges. The closure of ) , denoted
by ) , is the subset of � � � � obtained from ) by recursively adding edges from
��� �
���) which form a triangle with edges of ) until no such edge remains.
This closure is closely related to that defined in Bondy and Murty [18, pp. 56],
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which was used to study hamiltonicity of graphs, and whose proof that it is well
defined is very similar. We say that a subset of edges ) is independent if the
edges of ) do not induce a cycle.

6.1.8 LEMMA. Let ) be an independent set of edges of the complete graph
��� . Then ) � � � ��� � is equivalent to �5) ��� & � � .
Proof. Let � � � � - 4 � � 4 	 ������� � 4 � be a path in � � . Then � ��� � � � � contains the
edges �(4 � � 4 	 ��� �(4 � � 4 $ ��� ����� � �(4 � � 4 � � . But any edge �(4 � � 4 � � , � � � � � �������� � � � ,
forms a triangle with these edges, so ����� � � � ��� ��� � � � . Now let the edges
of ) induce a tree � in � � . Then ) consists of the edges of a complete graph
with the vertex set

� � ��� . For, take any two vertices � , & of � , and notice
that the edge ��& lies in the closure of edges of the path of � between � and
& . Therefore the condition �5) � ��& � � on independent set ) implies that its
closure ) contains all the edges of � � . If the set ) induces a graph consisting
of at least two connected components then also the closure ) induces a graph
consisting of at least two connected components. So for the independent set )
with ) � � � ��� � the edges of ) induce a spanning tree and thus �5) ��� & � � .

Lemma 6.1.1 is not enough to prove that there are no antipodal covers
with diameter four of the lattice graphs � � 	 � � . For, by Lemma 6.1.8, there
should be at least & � � edges in each horizontal and each vertical copy of � �
on which an arc function is the identity. But these edges are distinct, so there
would be at least  & �9& � � � edges on which an arc function is the identity. Since
the maximum number of independent edges is & 	 � � , there is no independent
subset of edges whose closure would give us the set of all edges.

This encourages us to continue to look for examples of antipodal covers
with diameter four of line graphs of transversal designs � K ����(& � .
� � 	2�<� 
 $ � � ��� � � ��� ���:����� � 
 ��� � ���7$ %��

Lemma 6.1.1 implies that in the case of antipodal covers of diameter at least
four the cliques of its antipodal quotient “lift” to cliques (see Lemma 6.2.4).
This suggests a study of antipodal covers of line graphs.

A graph is a line graph if and only if its edges can be partitioned into cliques
in such a way that no vertex lies in more than two cliques, see Harary [79, pp.
74]. We shall usually identify the vertices of a graph with the cliques of its line
graph. The distance between two sets of vertices is the minimum distance over



��� * 1 � � � ��� � �	� � � � �	���&� ��� � � � � �������
	 � 4�4

all pairs of vertices consisting of one vertex from the first set and another from
the second one.

6.2.1 LEMMA. Let � be a graph, and let 
 and 
 � be two of its vertices, i.e.,
two cliques of its line graph � ��� � . Then dist � � 
 ��
 � � � dist � � � � � 
 ��
 � � � � �
Proof. Let 
 � 
 � ��
 � ������� ��
�� � 
 � be a geodesic 	 in a graph � . Let us
denote the intersection 
 � 6 
 �
	 � by � � , � ��
 � � ������� � � � � . Then � � ��� � ������� ��� � � �
is a path of length � � � between the vertex of 
 and the vertex of 
 � in � ��� � .
Further, let � and & be such vertices of � ��� � from 
 and 
 � respectively that
dist � � � � � � �(& � is minimum over all the choices of � � 
 and & � 
 � and let
� � 4 � � 4 � ������� � 4  � & be a geodesic � in � ��� � . Clearly � 6 � 
 / 
 � � �
�(4 � � 4  � . Denote by 
 �� the clique of � ��� � which contains the edge 4 ��� � 4 � ,
����� ������� � � , and 
 � 	 � � 
 � . Therefore 
���
 �� ������� ��
 � ��
 � is a path from 
 to

 � in � of length � � � . Since the path 	 is a geodesic of length � , we have
� � � � � . Further, since the path � is a geodesic of length � we also have
��� � � � and we can finally conclude that � � ��� � .

This result implies that the diameters of a graph and its line graph differ by
one at most. Furthermore, if one of them is antipodal with at least two antipodal
classes, then the other one cannot have larger diameter than the first one.

6.2.2 THEOREM. Let 
 be an antipodal � -cover with diameter
K � � of a

graph � . Then � ��
 � is an � -cover with diameter
K

of � � �
� . If ) � � � � � �@6
) � � � �9& � � � for any two adjacent vertices � and & of 
 , then � ��
 � is an
antipodal cover of � � � � .

G

L

L(G)

L(H)H

Figure 6.2: Antipodal covers and their line graphs.

Proof. Evidently the line graph � ��
 � is an � -cover of � � �
� . Since 
 is
antipodal, the distance between any two vertices of � ��
 � is

K
at most, and the

vertices in the same fibre of � ��
 � are at distance
K

. It remains to show that for
any two edges � � � �>& and � 	 � � � which are not in the same fibre, there is a
path in 
 of length

K �� at most between a vertex incident with � � and a vertex
incident with � 	 . We can assume that the distances from � and � to � are at leastK � � . Since 
 is antipodal, we can assume that � �0) � � � � � � . The condition
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) � � � � � � 6 ) � � � �9& ��� � is equivalent to ) � � � � � � � ) � �9& �"/2) � � 	 �9& � , so
we can assume that � � ) � �9& � . Then � � )�� � � � � � , since otherwise � � and
� 	 would be in the same fibre. Finally, as 
 is antipodal, � �8) � � 	 �9& � , which
implies the existence of a desired path.

If 
 is either distance-regular with  � � � � 
 or bipartite, then ) � � � � � �76
) � � � �9& ����� for any two adjacent vertices � and & of 
 .

6.2.3 COROLLARY. Let 
 be a distance-regular antipodal � -cover with
diameter

K
of a graph � . Then � ��
 � is an � -cover with diameter

K
of

� � �
� . The line graph � ��
 � is an antipodal � -cover of � � �
� if and only if
 � � � ��
 ����
 .
Proof. If  � � � ��
 � ���
 , then for two adjacent vertices � and & of 
 there exists� �0) � � � � � �+6 ) � � � �9& � . If � is a neighbour of � in ) � � � � , then the edges �>&
and � � are at distance

K
and they are not from the same fibre. Therefore the

fibres of � ��
 � are not antipodal classes. The converse follows from directly
from Theorem 6.2.2.

If
K � ! or

K � � and � �  , the condition  � � � ��
 � ��
 translates to ‘ 
 being
a triangle free’. Most of the known infinite families of feasible intersection arrays
of distance-regular antipodal covers of strongly regular graphs are triangle free,
see Brouwer et al. [27, pp. 417–425]. The complete bipartite graph �  �  with
a perfect matching deleted is a triangle free distance-regular antipodal double-
cover of �  and, by Corollary 6.2.3, its line graph is an antipodal double-cover
of � � �  � � ) ���� � � . The following statement is an obvious consequence of
Lemma 6.1.1 and the characterization of a line graph mentioned above:

6.2.4 LEMMA. Let � be a graph and � an antipodal cover of the line graph
� � �
� . If � has diameter at least four, then � is a line graph as well.

The condition on the diameter of an antipodal cover is necessary, since, for
example, the octahedron (i.e., � � � $ � ) has an antipodal double-cover which is
not a line graph.

The line graph operator is injective for the graphs with the minimum
valency at least two. Restricting to the line graphs which are obtained from the
graphs with the minimum valency at least two, we can define � � � and apply it
to a line graph which is an antipodal cover of a line graph.
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Figure 6.3: The other direction.

In this case we get a result similar to Theorem 6.2.2:

6.2.5 THEOREM. Let � and 
 be two graphs with minimum valency at least
two. If � ��
 � is an antipodal � -cover with diameter

K � ! of � � �
� , then 
 is
an � -cover with diameter

K
of � . If the diameter of � is two or if any geodesic

of length
K � � in � ��
 � can be extended to a geodesic of length

K
, then 
 is

an antipodal cover of � .

Proof. Since
K � ! , by Lemma 6.1.1, the subgraph of � ��
 � induced by

the fibres of vertices of a clique in � � � � consists of disjoint cliques of � ��
 � .
Such sets of cliques of � ��
 � induce a partition of

� ��
 � . The graph 
 is an
� -cover of the graph � for this partition. Since the line graph � ��
 � is antipodal,
the graph 
 has diameter

K
at most. By Lemma 6.2.1 and the fact that the

minimum valency is at least two, the distance of the cliques which are in the
same fibres of vertices equals

K
.

To prove that the graph 
 is antipodal and that its antipodal classes are
fibres we need to show that for any two vertices 
 and 
 � from different fibres
of 
 their distance is strictly less than

K
.

First, let us suppose that there exists a pair � , �
�
of vertices from 
 and 
 �

respectively, and that these two vertices are at distance
K

. Since 
 and 
 � are
not in the same fibre of 
 this is the only antipodal pair of vertices in these two
cliques. Denote by 
 � � the clique which intersects 
 and belongs to the same
fibre of 
 as 
 � . Then 
 � � intersects 
 in the vertex � . There exists a vertex & in

 �  ��� � � which is at distance

K � � from � . Let ���:4 � � 4 � ������� � 4 � � � � & be a
geodesic in � ��
 � . If 4 � �� 
 � � , then, by Lemma 6.2.1, dist � � 
 � ��
 � � ��� K � � ,
which is impossible. Since the vertex � lies in exactly two cliques which
correspond to vertices of 
 , we have 4 � 4 � � 
 and therefore 4 � � 
 . Thus
dist � � 
���
 � ��� K � � .

It remains to prove that cliques 
 and 
 � which contain no antipodal pairs
of vertices are at distance less than

K
in 
 . Suppose the opposite. Then the

shortest path between the sets 
 and 
 � has length
K � � by Lemma 6.2.1.

Therefore any pair of vertices, one from 
 and the other from 
 � , are at distanceK � � . Let us choose a vertex � � 
 and two vertices & � �(& 	 � 

�
. Since any

geodesic of length
K � � can be extended to a geodesic of length

K
, there are
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two different neighbours � � and � 	 of � which are at distance
K

from & � and & 	
respectively. Let 
 � � be the clique which contains vertices � , � � and � 	 . Then

 � � is in the same fibre as 
 � , and hence 
 � contains an antipodal vertex of � .
Contradiction!

The condition on the diameter of an antipodal cover is again necessary.
Otherwise the line graph of the Petersen graph as distance-regular antipodal
three-fold cover of � � would imply that the Petersen graph is an antipodal
three-fold cover too, which is evidently not true.

� � 	2�<� 
 $ � � ��� � � ��� ��� �����
��� �

� �����
� 	
�

�

Drake [57] has proved that a distance-regular antipodal cover with index � of
� � � � is equivalent to a resolvable transversal design � K �9& �(& � � � ��� . In the
extremal cases of � , Shad [121] and Delorme [53] have shown that distance-
regular antipodal double-covers of � � � � are equivalent to Hadamard matrices,
cf. also Shawe-Taylor [122], and Gardiner [59] has shown that distance-regular
antipodal covers with maximal index, i.e., � � & , of � � � � are equivalent to
affine planes of order & with a parallel class deleted. We will give a similar
characterization of antipodal covers of the complete bipartite graphs � � � � and
the lattice graphs � � 	 � � .

A ‘weak’ resolvable transversal design � � � K �9& � � � is an incidence struc-
ture on � & points, partitioned into & groups of size � , and � & distinguished subsets,
called lines, such that

(1) every line intersects each group in exactly one point,
(2) parallelism (i.e., being either equal or disjoint) is an equivalence relation

on the lines,
(3) there are & parallel classes, each consisting of � lines (i.e., & resolution

classes), and
(4) there exists a line through any two points if and only if they are from

different groups.

Note that (4) implies � � & . If in a weak resolvable transversal design
� � � K �9& � � � a number of lines through any two points from different groups
is constant, then this design is a resolvable transversal design � K �9& �(&�� � � � � .
Any resolvable transversal design � K �9& �(& � � � ��� satisfies the property (2). The
dual of a resolvable transversal design � K �9& �(& � � � � � is actually a resolvable
transversal design with the same parameters. We are now ready to characterize
antipodal covers of the complete bipartite graphs and the lattice graphs.
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6.3.1 THEOREM. Antipodal � -covers of � � � � and � � 	 � � are equivalent
to ‘weak’ resolvable transversal designs � � � K �9& � ��� . In the extremal case,
when �
� & , they are equivalent to affine planes of order & with a parallel class
deleted.

Proof. By Propositions 6.1.7 and 6.1.4 the diameter of an antipodal cover must
be in both cases equal to four. By Lemma 6.2.4, an antipodal cover of � � 	 � �
is the line graph � ��
 � of a graph 
 and, by Theorem 6.2.5, the graph 
 is an
antipodal cover of � � � � . Conversely, an antipodal cover 
 of � � � � is bipartite,
thus by Theorem 6.2.2 the line graph � ��
 � is an antipodal cover of � � 	 � � .
Therefore antipodal covers of � � � � and � � 	 � � are equivalent.

Let � � ��� � be the colour partition of 
 into ‘points’ and ‘lines’ and � the
design with 
 as the incidence graph. Therefore the fibres of 
 partition � into
& groups of size � and � into & classes each consisting of � disjoint lines. Then
diam ��
 � �  implies (1) and (3) for these classes. The definition of 
 implies
that any two points (resp. lines) from different fibres have a common neighbour,
i.e., lie on a line (resp. intersect in a point) therefore (4) and (2) are satisfied
and � is a weak resolvable transversal design � � � K �9& � ��� . If �
� & then any
two lines are either parallel or they intersect in exactly one point, therefore the
design is an affine plane with a parallel class deleted.

Now, we have to verify that the line graph � of the incidence graph , of a
‘weak’ resolvable transversal design � is an antipodal cover of � � 	 � � . In the
case �%� & , this follows immediately from Gardiner’s result and Corollary 6.2.3.
In general the design � has � & points and each point is on & lines. Hence � & 	
is the number of edges of , and also the number of vertices of � .

Let 4 � � be two points of � and � , � � two lines of � incident with 4 and �
respectively. Then the flags � 4 � � � and ����� � � � are the edges of , and the vertices
of � , denoted by & � and & 	 respectively. By the definition of a line graph,
these two vertices are adjacent if and only if 4 � � or � � � � (since an incidence
graph is a bipartite graph with the bipartition by points and lines). Let us denote
dist � �9& � �(& 	 � by � and assume 4 �� � , � �� � � , i.e., � ��� . Let us determine the
possible values of � .
(1) 4 and � are not in the same group. Then let ��� � be a line of � through 4

and � .
(a) At least one of the lines � and � � contains both points 4 and � . Then

at least one of the vertices � 4 � � � � and ����� � � from � is a common
neighbour of vertices & � , & 	 , and � �  . In all the other cases � �  .

(b) None of the lines � , � � contains both points 4 and � . Then � 4 � � � , � 4 � � � � � ,
����� � � � � , ����� � � � is a path of length three in � and � � � .
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(2) 4 and � are in the same group.
(c) � and � � are not parallel. If � is a point of their intersection, then � 4 � � � ,

��� � � � , ��� � � � � , ���#� � � � is a path of length three in � and � � � .
(d) � and � � are parallel. In this last possible case there is no path of length

3, but for  � � �  � there is a path of length four � 4 � � � , � 4 � ���
�
� , �  � � �

�
� ,

�  � � � � , ���#� � � � , where � �
�

is a line through 4 and  , accordingly � � ! .
Therefore vertices � 4 � � � and ����� � � � of � are antipodal if and only if 4�� � , � �� � � ,
if the points 4 , � are in the same group and if the lines � , � � are parallel. Since this
is a transitive relation, � is an antipodal graph with diameter four. Its antipodal
quotient has the pairs, consisting of a group and a parallel class of � , as vertices,
two vertices ��� � ��
 � � , ��� 	 ��
 	 � being adjacent whenever � � � � 	 or 
 � � 
 	
but not both, thus it is the lattice graph on & 	 vertices.

Between the antipodal classes corresponding to two adjacent vertices
��� � ��
 � � , ��� 	 ��
 	 � we have exactly the edges

�#� 4 � � � ��� 4 � � 	 � - 4 � � � � � � � 
 � s.t. 4 �
� � ; � 	 � 
 	 s.t. 4 �
� 	 � for � � � � 	
and �#� 4 � � ������� � � - � � 
 � ��4 � � � 6 � , � � � 	 6 � � for 
 � � 
 	 .

Finally we can conclude that � really is an antipodal cover of � � 	 � � with
index � .

We close this section with a construction of a family of antipodal double-covers
of � � � � which are not distance-regular. It is not hard to see that a non-distance-
regular graph � 	 	 
 � is the only antipodal double-cover of � 	 � 	 . (Its line
graph is the only antipodal double-cover of � 	 	 � 	 .)

We generalize this example. We start with two copies of the complete
bipartite graph on  & vertices with a matching deleted. Each copy is an antipodal
double-cover with diameter three of � � . Now, we connect each vertex of one
copy with the vertex of the other copy which corresponds to its antipodal vertex
and we get an antipodal double-cover of � � � � . The existence of this family
implies that antipodal double-covers of the complete bipartite graphs are not
equivalent to Hadamard matrices although distance-regular antipodal double-
covers are.
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The requirement for a cover to be antipodal is restrictive enough that these graphs
have a nice combinatorial structure. Our examples show that the structure gets
even richer for larger diameter or larger covering index.

Lemma 6.1.1 and Corollary 6.2.3 seem to be reasonable tools for the
study of infinite families of feasible arrays of distance-regular antipodal covers
of strongly regular graphs, however difficulties arise when there are not enough
triangles outside maximal cliques, like in the point graph of a generalized
quadrangle.

Perhaps the correspondence between the antipodal covers of the point and
the line graphs of the same incidence structure can be extended to other graphs
derived from incidence structures.





�

� � � ����� � � � � � � � � � � ��� ������� � � �
��� � ��� �

Godsil [67] [64, Lemma 13.5.1] has proved that for a distance-regular graph
� of diameter � , not complete multipartite, and non-trivial eigenvalue

�
of �

with multiplicity � , � � � , implies � �� � � � . From this he derived that � is
either a cycle or � � ��� � � . This result is very important for the classification
of distance-regular graphs with an eigenvalue of small multiplicity (as opposed
to a dual classification of distance-regular graphs with small valency). Very
recently Koolen [96, Theorem 7.17] has lowered the above upper bound on
diameter to � � �� � � , with equality if and only if � is a dodecahedron.
So far the distance-regular graphs with an eigenvalue of multiplicity eight or
less have been determined by Zhu [143], Martin and Zhu [102], Martin and
Koolen [96, Section 7.3] (work on multiplicity nine is in progress), while in the
valency case only the distance-regular graphs of valency three and four have
been determined.

Brouwer et al. [27, p. 182] stated the following problems:

(i) Does in a distance-regular graph � the condition � 	 � � together with� �  imply that � is antipodal?
(ii) Does in a distance-regular graph � of diameter � the condition � � � � ���

together with
� �  and 	 � 
 imply that � is antipodal?

Motivated by the above project of classifying graphs with small multiplicity and
these two problems we study distance-regular graphs with ��� � � in Section 7.1.
The main result of this section is the following statement, which is joint work
with Araya and Hiraki [6]. If � is a distance-regular graph of diameter � , valency� �  and �  � � for � � � �  , then � is an antipodal double-cover. If we exclude
antipodal double-covers from our study (or assume that we already know all of
them), then this result translates to: �  � � implies � �  � . The above result
implies that if � �  is the multiplicity of an eigenvalue of the adjacency matrix
of � , and if � is not an antipodal double-cover, then � � �� � � .
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We say that a path � of a distance-regular graph � is dependent if its
vertices in the graph representation corresponding to some eigenvalue of � are
dependent vectors. Let

�
be an eigenvalue of a distance-regular graph � and

� � its multiplicity. If we assume that for some fixed integer � all the paths on �
vertices are dependent, then the dimension of corresponding eigenspace is � � �
at the most, i.e., we have � � � � � � . A project of determining all the graphs
with small multiplicity is going on for some time but no new distance-regular
graphs have been encountered. It might be better to look for distance-regular
graphs which satisfy the conditions that there is a path � on � vertices which is
dependent and � � � � � � (which implies that at least one path on � vertices
is not dependent). Geodesics are good candidates for dependent paths. We
search for distance-regular graphs whose geodesics on � vertices are dependent
in Section 7.2. As in such graphs � � � 	 � � (see Lemma 7.2.1), this study is
closely connected with the previous section. Computations in this search are
simplified, if we can factor the determinant of the Gram matrix corresponding
to the representations of vertices of a geodesic. This motivates us to obtain an
auxiliary result, a factorization of the determinant of a Töplitz matrix into the
product of two determinants of approximately half the original size.

��� 	�
��������������������� �!�"�#������$�%�� �2
!� %��
 � �

We start this section by demonstrating in one particular example how useful
distance distribution diagrams are when we study distance-regular graphs. Then
we state the main result of this section, which is motivated by the above example.
Along the way we report the progress in determining distance-regular graphs
with � 	 � � and distance-regular graphs with � 	 � � . A byproduct is a new
infinite family of feasible intersection arrays of antipodal distance-regular graphs
of diameter four. This section is joint work with Araya and Hiraki.

Suppose that � is a distance-regular graph of diameter � with � 	 � � . By
Godsil’s diameter bound [64, Lemma 13.5.3], [27, Lemma 5.3.1], the diameter
� of � is five at the most. By Lambeck [99], [27, p. 172] (cf. Brouwer et
al. [27, p. 156]), only the dodecahedron meets this upper bound. Suppose that
� ��! . Then by monotonicity of the sequence � � � � we have � 	 � � and, by
Lemma 2.1.1 (d), ��$ � 	 � � 	 � � , hence � 	 � � .

Let us now assume only � 	 � � 	 , � 	 � � and � � ! . Let � and & be vertices
of � which are at distance four and let us observe the distance distribution
diagram corresponding to ��� �</ � & � , see Figure 7.1 (

K �� - � ) � � � � 6 ) � �9& � , arcs
denote corresponding � � ’s and � � ’s, and only filled circles are known to contain
nonempty sets). For ) � � � � � we denote by ��) the set of edges with exactly



� � � # � ��� � � � ��8���� �9�	� � �(�9���
��	 � �A� � 	 �  � � ��� 4

one end in ) . Then � 	 � � implies

� K �	 6 � �
K �$./ K 	$ � ��� and � K 	 � 6 � � K $ � / K $	 � ��� �

Similarly � 	 � � 	 implies

� K 		 6 � �
K 		 /

K 		 /
K 		 � ��� �

Suppose �$ � 
 . Then
K $ � � K �$ � � , and hence

K $
	 �

K 	$ � � . AsK 		 � � implies that � is antipodal with index two, we assume additionallyK 		 �� � . For � �
K 		 � ) 	 � � �76 ) 	 �9& � we have ) ��� ��68) $ � � � � K 	$ and

) ��� �<60) 	 �9& �
� K 		 /

K 		 /
K 	$ . From � 	 � � it follows �5) ��� �@6 K 	$ ����� , so

by � 	 � � 	 we have � 	
� � 	 � � � � � � � , which contradicts monotonicity of the

sequence � � � � .
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Figure 7.1: A distance distribution diagram.

Now we assume  $ �� 
 , i.e.,
K $ � �� ���� K �$ . A vertex in

K $ � has � $
neighbours in

K 		 . For � �
K 		 we have

) ��� �<6 ) 	 � � �
� ) ��� �<6 K 		

� ) ��� ��6#) 	 �9& � �
which implies � 	 � � 	 and so � 	 � � 	 � � 	 . By Brouwer et al. [27, Thm. 5.4.1],
we have � 	 � � . But since ) ��� ��6#) 	 �9& � �

K 		 /
K 		 /

K 	$ , we have

� K 		 6 � �
K 		 /

K 	$ � ��� and � K 		 6 � �
K 		 /

K $
	 � ��� �
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Since
K 		 has, by � 	 � � 	 � � , exactly � $ vertices and valency  	 �

� ��� 	 �� 	 �� �  , we have ��$ � � � � and #$ � � . This implies (see
K �$ ) that 	�� 
 (this

is implied in � 	 � � by [27, Lemma 5.3.1 (3d)] as well),
K �$ � K $� � � for

� � ������"! , and, by � 	 � � and � 	 � � for a vertex in
K 		 also � K 		 6 �

K 	 � ��� .
Finally a vertex in

K �
	 has valency two and � must be a cycle on nine vertices.

We have learned that for a distance-regular graph � with � 	 � � 	 , � 	 � �
and � � ! one of the following statements is true:

(a)  $ ���
 and � is a cycle on nine vertices,
(b)  $ ��
 and � is an antipodal graph with index two and � 	 � � .

Lambeck [98, Prop. 2.8] has first shown that a distance-regular graph of
diameter � � ! and valency

� �  with � 	 � � must be antipodal double-cover.
The above proof was derived in a collaboration with Araya, Hiraki during the
author’s visit to Japan (Algebraic Combinatorics Conference in Fukuoka, 1993).
The graphic method of deriving our proof has motivated us to obtain the main
result of this section.

7.1.1 THEOREM (Araya, Hiraki and Jurišić [6]). Let � be a distance-
regular graph of diameter � and valency

� �  . If �  � � and  � � � , then �
is an antipodal double-cover.

We postpone presenting the proof of this result until the end of this section.
This result improves the main result of Suzuki [128], generalizes Lambeck [98,
Prop. 2.8] (cf. Brouwer et al. [28, p. 11]) and gives a partial answer to Problem
(ii) in Brouwer et al. [27, p. 182]. As an immediate consequence we have the
following result:

7.1.2 COROLLARY (Araya, Hiraki and Jurišić [6]). Let � be a distance-
regular graph of diameter � . Let � �  be the multiplicity of an eigenvalue of
� . If � is not an antipodal double-cover, then we have � � �� � � .

Proof. Straightforward. See Brouwer et al. [27, Proposition 4.4.8 or Theo-
rem 5.3.2], Godsil [67] or Godsil [64, Lemma 13.5.1 and Theorem 13.5.3].

Let us now consider the diameter four case more carefully.

7.1.3 PROPOSITION. Let � be a distance-regular graph of diameter � � ! ,
valency

� �  , � 	 � � and � 	 � � 	 . Then  � ��
 and � is an antipodal double-
cover of a strongly regular graph with parameters � � � 	 �(A �%� � & 	 � � � 
 ���� ,
for an integer & not divisible by four.
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Proof. If 	�� 
 then, by Proposition 4.2.1, antipodality of � implies 	 	 ��! � �
 	 � for an integer  �� . As

� � 	 � � we have  � 	 �  . Now consider
the antipodal quotient of � , which is a strongly regular graph with A �  .
Among strongly regular graphs only the conference graphs allow noninteger
eigenvalues, see Brouwer et al. [27, Theorem 1.3.1(ii)]. As J.T.M van Bon [27,
p. 180] observed that conference graphs have no antipodal covers of diameter
four (cf. the remark after Proposition 4.2.1), we obtain from the expression for
the nontrivial eigenvalue in Proposition 4.1.1 that

	 	 � ! � � ! 	 � ! � � 	 � �� 	 � ! � � � �� ��� 	 �
for some integer � � 	 . Therefore  	 � � 	 � �  � � ���  � � � � ! � 	 � � � � and
� �  �  	 �  implies   � ! 	 � � , which is impossible. Thus 	 � 
 and
! � � � � ����� 	 , so

� � & 	�� � , for an integer & . Hence � is an antipodal double-
cover with diameter four of a strongly regular graph with valency & 	�� � , 	���

and A �  . If the antipodal quotient of � has & vertices, then its eigenvalues
are

�
� � & 	 � � , � 	 � & � � , � $ � � & � � , with multiplicities � � � � ,

� 	 � � & 	 � � ��� & 	 � & � �� � ! , and � $ � & � � � � 	 respectively. Therefore
& is not divisible by four.

Remark: � has a feasible intersection array

� & 	 � � �"& 	 � � � � � � � � �"& 	 �"& 	 � ��� �
For & �  we get the Wells graph and for & � � there is no such graph � , since
it would cover the Gewirtz graph, see Brouwer et al. [27, Proposition 11.4.5].
We have already met the quotients of this family in Section 5.2.

In the remaining part of this section we prove Theorem 7.1.1. Let
� � and�

	 be antipodal classes such that there is a matching between them. Choose
� �  � � � and & � � � �

	 so that � is adjacent to & and  is adjacent to � . Then for
the quadruple � � �(& � � �  � the following equations hold dist � � �  � � dist �9& � � � �
� , dist � � � � ��� dist �9& �  � � � � � and dist � � �(& � � dist ��� �  � � � (see Figure
7.2). A quadruple of vertices with these properties will be called a box.

d
1

d

d- 1

d- 1

1

Figure 7.2: Distances in a box.

For vertices � and & in a graph � at distance � , let � � � � �(& ��� ) � � � �36 ) � �9& � ,
, � � � �(& � � ) �
	 � � � �@6�) � �9& � , and 
 � � � �(& � � ) � � � � � �@6#) � �9& � . Now we shall
derive some results about boxes.
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7.1.4 LEMMA. Let � be a distance-regular graph of diameter � . If � has
no boxes, then we have

��� 	 ��� � � �  � 	 �

Proof. Let � and
�

be vertices in � at distance � . Let � � 
 � � � � � � ,
� � 
 � � � � � � and ) ��� � � � � � � . Note that � � � � � � � � � � , �5) � �  � and
) � � � � � � / ) , since

� �  � � � � , i.e., � � ��
 . Let � � � � � ���� � � � ) �� �
� � dist � � �� � � � � . We count the elements of � in two ways. Take � ��� and
consider the set ) � �����+6 ) � � � � . Since dist � � �� ��� � � � and ) � � � � � �8/ ) ,
we have � � � ��� �5) � ��� ��68) � � � � � � �5) � ������6 � � � �5) � �����76 ) � . Suppose
there exists a vertex � in ) � ��� ��6 � . Then the quadruple � � � � �� � � � is a box,
which contradicts our assumption. Hence we have ��� � � � �5) �#����� 6 ) � , and
therefore � � ��� � � � 	���� � � � ��� 	���� � � . On the other hand, take � � ) . Since
dist � � � � ��� � and � � ) � � � � , we have  � � �5) � � ����6 ) � � � � � � �5) � � �#��6�� � .
This implies � � � � �5) � 	  � �  � 	 .

The following result provides an important inequality for a graph with
�  � � if it contains a box.

7.1.5 PROPOSITION. Let � be a distance-regular graph of diameter � with
�  � � for some � � � . If � contains a box, then we have

� � ��� � � � � � � � � � � � � � � � � � for ��� � � � � � �
Proof. Let � �(& � � �  be vertices in � such that the quadruple � � �(& � � �  � is
a box. Take any � � � � ��� �  � � then � � 
 � �9& � � � � i.e., � �9& � ��� �� � (as
otherwise ��� � � � � , � � � �9& �  � is contradicting � � � � � � ), and � �9& � �#� �
� �9& � � ��� � � � � � � � � � � � This implies

�  � /�� � �  � � � � 
 ���9& � � � � 
 � � � � � � � � �

Thus we have � � � � � � � �  � � � � ��� � � � . Hence our assertion holds for ��� �
and we may assume now that � � � � Take a vertex 4 � ) � � � � � � 6 ) � � � ��� � . By
� � � � � � � � � , we set � ��� � 
 � � � ��� � 4 � . It is clear that dist �  � 4 � � � � ����� ,
dist �9& � 4 � � � , dist �  �� � � � � � , dist � � ���� � � and dist �9& ���� � � � � . In
order to prove the statement, it is sufficient to show

, � � � ��� � 4 � � , � � � 	 � �  � 4 � � 
 � �9& � 4 � � 
 � � � � � � 4 � � ��� �

Take any � � , � � � ��� � 4 � � , � � � 	 � �  � 4 � . Note that dist ��� � �#��� � � � � �
and dist �  � �#� �� � � � �  . Since dist ��� ���� � � � � � � , we have � �� � .
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Claim 1. dist �  � ����� ��� � � � . Since dist �  � � ��� � and dist ��� � ����� ��� � � � ,
we have dist �  � �#� � � � � � � � � � � ��� . If dist �  � �#� � � � � , then � �
� ��� �

 � � � 	 � �  � 4 � . This contradicts the inequality � � � � 	 � � � � � � ��� . Hence we
have dist �  � �#� � � � � � � .
Claim 2. dist � � � ��� � � � � . Since dist � � � 4 � � � � � and dist � 4 � �#� � � , we
have dist � � � �#� � � � � �� � � � � � � . Suppose dist � � � �#�%� � . Then we have
��� �� � � , � � � � � � 4 � , which contradicts � � � � � � . Suppose dist � � � �#��� � �  .
Then we have

� � dist � � �  ��� dist � � � �#��� dist � � �  ��� � � � ���� � � � � � � ��� � � � �

This is a contradiction. Hence we have dist � � � �#��� � � � and therefore also
� �� 
 � � � � � � 4 � .
Claim 3. dist �9& � �#��� � � � , i.e., � � 
 � �9& � 4 � . Since dist �9& � 4 � � � and
dist � 4 � �#� � � , we have dist �9& � �#� � � � � � � � � � � ��� . Suppose dist �9& � �#� �
� ��� . Then we have ��� �� � � , � �9& � 4 � , which contradicts � � � � . Let
� � � � � � � � 13131 � � � � � 	 � �  be a shortest path connecting � and
 . It is clear that dist � � � � � ��� � � � � � for 
 � � � � � � � � . Since
� � � � 	 � � � , we have , � � � 	 � � � � � � � � ��� � 	 � � for 
 � � � � � � . Suppose
dist �9& � �#� � � . Then � � 
 � � � �(& � and , � �9& � �#� � , � � � � � � �#� � ��� � � , which
implies , � �9& � �#� � , � � � � � � ��� . Inductively, we have � � 
 � 	 � � � ���(& � and
, � 	 � �9& � � � � � , � � � 	 � � � � � � � � ��� � 	 � � for 
 � ��� � � � � � . In particular,
we have dist �9& � � � � � � � � . Note that � � � � �� � , since dist ��� � �#� � � � � � � .
Then we have ��� � � � � � � � , � � � �9& �  � . This contradicts � � � � � � . Therefore,
we obtain ( � ).

Next lemma shows that a graph which satisfies the assumption of Theo-
rem 7.1.1 contains a box.

7.1.6 LEMMA. Let � be a distance-regular graph of diameter � and valency� �  . If �  � � and  � � � , then the following statements hold:
(1)  � � � for  � � � � � ,
(2) � contains boxes.

Proof. (1) Let  � � ��� � . Let � and & be vertices of � at distance � and take
� � ) � �  � � � 6�)  �9& � . Let ����� � � � �(& � . Now we show that � � )  	 � ��� � 6�) � �9& � .
Let ��� � . It is clear that dist ��� � �#� � ��� � � � ��� . Suppose dist ��� � �#� � � . Let
��� & � � & � � 13131 � &  � & be a path connecting � and & and ��� � � � � � �
13131 � �  � � such a path connecting � and � . It is easy to see that vertices & � and
� � are in ) � �  	 � � � � for 
 � � � � . By monotonicity of the sequence � � � � and
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the condition � � � � � , we have �
� �  � �  	 � � 13131 � � � �  � 13131 � � � � � .
Thus we have � � � & � for 
 � � � � . This contradicts &�� � . Hence we have
� � )  	 � ��� �<6#) � �9& � . Therefore  � � �  � � .
(2) Note that  � � � . Suppose � contains no boxes. Then from Lemma 7.1.4
we have � � �  � 	 � � . This contradicts  � � � � � � �  .

Proof of Theorem 7.1.1. Let � be a distance-regular graph with valency
� �  ,

�  � � and diameter � �  � . We need to show that

� � � � � � � ��� �
holds for � � � � � . We have � � �  � 13131 � � � �  � 13131 � ��� � � . By
��� � � � ��� for � � � , we also have � � � � � 13131 � ��� �  . Hence ( � ) holds for
� ��� � � � � . Since, by Lemma 7.1.6, the graph � contains a box, it follows
from Proposition 7.1.5 that


 � � � � � � � � � � � � � � � 13131 � � � �  � �  �
But � � �  � � � �  and the equalities must hold.

We close this section by mentioning that the work on the case � 	 � � is in
progress. In a collaboration with Araya, Hiraki (private communication, April
1994) we have shown:

7.1.7 PROPOSITION. If � is a distance-regular graph of diameter � and
� 	 � � , then � � �

. If � � �
then 	 ���
 .

� � 	 � $ �7��� � �<� � � � � �<� 
 ��� 
 � ��
��������������������� �!�"�#������$�%��

We start this section by deriving some constraints on distance-regular graphs
which contain a dependent geodesic. This enables us to search for small exam-
ples of such graphs. All the known small examples are collected in Table 7.1.
This section is joint work with Godsil.

7.2.1 LEMMA. Let � be a distance-regular graph of diameter � �  and
valency

� �  , for which a shortest dependent geodesic has � �  vertices.
Then � � � 	 � � and � � � � � � � � � � �� .

Proof. Let � be a distance-regular graph of diameter � and let � � � be the
number of vertices in a shortest dependent geodesic. Let

�
be the corresponding
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eigenvalue and � its multiplicity. As the diameter of a geodesic on � vertices is
� � � we have � � � � � .

Suppose that � � � 	 � � , and let us extend a geodesic � , with ends & and
 � ) � � 	 �9& � , to two distinct geodesics � � and � 	 with & as one end and with
the other end in ) � � � �9& � . Let � ��� � � ��6 ) � � � �9& � and � � � � � 	 6 ) � � � �9& � for
some vertices � and � . By assumption the geodesics � � and � 	 are dependent,
so the representations � ��� � and � � � � of � and � can be expressed as linear
combinations of the representations of the vertices of � . However, the scalar
products of � ��� � with the representations of the vertices of � are the same as
the scalar products of � � � � with the representations of the vertices of � , hence
� ��� � � � � � � . As the graph representation is locally injective, by the remark after
Theorem 2.2.10, it follows that � � � 	 � � . The upper bound follows directly
from [64, Thm. 13.5.3].

Note that the above lower bound � � � � � is always attained for an
antipodal distance-regular graph of index two (for an eigenvalue which is not an
eigenvalue of the antipodal quotient). The main result of the previous section,
Theorem 7.1.1, enables us to lower the above upper bound on diameter to  � � �
if we exclude antipodal distance-regular graphs of index two.

Here is the list of all the examples which appear in Brouwer et al. [27] for
� �

�
, beside the double-covers of complete graphs.

distance-regular graph � � � � 	 ������� � ��� � � min �
Dodecahedron � � � � � ������  � �
Wells graph (double folded 	
� ) � � � �"! ���  ! �
Johnson graph � (8,4) � �"! � ��� � �  ! �
Halved 8-cube � � � � � ���� �  ! �
Desargues graph (double ��� ) � � � ���������  � !
Johnson graph � (10,5) � �"! � ��� � � �� �  � �
Halved 10-cube � � � � � ���� � �"! �  � ��

Hamming 5-cube � ��������"! ���  � �
double Gewirtz � ���� � � ��� ��
  �  

double 77-graph � �"! � � �� � ��� � �  �  �
double Higman-Sims � � � � � � �� � ��   �  
short., ext. 3-Golay code � ���� ���� 
 ��  � �  !
related to ternary Golay code [27, p. 365, A15] � ���� � � � � �� 
 �� �  �  �
related to binary Golay code [27, p. 365, A14] � ��������� 
 �� � ��   � � �
related to binary Golay code [27, p. 365, A16] � �������� � � �� 
 �� � ! �  �
Johnson graph � (12,6) � �"! � ��� � � �� ����� �  � � �
Halved 12-cube � � � � � ���� � �"! ��� � �  � � 
Hamming 6-cube � ��������"! ����� �  � �
double � � � � � ���������������"!  � �

Table 7.1: List of small distance-regular graphs with dependent geodesics.
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As all examples are antipodal covers, we list only parameters � � � � 	 ������� � � � ,
the index � of the cover, diameter � and a minimal multiplicity � .

A Töplitz matrix � is an & 	 & matrix in which two entries are equal if
magnitude of the difference of their indices is equal, i.e.,

� � � ����� � � � � � implies � ��� ��� � � ��� �
� �

So the Gram matrix of the representations of the vertices of a geodesic path is a
Töplitz matrix. In order to make this list we had to check, for many intersection
arrays, if the Töplitz matrix corresponding to its standard sequence equals zero.

The calculations are simpler if we know how to factorize the determinant
of a Töplitz matrix. For example, we have factored
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Factorizations of the determinants of up to six-by-six Töplitz matrices can be
obtained simply by using Maple, although Maple will not actually give the
determinants as factors (but it certainly helps to do verifications). The next case,
the factorization of the determinant of seven-by-seven Töplitz matrix, is already
too big problem for Maple. However if we guess one factor, then we can use
Maple to perform the division and to obtain the other factor. In this case we
have factored �
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After seeing a few of these small factorizations we were able to guess a factor-
ization in a general case.

7.2.2 PROPOSITION.

det � � det � � det �

where

� ��� ��� � � � ��� � � for ��� � � � ���������� �"& �
� � � ��� � � � ��� � � � � �
	 � ��� for � � � � � ���������� �
� & � 	���
��� � ��� � � � ��� � � � � �
	 � ��� for � � � � � ���������� �
� & � 	� �

where � is one if & is even and zero otherwise, and when & is odd, i.e., & � �� � �
for some integer � , also

��� �  	 � � � � � � for � � � ���������� � � �
��� � � �  	 � �  � � for � � � ���������� � � �
��� �  	 � �  	 � � � �

(b)

a e

f1 b d
c

1

a
b c

d

e

(a) 
Figure 7.3: Equitable partitions of paths.

Instead of giving a complete proof of this result, let us show one application
of equitable partitions. In Figure 7.3 we see two equitable partitions of a path
on six and a path on seven vertices. This implies that the set of columns
and the set of rows of an & -by- & Töplitz matrix � can be partitioned into� & � �� parts each, so that the column sums in the corresponding submatrices
are all equal (e.g., in the case of six-by-six matrix we take the symmetric
partition � ���"!���� � ���� ��� � � � � � and in the case of seven-by-seven matrix we take
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the symmetric partition � ����� ��� � �� � ��� � � ��� ��� � !�� ). When we substitute these
submatrices with their column sums we obtain the matrix � . So its eigenvalues
are also eigenvalues of � . Therefore det � � det � .

Let us now list some known infinite families of distance-regular graphs
which contain dependent geodesics.

(1) Johnson graph ���� & �"& � has diameter ��� & and it has a dependent geodesic
on ��� � vertices.

(2) Halved  & -cube has diameter � � & and it has a dependent geodesic on
� � � vertices.

(3) Double Odd graph � 	 � 	 � has diameter � �  & � � and it has a dependent
geodesic on � vertices.

We finish this section by posing two questions.

(1) Are there any primitive distance-regular graphs which contain dependent
geodesics?

(2) Are there any distance-regular graphs of diameter � which contain depen-
dent geodesics on � �  vertices?
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Here we add some material, which is not included in the thesis, hoping that
it will be of some help to a reader unfamiliar with combinatorics. In Section
1 we collect basic definitions from graph theory. In Section 2 we introduce
incidence structures and relate them to graphs. Section 3 is intended for those
who have never worked with distance-regular graphs. Finally, we list small
feasible parameters of antipodal distance-regular graphs of diameter four in
Section 4.

��� �#����$�%��8%�� ��� �

We follow Thomassen [139] and Godsil [64]. A graph � is a pair � � � � � � � � �
�"� ,
where

� � �
� is a finite set of vertices) and ��� �
� is a set of unordered pairs ��
of vertices called edges. Unless explicitly stated otherwise graphs have neither
loops nor multiple edges. (A directed graph � is a pair � � � �
� � � � � �"� , where
��� �
� is a subset of

� � � � 	 � � �
� . We sometimes view an edge ��� �(& � as
being formed from two arcs � � �(& � and �9& � � � . Thus some directed graphs can
be viewed as undirected graphs. We say that the edge �� joins � and  , that it
is incident with � and  , and that � and  are neighbours (or also that they are
adjacent), denoted by � �  . The valency (also called the degree) of a vertex �
is the number of neighbours of � in � . A graph � is

�
-regular if all the vertices

have valency
�

. The set of neighbours of � is denoted by ) ��� � (or also � ��� � )
and we set ,���� ��� ) ��� ��/ � � � (or � ��� � � � ��� �</ � � � ).

A subgraph 
 of a graph � is a graph with
� ��
 � � � � � � and ����
 � �

��� �
� , and we call it a spanning subgraph if
� ��
 � � � � �
� . For � �

� � �
� / � � � � a graph � ��� is obtained from � by deleting � and all the edges
incident with � 6 � � � � . If � � � � � � , then the graph � � � � induced by � is
defined as � � � � � � �� ��� . The graph induced by ) ��� � is the local graph of �
(also called the neighbourhood graph).

An & -path is a graph with vertices � � � � � ������� � � � and edges � � � � � � , � �
� ���������� �"& . A & -cycle is obtained from an � & � � � -path by adding the edge
between the two ends (i.e., vertices of valency one). We say that & is the length
of the & -path and the & -cycle. A graph is connected if any two vertices are
joined by a path. The distance between two vertices is the length of a shortest
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path between them. The diameter of a graph is the maximum distance between
any two vertices. The girth of a graph is the length of a shortest cycle. A
connected graph with no cycles is called a tree. A cycle through all the vertices
of � is a Hamiltonian cycle of � . A graph � is bipartite, if there is a partition
� � �
��� � /0, such that all edges of � join � and , . The complete graph
��� is a graph on & vertices with all possible edges (when it is considered as a
subgraph, it is also called a clique). If � � � �
� ��� & for a graph � and � � has the
same vertex set, then the complement of � is obtained by deleting all the edges
of � in � � . The multipartite graph �  � �� is the complement of � complete
graphs on � vertices, and it is called a complete bipartite graph when � �  .
A perfect matching of a graph � (also called a 1-factor) is a spanning subgraph
of � with valency one. A graph is geometric when it does not contain � � � 	 � � as
a subgraph, i.e., when we can partition the edges with the maximal cliques.

The line graph � � �
� of a graph � is the graph whose vertex set is ��� �
�
such that two vertices are adjacent in � � �
� if and only if they have a common
end in � . For example, the lattice graph � � 	 ��� is the line graph of the
complete bipartite graph ����� � . The Cartesian product of two graphs � and
 is the graph with vertex set

� � �
� 	 � ��
 � such that ��� � � � and �  �(& � are
adjacent if and only if either ���  and � and & are adjacent in 
 , or ��� & and
� and  are adjacent in � . The & -cube is the Cartesian product of & copies of
� 	 .

A homomorphism (also called a graph morphism) from a graph � to a
graph 
 is a mapping � - � � � ��� � � ��
 � such that, for any two vertices �
and  , � and  are adjacent in � if and only if � ��� � and � �  � are adjacent in
 . If a homomorphism � is also 1-1 and onto, then it is called an isomorphism,
and the graphs � and 
 are said to be isomorphic. If further � � 
 , then the
isomorphism is called automorphism. The automorphism group of � partitions
� � �
� and ��� �
� into orbits. A graph is vertex transitive if

� � � � has only one
orbit.

A surface is a connected compact topological Hausdorff space which is
locally homeomorphic to a disc. By the classification theorem for surfaces,
see for example Thomassen [139], Andrews [4] or Gross and Tucker [72], the
only surfaces are )�� , the sphere with � handles, and � � , the sphere with

�

crosscaps. If � is a graph drawn on a surface such that the edges are pairwise
simple noncrossing curves, then � partitions ) � or � � into regions, called
faces. If each face is homeomorphic to a disc, then the embedding is called a
2-cell embedding. The genus � � � � (respectively crosscap number � � �
� ) is the
smallest number � such that � has an embedding in )  (respectively �  ).
Assume now that a connected graph � has a 2-cell embedding in a surface ) ,
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where ) � ) � or ) � � � . If a number of faces is denoted by � , & � � � � � � � ,
and � � � � � � � � , then the Euler’s formula says:

& � � � � �  �  � � when ) � ) � �
and

& � � � � �  � � � when ) � � � �
� � 	 �@��
 � � �@�+� ��� � �@��� �7���<�

We follow Cameron and Van Lint [48]. A � - �9& � � � 	  � design is a collection of
� -subsets called blocks of a set with & elements called points, such that each � -set
of points lies in exactly 	  blocks. We assume that � � � to exclude degenerate
cases. If 	  � � , then a � -design is called a Steiner system, denoted by ) � � � � �(& � .

In a � -design let 	 � denote the number of blocks containing a given set of �
points, with 
�� � � � . Let ) be some � -set. Then ) is contained in 	 � blocks
and each of them contains 	 � � � � �

�
distinct � -sets with ) as subset. On the other

hand the set ) can be enlarged to � -set in 	 � � � � �
�

ways and each of these � -sets is
contained in 	  blocks. So we conclude:

	 � 
 � � �� � � � � 	� 
 & � �� � � �
Therefore 	 � is independent of ) . This actually means that a � -design is also an
� -design, for 
 � � � � . The number of blocks in a design is equal to 	 � and
is denoted by � . Every point in a � -design lies in 	 � blocks and this number is
often denoted by � . When � �  we get, from the upper identity for � � 
 , � � �
and � � � , � �  , the following:

� ��� � & and � � � � � � � 	 	 �9& � � �
or

�
� 	 	
& � �
� � � and � � 	 	

& �9& � � �
��� � � � �

For any design with more than one block we have � � & , which is the well
known Fisher’s inequality. Designs with � � & are called square (or symmetric)
and have a property that any two blocks meet in exactly 	  points.

A finite projective plane of order & is a Steiner system ) ����"& � � �"& 	 � & � � � ,
and a finite affine plane of order & is a Steiner system ) ����"& �"& 	 � . Arbitrary
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projective and affine planes of order & are denoted by � � ����"& � and ��������"& � ,
respectively. For � �  , � ��� � ����� denotes the � -dimensional projective space
over � � ����� , i.e., the lattice of subspaces of � � � � � -dimensional vector space
over � � ����� . Let us define a relation on blocks of a design by two blocks
being related if they are either the same or have no points in common. Than this
relation is an equivalence relation in an affine plane � � ����"& � and its equivalence
classes are called parallel classes.

A transversal design � K � ���(& � is a design with blocks of size � and points
partitioned into � groups of size & , such that two distinct points are contained in
a unique block if and only if they are in distinct groups. By theorem of Chowla,
Erdös and Straus [50] a � K � � �(& � exists for & � & � � � � and & � � � � � � � � for
� � � . Similarly, by theorem of Wilson [141] and Hanani [78], 2- �9& � � � � � design
exists for all & � & ��� � � with � ��� � & ��� , ��� � ��� � � & �9& � � � , and & ��� � � � � 	 � � � �
for � � � .

We introduce two important infinite families of strongly regular graphs
which come from the above designs. Let � be a design with a set of points � , a
set of blocks , (also called lines), and an incidence relation � � � 	 , (called
also a set of flags). Then � is equivalently described by the incidence graph,
i.e., the bipartite graph with vertex set � / , , and with a point 4 adjacent to a
block � whenever they are incident. By interchanging the roles of points and
blocks (lines) we get the so-called dual incidence structure. We can also derive
other kinds of graphs from a design, for example the point graph (called also
the collinearity graph), with points as vertices and two of them being adjacent
whenever they are collinear, and the line graph with lines as vertices and two of
them being adjacent whenever there is a point incident to both lines.

The line graph of a 2- �9& � � � � � design with & � � � ��� ��� � � is strongly
regular with parameters

& � 	 � 	 �	 �	 � �
� � ��� & � �

� � � � � � � 	��
& � �
� � � �  � � � � � � 	 � A � � 	 �

When in a design � the block size is two, the number of edges of the point graph
equals the number of blocks of the design � . In this case the line graph of the
design � is the line graph of the point graph of � . This justifies the usual name:
the line graph of a graph. The line graph of a transversal design � K � ���(& � is
also strongly regular for � � & , with parameters

& � & 	 � � � ���9& � � � � 	�� �9& � ���� � � � � ��� � � �� �0A � �#� � � � � �
For �
�  we get the lattice graph � � 	 � � , which is also known as the grid
graph & 	#& .
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General subjects of this thesis are symmetry and regularity. The first one is
usually described by an automorphism group of an object, and the second one
is expressed by an arithmetical property. Surprisingly the second often implies
the uniqueness of the object and the existence of many symmetries. There is an
intriguing interplay of these two quantities.

Intuitively we think of symmetry as a property of an object to look the
same when observed from different sides/angles. In this statement we assume
some kind of real picture of the object. Since we draw two or three dimensional
objects, we usually present them only corresponding to one, two, three,... or
at least to a small number of their automorphisms. But this means that small
or at least not too large automorphism group of an object implies the existence
of many different symmetric pictures of the same object. It is time for an
illustration of these thoughts.

Let us consider the Petersen graph. One way to describe this graph is to
define its vertex set to be all two-element subsets of a set � � ��������"! ��� � , and two
vertices to be adjacent if and only if they are disjoint. Similarly, a

�
-element

subsets of a �� � � � � -set in general define the Odd graph � � . Permuting the
symbols � ��������"! ��� evidently does not change the graph, and it is not too difficult
to verify that the symmetric group of five symbols � � is the automorphism group
of the Petersen graph. We are all familiar with the following two presentations
of the Petersen graph:

Figure A.1: The Petersen graph.

These two presentations exhibit (among other symmetries) a symmetry of or-
der five, and a symmetry of order three respectively. Here are three more
presentations which correspond to symmetries of order four, three and two:
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Figure A.2: The Petersen graph.

Despite all these nice pictures we still have not found one from which it would
be easy to ‘see’ that the Petersen graph is vertex transitive, i.e., each vertex can
be mapped to any other vertex by an element of the automorphism group. To
make this evident we ‘embed’ the Petersen graph into the dodecahedron drawn
‘symmetrically’ on a sphere.

Figure A.3: The dodecahedron.

Let us define a graph with the diagonals (or, if you prefer the antipodal pairs
of vertices) of the dodecahedron as vertices, and let two of them be adjacent if
and only if they are joined with an edge of the dodecahedron. Then this graph
is again the Petersen graph. The vertex transitivity is now obvious. It is also
evident that any two vertices can be mapped to any other two vertices at the same
distance by an element of the automorphism group. A graph with this property
is called distance transitive. All these properties can be deduced directly from
the abstract definition of the Petersen graph and from the fact that we know its
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automorphism group, but we want to make a point that it is sometimes possible
to obtain the same conclusions by purely combinatorial approach. This turns
out to be very important when we do not know the automorphism group of the
object we study, or the automorphism group is trivial and we cannot get any
help from algebraic or group theoretical approach.

Let us now give some examples of regularities. For instance, we can require
that each vertex has the same number of neighbours, in which case we say that
the graph is regular. A variation of this would be to require that the number of
vertices at distance � from a vertex is independent of the choice of a vertex. This
certainly has to be true for vertex transitive graphs, since an automorphism of
a graph preserves the distance. Another example of regularity is a requirement
that a graph has no triangles (or some other cycles of given length). We can
rephrase this in the following way: any two adjacent vertices have no common
neighbours. Two natural variations of this are:

(a) any two adjacent vertices have exactly 	 common neighbours,
(b) any two nonadjacent vertices have exactly A common neighbours.

A graph is called strongly regular when it satisfies these two properties. Strongly
regular graphs can also be treated as extremal graphs and have been studied
extensively (for basic properties see [48], [118] and [31]). Since the condition
(b), for A �� 
 implies that the diameter of a graph satisfying this property is at
most two, we substitute (b) with:

(c) any two vertices at distance two have exactly A common neighbours.

All these properties are implied by distance transitivity. To come even closer
to distance transitivity we can require that given any two vertices � , & of �
and any integers � and � , the number of vertices at distance � from � and �
from & depends only on � , � and the distance between � and & . A connected
graph satisfying this property is called distance-regular. Connected strongly
regular graphs are exactly distance regular graphs of diameter two. Distance-
regular graphs were introduced in late 1950’s by Biggs [13] as a generalization
of distance transitive graphs. As soon as we require enough regularity for some
object, there exists, almost as a rule, a distance-regular graph which is related
to such an object. Some examples of distance-regular graphs are complete and
complete multipartite graphs, cycles, & -cubes, 1-skeletons of Platonic solids,
the Petersen graph and its line graph. All the above examples are distance
transitive. Obviously, any distance transitive graph is distance-regular, but
there are also distance-regular graphs which are not distance transitive (see
for example [123]). However, there are not many known such examples with
diameter greater than eight, see Brouwer et al. [27, p. 136]. The opposite is
true for small diameters. For example, it is believed that almost all strongly
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regular graphs are not distance transitive, and for them combinatorial approach
becomes quite important. There are also other occasions when it is easier to
work with numerical regularity conditions instead of symmetry conditions.

Distance-regular graphs are divided into primitive and imprimitive ones.
The latter are either antipodal or bipartite (or both) and they give rise to primitive
graphs of at most half the diameter. Therefore the big project of classifying
distance-regular graphs has two stages:

(a) find all primitive distance-regular graphs (see Bannai and Ito [8], [9])

(b) given a distance-regular graph � find all imprimitive graphs, i.e., bipar-
tite distance-regular graphs or antipodal distance-regular graphs, called
distance-regular antipodal covers of � , which give rise to � .

For example, the dodecahedron is a distance-regular antipodal cover of the
Petersen graph. The first part of (b) was studied by Hemmeter [81], [82]. A
lot of work has been done on distance-regular antipodal covers of complete and
complete bipartite graphs. Van Bon and Brouwer [17] used simple geometric
arguments to show that most classical distance-regular graphs have no antipodal
covers. More precisely, for diameter at least eight, the only known antipodal
distance-regular graphs are

0. �� -gons,
1. Johnson graphs ���� � � � � ,
2. doubled Odd graphs,
3. & -cubes, and
4. folded  & -cubes.

Many antipodal covers of complete graphs indicate that the situation is different
(and more interesting) in small diameter cases, and this is the central theme of
this thesis.

	 � � 
 ��� ��� �?�<��� 
 �7�!� $��"��� 
 �<� �7��� � ������� 	

In Section 4.4 we mentioned how a list of feasible parameters of distance-
regular antipodal covers of strongly regular graphs can be obtained. Here
we list the intersection arrays with valency at most 100 in the diameter four
case. The uniqueness of the Soicher graph, the distance-regular antipodal cover
of the strongly regular graph with parameters � � � �"! � � � �� !�� (i.e., the second
subconstituent of the McLaughlin graph), has been shown by Brouwer et al.
[28, Theorem 11.4.6].
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distance partition eigenvalues and multiplicities intersection array
! � = 32 = 1+5+20+5+1 51 2 � 28 110 � 2 � 28 � 35 � 5 � 4 � 1 � 1; 1 � 1 � 4 � 5 �
! � = 45 = 1+6+24+12+2 61 312 19 � 218 � 35 � 6 � 4 � 2 � 1; 1 � 1 � 4 � 6 �
! � = 63 = 1+10+30+20+2 101 512 114 � 230 � 46 � 10 � 6 � 4 � 1; 1 � 2 � 6 � 10 �
! � = 70 = 1+16+36+16+1 161 87 220 � 228 � 414 � 16 � 9 � 4 � 1; 1 � 4 � 9 � 16 �
? � = 162 = 1+20+120+20+1 201 536 260 � 445 � 720 � 20 � 18 � 3 � 1; 1 � 3 � 18 � 20 �

� = 243 = 1+20+180+40+2 201 572 260 � 490 � 720 � 20 � 18 � 4 � 1; 1 � 2 � 18 � 20 �
? � = 486 = 1+20+360+100+5 201 5180 260 � 4225 � 720 � 20 � 18 � 5 � 1; 1 � 1 � 18 � 20 �
? � = 486 = 1+21+420+42+2 211 4 � 6162 3105 � 4 � 6162 � 656 � 21 � 20 � 2 � 1; 1 � 1 � 20 � 21 �
? � = 200 = 1+22+154+22+1 221 4 � 750 277 � 4 � 750 � 822 � 22 � 21 � 3 � 1; 1 � 3 � 21 � 22 �
? � = 300 = 1+22+231+44+2 221 4 � 7100 277 � 4 � 7100 � 822 � 22 � 21 � 4 � 1; 1 � 2 � 21 � 22 �
? � = 600 = 1+22+462+110+5 221 4 � 7250 277 � 4 � 7250 � 822 � 22 � 21 � 5 � 1; 1 � 1 � 21 � 22 �
? � = 352 = 1+25+300+25+1 251 588 3120 � 588 � 755 � 25 � 24 � 2 � 1; 1 � 2 � 24 � 25 �
? � = 704 = 1+25+600+75+3 251 5264 3120 � 5264 � 755 � 25 � 24 � 3 � 1; 1 � 1 � 24 � 25 �
? � = 704 = 1+26+650+26+1 261 5 � 1176 4208 � 5 � 1176 � 6143 � 26 � 25 � 1 � 1; 1 � 1 � 25 � 26 �
? � = 264 = 1+27+180+54+2 271 944 355 � 3132 � 632 � 27 � 20 � 6 � 1; 1 � 3 � 20 � 27 �
! � = 128 = 1+28+70+28+1 281 148 428 � 256 � 435 � 28 � 15 � 6 � 1; 1 � 6 � 15 � 28 �
? � = 210 = 1+32+144+32+1 321 835 284 � 470 � 1020 � 32 � 27 � 6 � 1; 1 � 6 � 27 � 32 �
? � = 315 = 1+32+216+64+2 321 870 284 � 4140 � 1020 � 32 � 27 � 8 � 1; 1 � 4 � 27 � 32 �
? � = 420 = 1+32+288+96+3 321 8105 284 � 4210 � 1020 � 32 � 27 � 9 � 1; 1 � 3 � 27 � 32 �
? � = 630 = 1+32+432+160+5 321 8175 284 � 4350 � 1020 � 32 � 27 � 10 � 1; 1 � 2 � 27 � 32 �
? � = 420 = 1+33+352+33+1 331 5 � 7105 3154 � 5 � 7105 � 955 � 33 � 32 � 3 � 1; 1 � 3 � 32 � 33 �
? � = 630 = 1+33+528+66+2 331 5 � 7210 3154 � 5 � 7210 � 955 � 33 � 32 � 4 � 1; 1 � 2 � 32 � 33 �
? � = 1260 = 1+33+1056+165+5 331 5 � 7525 3154 � 5 � 7525 � 955 � 33 � 32 � 5 � 1; 1 � 1 � 32 � 33 �
? � = 704 = 1+36+630+36+1 361 6176 4231 � 6176 � 8120 � 36 � 35 � 2 � 1; 1 � 2 � 35 � 36 �
? � = 1408 = 1+36+1260+108+3 361 6528 4231 � 6528 � 8120 � 36 � 35 � 3 � 1; 1 � 1 � 35 � 36 �
? � = 1408 = 1+37+1332+37+1 371 6 � 1352 5407 � 6 � 1352 � 7296 � 37 � 36 � 1 � 1; 1 � 1 � 36 � 37 ���� � = 252 = 1+45+160+45+1 451 1521 390 � 3105 � 935 � 45 � 32 � 9 � 1; 1 � 9 � 32 � 45 �

� = 378 = 1+45+240+90+2 451 1542 390 � 3210 � 935 � 45 � 32 � 12 � 1; 1 � 6 � 32 � 45 ���� � = 756 = 1+45+480+225+5 451 15105 390 � 3525 � 935 � 45 � 32 � 15 � 1; 1 � 3 � 32 � 45 �
? � = 392 = 1+45+300+45+1 451 970 3150 � 5126 � 1145 � 45 � 40 � 6 � 1; 1 � 6 � 40 � 45 �
? � = 588 = 1+45+450+90+2 451 9140 3150 � 5252 � 1145 � 45 � 40 � 8 � 1; 1 � 4 � 40 � 45 �
? � = 784 = 1+45+600+135+3 451 9210 3150 � 5378 � 1145 � 45 � 40 � 9 � 1; 1 � 3 � 40 � 45 �
? � = 1176 = 1+45+900+225+5 451 9350 3150 � 5630 � 1145 � 45 � 40 � 10 � 1; 1 � 2 � 40 � 45 �
? � = 2352 = 1+45+1800+495+11 451 9770 3150 � 51386 � 1145 � 45 � 40 � 11 � 1; 1 � 1 � 40 � 45 �
? � = 798 = 1+45+660+90+2 451 6 � 7266 3209 � 6 � 7266 � 1256 � 45 � 44 � 6 � 1; 1 � 3 � 44 � 45 �
? � = 2394 = 1+45+1980+360+8 451 6 � 71064 3209 � 6 � 71064 � 1256 � 45 � 44 � 8 � 1; 1 � 1 � 44 � 45 �
? � = 784 = 1+46+690+46+1 461 6 � 8196 4276 � 6 � 8196 � 10115 � 46 � 45 � 3 � 1; 1 � 3 � 45 � 46 �
? � = 1176 = 1+46+1035+92+2 461 6 � 8392 4276 � 6 � 8392 � 10115 � 46 � 45 � 4 � 1; 1 � 2 � 45 � 46 �
? � = 2352 = 1+46+2070+230+5 461 6 � 8980 4276 � 6 � 8980 � 10115 � 46 � 45 � 5 � 1; 1 � 1 � 45 � 46 �
? � = 1276 = 1+49+1176+49+1 491 7319 5406 � 7319 � 9231 � 49 � 48 � 2 � 1; 1 � 2 � 48 � 49 �
? � = 2552 = 1+49+2352+147+3 491 7957 5406 � 7957 � 9231 � 49 � 48 � 3 � 1; 1 � 1 � 48 � 49 �
? � = 2552 = 1+50+2450+50+1 501 7 � 1638 6725 � 7 � 1638 � 8550 � 50 � 49 � 1 � 1; 1 � 1 � 49 � 50 �
? � = 650 = 1+54+540+54+1 541 9130 4234 � 6195 � 1190 � 54 � 50 � 5 � 1; 1 � 5 � 50 � 54 �
? � = 1625 = 1+54+1350+216+4 541 9520 4234 � 6780 � 1190 � 54 � 50 � 8 � 1; 1 � 2 � 50 � 54 �
? � = 3250 = 1+55+2970+220+4 551 7 � 41300 5429 � 7 � 41300 � 10220 � 55 � 54 � 4 � 1; 1 � 1 � 54 � 55 ���� � = 324 = 1+56+210+56+1 561 1436 2140 � 4126 � 1621 � 56 � 45 � 12 � 1; 1 � 12 � 45 � 56 �
! � = 486 = 1+56+315+112+2 561 1472 2140 � 4252 � 1621 � 56 � 45 � 16 � 1; 1 � 8 � 45 � 56 ���� � = 648 = 1+56+420+168+3 561 14108 2140 � 4378 � 1621 � 56 � 45 � 18 � 1; 1 � 6 � 45 � 56 ���� � = 972 = 1+56+630+280+5 561 14180 2140 � 4630 � 1621 � 56 � 45 � 20 � 1; 1 � 4 � 45 � 56 �
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��� � = 1296 = 1+56+840+392+7 561 14252 2140 � 4882 � 1621 � 56 � 45 � 21 � 1; 1 � 3 � 45 � 56 �
? � = 648 = 1+57+532+57+1 571 7 � 5162 3266 � 7 � 5162 � 1557 � 57 � 56 � 6 � 1; 1 � 6 � 56 � 57 �
? � = 972 = 1+57+798+114+2 571 7 � 5324 3266 � 7 � 5324 � 1557 � 57 � 56 � 8 � 1; 1 � 4 � 56 � 57 �
? � = 1296 = 1+57+1064+171+3 571 7 � 5486 3266 � 7 � 5486 � 1557 � 57 � 56 � 9 � 1; 1 � 3 � 56 � 57 �
? � = 1944 = 1+57+1596+285+5 571 7 � 5810 3266 � 7 � 5810 � 1557 � 57 � 56 � 10 � 1; 1 � 2 � 56 � 57 �
? � = 3888 = 1+57+3192+627+11 571 7 � 51782 3266 � 7 � 51782 � 1557 � 57 � 56 � 11 � 1; 1 � 1 � 56 � 57 �
? � = 552 = 1+75+400+75+1 751 1569 3230 � 5207 � 1745 � 75 � 64 � 12 � 1; 1 � 12 � 64 � 75 �
? � = 828 = 1+75+600+150+2 751 15138 3230 � 5414 � 1745 � 75 � 64 � 16 � 1; 1 � 8 � 64 � 75 �
? � = 1104 = 1+75+800+225+3 751 15207 3230 � 5621 � 1745 � 75 � 64 � 18 � 1; 1 � 6 � 64 � 75 �
? � = 1656 = 1+75+1200+375+5 751 15345 3230 � 51035 � 1745 � 75 � 64 � 20 � 1; 1 � 4 � 64 � 75 �
? � = 2208 = 1+75+1600+525+7 751 15483 3230 � 51449 � 1745 � 75 � 64 � 21 � 1; 1 � 3 � 64 � 75 �
? � = 3312 = 1+75+2400+825+11 751 15759 3230 � 52277 � 1745 � 75 � 64 � 22 � 1; 1 � 2 � 64 � 75 �
? � = 1104 = 1+76+950+76+1 761 8 � 7276 4437 � 8 � 7276 � 16114 � 76 � 75 � 6 � 1; 1 � 6 � 75 � 76 �
? � = 1656 = 1+76+1425+152+2 761 8 � 7552 4437 � 8 � 7552 � 16114 � 76 � 75 � 8 � 1; 1 � 4 � 75 � 76 �
? � = 2208 = 1+76+1900+228+3 761 8 � 7828 4437 � 8 � 7828 � 16114 � 76 � 75 � 9 � 1; 1 � 3 � 75 � 76 �
? � = 3312 = 1+76+2850+380+5 761 8 � 71380 4437 � 8 � 71380 � 16114 � 76 � 75 � 10 � 1; 1 � 2 � 75 � 76 �
? � = 6624 = 1+76+5700+836+11 761 8 � 73036 4437 � 8 � 73036 � 16114 � 76 � 75 � 11 � 1; 1 � 1 � 75 � 76 �
? � = 1080 = 1+77+924+77+1 771 11210 5385 � 7330 � 13154 � 77 � 72 � 6 � 1; 1 � 6 � 72 � 77 �
? � = 1620 = 1+77+1386+154+2 771 11420 5385 � 7660 � 13154 � 77 � 72 � 8 � 1; 1 � 4 � 72 � 77 �
? � = 2160 = 1+77+1848+231+3 771 11630 5385 � 7990 � 13154 � 77 � 72 � 9 � 1; 1 � 3 � 72 � 77 �
? � = 3240 = 1+77+2772+385+5 771 111050 5385 � 71650 � 13154 � 77 � 72 � 10 � 1; 1 � 2 � 72 � 77 �
? � = 2160 = 1+78+2002+78+1 781 8 � 8540 6715 � 8 � 8540 � 12364 � 78 � 77 � 3 � 1; 1 � 3 � 77 � 78 �
? � = 3240 = 1+78+3003+156+2 781 8 � 81080 6715 � 8 � 81080 � 12364 � 78 � 77 � 4 � 1; 1 � 2 � 77 � 78 �
? � = 6480 = 1+78+6006+390+5 781 8 � 82700 6715 � 8 � 82700 � 12364 � 78 � 77 � 5 � 1; 1 � 1 � 77 � 78 �
? � = 750 = 1+81+504+162+2 811 2750 6144 � 3450 � 9105 � 81 � 56 � 18 � 1; 1 � 9 � 56 � 81 ���� � = 2250 = 1+81+1512+648+8 811 27200 6144 � 31800 � 9105 � 81 � 56 � 24 � 1; 1 � 3 � 56 � 81 �
? � = 3404 = 1+81+3240+81+1 811 9851 71035 � 9851 � 11666 � 81 � 80 � 2 � 1; 1 � 2 � 80 � 81 �
? � = 6808 = 1+81+6480+243+3 811 92553 71035 � 92553 � 11666 � 81 � 80 � 3 � 1; 1 � 1 � 80 � 81 �
? � = 6808 = 1+82+6642+82+1 821 9 � 11702 81886 � 9 � 11702 � 101517 � 82 � 81 � 1 � 1; 1 � 1 � 81 � 82 �
? � = 800 = 1+84+630+84+1 841 14120 4315 � 6280 � 1684 � 84 � 75 � 10 � 1; 1 � 10 � 75 � 84 �
? � = 1600 = 1+84+1260+252+3 841 14360 4315 � 6840 � 1684 � 84 � 75 � 15 � 1; 1 � 5 � 75 � 84 �
? � = 2000 = 1+84+1575+336+4 841 14480 4315 � 61120 � 1684 � 84 � 75 � 16 � 1; 1 � 4 � 75 � 84 �
? � = 4000 = 1+84+3150+756+9 841 141080 4315 � 62520 � 1684 � 84 � 75 � 18 � 1; 1 � 2 � 75 � 84 �
? � = 1600 = 1+85+1428+85+1 851 9 � 2400 5595 � 9 � 2400 � 15204 � 85 � 84 � 5 � 1; 1 � 5 � 84 � 85 �
? � = 4000 = 1+85+3570+340+4 851 9 � 21600 5595 � 9 � 21600 � 15204 � 85 � 84 � 8 � 1; 1 � 2 � 84 � 85 �
? � = 8000 = 1+85+7140+765+9 851 9 � 23600 5595 � 9 � 23600 � 15204 � 85 � 84 � 9 � 1; 1 � 1 � 84 � 85 �
? � = 644 = 1+96+450+96+1 961 2446 4252 � 4276 � 1669 � 96 � 75 � 16 � 1; 1 � 16 � 75 � 96 �
? � = 1288 = 1+96+900+288+3 961 24138 4252 � 4828 � 1669 � 96 � 75 � 24 � 1; 1 � 8 � 75 � 96 ���� � = 2576 = 1+96+1800+672+7 961 24322 4252 � 41932 � 1669 � 96 � 75 � 28 � 1; 1 � 4 � 75 � 96 �
? � = 1650 = 1+96+1456+96+1 961 12330 6572 � 8495 � 14252 � 96 � 91 � 6 � 1; 1 � 6 � 91 � 96 �
? � = 2475 = 1+96+2184+192+2 961 12660 6572 � 8990 � 14252 � 96 � 91 � 8 � 1; 1 � 4 � 91 � 96 �
? � = 3300 = 1+96+2912+288+3 961 12990 6572 � 81485 � 14252 � 96 � 91 � 9 � 1; 1 � 3 � 91 � 96 �
? � = 4950 = 1+96+4368+480+5 961 121650 6572 � 82475 � 14252 � 96 � 91 � 10 � 1; 1 � 2 � 91 � 96 �
? � = 3300 = 1+97+3104+97+1 971 9 � 8825 71067 � 9 � 8825 � 13582 � 97 � 96 � 3 � 1; 1 � 3 � 96 � 97 �
? � = 4950 = 1+97+4656+194+2 971 9 � 81650 71067 � 9 � 81650 � 13582 � 97 � 96 � 4 � 1; 1 � 2 � 96 � 97 �
? � = 9900 = 1+97+9312+485+5 971 9 � 84125 71067 � 9 � 84125 � 13582 � 97 � 96 � 5 � 1; 1 � 1 � 96 � 97 �
? � = 3534 = 1+99+3234+198+2 991 9 � 91178 6836 � 9 � 91178 � 15341 � 99 � 98 � 6 � 1; 1 � 3 � 98 � 99 �
? � = 10602 = 1+99+9702+792+8 991 9 � 94712 6836 � 9 � 94712 � 15341 � 99 � 98 � 8 � 1; 1 � 1 � 98 � 99 �
? � = 5152 = 1+100+4950+100+1 1001 101288 81540 � 101288 � 121035 � 100 � 99 � 2 � 1; 1 � 2 � 99 � 100 �
? � = 10304 = 1+100+9900+300+3 1001 103864 81540 � 103864 � 121035 � 100 � 99 � 3 � 1; 1 � 1 � 99 � 100 �
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[69] Godsil, C. D., A. Jurišić, and T. Schade, Distance-regular antipodal covers of strongly regular

graphs, Research Report CORR 91-02, Faculty of Mathematics, University of Waterloo
(1990).

[70] Godsil, C. D. and W. J. Martin, Quotients of association schemes, J. Combin. Theory, (A)
69 (1995), 185-199.

[71] Godsil, C. D. and J. Shawe-Taylor, Distance-regularised graphs are distance-regular or
distance-biregular, J. Combin. Theory, (B) 43 (1987), 14-24.



��5�* � � �A� � ! ;�� 1 + D �

[72] Gross, J. L. and T. W. Tucker, Topological Graph Theory. Wiley, New York, (1987).
[73] Haemers, W. H., Eigenvalue Techniques in Design and Graph Theory. Ph.D. Thesis,

Eindhoven University of Technology (1979).
[74] Haemers, W. H., There exists no (76,21,2,7) strongly regular graph, Finite Geometry and

Combinatorics, Proc. 2nd International Conference at Deinze, London Math. Soc. Lecture
Note Ser 199, 175-176. (A. Beutelspacher, F. Buekenhout, J. Doyen, F. De Clerck, J. A.
Thas, J. W. P. Hirschfeld, ed.), Cambridge University Press, Cambridge (1993).

[75] Hall, J. I., Locally Petersen graphs, J. Graph Theory 4 (1980), 173-187.
[76] Hall, J. I., A local characterization of the Johnson scheme, Combinatorica 7 (1) (1987),

77-85.
[77] Hall, M., Affine generalized quadrilaterals, Studies in Pure Math. (ed. L. Mirsky), Academic

Press (1971), 113-116.
[78] Hanani, H., Balanced incomplete block design and related designs, Discr. Math. 11 (1975),

255-369.
[79] Harary, F., Graph Theory. Addison-Wesley, Reading (1972).
[80] Haynsworth, E. V., Application of a theorem on partitioned matrices, J. Res. Nat. Bur.

Stand. (B) 63 (1959), 73-78.
[81] Hemmeter, J., Halved graphs, Johnson and Hamming graphs, Utilitas Math., 25 (1984),

115-118.
[82] Hemmeter, J., Distance-regular graphs and halved graphs, European J. Combin. 7 (1986),

119-129.
[83] Hensel, A. D., Antipodal Distance Regular Graphs. M. Sc. Thesis, University of Waterloo

(1988).
[84] Higman, D. G., Classical groups (with an appendix by D.E. Taylor), Research Report 78-

WSK-04, Eindhoven University of Technology (1978).
[85] Hirschfeld, J. W. P., Projective Geometries Over Finite Fields. Clarendon Press, Oxford

(1979).
[86] Hirschfeld, J. W. P., Finite Projective Spaces of Three Dimensions. Clarendon Press, Oxford

(1985).
[87] Hirschfeld, J. W. P. and J. A. Thas, General Galois Geometries. Clarendon Press, Oxford

(1991).
[88] Hobart, S. A. and D. R. Hughes, Extended Partial Geometries: Nets and dual nets, Europ.

J. Combin. 11 (1990), 357-372.
[89] Hoffman, A. J., Eigenvalues of graphs, in: Studies in Graph Theory, Part II, ed. D.R.

Fulkerson, Mathematical Association of America (1975), pp. 225-245.
[90] Hubaut, X. L., Strongly regular graphs, Discrete Math. 13 (1975), 357-381.
[91] Ivanov, A. A. and S. V. Shpectorov, The P-geometry for � 	 	 has no non-trivial 2-coverings,

Europ. J. Combin. 11 (1990), 373-379.
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� ����� complete multipartite graph 11,120
� � 	 � � lattice graph 92
	  � 9
A � 	 9
A � graph the graph induced by

) � � � �<6�) � �9& � , for dist � � �(& � �  67
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A
absolute bound, 17
adjacency matrix, 11
antipodal

cover, � -cover, 4, 18
class, 4
graph, 4
quotient, 11

arc function, 43, � 
association scheme, 16

B
ball, 9
Berlekamp-van Lint-Seidel graph, 7, 82
Bose-Mesner algebra, 16
box, 111

C
characteristic matrix, 13
Clebsch graph, 80
closure, 97
collinearity graph, 4,122
conference graph, 56, �  , 95
cover (of a graph), 4, 17
covering spread, 41
covering index, 4
cube, & -cube, 3, 87, 95, 120
cyclic cover, 39
cyclic spread, 44

D
Desargues graph, 59, 89
dependent path, 108
distance distribution diagram, 108
distance matrix, 12
distance partition, 1
distance transitive, 3, 124
distance, 9, 119
distance-regular graph,  , 9, 12, 125
distance-regular antipodal cover, 18
dodecahedron, 1

E
elliptic quadratic form, 48
equitable partitions, � , 13
extended generalized quadrangle, 63
( � � 	 )

F
feasible parameter set (

K � � ), 28,50
feasible intersection array (

K � ! ��� ), 61,62
fibre, 4, 17
flat, 22
folded graph, 11
fusion, 75

G
generalized Odd graph, 59
generalized quadrangle ( �
	 ), 4, 5,   , 147

orthogonal ( 	 ), 22
symplectic ( � ), 22
unitary (� ), 23

geodesic, 18
Gewirtz graph, 61, 80, 82
Gram matrix, 116
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G (cont.)
graph, 119

antipodal, 4
Berlekamp-vanLint-Seidel 7, 82
Clebsch, 80
collinearity, 4, 122
conference, 56, �  , 95
Desargues, 59, 89
distance-regular,  , 9, 12, 125
distance-transitive, 3, 124
folded, 11
generalized Odd, 59
Gewirtz, 61, 80, 82
halved, 11
Hermitean forms, 72
Higman-Sims, 72, 80
Johnson 61, 62, 67, 75, 89,118
Klein, 29, 31, 32
lattice, 92, 120
local, 6, 119
Moore, 27
Odd, 89, 118, �  �
Paley, 28, � 
 , 52
Petersen, 1, 52, 72, 73, 80, 89, 102,
�  

point, 4, 122
representation, 15
quotient, 1
Shrikhande, 30, 31
Steiner, 92
strongly regular, 2, 10, � 
 , 125
subconstituent, 28
triangular, 92
two, 27
Wells, 72
Zara, 66

H
halved graph, 11
Hermitean forms graph, 72
Higman-Sims, 72, 80
hyperbolic quadratic form, 48
hyperbolic line, 41

I
icosahedron, 29
imprimitive association scheme, 16
imprimitive graph, 10
intersection array, 3, 10
intersection number, 9, 16
isotropic points, 22

J
Johnson graph 61, 62, 67, 75, 89, 118

K
Klein graph, 29, 31, 32
Krein condition, � � , 28, 56
Krein parameters, 17

L
lattice graph, 92, 120
line graph of a design, 91
local graph, 6, 119
locally

�
, 5

M
Mathon’s construction, 27
matrix of eigenvalues, 56
merging, 33, � �
Moore graph, 27
multiplicity of an eigenvalue, 20A -graph, � � , 67

N
near polygon, 5
neighbourhood, 9
nondegenerate quadratic form, 22
nontrivial strongly regular graph, 52

O
octahedron, 29, 100
Odd graph, 89, 118, �  �
orthogonal generalized quadrangle ( 	 ), 22
ovoid, 35
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P
parabolic quadratic form, 48
Paley graph, 28, � 
 , 52
Petersen graph, 1, 52, 72, 73, 80, 89, 102, �  
Platonic solids, 3, 29
point graph, 4, 122
primitive association scheme, 16
primitive graph, 10
projection (covering), 17
projectively equivalent, 22
� -polynomial, 16

Q
quadratic form, 22
quadric, 22
quotient association scheme, 77
quotient graph, 1
	 -polynomial, � � , 56

R
rank of a quadratic form, 22
regular point, 41
regular spread, 41
regular thin near & -gon, 59
(regular) two graph, 27
representation diagram, 56
resolution class, 102

S
serendipitous spread, 44

sequence of cosines, 14
Shrikhande graph, 30, 31
spread, 5
sphere, 9
strongly regular graph, 2, 10, � 
 , 125
Steiner graph, 92
subalgebra, 77
subconstituent graph, 28
symplectic generalized quadrangle ( � ), 22
switching (substituting), 43

T
tetrahedron, 29
transversal design, 92, 121
triangular graph, 92
Töplitz matrix, 116

U
unmerging (splitting), 34, 78, 80, 85
unitary generalized quadrangle (� ), 22

W
weak resolvable transversal design, 102
(WRTD)
Wells graph, 72

Z
Zara graph, 66





� ���	�	� � � � � � � � � � �
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