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1 IntrodutionLet � = (X;R) denote a distane-regular graph with diameter d � 3, and eigenvalues k = �0 > �1 >� � � > �d (see Setion 2 for de�nitions). We show the intersetion numbers a1; b1 satisfy��1 + ka1 + 1���d + ka1 + 1� � � ka1b1(a1 + 1)2 : (1)We de�ne � to be tight whenever � is not bipartite, and equality holds in (1). We haraterize thetight ondition in the following ways.Our �rst haraterization is linear algebrai. For all verties x 2 X, let x̂ denote the vetor in RXwith a 1 in oordinate x, and 0 in all other oordinates. Suppose for the moment that a1 6= 0, let x; ydenote adjaent verties in X, and write w = P ẑ, where the sum is over all verties z 2 X adjaentto both x and y. Let � denote one of �1; �2; : : : ; �d, and let E denote the orresponding primitiveidempotent of the Bose-Mesner algebra. We say the edge xy is tight with respet to � whenever Ex̂,Eŷ, Ew are linearly dependent. We show that if xy is tight with respet to �, then � is one of �1; �d.Moreover, we show the following are equivalent: (i) � is tight; (ii) a1 6= 0 and all edges of � are tightwith respet to both �1; �d; (iii) a1 6= 0 and there exists an edge of � whih is tight with respet toboth �1; �d.Our seond haraterization of the tight ondition involves the intersetion numbers. We show �is tight if and only if the intersetion numbers are given by ertain rational expressions involving dindependent variables.Our third haraterization of the tight ondition involves the onept of 1-homogeneous that appearsin the work of Nomura [13℄, [14℄, [15℄. See also Curtin [7℄. We show the following are equivalent: (i)� is tight; (ii) a1 6= 0; ad = 0, and � is 1-homogeneous; (iii) a1 6= 0; ad = 0, and � is 1-homogeneouswith respet to at least one edge.Our fourth haraterization of the tight ondition involves the loal struture and is reminisent ofsome results by Cameron, Goethals and Seidel [5℄ and Dikie and Terwilliger [8℄. For all x 2 X, let�(x) denote the vertex subgraph of � indued on the verties in X adjaent to x. For notationalonveniene, de�ne b+ := �1 � b1(1 + �d)�1 and b� := �1 � b1(1 + �1)�1. We show the followingare equivalent: (i) � is tight; (ii) for all x 2 X, �(x) is onneted strongly-regular with nontrivialeigenvalues b+, b�; (iii) there exists x 2 X suh that �(x) is onneted strongly-regular with nontrivialeigenvalues b+, b�.We present three in�nite families and nine sporadi examples of tight distane-regular graphs. Theseare the Johnson graphs J(2d; d), the halved ubes 12H(2d; 2), the Taylor graphs [18℄, four 3-foldantipodal overs of diameter 4 onstruted from the sporadi Fisher groups [3, p. 397℄, two 3-foldantipodal overs of diameter 4 onstruted by Soiher [17℄, a 2-fold and a 4-fold antipodal over of1



diameter 4 onstruted by Meixner [12℄, and the Patterson graph [3, Thm. 13.7.1℄, whih is primitive,distane-transitive and of diameter 4.2 PreliminariesIn this setion, we review some de�nitions and basi onepts. See the books of Bannai and Ito [1℄ orBrouwer, Cohen, and Neumaier [3℄ for more bakground information.Let � = (X;R) denote a �nite, undireted, onneted graph, without loops or multiple edges, withvertex set X, edge set R, path-length distane funtion �, and diameter d := maxf�(x; y) j x; y 2 Xg:For all x 2 X and for all integers i, we set �i(x) := fy 2 X j �(x; y) = ig:We abbreviate �(x) := �1(x).By the valeny of a vertex x 2 X, we mean the ardinality of �(x). Let k denote a nonnegative integer.Then � is said to be regular, with valeny k, whenever eah vertex in X has valeny k. � is said tobe distane-regular whenever for all integers h; i; j (0 � h; i; j � d), and for all x; y 2 X with�(x; y) = h, the number phij := j�i(x) \ �j(y)jis independent of x and y. The onstants phij are known as the intersetion numbers of �.For notational onveniene, set i := pi1 i�1 (1 � i � d), ai := pi1i (0 � i � d), bi := pi1 i+1(0 � i � d� 1), ki := p0ii (0 � i � d), and de�ne 0 = 0, bd = 0. We note a0 = 0 and 1 = 1.From now on, � = (X;R) will denote a distane-regular graph of diameter d � 3. Observe � isregular with valeny k = k1 = b0, and thatk = i + ai + bi (0 � i � d): (2)We now reall the Bose-Mesner algebra. Let MatX(R) denote the R-algebra onsisting of all matrieswith entries in R whose rows and olumns are indexed by X. For eah integer i (0 � i � d), let Aidenote the matrix in MatX(R) with x; y entry(Ai)xy = ( 1; if �(x; y) = i,0; if �(x; y) 6= i (x; y 2 X):Ai is known as the ith distane matrix of �. ObserveA0 = I; (3)A0 +A1 + : : :+Ad = J (J = all 1's matrix); (4)Ati = Ai (0 � i � d); (5)AiAj = dXh=0 phijAh (0 � i; j � d): (6)We abbreviate A := A1, and refer to this as the adjaeny matrix of �. Let M denote the subalgebraof MatX(R) generated by A. We refer to M as the Bose-Mesner algebra of �. Using (3){(6), one an2



readily show A0; A1; : : : ; Ad form a basis for M . By [1, p59, p64℄, the algebra M has a seondbasis E0; E1; : : : ; Ed suh thatE0 = jXj�1J; (7)E0 +E1 + : : :+Ed = I; (8)Eti = Ei (0 � i � d); (9)EiEj = ÆijEi (0 � i; j � d): (10)The E0; E1; : : : ; Ed are known as the primitive idempotents of �. We refer to E0 as the trivialidempotent.Let �0; �1; : : : ; �d denote the real numbers satisfying A =Pdi=0 �iEi: Observe AEi = EiA = �iEi for0 � i � d, and that �0; �1; : : : ; �d are distint sine A generates M . It follows from (7) that �0 = k,and it is known �k � �i � k for 0 � i � d [1, p.197℄. We refer to �i as the eigenvalue of � assoiatedwith Ei, and all �0 the trivial eigenvalue. For eah integer i (0 � i � d), let mi denote the rank ofEi. We refer to mi as the multipliity of Ei (or �i). We observe m0 = 1.We now reall the osines. Let � denote an eigenvalue of �, and let E denote the assoiated primitiveidempotent. Let �0; �1; : : : ; �d denote the real numbers satisfyingE = jXj�1m dXi=0 �iAi; (11)where m denotes the multipliity of �. Taking the trae in (11), we �nd �0 = 1. We often abbreviate� = �1. We refer to �i as the ith osine of � with respet to � (or E), and all �0; �1; : : : ; �d theosine sequene of � assoiated with � (or E). We interpret the osines as follows. Let RX denotethe vetor spae onsisting of all olumn vetors with entries in R whose oordinates are indexed byX. We observe MatX(R) ats on RX by left multipliation. We endow RX with the Eulidean innerprodut satisfying hu; vi = utv (u; v 2 RX ); (12)where t denotes transposition. For eah x 2 X, let x̂ denote the element in RX with a 1 in oordinatex, and 0 in all other oordinates. We note fx̂ j x 2 Xg is an orthonormal basis for RX .Lemma 2.1 Let � = (X;R) denote a distane-regular graph with diameter d � 3. Let E denotea primitive idempotent of �, and let �0; �1; : : : ; �d denote the assoiated osine sequene. Then forall integers i (0 � i � d), and for all x; y 2 X suh that �(x; y) = i, the following (i){(iii) hold.(i) hEx̂;Eŷi = mjXj�1�i, where m denotes the multipliity of E.(ii) The osine of the angle between the vetors Ex̂ and Eŷ equals �i.(iii) �1 � �i � 1. 3



Proof. Line (i) is a routine appliation of (10), (11), (12). Line (ii) is immediate from (i), and (iii) isimmediate from (ii).Lemma 2.2 [3, Set. 4.1.B℄ Let � denote a distane-regular graph with diameter d � 3. Then forany omplex numbers �; �0; �1; : : : ; �d, the following are equivalent.(i) � is an eigenvalue of �, and �0; �1; : : : ; �d is the assoiated osine sequene.(ii) �0 = 1, and i�i�1 + ai�i + bi�i+1 = ��i (0 � i � d); (13)where ��1 and �d+1 are indeterminates.(iii) �0 = 1, k� = �, andi(�i�1 � �i)� bi(�i � �i+1) = k(� � 1)�i (1 � i � d); (14)where �d+1 is an indeterminate.For later use we reord a number of onsequenes of Lemma 2.2.Lemma 2.3 Let � denote a distane-regular graph with diameter d � 3. Let � denote an eigenvalueof �, and let �0; �1; : : : ; �d denote the assoiated osine sequene. Then (i){(vi) hold below.(i) kb1�2 = �2 � a1� � k:(ii) kb1(� � �2) = (k � �)(1 + �):(iii) kb1(1� �2) = (k � �)(� + k � a1):(iv) k2b1(�2 � �2) = (k � �)(k + �(a1 + 1)).(v) d(�d�1 � �d) = k(� � 1)�d.(vi) ad(�d�1 � �d) = k(�d�1 � ��d).Proof. To get (i), set i = 1 in (13), and solve for �2. Lines (ii){(iv) are routinely veri�ed using (i)above and k� = �. To get (v), set i = d, bd = 0 in Lemma 2.2(iii). To get (vi), set d = k � ad in (v)above, and simplify the result.In this artile, the seond largest and minimal eigenvalue of a distane-regular graph turn out to be ofpartiular interest. In the next several lemmas, we give some basi information on these eigenvalues.Lemma 2.4 [9, Lem. 13.2.1℄ Let � denote a distane-regular graph with diameter d � 3, andeigenvalues �0 > �1 > � � � > �d. Let � denote one of �1; �d and let �0; �1; : : : ; �d denote the osinesequene for �.(i) Suppose � = �1. Then �0 > �1 > � � � > �d.(ii) Suppose � = �d. Then (�1)i�i > 0 (0 � i � d).4



Reall a distane-regular graph � is bipartite whenever the intersetion numbers satisfy ai = 0 for0 � i � d, where d denotes the diameter.Lemma 2.5 Let � = (X;R) denote a distane-regular graph with diameter d � 3. Let �d denotethe minimal eigenvalue of �, and let �0; �1; : : : ; �d denote the assoiated osine sequene. Then thefollowing are equivalent: (i) � is bipartite; (ii) �d = �k; (iii) �1 = �1; (iv) �2 = 1. Moreover, suppose(i){(iv) hold. Then �i = (�1)i for 0 � i � d:Proof. The equivalene of (i), (ii) follows from [3, Prop. 3.2.3℄. The equivalene of (ii), (iii) isimmediate from k�1 = �d. The remaining impliations follow from [3, Prop. 4.4.7℄.Lemma 2.6 Let � denote a distane-regular graph with diameter d � 3 and eigenvalues �0 > �1 >� � � > �d. Then (i){(iii) hold below.(i) 0 < �1 < k.(ii) a1 � k � �d < �1.(iii) Suppose � is not bipartite. Then a1 � k < �d.Proof. (i) The eigenvalue �1 is positive by [3, Cor. 3.5.4℄, and we have seen �1 < k.(ii) Let �1; �2 denote the �rst and seond osines for �d. Then �2 � 1 by Lemma 2.1(iii), so a1�k � �din view of Lemma 2.3(iii). Also �1 < �2 by Lemma 2.4(ii), so �d < �1 in view of Lemma 2.3(ii).(iii) Suppose �d = a1 � k. Applying Lemma 2.3(iii), we �nd �2 = 1, where �2 denotes the seondosine for �d. Now � is bipartite by Lemma 2.5, ontraditing our assumptions. Hene �d > a1 � k,as desired.Lemma 2.7 Let � = (X;R) denote a nonbipartite distane-regular graph with diameter d � 3, letx; y denote adjaent verties in X, and let E denote a nontrivial primitive idempotent of �. Thenthe vetors Ex̂ and Eŷ are linearly independent.Proof. Let � denote the �rst osine assoiated to E. Then � 6= 1, sine E is nontrivial, and � 6= �1,sine � is not bipartite. Applying Lemma 2.1(ii), we see Ex̂ and Eŷ are linearly independent.We mention a few results on the intersetion numbers.Lemma 2.8 [3, Prop. 5.5.1℄ Let � denote a distane-regular graph with diameter d � 3 and a1 6= 0.Then ai 6= 0 (1 � i � d� 1).Lemma 2.9 [3, Lem. 4.1.7℄ Let � denote a distane-regular graph with diameter d � 3. Then theintersetion numbers satisfyp1ii = b1b2 : : : bi�112 : : : i ai; p1i�1;i = b1b2 : : : bi�112 : : : i�1 (1 � i � d):5



For the remainder of this setion, we desribe a point of view we will adopt throughout the paper.De�nition 2.10 Let � = (X;R) denote a distane-regular graph with diameter d � 3, and �x adjaentverties x; y 2 X. For all integers i and j we de�ne Dji = Dji (x; y) byDji = �i(x) \ �j(y): (15)We observe jDji j = p1ij for 0 � i; j � d, and Dji = ; otherwise. We visualize the Dji as follows.
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Figure 2.1: Distane distribution orresponding to an edge. Observe: Di�1i [ Dii [Di+1i = �i(x)for i = 1; : : : ; d. The number beside edges onneting ells Dji indiate how many neighbours avertex from the loser ell has in the other ell, see Lemma 2.11.Lemma 2.11 Let � = (X;R) denote a distane-regular graph with diameter d � 3. Fix adjaentverties x; y 2 X, and pik any integer i (1 � i � d). Then with referene to De�nition 2.10, thefollowing (i) and (ii) hold.(i) Eah z 2 Dii�1 (resp. Di�1i ) is adjaent to(a) preisely i�1 verties in Di�1i�2 (resp. Di�2i�1),(b) preisely i � i�1 � j�(z) \Di�1i�1j verties in Di�1i (resp. Dii�1),() preisely ai�1 � j�(z) \Di�1i�1j verties in Dii�1 (resp. Di�1i ),(d) preisely bi verties in Di+1i (resp. Dii+1),(e) preisely ai � ai�1 + j�(z) \Di�1i�1j verties in Dii.(ii) Eah z 2 Dii is adjaent to(a) preisely i � j�(z) \Di�1i�1 j verties in Dii�1,(b) preisely i � j�(z) \Di�1i�1j verties in Di�1i ,() preisely bi � j�(z) \Di+1i+1j verties in Di+1i ,(d) preisely bi � j�(z) \Di+1i+1j verties in Dii+1,(e) preisely ai � bi � i + j�(z) \Di�1i�1j+ j�(z) \Di+1i+1j verties in Dii.Proof. Routine. 6



3 Edges that are tight with respet to an eigenvalueLet � = (X;R) denote a graph, and let 
 denote a nonempty subset of X. By the vertex subgraph of� indued on 
, we mean the graph with vertex set 
, and edge set fxy j x; y 2 
; xy 2 Rg.De�nition 3.1 Let � = (X;R) denote a distane-regular graph with diameter d � 3 and intersetionnumber a1 6= 0. For eah edge xy 2 R, we de�ne the salar f = f(x; y) byf := a�11 ���f(z; w) 2 X2 j z; w 2 D11; �(z; w) = 2g���; (16)where D11 = D11(x; y) is from (15). We observe f is the average valeny of the omplement of thevertex subgraph indued on D11.We begin with some elementary fats about f .Lemma 3.2 Let � = (X;R) denote a distane-regular graph with diameter d � 3 and a1 6= 0. Letx; y denote adjaent verties in X. Then with referene to (15), (16), lines (i){(iv) hold below.(i) The number of edges in R onneting a vertex in D11 with a vertex in D21 is equal to a1f .(ii) The number of edges in the vertex subgraph indued on D11 is equal to a1(a1 � 1� f)=2.(iii) The number of edges in the vertex subgraph indued on D21 is equal to a1(b1 � f)=2.(iv) 0 � f; f � a1 � 1; f � b1:Proof. Routine.The following lemma provides another bound for f .Lemma 3.3 Let � = (X;R) denote a distane-regular graph with diameter d � 3 and a1 6= 0. Letx; y denote adjaent verties in X, and write f = f(x; y). Then for eah nontrivial eigenvalue � of �,(k + �)(1 + �) f � b1(k + �(a1 + 1)): (17)Proof. Let �0; : : : ; �d denote the osine sequene of � and let E denote the orresponding primitiveidempotent. Set w := Xz2D11 ẑ;where D11 = D11(x; y) is from (15). Let G denote the Gram matrix for the vetors Ex̂, Eŷ, Ew; that isG := 0B� kEx̂k2 hEx̂; Eŷi hEx̂; EwihEŷ; Ex̂i kEŷk2 hEŷ; EwihEw; Ex̂i hEw; Eŷi kEwk2 1CA :7



On one hand, the matrix G is positive semi-de�nite, so it has nonnegative determinant. On the otherhand, by Lemma 2.1,det(G) = m3jXj�3 det0B� �0 �1 a1�1�1 �0 a1�1a1�1 a1�1 a1(�0 + (a1 � f � 1)�1 + f�2) 1CA= m3a1jXj�3 (� � 1) �(� � �2)(1 + �)f � (1� �)(a1� + 1 + �)�;where m denotes the multipliity of �. Sine a1 > 0 and � < 1, we �nd(� � �2)(1 + �) f � (1� �)(a1� + 1 + �): (18)Eliminating �; �2 in (18) using � = k� and Lemma 2.3(ii), and simplifying the result using � < k, weroutinely obtain (17).Corollary 3.4 Let � = (X;R) denote a distane-regular graph with diameter d � 3 and a1 6= 0. Letx; y denote adjaent verties in X, and let � denote a nontrivial eigenvalue of �. Then with refereneto De�nition 2.10, the following are equivalent.(i) Equality is attained in (17).(ii) Ex̂; Eŷ; Xz2D11 Eẑ are linearly dependent.(iii) Xz2D11 Eẑ = a1�k + � (Ex̂+Eŷ).We say the edge xy is tight with respet to � whenever (i){(iii) hold above.Proof. (i)() (ii) Let the matrix G be as in the proof of Lemma 3.3. Then we �nd (i) holds if andonly if G is singular, if and only if (ii) holds.(ii) =) (iii) � is not bipartite sine a1 6= 0, so Ex̂; and Eŷ are linearly independent by Lemma 2.7.It follows Xz2D11 Eẑ = �Ex̂+ �Eŷ (19)for some �; � 2 R. Taking the inner produt of (19) with eah of Ex̂, Eŷ using Lemma 2.1, we readilyobtain � = � = a1�(k + �)�1.(iii) =) (ii) Clear.Let � = (X;R) denote a distane-regular graph with diameter d � 3, a1 6= 0, and eigenvalues�0 > �1 > � � � > �d. Pik adjaent verties x; y 2 X, and write f = f(x; y). Referring to (17), we nowonsider whih of �1; �2; : : : ; �d gives the best bounds for f . Let � denote one of �1; �2; : : : ; �d. Assume� 6= �1; otherwise (17) gives no information about f . If � > �1 (resp. � < �1), line (17) gives anupper (resp. lower) bound for f . Consider the partial fration deompostionb1 k + �(a1 + 1)(k + �)(1 + �) = b1k � 1� ka1k + � + b11 + ��:8



Sine the map F : R n f�k;�1g �! R, de�ned byx 7! ka1k + x + b11 + xis stritly dereasing on the intervals (�k;�1) and (�1;1), we �nd in view of Lemma 2.6 that theleast upper bound for f is obtained at � = �1, and the greatest lower bound is obtained at � = �d.Theorem 3.5 Let � = (X;R) denote a distane-regular graph with diameter d � 3, a1 6= 0, andeigenvalues �0 > �1 > � � � > �d. For all edges xy 2 R,b1 k + �d(a1 + 1)(k + �d)(1 + �d) � f(x; y) � b1 k + �1(a1 + 1)(k + �1)(1 + �1) : (20)Proof. This is immediate from (17) and Lemma 2.6.Corollary 3.6 Let � = (X;R) denote a distane-regular graph with diameter d � 3, a1 6= 0, andeigenvalues �0 > �1 > � � � > �d. For all edges xy 2 R,(i) xy is tight with respet to �1 if and only if equality holds in the right inequality of (20),(ii) xy is tight with respet to �d if and only if equality holds in the left inequality of (20),(iii) xy is not tight with respet to �i for 2 � i � d� 1.Proof. (i),(ii) Immediate from (17) and Corollary 3.4.(iii) First suppose �i = �1. We do not have equality for � = �i in (17), sine the left side equals 0,and the right side equals b21. In partiular, xy is not tight with respet to �i. Next suppose �i 6= �1.Then we do not have equality for � = �i in (17) in view of the above mentioned fat, that the funtionF is stritly dereasing on the intervals (�k;�1) and (�1;1).4 Tight edges and ombinatorial regularityTheorem 4.1 Let � = (X;R) denote a distane-regular graph with diameter d � 3 and intersetionnumber a1 6= 0. Let � denote a nontrivial eigenvalue of �, and let �0; �1; : : : ; �d denote its osinesequene. Let x; y denote adjaent verties in X. Then with referene to De�nition 2.10, the followingare equivalent.(i) xy is tight with respet to �.(ii) For 1 � i � d; both �i�1 6= �i, and for all z 2 Dii�1j�i�1(z) \D11j = a11 + � ��i�1 � �i�i�1 � �i ; (21)j�i(z) \D11j = a11 + � �i�1 � ��i�i�1 � �i : (22)9



Proof. (i) =) (ii) Let the integer i be given. Observe by Corollary 3.6 that � is either the seondlargest eigenvalue �1 or the least eigenvalue �d, so �i�1 6= �i in view of Lemma 2.4. Pik any z 2 Dii�1.Observe D11 ontains a1 verties, and eah is at distane i� 1 or i from z, soj�i�1(z) \D11j+ j�i(z) \D11 j = a1: (23)Let E denote the primitive idempotent assoiated to �. By Corollary 3.4(iii), and sine xy is tightwith respet to �, Xw2D11 Eŵ = a1�1 + � (Ex̂+Eŷ): (24)Taking the inner produt of (24) with Eẑ using Lemma 2.1, we obtain�i�1j�i�1(z) \D11 j+ �ij�i(z) \D11 j = a1�1 + � (�i�1 + �i): (25)Solving the system (23), (25), we routinely obtain (21), (22).(ii) =) (i) We show equality holds in (17). Counting the edges between D11 and D21 using (21) (withi = 2), we �nd in view of Lemma 3.2(i) thatf(x; y) = b1 �2 � �2(1 + �)(� � �2) : (26)Eliminating �; �2 in (26) using � = k� and Lemma 2.3(ii),(iv), we readily �nd equality holds in (17).Now xy is tight with respet to � by Corollary 3.4.Theorem 4.2 Let � = (X;R) denote a distane-regular graph with diameter d � 3 and a1 6= 0. Let� denote a nontrivial eigenvalue of �, and let �0; �1; : : : ; �d denote its osine sequene. Let x; y denoteadjaent verties in X. Then with referene to De�nition 2.10, the following are equivalent.(i) xy is tight with respet to �,(ii) For 1 � i � d� 1; both �i 6= �i+1, and for all z 2 Diij�i+1(z) \D11 j = j�i�1(z) \D11j �i�1 � �i�i � �i+1 + a1 1� �1 + � �i�i � �i+1 ; (27)j�i(z) \D11 j = �j�i�1(z) \D11j �i�1 � �i+1�i � �i+1 + a1 2�1 + �� a1 1� �1 + � �i+1�i � �i+1 : (28)Suppose (i){(ii) above, and that ad 6= 0. Then for all z 2 Dddj�d�1(z) \D11j = � a1 1� �1 + � �d�d�1 � �d ; (29)j�d(z) \D11j = a1 + a1 1� �1 + � �d�d�1 � �d : (30)10



Proof. (i) =) (ii) Let the integer i be given. Observe by Corollary 3.6 that � is either the seondlargest eigenvalue �1 or the least eigenvalue �d, so �i 6= �i+1 by Lemma 2.4. Pik any z 2 Dii.Proeeding as in the proof of Theorem 4.1 (i) =) (ii), we �ndj�i�1(z) \D11j+ j�i(z) \D11j+ j�i+1(z) \D11j = a1; (31)�i�1j�i�1(z) \D11 j+ �ij�i(z) \D11 j+ �i+1j�i+1(z) \D11j = 2��ia11 + � : (32)Solving (31), (32) for j�i(z) \D11j, j�i+1(z) \D11j, we routinely obtain (27) and (28).(ii) =) (i) Setting i = 1 in (27), and evaluating the result using (16), we �ndf(x; y) = 1� �� � �2 + a1 1� �1 + � �� � �2 : (33)Eliminating �; �2 in (33) using � = k� and Lemma 2.3(ii), we �nd equality holds in (17). Now xy istight with respet to � by Corollary 3.4.Now suppose (i){(ii) hold above, and that ad 6= 0. Pik any z 2 Ddd. Proeeding as in the proof ofTheorem 4.1 (i) =) (ii), we �ndj�d�1(z) \D11j+ j�d(z) \D11j = a1; (34)�d�1j�d�1(z) \D11 j+ �dj�d(z) \D11j = 2�d�a11 + � : (35)Observe �d�1 6= �d by (ii) above, so the linear system (34), (35) has unique solution (29), (30).5 The tightness of an edgeDe�nition 5.1 Let � = (X;R) denote a distane-regular graph with diameter d � 3, intersetionnumber a1 6= 0, and eigenvalues �0 > �1 > � � � > �d. For eah edge xy 2 R, let t = t(x; y) denote thenumber of nontrivial eigenvalues of � with respet to whih xy is tight. We all t the tightness ofthe edge xy. In view of Corollary 3.6 we have:(i) t = 2 if xy is tight with respet to both �1 and �d;(ii) t = 1 if xy is tight with respet to exatly one of �1 and �d;(iii) t = 0 if xy is not tight with respet to �1 or �d.Theorem 5.2 Let � = (X;R) denote a distane-regular graph with diameter d � 3 and a1 6= 0.For all edges xy 2 R, the tightness t = t(x; y) is given byt = 3d+ 1� dim (MH); (36)where M denotes the Bose-Mesner algebra of �, whereH = Span�x̂; ŷ; Xz2D11(x;y) ẑ�; (37)and where MH means Spanfmh j m 2M; h 2 Hg.11



Proof. Sine E0; E1; : : : ; Ed is a basis for M , and in view of (10),MH = dXi=0EiH (diret sum);and it follows dimMH = dXi=0 dim EiH:Note that dim E0H = 1. For 1 � i � d, we �nd by Lemma 2.7 and Corollary 3.4(ii) that dim EiH = 2if xy is tight with respet to �i, and dim EiH = 3 otherwise. The result follows.6 Tight graphs and the Fundamental BoundIn this setion, we obtain an inequality involving the seond largest and minimal eigenvalue of adistane-regular graph. To obtain it, we need the following lemma.Lemma 6.1 Let � denote a nonbipartite distane-regular graph with diameter d � 3, and eigenvalues�0 > �1 > � � � > �d. Thenk + �1(a1 + 1)(k + �1)(1 + �1) � k + �d(a1 + 1)(k + �d)(1 + �d) (38)= 	 (a1 + 1)(�d � �1)(1 + �1)(1 + �d)(k + �1)(k + �d) ; (39)where 	 = ��1 + ka1 + 1���d + ka1 + 1� + ka1b1(a1 + 1)2 : (40)Proof. Put (38) over a ommon denominator, and simplify.We now present our inequality. We give two versions.Theorem 6.2 Let � denote a distane-regular graph with diameter d � 3, and eigenvalues �0 > �1 >� � � > �d. Then (i), (ii) hold below.(i) Suppose � is not bipartite. Thenk + �d(a1 + 1)(k + �d)(1 + �d) � k + �1(a1 + 1)(k + �1)(1 + �1) : (41)(ii) ��1 + ka1 + 1���d + ka1 + 1� � � ka1b1(a1 + 1)2 : (42)We refer to (42) as the Fundamental Bound. 12



Proof. (i) First assume a1 = 0. Then the left side of (41) equals (1+ �d)�1, and is therefore negative.The right side of (41) equals (1 + �1)�1, and is therefore positive. Next assume a1 6= 0. Then (41) isimmediate from (20).(ii) First assume � is bipartite. Then �d = �k and a1 = 0, so both sides of (42) equal 0. Next assume� is not bipartite. Then (42) is immediate from (i) above, Lemma 6.1, and Lemma 2.6.We now onsider when equality is attained in Theorem 6.2. To avoid trivialities, we onsider only thenonbipartite ase.Corollary 6.3 Let � denote a nonbipartite distane-regular graph with diameter d � 3, and eigenval-ues �0 > �1 > � � � > �d. Then the following are equivalent.(i) Equality holds in (41).(ii) Equality holds in (42).(iii) a1 6= 0 and every edge of � is tight with respet to both �1 and �d.(iv) a1 6= 0 and there exists an edge of � whih is tight with respet to both �1 and �d.Proof. (i) () (ii) Immediate from Lemma 6.1.(i),(ii) =) (iii) Suppose a1 = 0. We assume (42) holds with equality, so (�1 + k)(�d + k) = 0; foring�d = �k. Now � is bipartite by Lemma 2.5, ontraditing the assumption. Hene a1 6= 0. Let xydenote an edge of �. Observe the expressions on the left and right in (20) are equal, so they bothequal f(x; y). Now xy is tight with respet to both �1, �d by Corollary 3.6(i),(ii).(iii) =) (iv) Clear.(iv) =) (i) Suppose the edge xy is tight with respet to both �1, �d. By Corollary 3.6(i),(ii), thesalar f(x; y) equals both the expression on the left and the expression on the right in (20), so theseexpressions are equal.De�nition 6.4 Let � = (X;R) denote a distane-regular graph with diameter d � 3. We say � istight whenever � is not bipartite and the equivalent onditions (i){(iv) hold in Corollary 6.3.We wish to emphasize the following fat.Proposition 6.5 Let � denote a tight distane-regular graph with diameter d � 3. Then ai 6= 0(1 � i � d� 1).Proof. Observe a1 6= 0 by Corollary 6.3(iii) and De�nition 6.4. Now a2; : : : ; ad�1 are nonzero byLemma 2.8.We �nish this setion with some inequalities involving the eigenvalues of tight graphs.13



Lemma 6.6 Let � = (X;R) denote a tight distane-regular graph with diameter d � 3 and eigenvalues�0 > �1 > � � � > �d. Then (i){(iv) hold below.(i) �d < �ka1 + 1 .(ii) Let �, �2 denote the �rst and seond osines for �d, respetively. Then �2 < �2.(iii) Let �, �2 denote the �rst and seond osines for �1, respetively. Then �2 > �2.(iv) For eah edge xy of �, the salar f = f(x; y) satis�es 0 < f < b1.Proof. (i) Observe (42) holds with equality sine � is tight, and a1 6= 0 by Proposition 6.5, so��1 + ka1 + 1���d + ka1 + 1� < 0:Sine �1 > �d, the �rst fator is positive, and the seond is negative. The result follows.(ii) By Lemma 2.3(iv), k2b1(�2 � �2) = (k � �d)(k + �d(a1 + 1)): (43)The right side of (43) is negative in view of (i) above, so �2 < �2.(iii) By Lemma 2.3(iv), k2b1(�2 � �2) = (k � �1)(k + �1(a1 + 1)): (44)The right side of (44) is positive in view of Lemma 2.6(i), so �2 > �2.(iv) Observe f equals the expression on the right in (20). This expression is positive and less than b1,sine �1 is positive.7 Two haraterizations of tight graphsTheorem 7.1 Let � denote a nonbipartite distane-regular graph with diameter d � 3, and eigenval-ues �0 > �1 > � � � > �d. Then for all real numbers �; �, the following are equivalent.(i) � is tight, and �; � is a permutation of �1; �d.(ii) �d � �; � � �1, and ��+ ka1 + 1��� + ka1 + 1� = � ka1b1(a1 + 1)2 : (45)Proof. (i) =) (ii) Immediate sine (42) holds with equality.(ii) =) (i) Interhanging � and � if neessary, we may assume � � �. Sine the right side of (45) isnonpositive, we have 0 � �+ ka1 + 1 � �1 + ka1 + 1 ;0 � � + ka1 + 1 � �d + ka1 + 1 :14



By (45), the above inequalities, and (42), we have� ka1b1(a1 + 1)2 = ��+ ka1 + 1��� + ka1 + 1�� ��1 + ka1 + 1���d + ka1 + 1� (46)� � ka1b1(a1 + 1)2 : (47)Apparently we have equality in (46), (47). In partiular (42) holds with equality, so � is tight. Wementioned equality holds in (46). Neither side is 0, sine a1 6= 0 by Proposition 6.5, and it follows� = �1, � = �d.Theorem 7.2 Let � = (X;R) denote a nonbipartite distane-regular graph with diameter d � 3, andeigenvalues �0 > �1 > � � � > �d. Let � and �0 denote distint eigenvalues of �, with respetive osinesequenes �0; �1; : : : ; �d and �0; �1; : : : ; �d. The following are equivalent.(i) � is tight, and �, �0 is a permutation of �1, �d.(ii) For 1 � i � d, ��i�1 � �i(1 + �)(�i�1 � �i) = ��i�1 � �i(1 + �)(�i�1 � �i) ; (48)and the denominators in (48) are nonzero.(iii) �2 � �2(1 + �)(� � �2) = �2 � �2(1 + �)(�� �2) ; (49)and the denominators in (49) are nonzero.(iv) � and �0 are both nontrivial, and(�2�2 � ��)(�� �) = (��2 � �2�)(�� � 1): (50)Proof. (i) =) (ii) Reall a1 6= 0 by Proposition 6.5. Pik adjaent verties x; y 2 X, and letD11 = D11(x; y) be as in De�nition 2.10. By Corollary 6.3(iii), the edge xy is tight with respet to both�, �0; applying (21), we �nd both sides of (48) equal a�11 j�i�1(z)\D11 j, where z denotes any vertex inDii�1(x; y). In partiular, the two sides of (48) are equal. The denominators in (48) are nonzero byLemma 2.4 and Lemma 2.5.(ii) =) (iii) Set i = 2 in (ii).(iii) =) (iv) � is nontrivial; otherwise � = �2 = 1, and a denominator in (49) is zero. Similarly �0 isnontrivial. To get (50), put (49) over a ommon denominator and simplify the result.(iv) =) (i) Eliminating �; �2; �; �2 in (50) using � = k�, �0 = k�, and Lemma 2.3(i), we routinely�nd (45) holds for � = � and � = �0. Applying Theorem 7.1, we �nd � is tight, and that �, �0 is apermutation of �1, �d. 15



8 The auxiliary parameterLet � denote a tight distane-regular graph with diameter d � 3. We are going to show the intersetionnumbers of � are given by ertain rational expressions involving d independent parameters. We beginby introduing one of these parameters.De�nition 8.1 Let � denote a tight distane-regular graph with diameter d � 3, and eigenvalues�0 > �1 > � � � > �d. Let � denote one of �1, �d. By the auxiliary parameter of � assoiated with �,we mean the salar " = k2 � ��0k(� � �0) ; (51)where �0 denotes the omplement of � in f�1; �dg. We observe the auxiliary parameter for �d is theopposite of the auxiliary parameter for �1.Lemma 8.2 Let � denote a tight distane-regular graph with diameter d � 3, and eigenvalues �0 >�1 > � � � > �d. Let � denote one of �1; �d, and let " denote the auxiliary parameter for �. Then (i){(iv)hold below.(i) " > 0 if � = �1, and " < 0 if � = �d.(ii) 1 < j"j.(iii) j"j < k��11 .(iv) j"j < �k��1d .Proof. First assume � = �1. By (51),"� 1 = (k + �d)(k � �1)(�1 � �d)�1k�1 > 0;so " > 1. Reall �1 > 0 and �d < 0. By this and (51),k��11 � " = �d(k � �1)(k + �1)(�d � �1)�1k�1��11 > 0;so " < k��11 . Similarilyk��1d + " = �1(k � �d)(k + �d)(�1 � �d)�1k�1��1d < 0;so " < �k��1d . We now have the result for � = �1. The result for � = �d follows in view of the lastline of De�nition 8.1.Theorem 8.3 Let � denote a nonbipartite distane-regular graph with diameter d � 3, and eigenval-ues �0 > �1 > � � � > �d. Let � and �0 denote any eigenvalues of �, with respetive osine sequenes�0; �1; : : : ; �d and �0; �1; : : : ; �d. Let " denote any omplex salar. Then the following are equivalent.16



(i) � is tight, �; �0 is a permutation of �1; �d, and " is the auxiliary parameter for �.(ii) � and �0 are both nontrivial, and�i�i � �i�1�i�1 = "(�i�1�i � �i�1�i) (52)for 1 � i � d.(iii) � and �0 are both nontrivial, and��� 1 = "(�� �); �2�2 � �� = "(��2 � ��2): (53)Proof. (i) =) (ii) It is lear �, �0 are both nontrivial. To see (52), observe �; �0 are distint, so theequivalent statements (i){(iv) in Theorem 7.2 hold. Putting (48) over a ommon denominator andsimplifying using " = (1� ��)(� � �)�1, we get (52).(ii) =) (iii) Set i = 1 and i = 2 in (52).(iii) =) (i) We �rst show � 6= �0. Suppose � = �0. Then � = �, so the left equation of (53) beomes�2 = 1, foring � = 1 or � = �1. But � 6= 1 sine � is nontrivial, and � 6= �1 sine � is not bipartite.We onlude � 6= �0. Now � 6= �; solving the left equation in (53) for ", and eliminating " in the rightequation of (53) using the result, we obtain (50). Now Theorem 7.2(iv) holds. Applying Theorem 7.2,we �nd � is tight, and that �, �0 is a permutation of �1, �d. Solving the left equation in (53) for ", andsimplifying the result, we obtain (51). It follows " is the auxiliary parameter for �.9 FeasibilityLet � denote a tight distane-regular graph with diameter d � 3, and eigenvalues �0 > �1 > � � � >�d. Let �; �0 denote a permutation of �1; �d, with respetive osine sequenes �0; �1; : : : ; �d and�0; �1; : : : ; �d. Let " denote the auxiliary parameter for �. Pik any integer i (1 � i � d), andobserve (52) holds. Rearranging terms in that equation, we �nd�i(�i � "�i�1) = �i�1(�i�1 � "�i): (54)We would like to solve (54) for �i, but oneivably �i � "�i�1 = 0. In this setion we investigate thispossibility.Lemma 9.1 Let � denote a tight distane-regular graph with diameter d � 3, and eigenvalues �0 >�1 > � � � > �d. Let �; �0 denote a permutation of �1; �d, with respetive osine sequenes �0; �1; : : : ; �dand �0; �1; : : : ; �d. Let " denote the auxiliary parameter for �. Then for eah integer i (1 � i � d�1),the following are equivalent: (i) �i�1 = "�i; (ii) �i+1 = "�i; (iii) �i�1 = �i+1; (iv) �i = 0. Moreover,suppose (i){(iv) hold. Then � = �d and �0 = �1. 17



Proof. Observe Theorem 8.3(i) holds, so (52) holds.(i) =) (iv) Replaing �i�1 by "�i in (52), we �nd �i�i(1 � "2) = 0: Observe "2 6= 1 by Lemma8.2(ii). Suppose for the moment that �i = 0. We assume �i�1 = "�i, so �i�1 = 0. Now �i�1 = �i,ontraditing Lemma 2.4. Hene �i 6= 0, so �i = 0.(iv) =) (i) Setting �i = 0 in (52), we �nd �i�1(�i�1 � "�i) = 0: Observe �i�1 6= 0, otherwise�i�1 = �i, ontraditing Lemma 2.4. We onlude �i�1 = "�i, as desired.(ii) () (iv) Similar to the proof of (i) () (iv).(i),(ii) =) (iii) Clear.(iii) =) (i) We annot have � = �1 by Lemma 2.4(i), so � = �d, �0 = �1. In partiular �i�1 6= �i+1.Adding (52) at i and i+ 1, we obtain�i+1�i+1 � �i�1�i�1 = "(�i�i+1 � �i+1�i + �i�1�i � �i�i�1):Replaing �i+1 by �i�1 in the above line, and simplifying, we obtain(�i�1 � "�i)(�i+1 � �i�1) = 0:It follows �i�1 = "�i, as desired.Now suppose (i){(iv). Then we saw in the proof of (iii) =) (i) that � = �d, �0 = �1.De�nition 9.2 Let � = (X;R) denote a tight distane-regular graph with diameter d � 3 and eigen-values �0 > �1 > � � � > �d. Let �0; �1; : : : ; �d denote any osine sequene for � and let � denote theorresponding eigenvalue. The sequene �0; �1; : : : ; �d (or �) is said to be feasible whenever (i) and(ii) hold below.(i) � is one of �1; �d.(ii) �i�1 6= �i+1 for 1 � i � d� 1.We observe by Lemma 2.4(i) that �1 is feasible.We onlude this setion with an extension of Theorem 8.3.Theorem 9.3 Let � denote a nonbipartite distane-regular graph with diameter d � 3, and eigenval-ues �0 > �1 > � � � > �d. Let � and �0 denote any eigenvalues of �, with respetive osine sequenes�0; �1; : : : ; �d and �0; �1; : : : ; �d. Let " denote any omplex salar. Then the following are equivalent.(i) � is tight, � is feasible, " is the auxiliary parameter for �, and �0 is the omplement of � inf�1; �dg.(ii) �0 is not trivial, �i = iYj=1 �j�1 � "�j�j � "�j�1 (0 � i � d); (55)and denominators in (55) are all nonzero. 18



Proof. (i) =) (ii) Clearly �0 is nontrivial. To see (55), observe Theorem 8.3(i) holds, so (52) holds.Rearranging terms in (52), we obtain�i(�i � "�i�1) = �i�1(�i�1 � "�i) (1 � i � d): (56)Observe �i 6= "�i�1 for 2 � i � d by Lemma 9.1(ii), and � 6= " by Lemma 8.2(ii), so the oeÆient of�i in (56) is never zero. Solving that equation for �i and applying indution, we routinely obtain (55).(ii) =) (i) We show Theorem 8.3(iii) holds. Observe � is nontrivial; otherwise � = 1, foring � = 1 by(55), and ontraditing our assumption that �0 is nontrivial. One readily veri�es (53) by eliminating�; �2 using (55). We now have Theorem 8.3(iii). Applying that theorem, we �nd � is tight, �; �0 isa permutation of �1; �d, and that " is the auxiliary parameter for �. It remains to show � is feasible.Suppose not. Then there exists an integer i (1 � i � d� 1) suh that �i�1 = �i+1. Applying Lemma9.1, we �nd �i+1 = "�i. But �i+1 � "�i is a fator in the denominator of (55) (with i replaed byi+ 1), and hene is not 0. We now have a ontradition, so � is feasible.10 A parametrizationIn this setion, we obtain the intersetion numbers of a tight graph as rational funtions of a feasibleosine sequene and the assoiated auxiliary parameter. We begin with a result about arbitrarydistane-regular graphs.Lemma 10.1 Let � denote a distane-regular graph with diameter d � 3, and eigenvalues �0 > �1 >� � � > �d. Let �, �0 denote a permutation of �1, �d, with respetive osine sequenes �0; �1; : : : ; �d and�0; �1; : : : ; �d. Thenk = (� � �2)(1� �)� (�� �2)(1 � �)(�� �2)(1� �)� � (� � �2)(1� �)�; (57)bi = k (�i�1 � �i)(1� �)�i � (�i�1 � �i)(1� �)�i(�i � �i+1)(�i�1 � �i)� (�i � �i+1)(�i�1 � �i) (1 � i � d� 1); (58)i = k (�i � �i+1)(1� �)�i � (�i � �i+1)(1� �)�i(�i � �i+1)(�i�1 � �i)� (�i � �i+1)(�i�1 � �i) (1 � i � d� 1); (59)d = k�d � � 1�d�1 � �d = k�d �� 1�d�1 � �d ; (60)and the denominators in (57){(60) are never zero.Proof. Line (60) is immediate from Lemma 2.3(v), and the denominators in that line are nonzero byLemma 2.4. To obtain (58), (59), pik any integer i (1 � i � d� 1), and reall by Lemma 2.2(iii) thati(�i�1 � �i)� bi(�i � �i+1) = k(� � 1)�i; (61)i(�i�1 � �i)� bi(�i � �i+1) = k(�� 1)�i: (62)19



To solve this linear system for i and bi, onsider the determinantDi := det �i�1 � �i �i � �i+1�i�1 � �i �i � �i+1 ! :Using Lemma 2.4, we routinely �nd Di 6= 0. Now (61), (62) has the unique solution (58), (59) byelementary linear algebra. The denominators in (58), (59) both equal Di; in partiular they are notzero. To get (57), set i = 1 and 1 = 1 in (59), and solve for k.Theorem 10.2 Let � denote a nonbipartite distane-regular graph with diameter d � 3, and let�0; �1; : : : �d; "; h denote omplex salars. Then the following are equivalent.(i) � is tight, �0; �1; : : : �d is a feasible osine sequene for �, " is the assoiated auxiliary parameterfrom (51), and h = (1� �)(1 � �2)(�2 � �2)(1� "�) : (63)(ii) �0 = 1, �d�1 = ��d, " 6= �1,k = h� � "� � 1 ; (64)bi = h(�i�1 � ��i)(�i+1 � "�i)(�i�1 � �i+1)(�i+1 � �i) (1 � i � d� 1); (65)i = h(�i+1 � ��i)(�i�1 � "�i)(�i+1 � �i�1)(�i�1 � �i) (1 � i � d� 1); (66)d = h� � "� � 1 ; (67)and denominators in (64){(67) are all nonzero.Proof. Let �0 > �1 > � � � > �d denote the eigenvalues of �.(i) =) (ii) Observe �0 = 1 by Lemma 2.2(ii), and " 6= �1 by Lemma 8.2(ii). Let � denote theeigenvalue assoiated with �0; �1; : : : ; �d, and observe by De�nition 9.2 that � is one of �1; �d. Let�0 denote the omplement of � in f�1; �dg, and let �0; �1; : : : ; �d denote the osine sequene for �0.Observe Theorem 9.3(i) holds. Applying that theorem, we obtain (55). Eliminating �0; �1; : : : ; �d in(57){(60) using (55), we routinely obtain (64){(67), and that �d�1 = ��d.(ii) =) (i) One readily heksi(�i�1 � �i)� bi(�i � �i+1) = k(� � 1)�i (1 � i � d);where �d+1 is an indeterminant. Applying Lemma 2.2(i),(iii), we �nd �0; �1; : : : ; �d is a osine sequenefor �, with assoiated eigenvalue � := k�. By (64), (65), and sine k; b1; : : : ; bd�1 are nonzero,�j 6= "�j�1 (1 � j � d):20



Set �i := iYj=1 �j�1 � "�j�j � "�j�1 (0 � i � d): (68)One readily heks �0 = 1, and thati(�i�1 � �i)� bi(�i � �i+1) = k(�� 1)�i (1 � i � d);where �d+1 is an indeterminant. Applying Lemma 2.2(i),(iii), we �nd �0; �1; : : : ; �d is a osinesequene for �, with assoiated eigenvalue �0 := k�. We laim �0 is not trivial. Suppose �0 is trivial.Then � = 1. Setting i = 1 and � = 1 in (68) we �nd ��" = 1�"� , foring (1��)(1+") = 0. Observe� 6= 1 sine the denominator in (67) is not zero, and we assume " 6= �1, so we have a ontradition.We have now shown �0 is nontrivial, so Theorem 9.3(ii) holds. Applying that theorem, we �nd � istight, � is feasible, and that " is the auxiliary parameter of �. To see (63), set i = 1 and 1 = 1 in(66), and solve for h.Proposition 10.3 With the notation of Theorem 10.2, suppose (i), (ii) hold, and let �0 > �1 > � � � >�d denote the eigenvalues of �. If " > 0, then�1 = �(� � ")(1 � �2)(1� "�)(�2 � �2) ; �d = 1� �2�2 � �2 : (69)If " < 0, then �1 = 1� �2�2 � �2 ; �d = �(� � ")(1 � �2)(1� "�)(�2 � �2) : (70)We remark that the denominators in (69), (70) are nonzero.Proof. Let � denote the eigenvalue of � assoiated with �0; �1; : : : ; �d. By Lemma 2.2(iii) and (64),we obtain � = k�= �(� � ")(1 � �2)(1� "�)(�2 � �2) : (71)Observe � 2 f�1; �dg sine �0; �1; : : : ; �d is feasible. Let �0 denote the omplement of � in f�1; �dg,and let � denote the �rst osine assoiated with �0. Observe ondition (i) holds in Theorem 9.3, so(55) holds. Setting i = 1 in that equation, we �nd� = 1� "�� � " : (72)By Lemma 2.2(iii), (64), and (72), we obtain�0 = k�= 1� �2�2 � �2 : (73)To �nish the proof, we observe by Lemma 8.2(i) that � = �1, �0 = �d if " > 0, and � = �d, �0 = �1 if" < 0. 21



Theorem 10.4 Let � denote a tight distane-regular graph with diameter d � 3, and eigenvalues�0 > �1 > � � � > �d. Then (i) and (ii) hold below.(i) ad = 0.(ii) Let �0; �1; : : : ; �d denote the osine sequene for �1 or �d, and let " denote the assoiated auxiliaryparameter from (51).Then ai = g (�i+1 � ��i)(�i�1 � ��i)(�i+1 � �i)(�i�1 � �i) (1 � i � d� 1); (74)where g = ("� 1)(1 � �2)(�2 � �2)(1 � "�) : (75)Proof. (i) Comparing (64), (67), we see k = d, and it follows ad = 0.(ii) First assume �0; �1; : : : ; �d is the osine sequene for �1, and reall this sequene is feasible. Leth be as in (63). Then Theorem 10.2(i) holds, so Theorem 10.2(ii) holds. Evaluating the right sideof ai = k � bi � i using (64){(66), and simplifying the result using (63), we obtain (74), (75). To�nish the proof, let �0; �1; : : : ; �d denote the osine sequene for �d, and reall by De�nition 8.1 thatthe assoiated auxiliary parameter is "0 = �". We showai = ("0 � 1)(1� �2)(�2 � �2)(1� "0�) (�i+1 � ��i)(�i�1 � ��i)(�i+1 � �i)(�i�1 � �i) : (76)By Theorem 7.2(ii) (with i replaed by i+ 1),11 + � �i+1 � ��i�i+1 � �i = 11 + � �i+1 � ��i�i+1 � �i : (77)Subtrating 1 from both sides of Theorem 7.2(ii), and simplifying, we obtain11 + � �i�1 � ��i�i�1 � �i = 11 + � �i�1 � ��i�i�1 � �i : (78)By (53), ("� 1)(1 � �2)(1 + �)2(�2 � �2)(1 � "�) = ("0 � 1)(1 � �2)(1 + �)2(�2 � �2)(1� "0�) : (79)Multiplying together (77){(79) and simplifying, we obtain (76), as desired.We end this setion with some inequalities.Lemma 10.5 Let � denote a tight distane-regular graph with diameter d � 3, and eigenvalues�0 > �1 > � � � > �d. Let � denote one of �1; �d, and let �0; �1; : : : ; �d denote the osine sequene for �.Suppose � = �1. Then(i) �i�1 > ��i (1 � i � d� 1);(ii) ��i�1 > �i (2 � i � d). 22



Suppose � = �d. Then(iii) (�1)i(��i � �i�1) > 0 (1 � i � d� 1);(iv) (�1)i(�i � ��i�1) > 0 (2 � i � d).Proof. (i) We �rst show �i�1 � ��i is nonnegative. Reall a1 6= 0 by Proposition 6.5, so Theorem4.1 applies. Let x; y denote adjaent verties in X, and reall by Corollary 6.3 that the edge xy istight with respet to �. Now Theorem 4.1(i) holds, so (22) holds. Observe the left side of (22) isnonnegative, so the right side is nonnegative. In that expression on the right, the fators 1 + � and�i�1 � �i are positive, so the remaining fator �i�1 � ��i is nonnegative, as desired. To �nish theproof, observe �i�1 � ��i is a fator on the right in (74), so it is not zero in view of Proposition 6.5.(ii){(iv) Similar to the proof of (i) above.11 The 1-homogeneous propertyIn this setion, we show the onept of tight is losely related to the onept of 1-homogeneous thatappears in the work of K. Nomura [13℄, [14℄, [15℄.Theorem 11.1 Let � = (X;R) denote a tight distane-regular graph with diameter d � 3, andeigenvalues �0 > �1 > � � � > �d. Let �0; �1; : : : ; �d denote the osine sequene assoiated with �1 or �d.Fix adjaent verties x; y 2 X. Then with the notation of De�nition 2.10 we have the following: Forall integers i (1 � i � d� 1), and for all verties z 2 Dii,j�i�1(z) \D11j = i (�2 � �2)(�i � �i+1)(� � �2)(��i � �i+1) ; (80)j�i+1(z) \D11j = bi (�2 � �2)(�i�1 � �i)(� � �2)(�i�1 � ��i) : (81)Proof. First assume �0; �1; : : : ; �d is the osine sequene for �1, and let �0; �1; : : : ; �d denote the osinesequene for �d. The edge xy is tight with respet to both �1, �d, so by Theorem 4.2(ii),j�i+1(z) \D11j = j�i�1(z) \D11j �i�1 � �i�i � �i+1 + a1 1� �1 + � �i�i � �i+1 ; (82)j�i+1(z) \D11j = j�i�1(z) \D11j �i�1 � �i�i � �i+1 + a1 1� �1 + � �i�i � �i+1 : (83)Eliminating �0; �1; : : : ; �d in (83) using (55), we obtainj�i+1(z) \D11j = j�i�1(z) \D11j �i�1 � �i�i � �i+1 �i+1 � "�i�i�1 � "�i+ a1 (1� �)(�i+1 � "�i)(1 + �)(1 � ")(�i � �i+1) ; (84)23



where " denotes the auxiliary parameter assoiated with �1. Solving (82), (84) for j�i+1(z) \D11j andj�i�1(z) \D11j, and evaluating the result using (63), (65), (66), (74), we get (80), (81), as desired. To�nish the proof observe by Theorem 7.2(ii),(iii) that(�2 � �2)(�i � �i+1)(� � �2)(��i � �i+1) = (�2 � �2)(�i � �i+1)(�� �2)(��i � �i+1) ; (85)(�2 � �2)(�i�1 � �i)(� � �2)(�i�1 � ��i) = (�2 � �2)(�i�1 � �i)(�� �2)(�i�1 � ��i) : (86)Theorem 11.2 Let � = (X;R) denote a tight distane-regular graph with diameter d � 3, andeigenvalues �0 > �1 > � � � > �d. Let �0; �1; : : : ; �d denote the osine sequene for �1 or �d. Fixadjaent verties x; y 2 X. Then with the notation of De�nition 2.10 we have the following (i), (ii).(i) For all integers i (1 � i � d� 1), and for all z 2 Dii,j�(z) \Di�1i�1j = i (�i � �i+1)(��i�1 � �i)(�i�1 � �i)(��i � �i+1) ; (87)j�(z) \Di+1i+1j = bi (�i�1 � �i)(�i � ��i+1)(�i � �i+1)(�i�1 � ��i) : (88)(ii) For all integers i (2 � i � d), and for all z 2 Dii�1 [Di�1i ,j�(z) \Di�1i�1j = ai�1 (1� �)(�2i�1 � �i�2�i)(�i�1 � �i)(�i�2 � ��i�1) : (89)Proof. (i) To prove (87), we assume i � 2; otherwise both sides are zero. Let �i denote the expressionon the right in (80). Let N denote the number of ordered pairs uv suh thatu 2 �i�1(z) \D11 ; v 2 �(z) \Di�1i�1; �(u; v) = i� 2:We ompute N in two ways. On one hand, by (80), there are preisely �i hoies for u, and given u,there are preisely i�1 hoies for v, so N = �ii�1: (90)On the other hand, there are preisely j�(z) \Di�1i�1j hoies for v, and given v, there are preisely�i�1 hoies for u, so N = j�(z) \Di�1i�1j�i�1: (91)Observe by Lemma 2.4, Lemma 6.6, and (80) that �i�1 6= 0; ombining this with (90), (91), we �ndj�(z) \Di�1i�1j = i�1�i��1i�1:Eliminating �i�1, �i in the above line using (80), we obtain (87), as desired. Conerning (88), �rst24



assume i = d � 1. We show both sides of (88) are zero. To see the left side is zero, reall ad = 0 byTheorem 10.4, foring p1dd = 0 by Lemma 2.9, so Ddd = ; by the last line in De�nition 2.10. The rightside of (88) is zero sine the fator �d�1 � ��d in the numerator is zero by Lemma 2.3(vi). We nowshow (88) for i � d� 2. Let �i denote the expression on the right in (81). Let N 0 denote the numberof ordered pairs uv suh thatu 2 �i+1(z) \D11 ; v 2 �(z) \Di+1i+1; �(u; v) = i+ 2:We ompute N 0 in two ways. On one hand, by (81), there are preisely �i hoies for u, and given u,there are preisely bi+1 hoies for v, so N 0 = �ibi+1: (92)On the other hand, there are preisely j�(z) \Di+1i+1j hoies for v, and given v, there are preisely�i+1 hoies for u, so N 0 = j�(z) \Di+1i+1j�i+1: (93)Observe by Lemma 2.4, Lemma 6.6, and (81) that �i+1 6= 0; ombining this with (92), (93), we �ndj�(z) \Di+1i+1j = bi+1�i��1i+1:Eliminating �i, �i+1 in the above line using (81), we obtain (88), as desired.(ii) Let i denote the expression on the right in (21), and let Æi denote the expression on the right in(87). Let N 00 denote the number of ordered pairs uv suh thatu 2 �i�1(z) \D11 ; v 2 �(z) \Di�1i�1; �(u; v) = i� 2:We ompute N 00 in two ways. On one hand, by Theorem 4.1(ii), there are preisely i hoies for u.Given u, we �nd by (87) (with x and i replaed by u and i� 1, respetively) that there are preiselyi�1 � Æi�1 hoies for v; onsequently N 00 = i(i�1 � Æi�1): (94)On the other hand, there are preisely j�(z)\Di�1i�1j hoies for v, and given v, there are preisely �i�1hoies for u, where �i�1 is from the proof of (i) above. HeneN 00 = j�(z) \Di�1i�1j�i�1: (95)Combining (94), (95), j�(z) \Di�1i�1j = i(i�1 � Æi�1)��1i�1:Eliminating �i�1, i, Æi�1 in the above line using (80), (21), (87), respetively, and simplifying theresult using Theorem 10.4(ii), we obtain (89), as desired.25



De�nition 11.3 Let � = (X;R) denote a distane-regular graph with diameter d � 3, and �x adjaentverties x; y 2 X.(i) For all integers i; j we de�ne the vetor wij = wij(x; y) bywij = Xz2Dji ẑ ; (96)where Dji = Dji (x; y) is from (15).(ii) Let L denote the set of ordered pairsL = fij j 0 � i; j � d; p1ij 6= 0g: (97)We observe that for all integers i; j, wij 6= 0 if and only if ij 2 L.(iii) We de�ne the vetor spae W =W (x; y) byW = Spanfwij j ij 2 Lg: (98)Lemma 11.4 Let � = (X;R) denote a distane-regular graph with diameter d � 3, and assumea1 6= 0. Then(i) L = fi� 1; i j 1 � i � dg [ fi; i � 1 j 1 � i � dg [ fii j 1 � i � eg,where e = d� 1 if ad = 0 and e = d if ad 6= 0.(ii) jLj = ( 3d if ad 6= 0,3d� 1 if ad = 0. (99)(iii) Let x; y denote adjaent verties in X, and let W =W (x; y) be as in (98). ThendimW = ( 3d if ad 6= 0,3d� 1 if ad = 0. (100)Proof. Routine appliation of Lemma 2.8 and Lemma 2.9.Lemma 11.5 Let � = (X;R) denote a distane-regular graph with diameter d � 3, �x adjaentverties x; y 2 X, and let the vetor spae W = W (x; y) be as in (98). Then the following areequivalent.(i) The vetor spae W is A-invariant.(ii) For all integers i; j; r; s (ij 2 L and rs 2 L), and for all z 2 Dji , the salar j�(z) \ Dsr j is aonstant independent of z. 26



(iii) The following onditions hold.(a) For all integers i (1 � i � d), and for all z 2 Dii, the salars j�(z)\Di�1i�1 j and j�(z)\Di+1i+1 jare onstants independent of z.(b) For all integers i (2 � i � d), and for all z 2 Dii�1 [ Di�1i , the salar j�(z) \ Di�1i�1j is aonstant independent of z.Proof. (i) () (ii) Routine.(ii) =) (iii) Clear.(iii) =) (ii) Follows diretly from Lemma 2.11.De�nition 11.6 Let � = (X;R) denote a distane-regular graph with diameter d � 3. For eah edgexy 2 R, the graph � is said to be 1-homogeneous with respet to xy whenever (i){(iii) hold inLemma 11.5. The graph � is said to be 1-homogeneous whenever it is 1-homogeneous with respetto all edges in R.Theorem 11.7 Let � = (X;R) denote a distane-regular graph with diameter d � 3. Then thefollowing are equivalent.(i) � is tight,(ii) a1 6= 0, ad = 0, and � is 1-homogeneous,(iii) a1 6= 0, ad = 0, and � is 1-homogeneous with respet to at least one edge.Proof. (i) =) (ii) Observe a1 6= 0 by Proposition 6.5, and ad = 0 by Theorem 10.4. Pik anyedge xy 2 R. By Theorem 11.2, we �nd onditions (iii)(a), (iii)(b) hold in Lemma 11.5, so � is1-homogeneous with respet to xy by De�nition 11.6. Apparently � is 1-homogeneous with respet toevery edge, so � is 1-homogeneous.(ii) =) (iii) Clear.(iii) =) (i) Suppose � is 1-homogeneous with respet to the edge xy 2 R. We show xy is tight withrespet to both �1; �d. To do this, we show the tightness t = t(x; y) from De�nition 5.1 equals 2.Consider the vetor spae W = W (x; y) from (98), and the vetor spae H from (37). Observe W isA-invariant by Lemma 11.5, andW ontains H, so it ontainsMH, whereM denotes the Bose-Mesneralgebra of �. The spae W has dimension 3d � 1 by (100), so MH has dimension at most 3d � 1.Applying (36), we �nd t � 2. From the disussion at the end of De�nition 5.1, we observe t = 2, andthat xy is tight with respet to both �1, �d. Now � is tight in view of Corollary 6.3(iv) and De�nition6.4. 27



12 The loal graphDe�nition 12.1 Let � = (X;R) denote a distane-regular graph with diameter d � 3. For eah vertexx 2 X, we let � = �(x) denote the vertex subgraph of � indued on �(x). We refer to � as the loalgraph assoiated with x. We observe � has k verties, and is regular with valeny a1. We furtherobserve � is not a lique.In this setion, we show the loal graphs of tight distane-regular graphs are strongly-regular. Webegin by realling the de�nition and some basi properties of strongly-regular graphs.De�nition 12.2 [3, p.3℄ A graph � is said to be strongly-regular with parameters (�; �; �; �) when-ever � has � verties and is regular with valeny �, adjaent verties of � have preisely � ommonneighbors, and distint non-adjaent verties of � have preisely � ommon neighbors.Lemma 12.3 [3, Thm. 1.3.1℄ Let � denote a onneted strongly-regular graph with parameters(�; �; �; �), and assume � is not a lique. Then � has preisely three distint eigenvalues, one ofwhih is �. Denoting the others by r; s,� = (�� r)(�� s)�+ rs ; � = �+ r + s+ rs; � = �+ rs: (101)The multipliity of � as an eigenvalue of � equals 1. The multipliities with whih r; s appear aseigenvalues of � are given bymultr = �(s+ 1)(� � s)�(s� r) ; mults = �(r + 1)(� � r)�(r � s) : (102)Theorem 12.4 Let � = (X;R) denote a tight distane-regular graph with diameter d � 3, andeigenvalues �0 > �1 > � � � > �d. Pik � 2 f�1; �dg, let �, �2 denote the �rst and seond osines for�, respetively, and let " denote the assoiated auxiliary parameter from (51). Then for any vertexx 2 X, the loal graph � = �(x) satis�es (i){(iv) below.(i) � is strongly-regular with parameters (k; a1; �; �), where k is the valeny of �, anda1 = �(1� �2)(1 + �)(1� ")(� � �2)(1� "�) ; (103)� = a1 2�1 + � � a1 1� �1 + � �2� � �2 � 1� �2� � �2 ; (104)� = a11 + � �2 � �2� � �2 : (105)(ii) � is onneted and not a lique.(iii) The distint eigenvalues of � are a1, r, s, wherer = a1�1 + � ; s = � 1� �2� � �2 : (106)28



(iv) The multipliities of r, s are given bymultr = (1 + �)(� � ")�2 � �2 ; mults = �(1� ")(1 + �)(�2 � "�)(�2 � �2)(1 � "�) : (107)Proof. (i) Clearly � has k verties and is regular with valeny a1. The formula (103) is fromTheorem 10.4(ii). Pik distint verties y; z 2 �. We ount the number of ommon neighbors of y; zin �. First suppose y; z are adjaent. By (28) (with i = 1) we �nd y; z have preisely � ommonneighbors in �, where � is given in (104). Next suppose y; z are not adjaent. By (21) (with i = 2),we �nd y; z have preisely � ommon neighbors in �, where � is given in (105). The result nowfollows in view of De�nition 12.2.(ii) We saw in De�nition 12.1 that � is not a lique. Observe the salar � in (105) is not zero, sinea1 6= 0 by Proposition 6.5, and sine �2 6= �2 by Lemma 6.6(ii),(iii). It follows � is onneted.(iii) The salar a1 is an eigenvalue of � by Lemma 12.3. Using (104), (105), we �nd the salars r; sin (106) satisfy � = a1 + r + s+ rs; � = a1 + rs:Comparing this with the two equations on the right in (101), we �nd the salars r; s in (106) are theremaining eigenvalues of �.(iv) By (102) and (i) above,multr = a1(s+ 1)(a1 � s)�(s� r) ; mults = a1(r + 1)(a1 � r)�(r � s) :Eliminating a1; �; r; s in the above equations using (103), (105), (106), we routinely obtain (107).De�nition 12.5 Let � denote a distane-regular graph with diameter d � 3, and eigenvalues �0 >�1 > � � � > �d. We de�neb� := �1 � b11 + �1 ; b+ := �1 � b11 + �d :We reall a1 � k � �d < �1 < �1 by Lemma 2.6, so b� < �1, b+ � 0.Theorem 12.6 Let � = (X;R) denote a distane-regular graph with diameter d � 3. Then thefollowing are equivalent.(i) � is tight.(ii) For all x 2 X, the loal graph �(x) is onneted strongly-regular with eigenvalues a1, b+, b�.(iii) There exists x 2 X for whih the loal graph �(x) is onneted strongly-regular with eigenvaluesa1, b+, b�. 29



Proof. (i) =) (ii) Pik any x 2 X, and let � = �(x) denote the loal graph. By Theorem 12.4, thegraph � is onneted and strongly-regular. The eigenvalues of � other than a1 are given by (106),where for onveniene we take the eigenvalue � involved to be �1. Eliminating �, �2 in (106) using�1 = k� and Lemma 2.3(i), and simplifying the results using equality in the fundamental bound (42),we routinely �nd r = b+, s = b�.(ii) =) (iii) Clear.(iii) =) (i) Sine � = �(x) is onneted, its valeny a1 is not zero. In partiular � is not bipartite.The graph � is not a lique, so (101) holds for �. Applying the equation on the left in that line, weobtain k(a1 + b+b�) = (a1 � b+)(a1 � b�): (108)Eliminating b+, b� in (108) using De�nition 12.5, and simplifying the result, we routinely obtainequality in the fundamental bound (42). Now � is tight, as desired.13 Examples of tight distane-regular graphsThe following examples (i)-(xii) are tight distane-regular graphs with diameter at least 3. In eah asewe give the intersetion array, the seond largest eigenvalue �1, and the least eigenvalue �d, togetherwith their respetive osine sequenes f�ig, f�ig, and the auxiliary parameter " for �1. Also, we givethe parameters and nontrivial eigenvalues of the loal graphs.(i) The Johnson graph J(2d; d) has diameter d and intersetion numbers ai = 2i(d�i), bi = (d�i)2,i = i2 for i = 0; : : : ; d, f. [3, p. 255℄. It is distane-transitive, an antipodal double-over, and Q-polynomial with respet to �1.Eah loal graph is a lattie graph Kd �Kd, with parameters (d2; 2(d � 1); d � 2; 2) and nontrivialeigenvalues r = d� 2, s = �2, f. [3, p. 256℄.(ii) The halved ube 12H(2d; 2) has diameter d and intersetion numbers ai = 4i(d � i), bi =(d� i)(2d� 2i� 1), i = i(2i� 1) for i = 0; : : : d, f. [3, p. 264℄. It is distane-transitive, an antipodaldouble-over, and Q-polynomial with respet to �1.Eah loal graph is a Johnson graph J(2d; 2), with parameters (d(2d � 1); 4(d � 1); 2(d � 1); 4) andnontrivial eigenvalues r = 2d� 4, s = �2, f. [3, p. 267℄.(iii) The Taylor graphs are nonbipartite double-overs of omplete graphs, i.e., distane-regulargraphs with intersetion array of the form fk; 2; 1; 1; 2; kg, where 2 < k � 1. They have diameter3, and are Q-polynomial with respet to both �1, �d. These eigenvalues are given by �1 = �, �d = �,where �+ � = k � 22 � 1; �� = �k;30



and � > �. See Taylor [18℄, and Seidel and Taylor [16℄ for more details.Eah loal graph is strongly-regular with parameters (k; a1; �; �), where a1 = k � 2 � 1, � =(3a1�k� 1)=2 and � = a1=2. We note both a1; 2 are even and k is odd. The nontrivial eigenvaluesof the loal graph are r = �� 12 ; s = � � 12 :(iv) The graph 3:Sym(7) has intersetion array f10; 6; 4; 1; 1; 2; 6; 10g and an be obtained from asporadi Fisher group, f. [3, pp. 397-400℄. It is sometimes alled the Conway-Smith graph. It isdistane-transitive, an antipodal 3-fold over, and is not Q-polynomial.Eah loal graph is a Petersen graph, with parameters (10; 3; 0; 1) and nontrivial eigenvalues r = 1,s = �2, see [11℄, [3, 13.2.B℄.(v) The graph 3:O�6 (3) has intersetion array f45; 32; 12; 1; 1; 6; 32; 45g and an be obtained from asporadi Fisher group, f. [3, pp. 397-400℄. It is distane-transitive, an antipodal 3-fold over, and isnot Q-polynomial.Eah loal graph is a generalized quadrangle GQ(4; 2), with parameters (45; 12; 3; 3) and nontrivialeigenvalues r = 3, s = �3. See [3, p. 399℄.(vi) The graph 3:O7(3) has intersetion array f117; 80; 24; 1; 1; 12; 80; 117g and an be obtained froma sporadi Fisher group, f. [3, pp. 397-400℄. It is distane-transitive, an antipodal 3-fold over, andis not Q-polynomial.Eah loal graph is strongly-regular with parameters (117; 36; 15; 9), and nontrivial eigenvalues r = 9,s = �3. [3, 13.2.D℄.(vii) The graph 3:F i24 has intersetion array f31671; 28160; 2160; 1; 1; 1080; 28160; 31671g and an beobtained from a sporadi Fisher group, f. [3, pp. 397℄. It is distane-transitive, an antipodal 3-foldover, and is not Q-polynomial.Eah loal graph is strongly-regular with parameters (31671; 3510; 693; 351) and nontrivial eigenvaluesr = 351, s = �9. They are related to Fi23.(viii) The Soiher1 graph has intersetion array f56; 45; 16; 1; 1; 8; 45; 56g, f. [2℄, [4, 11.4I℄, [17℄. Itis distane-transitive, an antipodal 3-fold over, and is not Q-polynomial.Eah loal graph is a Gewirtz graph with parameters (56; 10; 0; 2) and nontrivial eigenvalues r = 2,s = �4, [3, p.372℄.(ix) The Soiher2 graph has intersetion array f416; 315; 64; 1; 1; 32; 315; 416g, f. [17℄ [4, 13.8A℄. Itis distane-transitive, an antipodal 3-fold over, and is not Q-polynomial.Eah loal graph is strongly-regular with parameters (416; 100; 36; 20) and nontrivial eigenvalues r =20, s = �4. 31



(x) The Meixner1 graph has intersetion array f176; 135; 24; 1; 1; 24; 135; 176g, f. [12℄ [4, 12.4A℄. Itis distane-transitive, an antipodal 2-fold over, and is Q-polynomial.Eah loal graph is strongly-regular with parameters (176; 40; 12; 8) and nontrivial eigenvalues r = 8,s = �4.(xi) The Meixner2 graph has intersetion array f176; 135; 36; 1; 1; 12; 135; 176g, f. [12℄ [4, 12.4A℄.It is distane-transitive, an antipodal 4-fold over, and is not Q-polynomial.Eah loal graph is strongly-regular with parameters (176; 40; 12; 8) and nontrivial eigenvalues r = 8,s = �4.(xii) The Patterson graph has intersetion array f280; 243; 144; 10; 1; 8; 90; 280g, and an be on-struted from the Suzuki group, see [3, 13.7℄. It is primitive and distane-transitive, but not Q-polynomial.Eah loal graph is a generalized quadrangle GQ(9; 3) with parameters (280; 36; 8; 4) and nontrivialeigenvalues r = 8, s = �4, [3, Thm. 13.7.1℄.Name �1 �d f�ig f�ig "J(2d; d) d(d� 2) �d �i = d� 2id �i = (�1)i �1�2 � � � id(d�1) � � � (d�i+1) d+ 2d12H(2d; 2) (2d�1)(d�2) �d �i = d�2id �i = (�1)i �1�3 � � � (2i�1)(2d�1)(2d�3) � � � (2d�2i+1) d+ 1d� 1Taylor � � (1; �k ; ��k ;�1) (1; �k ; ��k ;�1) k + 1���3.Sym(7) 5 �4 (1; 12 ; 0; �14 ; �12 ) (1; �25 ; 310 ; �25 ; 1) 433:O�6 (3) 15 �9 (1; 13 ; 0; �16 ; �12 ) (1; �15 ; 110 ; �15 ; 1) 23:O7(3) 39 �9 (1; 13 ; 0; �16 ; �12 ) (1; �113 ; 265 ; �113 ; 1) 523:F i24 3519 �81 (1; 19 ; 0; �118 ; �12 ) (1; �1391 ; 517204 ; �1391 ; 1) 445Soiher1 14 �16 (1; 14 ; 0; �18 ; �12 ) (1; �27 ; 17 ; �27 ; 1) 2Soiher2 104 �16 (1; 14 ; 0; �18 ; �12 ) (1; �126 ; 191 ; �126 ; 1) 72Meixner1 44 �16 (1; 14 ; 0; �14 ;�1) (1; �111 ; 133 ; �111 ; 1) 3Meixner2 44 �16 (1; 14 ; 0; �112 ; �13 ) (1; �111 ; 133 ; �111 ; 1) 3Patterson 80 �28 (1; 27 ; 121 ; �263 ; �19 ) (1; �110 ; 145 ; �154 ; 527) 83ACKNOWLEDGEMENT: We would like to thank Prof. Yoshiara for mentioning that the Pattersongraph satis�es the Fundamental Bound. 32
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14 Appendix A: 1-homogeneous partitions of the known examplesof the AT4 family and the Patterson graphIn [21℄ a tight nonbipartite antipodal distane-regular graph � with diameter four was parametrizedby the eigenvalues r and �s of the loal graphs and the size t of its antipodal lasses. The graph �was alled an antipodal tight graph of diameter four and with parameters (r; s; t), and denoted byAT4(r; s; t).
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