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1 Introdu
tionLet � = (X;R) denote a distan
e-regular graph with diameter d � 3, and eigenvalues k = �0 > �1 >� � � > �d (see Se
tion 2 for de�nitions). We show the interse
tion numbers a1; b1 satisfy��1 + ka1 + 1���d + ka1 + 1� � � ka1b1(a1 + 1)2 : (1)We de�ne � to be tight whenever � is not bipartite, and equality holds in (1). We 
hara
terize thetight 
ondition in the following ways.Our �rst 
hara
terization is linear algebrai
. For all verti
es x 2 X, let x̂ denote the ve
tor in RXwith a 1 in 
oordinate x, and 0 in all other 
oordinates. Suppose for the moment that a1 6= 0, let x; ydenote adja
ent verti
es in X, and write w = P ẑ, where the sum is over all verti
es z 2 X adja
entto both x and y. Let � denote one of �1; �2; : : : ; �d, and let E denote the 
orresponding primitiveidempotent of the Bose-Mesner algebra. We say the edge xy is tight with respe
t to � whenever Ex̂,Eŷ, Ew are linearly dependent. We show that if xy is tight with respe
t to �, then � is one of �1; �d.Moreover, we show the following are equivalent: (i) � is tight; (ii) a1 6= 0 and all edges of � are tightwith respe
t to both �1; �d; (iii) a1 6= 0 and there exists an edge of � whi
h is tight with respe
t toboth �1; �d.Our se
ond 
hara
terization of the tight 
ondition involves the interse
tion numbers. We show �is tight if and only if the interse
tion numbers are given by 
ertain rational expressions involving dindependent variables.Our third 
hara
terization of the tight 
ondition involves the 
on
ept of 1-homogeneous that appearsin the work of Nomura [13℄, [14℄, [15℄. See also Curtin [7℄. We show the following are equivalent: (i)� is tight; (ii) a1 6= 0; ad = 0, and � is 1-homogeneous; (iii) a1 6= 0; ad = 0, and � is 1-homogeneouswith respe
t to at least one edge.Our fourth 
hara
terization of the tight 
ondition involves the lo
al stru
ture and is reminis
ent ofsome results by Cameron, Goethals and Seidel [5℄ and Di
kie and Terwilliger [8℄. For all x 2 X, let�(x) denote the vertex subgraph of � indu
ed on the verti
es in X adja
ent to x. For notational
onvenien
e, de�ne b+ := �1 � b1(1 + �d)�1 and b� := �1 � b1(1 + �1)�1. We show the followingare equivalent: (i) � is tight; (ii) for all x 2 X, �(x) is 
onne
ted strongly-regular with nontrivialeigenvalues b+, b�; (iii) there exists x 2 X su
h that �(x) is 
onne
ted strongly-regular with nontrivialeigenvalues b+, b�.We present three in�nite families and nine sporadi
 examples of tight distan
e-regular graphs. Theseare the Johnson graphs J(2d; d), the halved 
ubes 12H(2d; 2), the Taylor graphs [18℄, four 3-foldantipodal 
overs of diameter 4 
onstru
ted from the sporadi
 Fisher groups [3, p. 397℄, two 3-foldantipodal 
overs of diameter 4 
onstru
ted by Soi
her [17℄, a 2-fold and a 4-fold antipodal 
over of1



diameter 4 
onstru
ted by Meixner [12℄, and the Patterson graph [3, Thm. 13.7.1℄, whi
h is primitive,distan
e-transitive and of diameter 4.2 PreliminariesIn this se
tion, we review some de�nitions and basi
 
on
epts. See the books of Bannai and Ito [1℄ orBrouwer, Cohen, and Neumaier [3℄ for more ba
kground information.Let � = (X;R) denote a �nite, undire
ted, 
onne
ted graph, without loops or multiple edges, withvertex set X, edge set R, path-length distan
e fun
tion �, and diameter d := maxf�(x; y) j x; y 2 Xg:For all x 2 X and for all integers i, we set �i(x) := fy 2 X j �(x; y) = ig:We abbreviate �(x) := �1(x).By the valen
y of a vertex x 2 X, we mean the 
ardinality of �(x). Let k denote a nonnegative integer.Then � is said to be regular, with valen
y k, whenever ea
h vertex in X has valen
y k. � is said tobe distan
e-regular whenever for all integers h; i; j (0 � h; i; j � d), and for all x; y 2 X with�(x; y) = h, the number phij := j�i(x) \ �j(y)jis independent of x and y. The 
onstants phij are known as the interse
tion numbers of �.For notational 
onvenien
e, set 
i := pi1 i�1 (1 � i � d), ai := pi1i (0 � i � d), bi := pi1 i+1(0 � i � d� 1), ki := p0ii (0 � i � d), and de�ne 
0 = 0, bd = 0. We note a0 = 0 and 
1 = 1.From now on, � = (X;R) will denote a distan
e-regular graph of diameter d � 3. Observe � isregular with valen
y k = k1 = b0, and thatk = 
i + ai + bi (0 � i � d): (2)We now re
all the Bose-Mesner algebra. Let MatX(R) denote the R-algebra 
onsisting of all matri
eswith entries in R whose rows and 
olumns are indexed by X. For ea
h integer i (0 � i � d), let Aidenote the matrix in MatX(R) with x; y entry(Ai)xy = ( 1; if �(x; y) = i,0; if �(x; y) 6= i (x; y 2 X):Ai is known as the ith distan
e matrix of �. ObserveA0 = I; (3)A0 +A1 + : : :+Ad = J (J = all 1's matrix); (4)Ati = Ai (0 � i � d); (5)AiAj = dXh=0 phijAh (0 � i; j � d): (6)We abbreviate A := A1, and refer to this as the adja
en
y matrix of �. Let M denote the subalgebraof MatX(R) generated by A. We refer to M as the Bose-Mesner algebra of �. Using (3){(6), one 
an2



readily show A0; A1; : : : ; Ad form a basis for M . By [1, p59, p64℄, the algebra M has a se
ondbasis E0; E1; : : : ; Ed su
h thatE0 = jXj�1J; (7)E0 +E1 + : : :+Ed = I; (8)Eti = Ei (0 � i � d); (9)EiEj = ÆijEi (0 � i; j � d): (10)The E0; E1; : : : ; Ed are known as the primitive idempotents of �. We refer to E0 as the trivialidempotent.Let �0; �1; : : : ; �d denote the real numbers satisfying A =Pdi=0 �iEi: Observe AEi = EiA = �iEi for0 � i � d, and that �0; �1; : : : ; �d are distin
t sin
e A generates M . It follows from (7) that �0 = k,and it is known �k � �i � k for 0 � i � d [1, p.197℄. We refer to �i as the eigenvalue of � asso
iatedwith Ei, and 
all �0 the trivial eigenvalue. For ea
h integer i (0 � i � d), let mi denote the rank ofEi. We refer to mi as the multipli
ity of Ei (or �i). We observe m0 = 1.We now re
all the 
osines. Let � denote an eigenvalue of �, and let E denote the asso
iated primitiveidempotent. Let �0; �1; : : : ; �d denote the real numbers satisfyingE = jXj�1m dXi=0 �iAi; (11)where m denotes the multipli
ity of �. Taking the tra
e in (11), we �nd �0 = 1. We often abbreviate� = �1. We refer to �i as the ith 
osine of � with respe
t to � (or E), and 
all �0; �1; : : : ; �d the
osine sequen
e of � asso
iated with � (or E). We interpret the 
osines as follows. Let RX denotethe ve
tor spa
e 
onsisting of all 
olumn ve
tors with entries in R whose 
oordinates are indexed byX. We observe MatX(R) a
ts on RX by left multipli
ation. We endow RX with the Eu
lidean innerprodu
t satisfying hu; vi = utv (u; v 2 RX ); (12)where t denotes transposition. For ea
h x 2 X, let x̂ denote the element in RX with a 1 in 
oordinatex, and 0 in all other 
oordinates. We note fx̂ j x 2 Xg is an orthonormal basis for RX .Lemma 2.1 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3. Let E denotea primitive idempotent of �, and let �0; �1; : : : ; �d denote the asso
iated 
osine sequen
e. Then forall integers i (0 � i � d), and for all x; y 2 X su
h that �(x; y) = i, the following (i){(iii) hold.(i) hEx̂;Eŷi = mjXj�1�i, where m denotes the multipli
ity of E.(ii) The 
osine of the angle between the ve
tors Ex̂ and Eŷ equals �i.(iii) �1 � �i � 1. 3



Proof. Line (i) is a routine appli
ation of (10), (11), (12). Line (ii) is immediate from (i), and (iii) isimmediate from (ii).Lemma 2.2 [3, Se
t. 4.1.B℄ Let � denote a distan
e-regular graph with diameter d � 3. Then forany 
omplex numbers �; �0; �1; : : : ; �d, the following are equivalent.(i) � is an eigenvalue of �, and �0; �1; : : : ; �d is the asso
iated 
osine sequen
e.(ii) �0 = 1, and 
i�i�1 + ai�i + bi�i+1 = ��i (0 � i � d); (13)where ��1 and �d+1 are indeterminates.(iii) �0 = 1, k� = �, and
i(�i�1 � �i)� bi(�i � �i+1) = k(� � 1)�i (1 � i � d); (14)where �d+1 is an indeterminate.For later use we re
ord a number of 
onsequen
es of Lemma 2.2.Lemma 2.3 Let � denote a distan
e-regular graph with diameter d � 3. Let � denote an eigenvalueof �, and let �0; �1; : : : ; �d denote the asso
iated 
osine sequen
e. Then (i){(vi) hold below.(i) kb1�2 = �2 � a1� � k:(ii) kb1(� � �2) = (k � �)(1 + �):(iii) kb1(1� �2) = (k � �)(� + k � a1):(iv) k2b1(�2 � �2) = (k � �)(k + �(a1 + 1)).(v) 
d(�d�1 � �d) = k(� � 1)�d.(vi) ad(�d�1 � �d) = k(�d�1 � ��d).Proof. To get (i), set i = 1 in (13), and solve for �2. Lines (ii){(iv) are routinely veri�ed using (i)above and k� = �. To get (v), set i = d, bd = 0 in Lemma 2.2(iii). To get (vi), set 
d = k � ad in (v)above, and simplify the result.In this arti
le, the se
ond largest and minimal eigenvalue of a distan
e-regular graph turn out to be ofparti
ular interest. In the next several lemmas, we give some basi
 information on these eigenvalues.Lemma 2.4 [9, Lem. 13.2.1℄ Let � denote a distan
e-regular graph with diameter d � 3, andeigenvalues �0 > �1 > � � � > �d. Let � denote one of �1; �d and let �0; �1; : : : ; �d denote the 
osinesequen
e for �.(i) Suppose � = �1. Then �0 > �1 > � � � > �d.(ii) Suppose � = �d. Then (�1)i�i > 0 (0 � i � d).4



Re
all a distan
e-regular graph � is bipartite whenever the interse
tion numbers satisfy ai = 0 for0 � i � d, where d denotes the diameter.Lemma 2.5 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3. Let �d denotethe minimal eigenvalue of �, and let �0; �1; : : : ; �d denote the asso
iated 
osine sequen
e. Then thefollowing are equivalent: (i) � is bipartite; (ii) �d = �k; (iii) �1 = �1; (iv) �2 = 1. Moreover, suppose(i){(iv) hold. Then �i = (�1)i for 0 � i � d:Proof. The equivalen
e of (i), (ii) follows from [3, Prop. 3.2.3℄. The equivalen
e of (ii), (iii) isimmediate from k�1 = �d. The remaining impli
ations follow from [3, Prop. 4.4.7℄.Lemma 2.6 Let � denote a distan
e-regular graph with diameter d � 3 and eigenvalues �0 > �1 >� � � > �d. Then (i){(iii) hold below.(i) 0 < �1 < k.(ii) a1 � k � �d < �1.(iii) Suppose � is not bipartite. Then a1 � k < �d.Proof. (i) The eigenvalue �1 is positive by [3, Cor. 3.5.4℄, and we have seen �1 < k.(ii) Let �1; �2 denote the �rst and se
ond 
osines for �d. Then �2 � 1 by Lemma 2.1(iii), so a1�k � �din view of Lemma 2.3(iii). Also �1 < �2 by Lemma 2.4(ii), so �d < �1 in view of Lemma 2.3(ii).(iii) Suppose �d = a1 � k. Applying Lemma 2.3(iii), we �nd �2 = 1, where �2 denotes the se
ond
osine for �d. Now � is bipartite by Lemma 2.5, 
ontradi
ting our assumptions. Hen
e �d > a1 � k,as desired.Lemma 2.7 Let � = (X;R) denote a nonbipartite distan
e-regular graph with diameter d � 3, letx; y denote adja
ent verti
es in X, and let E denote a nontrivial primitive idempotent of �. Thenthe ve
tors Ex̂ and Eŷ are linearly independent.Proof. Let � denote the �rst 
osine asso
iated to E. Then � 6= 1, sin
e E is nontrivial, and � 6= �1,sin
e � is not bipartite. Applying Lemma 2.1(ii), we see Ex̂ and Eŷ are linearly independent.We mention a few results on the interse
tion numbers.Lemma 2.8 [3, Prop. 5.5.1℄ Let � denote a distan
e-regular graph with diameter d � 3 and a1 6= 0.Then ai 6= 0 (1 � i � d� 1).Lemma 2.9 [3, Lem. 4.1.7℄ Let � denote a distan
e-regular graph with diameter d � 3. Then theinterse
tion numbers satisfyp1ii = b1b2 : : : bi�1
1
2 : : : 
i ai; p1i�1;i = b1b2 : : : bi�1
1
2 : : : 
i�1 (1 � i � d):5



For the remainder of this se
tion, we des
ribe a point of view we will adopt throughout the paper.De�nition 2.10 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3, and �x adja
entverti
es x; y 2 X. For all integers i and j we de�ne Dji = Dji (x; y) byDji = �i(x) \ �j(y): (15)We observe jDji j = p1ij for 0 � i; j � d, and Dji = ; otherwise. We visualize the Dji as follows.
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Figure 2.1: Distan
e distribution 
orresponding to an edge. Observe: Di�1i [ Dii [Di+1i = �i(x)for i = 1; : : : ; d. The number beside edges 
onne
ting 
ells Dji indi
ate how many neighbours avertex from the 
loser 
ell has in the other 
ell, see Lemma 2.11.Lemma 2.11 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3. Fix adja
entverti
es x; y 2 X, and pi
k any integer i (1 � i � d). Then with referen
e to De�nition 2.10, thefollowing (i) and (ii) hold.(i) Ea
h z 2 Dii�1 (resp. Di�1i ) is adja
ent to(a) pre
isely 
i�1 verti
es in Di�1i�2 (resp. Di�2i�1),(b) pre
isely 
i � 
i�1 � j�(z) \Di�1i�1j verti
es in Di�1i (resp. Dii�1),(
) pre
isely ai�1 � j�(z) \Di�1i�1j verti
es in Dii�1 (resp. Di�1i ),(d) pre
isely bi verti
es in Di+1i (resp. Dii+1),(e) pre
isely ai � ai�1 + j�(z) \Di�1i�1j verti
es in Dii.(ii) Ea
h z 2 Dii is adja
ent to(a) pre
isely 
i � j�(z) \Di�1i�1 j verti
es in Dii�1,(b) pre
isely 
i � j�(z) \Di�1i�1j verti
es in Di�1i ,(
) pre
isely bi � j�(z) \Di+1i+1j verti
es in Di+1i ,(d) pre
isely bi � j�(z) \Di+1i+1j verti
es in Dii+1,(e) pre
isely ai � bi � 
i + j�(z) \Di�1i�1j+ j�(z) \Di+1i+1j verti
es in Dii.Proof. Routine. 6



3 Edges that are tight with respe
t to an eigenvalueLet � = (X;R) denote a graph, and let 
 denote a nonempty subset of X. By the vertex subgraph of� indu
ed on 
, we mean the graph with vertex set 
, and edge set fxy j x; y 2 
; xy 2 Rg.De�nition 3.1 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3 and interse
tionnumber a1 6= 0. For ea
h edge xy 2 R, we de�ne the s
alar f = f(x; y) byf := a�11 ���f(z; w) 2 X2 j z; w 2 D11; �(z; w) = 2g���; (16)where D11 = D11(x; y) is from (15). We observe f is the average valen
y of the 
omplement of thevertex subgraph indu
ed on D11.We begin with some elementary fa
ts about f .Lemma 3.2 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3 and a1 6= 0. Letx; y denote adja
ent verti
es in X. Then with referen
e to (15), (16), lines (i){(iv) hold below.(i) The number of edges in R 
onne
ting a vertex in D11 with a vertex in D21 is equal to a1f .(ii) The number of edges in the vertex subgraph indu
ed on D11 is equal to a1(a1 � 1� f)=2.(iii) The number of edges in the vertex subgraph indu
ed on D21 is equal to a1(b1 � f)=2.(iv) 0 � f; f � a1 � 1; f � b1:Proof. Routine.The following lemma provides another bound for f .Lemma 3.3 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3 and a1 6= 0. Letx; y denote adja
ent verti
es in X, and write f = f(x; y). Then for ea
h nontrivial eigenvalue � of �,(k + �)(1 + �) f � b1(k + �(a1 + 1)): (17)Proof. Let �0; : : : ; �d denote the 
osine sequen
e of � and let E denote the 
orresponding primitiveidempotent. Set w := Xz2D11 ẑ;where D11 = D11(x; y) is from (15). Let G denote the Gram matrix for the ve
tors Ex̂, Eŷ, Ew; that isG := 0B� kEx̂k2 hEx̂; Eŷi hEx̂; EwihEŷ; Ex̂i kEŷk2 hEŷ; EwihEw; Ex̂i hEw; Eŷi kEwk2 1CA :7



On one hand, the matrix G is positive semi-de�nite, so it has nonnegative determinant. On the otherhand, by Lemma 2.1,det(G) = m3jXj�3 det0B� �0 �1 a1�1�1 �0 a1�1a1�1 a1�1 a1(�0 + (a1 � f � 1)�1 + f�2) 1CA= m3a1jXj�3 (� � 1) �(� � �2)(1 + �)f � (1� �)(a1� + 1 + �)�;where m denotes the multipli
ity of �. Sin
e a1 > 0 and � < 1, we �nd(� � �2)(1 + �) f � (1� �)(a1� + 1 + �): (18)Eliminating �; �2 in (18) using � = k� and Lemma 2.3(ii), and simplifying the result using � < k, weroutinely obtain (17).Corollary 3.4 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3 and a1 6= 0. Letx; y denote adja
ent verti
es in X, and let � denote a nontrivial eigenvalue of �. Then with referen
eto De�nition 2.10, the following are equivalent.(i) Equality is attained in (17).(ii) Ex̂; Eŷ; Xz2D11 Eẑ are linearly dependent.(iii) Xz2D11 Eẑ = a1�k + � (Ex̂+Eŷ).We say the edge xy is tight with respe
t to � whenever (i){(iii) hold above.Proof. (i)() (ii) Let the matrix G be as in the proof of Lemma 3.3. Then we �nd (i) holds if andonly if G is singular, if and only if (ii) holds.(ii) =) (iii) � is not bipartite sin
e a1 6= 0, so Ex̂; and Eŷ are linearly independent by Lemma 2.7.It follows Xz2D11 Eẑ = �Ex̂+ �Eŷ (19)for some �; � 2 R. Taking the inner produ
t of (19) with ea
h of Ex̂, Eŷ using Lemma 2.1, we readilyobtain � = � = a1�(k + �)�1.(iii) =) (ii) Clear.Let � = (X;R) denote a distan
e-regular graph with diameter d � 3, a1 6= 0, and eigenvalues�0 > �1 > � � � > �d. Pi
k adja
ent verti
es x; y 2 X, and write f = f(x; y). Referring to (17), we now
onsider whi
h of �1; �2; : : : ; �d gives the best bounds for f . Let � denote one of �1; �2; : : : ; �d. Assume� 6= �1; otherwise (17) gives no information about f . If � > �1 (resp. � < �1), line (17) gives anupper (resp. lower) bound for f . Consider the partial fra
tion de
ompostionb1 k + �(a1 + 1)(k + �)(1 + �) = b1k � 1� ka1k + � + b11 + ��:8



Sin
e the map F : R n f�k;�1g �! R, de�ned byx 7! ka1k + x + b11 + xis stri
tly de
reasing on the intervals (�k;�1) and (�1;1), we �nd in view of Lemma 2.6 that theleast upper bound for f is obtained at � = �1, and the greatest lower bound is obtained at � = �d.Theorem 3.5 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3, a1 6= 0, andeigenvalues �0 > �1 > � � � > �d. For all edges xy 2 R,b1 k + �d(a1 + 1)(k + �d)(1 + �d) � f(x; y) � b1 k + �1(a1 + 1)(k + �1)(1 + �1) : (20)Proof. This is immediate from (17) and Lemma 2.6.Corollary 3.6 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3, a1 6= 0, andeigenvalues �0 > �1 > � � � > �d. For all edges xy 2 R,(i) xy is tight with respe
t to �1 if and only if equality holds in the right inequality of (20),(ii) xy is tight with respe
t to �d if and only if equality holds in the left inequality of (20),(iii) xy is not tight with respe
t to �i for 2 � i � d� 1.Proof. (i),(ii) Immediate from (17) and Corollary 3.4.(iii) First suppose �i = �1. We do not have equality for � = �i in (17), sin
e the left side equals 0,and the right side equals b21. In parti
ular, xy is not tight with respe
t to �i. Next suppose �i 6= �1.Then we do not have equality for � = �i in (17) in view of the above mentioned fa
t, that the fun
tionF is stri
tly de
reasing on the intervals (�k;�1) and (�1;1).4 Tight edges and 
ombinatorial regularityTheorem 4.1 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3 and interse
tionnumber a1 6= 0. Let � denote a nontrivial eigenvalue of �, and let �0; �1; : : : ; �d denote its 
osinesequen
e. Let x; y denote adja
ent verti
es in X. Then with referen
e to De�nition 2.10, the followingare equivalent.(i) xy is tight with respe
t to �.(ii) For 1 � i � d; both �i�1 6= �i, and for all z 2 Dii�1j�i�1(z) \D11j = a11 + � ��i�1 � �i�i�1 � �i ; (21)j�i(z) \D11j = a11 + � �i�1 � ��i�i�1 � �i : (22)9



Proof. (i) =) (ii) Let the integer i be given. Observe by Corollary 3.6 that � is either the se
ondlargest eigenvalue �1 or the least eigenvalue �d, so �i�1 6= �i in view of Lemma 2.4. Pi
k any z 2 Dii�1.Observe D11 
ontains a1 verti
es, and ea
h is at distan
e i� 1 or i from z, soj�i�1(z) \D11j+ j�i(z) \D11 j = a1: (23)Let E denote the primitive idempotent asso
iated to �. By Corollary 3.4(iii), and sin
e xy is tightwith respe
t to �, Xw2D11 Eŵ = a1�1 + � (Ex̂+Eŷ): (24)Taking the inner produ
t of (24) with Eẑ using Lemma 2.1, we obtain�i�1j�i�1(z) \D11 j+ �ij�i(z) \D11 j = a1�1 + � (�i�1 + �i): (25)Solving the system (23), (25), we routinely obtain (21), (22).(ii) =) (i) We show equality holds in (17). Counting the edges between D11 and D21 using (21) (withi = 2), we �nd in view of Lemma 3.2(i) thatf(x; y) = b1 �2 � �2(1 + �)(� � �2) : (26)Eliminating �; �2 in (26) using � = k� and Lemma 2.3(ii),(iv), we readily �nd equality holds in (17).Now xy is tight with respe
t to � by Corollary 3.4.Theorem 4.2 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3 and a1 6= 0. Let� denote a nontrivial eigenvalue of �, and let �0; �1; : : : ; �d denote its 
osine sequen
e. Let x; y denoteadja
ent verti
es in X. Then with referen
e to De�nition 2.10, the following are equivalent.(i) xy is tight with respe
t to �,(ii) For 1 � i � d� 1; both �i 6= �i+1, and for all z 2 Diij�i+1(z) \D11 j = j�i�1(z) \D11j �i�1 � �i�i � �i+1 + a1 1� �1 + � �i�i � �i+1 ; (27)j�i(z) \D11 j = �j�i�1(z) \D11j �i�1 � �i+1�i � �i+1 + a1 2�1 + �� a1 1� �1 + � �i+1�i � �i+1 : (28)Suppose (i){(ii) above, and that ad 6= 0. Then for all z 2 Dddj�d�1(z) \D11j = � a1 1� �1 + � �d�d�1 � �d ; (29)j�d(z) \D11j = a1 + a1 1� �1 + � �d�d�1 � �d : (30)10



Proof. (i) =) (ii) Let the integer i be given. Observe by Corollary 3.6 that � is either the se
ondlargest eigenvalue �1 or the least eigenvalue �d, so �i 6= �i+1 by Lemma 2.4. Pi
k any z 2 Dii.Pro
eeding as in the proof of Theorem 4.1 (i) =) (ii), we �ndj�i�1(z) \D11j+ j�i(z) \D11j+ j�i+1(z) \D11j = a1; (31)�i�1j�i�1(z) \D11 j+ �ij�i(z) \D11 j+ �i+1j�i+1(z) \D11j = 2��ia11 + � : (32)Solving (31), (32) for j�i(z) \D11j, j�i+1(z) \D11j, we routinely obtain (27) and (28).(ii) =) (i) Setting i = 1 in (27), and evaluating the result using (16), we �ndf(x; y) = 1� �� � �2 + a1 1� �1 + � �� � �2 : (33)Eliminating �; �2 in (33) using � = k� and Lemma 2.3(ii), we �nd equality holds in (17). Now xy istight with respe
t to � by Corollary 3.4.Now suppose (i){(ii) hold above, and that ad 6= 0. Pi
k any z 2 Ddd. Pro
eeding as in the proof ofTheorem 4.1 (i) =) (ii), we �ndj�d�1(z) \D11j+ j�d(z) \D11j = a1; (34)�d�1j�d�1(z) \D11 j+ �dj�d(z) \D11j = 2�d�a11 + � : (35)Observe �d�1 6= �d by (ii) above, so the linear system (34), (35) has unique solution (29), (30).5 The tightness of an edgeDe�nition 5.1 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3, interse
tionnumber a1 6= 0, and eigenvalues �0 > �1 > � � � > �d. For ea
h edge xy 2 R, let t = t(x; y) denote thenumber of nontrivial eigenvalues of � with respe
t to whi
h xy is tight. We 
all t the tightness ofthe edge xy. In view of Corollary 3.6 we have:(i) t = 2 if xy is tight with respe
t to both �1 and �d;(ii) t = 1 if xy is tight with respe
t to exa
tly one of �1 and �d;(iii) t = 0 if xy is not tight with respe
t to �1 or �d.Theorem 5.2 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3 and a1 6= 0.For all edges xy 2 R, the tightness t = t(x; y) is given byt = 3d+ 1� dim (MH); (36)where M denotes the Bose-Mesner algebra of �, whereH = Span�x̂; ŷ; Xz2D11(x;y) ẑ�; (37)and where MH means Spanfmh j m 2M; h 2 Hg.11



Proof. Sin
e E0; E1; : : : ; Ed is a basis for M , and in view of (10),MH = dXi=0EiH (dire
t sum);and it follows dimMH = dXi=0 dim EiH:Note that dim E0H = 1. For 1 � i � d, we �nd by Lemma 2.7 and Corollary 3.4(ii) that dim EiH = 2if xy is tight with respe
t to �i, and dim EiH = 3 otherwise. The result follows.6 Tight graphs and the Fundamental BoundIn this se
tion, we obtain an inequality involving the se
ond largest and minimal eigenvalue of adistan
e-regular graph. To obtain it, we need the following lemma.Lemma 6.1 Let � denote a nonbipartite distan
e-regular graph with diameter d � 3, and eigenvalues�0 > �1 > � � � > �d. Thenk + �1(a1 + 1)(k + �1)(1 + �1) � k + �d(a1 + 1)(k + �d)(1 + �d) (38)= 	 (a1 + 1)(�d � �1)(1 + �1)(1 + �d)(k + �1)(k + �d) ; (39)where 	 = ��1 + ka1 + 1���d + ka1 + 1� + ka1b1(a1 + 1)2 : (40)Proof. Put (38) over a 
ommon denominator, and simplify.We now present our inequality. We give two versions.Theorem 6.2 Let � denote a distan
e-regular graph with diameter d � 3, and eigenvalues �0 > �1 >� � � > �d. Then (i), (ii) hold below.(i) Suppose � is not bipartite. Thenk + �d(a1 + 1)(k + �d)(1 + �d) � k + �1(a1 + 1)(k + �1)(1 + �1) : (41)(ii) ��1 + ka1 + 1���d + ka1 + 1� � � ka1b1(a1 + 1)2 : (42)We refer to (42) as the Fundamental Bound. 12



Proof. (i) First assume a1 = 0. Then the left side of (41) equals (1+ �d)�1, and is therefore negative.The right side of (41) equals (1 + �1)�1, and is therefore positive. Next assume a1 6= 0. Then (41) isimmediate from (20).(ii) First assume � is bipartite. Then �d = �k and a1 = 0, so both sides of (42) equal 0. Next assume� is not bipartite. Then (42) is immediate from (i) above, Lemma 6.1, and Lemma 2.6.We now 
onsider when equality is attained in Theorem 6.2. To avoid trivialities, we 
onsider only thenonbipartite 
ase.Corollary 6.3 Let � denote a nonbipartite distan
e-regular graph with diameter d � 3, and eigenval-ues �0 > �1 > � � � > �d. Then the following are equivalent.(i) Equality holds in (41).(ii) Equality holds in (42).(iii) a1 6= 0 and every edge of � is tight with respe
t to both �1 and �d.(iv) a1 6= 0 and there exists an edge of � whi
h is tight with respe
t to both �1 and �d.Proof. (i) () (ii) Immediate from Lemma 6.1.(i),(ii) =) (iii) Suppose a1 = 0. We assume (42) holds with equality, so (�1 + k)(�d + k) = 0; for
ing�d = �k. Now � is bipartite by Lemma 2.5, 
ontradi
ting the assumption. Hen
e a1 6= 0. Let xydenote an edge of �. Observe the expressions on the left and right in (20) are equal, so they bothequal f(x; y). Now xy is tight with respe
t to both �1, �d by Corollary 3.6(i),(ii).(iii) =) (iv) Clear.(iv) =) (i) Suppose the edge xy is tight with respe
t to both �1, �d. By Corollary 3.6(i),(ii), thes
alar f(x; y) equals both the expression on the left and the expression on the right in (20), so theseexpressions are equal.De�nition 6.4 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3. We say � istight whenever � is not bipartite and the equivalent 
onditions (i){(iv) hold in Corollary 6.3.We wish to emphasize the following fa
t.Proposition 6.5 Let � denote a tight distan
e-regular graph with diameter d � 3. Then ai 6= 0(1 � i � d� 1).Proof. Observe a1 6= 0 by Corollary 6.3(iii) and De�nition 6.4. Now a2; : : : ; ad�1 are nonzero byLemma 2.8.We �nish this se
tion with some inequalities involving the eigenvalues of tight graphs.13



Lemma 6.6 Let � = (X;R) denote a tight distan
e-regular graph with diameter d � 3 and eigenvalues�0 > �1 > � � � > �d. Then (i){(iv) hold below.(i) �d < �ka1 + 1 .(ii) Let �, �2 denote the �rst and se
ond 
osines for �d, respe
tively. Then �2 < �2.(iii) Let �, �2 denote the �rst and se
ond 
osines for �1, respe
tively. Then �2 > �2.(iv) For ea
h edge xy of �, the s
alar f = f(x; y) satis�es 0 < f < b1.Proof. (i) Observe (42) holds with equality sin
e � is tight, and a1 6= 0 by Proposition 6.5, so��1 + ka1 + 1���d + ka1 + 1� < 0:Sin
e �1 > �d, the �rst fa
tor is positive, and the se
ond is negative. The result follows.(ii) By Lemma 2.3(iv), k2b1(�2 � �2) = (k � �d)(k + �d(a1 + 1)): (43)The right side of (43) is negative in view of (i) above, so �2 < �2.(iii) By Lemma 2.3(iv), k2b1(�2 � �2) = (k � �1)(k + �1(a1 + 1)): (44)The right side of (44) is positive in view of Lemma 2.6(i), so �2 > �2.(iv) Observe f equals the expression on the right in (20). This expression is positive and less than b1,sin
e �1 is positive.7 Two 
hara
terizations of tight graphsTheorem 7.1 Let � denote a nonbipartite distan
e-regular graph with diameter d � 3, and eigenval-ues �0 > �1 > � � � > �d. Then for all real numbers �; �, the following are equivalent.(i) � is tight, and �; � is a permutation of �1; �d.(ii) �d � �; � � �1, and ��+ ka1 + 1��� + ka1 + 1� = � ka1b1(a1 + 1)2 : (45)Proof. (i) =) (ii) Immediate sin
e (42) holds with equality.(ii) =) (i) Inter
hanging � and � if ne
essary, we may assume � � �. Sin
e the right side of (45) isnonpositive, we have 0 � �+ ka1 + 1 � �1 + ka1 + 1 ;0 � � + ka1 + 1 � �d + ka1 + 1 :14



By (45), the above inequalities, and (42), we have� ka1b1(a1 + 1)2 = ��+ ka1 + 1��� + ka1 + 1�� ��1 + ka1 + 1���d + ka1 + 1� (46)� � ka1b1(a1 + 1)2 : (47)Apparently we have equality in (46), (47). In parti
ular (42) holds with equality, so � is tight. Wementioned equality holds in (46). Neither side is 0, sin
e a1 6= 0 by Proposition 6.5, and it follows� = �1, � = �d.Theorem 7.2 Let � = (X;R) denote a nonbipartite distan
e-regular graph with diameter d � 3, andeigenvalues �0 > �1 > � � � > �d. Let � and �0 denote distin
t eigenvalues of �, with respe
tive 
osinesequen
es �0; �1; : : : ; �d and �0; �1; : : : ; �d. The following are equivalent.(i) � is tight, and �, �0 is a permutation of �1, �d.(ii) For 1 � i � d, ��i�1 � �i(1 + �)(�i�1 � �i) = ��i�1 � �i(1 + �)(�i�1 � �i) ; (48)and the denominators in (48) are nonzero.(iii) �2 � �2(1 + �)(� � �2) = �2 � �2(1 + �)(�� �2) ; (49)and the denominators in (49) are nonzero.(iv) � and �0 are both nontrivial, and(�2�2 � ��)(�� �) = (��2 � �2�)(�� � 1): (50)Proof. (i) =) (ii) Re
all a1 6= 0 by Proposition 6.5. Pi
k adja
ent verti
es x; y 2 X, and letD11 = D11(x; y) be as in De�nition 2.10. By Corollary 6.3(iii), the edge xy is tight with respe
t to both�, �0; applying (21), we �nd both sides of (48) equal a�11 j�i�1(z)\D11 j, where z denotes any vertex inDii�1(x; y). In parti
ular, the two sides of (48) are equal. The denominators in (48) are nonzero byLemma 2.4 and Lemma 2.5.(ii) =) (iii) Set i = 2 in (ii).(iii) =) (iv) � is nontrivial; otherwise � = �2 = 1, and a denominator in (49) is zero. Similarly �0 isnontrivial. To get (50), put (49) over a 
ommon denominator and simplify the result.(iv) =) (i) Eliminating �; �2; �; �2 in (50) using � = k�, �0 = k�, and Lemma 2.3(i), we routinely�nd (45) holds for � = � and � = �0. Applying Theorem 7.1, we �nd � is tight, and that �, �0 is apermutation of �1, �d. 15



8 The auxiliary parameterLet � denote a tight distan
e-regular graph with diameter d � 3. We are going to show the interse
tionnumbers of � are given by 
ertain rational expressions involving d independent parameters. We beginby introdu
ing one of these parameters.De�nition 8.1 Let � denote a tight distan
e-regular graph with diameter d � 3, and eigenvalues�0 > �1 > � � � > �d. Let � denote one of �1, �d. By the auxiliary parameter of � asso
iated with �,we mean the s
alar " = k2 � ��0k(� � �0) ; (51)where �0 denotes the 
omplement of � in f�1; �dg. We observe the auxiliary parameter for �d is theopposite of the auxiliary parameter for �1.Lemma 8.2 Let � denote a tight distan
e-regular graph with diameter d � 3, and eigenvalues �0 >�1 > � � � > �d. Let � denote one of �1; �d, and let " denote the auxiliary parameter for �. Then (i){(iv)hold below.(i) " > 0 if � = �1, and " < 0 if � = �d.(ii) 1 < j"j.(iii) j"j < k��11 .(iv) j"j < �k��1d .Proof. First assume � = �1. By (51),"� 1 = (k + �d)(k � �1)(�1 � �d)�1k�1 > 0;so " > 1. Re
all �1 > 0 and �d < 0. By this and (51),k��11 � " = �d(k � �1)(k + �1)(�d � �1)�1k�1��11 > 0;so " < k��11 . Similarilyk��1d + " = �1(k � �d)(k + �d)(�1 � �d)�1k�1��1d < 0;so " < �k��1d . We now have the result for � = �1. The result for � = �d follows in view of the lastline of De�nition 8.1.Theorem 8.3 Let � denote a nonbipartite distan
e-regular graph with diameter d � 3, and eigenval-ues �0 > �1 > � � � > �d. Let � and �0 denote any eigenvalues of �, with respe
tive 
osine sequen
es�0; �1; : : : ; �d and �0; �1; : : : ; �d. Let " denote any 
omplex s
alar. Then the following are equivalent.16



(i) � is tight, �; �0 is a permutation of �1; �d, and " is the auxiliary parameter for �.(ii) � and �0 are both nontrivial, and�i�i � �i�1�i�1 = "(�i�1�i � �i�1�i) (52)for 1 � i � d.(iii) � and �0 are both nontrivial, and��� 1 = "(�� �); �2�2 � �� = "(��2 � ��2): (53)Proof. (i) =) (ii) It is 
lear �, �0 are both nontrivial. To see (52), observe �; �0 are distin
t, so theequivalent statements (i){(iv) in Theorem 7.2 hold. Putting (48) over a 
ommon denominator andsimplifying using " = (1� ��)(� � �)�1, we get (52).(ii) =) (iii) Set i = 1 and i = 2 in (52).(iii) =) (i) We �rst show � 6= �0. Suppose � = �0. Then � = �, so the left equation of (53) be
omes�2 = 1, for
ing � = 1 or � = �1. But � 6= 1 sin
e � is nontrivial, and � 6= �1 sin
e � is not bipartite.We 
on
lude � 6= �0. Now � 6= �; solving the left equation in (53) for ", and eliminating " in the rightequation of (53) using the result, we obtain (50). Now Theorem 7.2(iv) holds. Applying Theorem 7.2,we �nd � is tight, and that �, �0 is a permutation of �1, �d. Solving the left equation in (53) for ", andsimplifying the result, we obtain (51). It follows " is the auxiliary parameter for �.9 FeasibilityLet � denote a tight distan
e-regular graph with diameter d � 3, and eigenvalues �0 > �1 > � � � >�d. Let �; �0 denote a permutation of �1; �d, with respe
tive 
osine sequen
es �0; �1; : : : ; �d and�0; �1; : : : ; �d. Let " denote the auxiliary parameter for �. Pi
k any integer i (1 � i � d), andobserve (52) holds. Rearranging terms in that equation, we �nd�i(�i � "�i�1) = �i�1(�i�1 � "�i): (54)We would like to solve (54) for �i, but 
on
eivably �i � "�i�1 = 0. In this se
tion we investigate thispossibility.Lemma 9.1 Let � denote a tight distan
e-regular graph with diameter d � 3, and eigenvalues �0 >�1 > � � � > �d. Let �; �0 denote a permutation of �1; �d, with respe
tive 
osine sequen
es �0; �1; : : : ; �dand �0; �1; : : : ; �d. Let " denote the auxiliary parameter for �. Then for ea
h integer i (1 � i � d�1),the following are equivalent: (i) �i�1 = "�i; (ii) �i+1 = "�i; (iii) �i�1 = �i+1; (iv) �i = 0. Moreover,suppose (i){(iv) hold. Then � = �d and �0 = �1. 17



Proof. Observe Theorem 8.3(i) holds, so (52) holds.(i) =) (iv) Repla
ing �i�1 by "�i in (52), we �nd �i�i(1 � "2) = 0: Observe "2 6= 1 by Lemma8.2(ii). Suppose for the moment that �i = 0. We assume �i�1 = "�i, so �i�1 = 0. Now �i�1 = �i,
ontradi
ting Lemma 2.4. Hen
e �i 6= 0, so �i = 0.(iv) =) (i) Setting �i = 0 in (52), we �nd �i�1(�i�1 � "�i) = 0: Observe �i�1 6= 0, otherwise�i�1 = �i, 
ontradi
ting Lemma 2.4. We 
on
lude �i�1 = "�i, as desired.(ii) () (iv) Similar to the proof of (i) () (iv).(i),(ii) =) (iii) Clear.(iii) =) (i) We 
annot have � = �1 by Lemma 2.4(i), so � = �d, �0 = �1. In parti
ular �i�1 6= �i+1.Adding (52) at i and i+ 1, we obtain�i+1�i+1 � �i�1�i�1 = "(�i�i+1 � �i+1�i + �i�1�i � �i�i�1):Repla
ing �i+1 by �i�1 in the above line, and simplifying, we obtain(�i�1 � "�i)(�i+1 � �i�1) = 0:It follows �i�1 = "�i, as desired.Now suppose (i){(iv). Then we saw in the proof of (iii) =) (i) that � = �d, �0 = �1.De�nition 9.2 Let � = (X;R) denote a tight distan
e-regular graph with diameter d � 3 and eigen-values �0 > �1 > � � � > �d. Let �0; �1; : : : ; �d denote any 
osine sequen
e for � and let � denote the
orresponding eigenvalue. The sequen
e �0; �1; : : : ; �d (or �) is said to be feasible whenever (i) and(ii) hold below.(i) � is one of �1; �d.(ii) �i�1 6= �i+1 for 1 � i � d� 1.We observe by Lemma 2.4(i) that �1 is feasible.We 
on
lude this se
tion with an extension of Theorem 8.3.Theorem 9.3 Let � denote a nonbipartite distan
e-regular graph with diameter d � 3, and eigenval-ues �0 > �1 > � � � > �d. Let � and �0 denote any eigenvalues of �, with respe
tive 
osine sequen
es�0; �1; : : : ; �d and �0; �1; : : : ; �d. Let " denote any 
omplex s
alar. Then the following are equivalent.(i) � is tight, � is feasible, " is the auxiliary parameter for �, and �0 is the 
omplement of � inf�1; �dg.(ii) �0 is not trivial, �i = iYj=1 �j�1 � "�j�j � "�j�1 (0 � i � d); (55)and denominators in (55) are all nonzero. 18



Proof. (i) =) (ii) Clearly �0 is nontrivial. To see (55), observe Theorem 8.3(i) holds, so (52) holds.Rearranging terms in (52), we obtain�i(�i � "�i�1) = �i�1(�i�1 � "�i) (1 � i � d): (56)Observe �i 6= "�i�1 for 2 � i � d by Lemma 9.1(ii), and � 6= " by Lemma 8.2(ii), so the 
oeÆ
ient of�i in (56) is never zero. Solving that equation for �i and applying indu
tion, we routinely obtain (55).(ii) =) (i) We show Theorem 8.3(iii) holds. Observe � is nontrivial; otherwise � = 1, for
ing � = 1 by(55), and 
ontradi
ting our assumption that �0 is nontrivial. One readily veri�es (53) by eliminating�; �2 using (55). We now have Theorem 8.3(iii). Applying that theorem, we �nd � is tight, �; �0 isa permutation of �1; �d, and that " is the auxiliary parameter for �. It remains to show � is feasible.Suppose not. Then there exists an integer i (1 � i � d� 1) su
h that �i�1 = �i+1. Applying Lemma9.1, we �nd �i+1 = "�i. But �i+1 � "�i is a fa
tor in the denominator of (55) (with i repla
ed byi+ 1), and hen
e is not 0. We now have a 
ontradi
tion, so � is feasible.10 A parametrizationIn this se
tion, we obtain the interse
tion numbers of a tight graph as rational fun
tions of a feasible
osine sequen
e and the asso
iated auxiliary parameter. We begin with a result about arbitrarydistan
e-regular graphs.Lemma 10.1 Let � denote a distan
e-regular graph with diameter d � 3, and eigenvalues �0 > �1 >� � � > �d. Let �, �0 denote a permutation of �1, �d, with respe
tive 
osine sequen
es �0; �1; : : : ; �d and�0; �1; : : : ; �d. Thenk = (� � �2)(1� �)� (�� �2)(1 � �)(�� �2)(1� �)� � (� � �2)(1� �)�; (57)bi = k (�i�1 � �i)(1� �)�i � (�i�1 � �i)(1� �)�i(�i � �i+1)(�i�1 � �i)� (�i � �i+1)(�i�1 � �i) (1 � i � d� 1); (58)
i = k (�i � �i+1)(1� �)�i � (�i � �i+1)(1� �)�i(�i � �i+1)(�i�1 � �i)� (�i � �i+1)(�i�1 � �i) (1 � i � d� 1); (59)
d = k�d � � 1�d�1 � �d = k�d �� 1�d�1 � �d ; (60)and the denominators in (57){(60) are never zero.Proof. Line (60) is immediate from Lemma 2.3(v), and the denominators in that line are nonzero byLemma 2.4. To obtain (58), (59), pi
k any integer i (1 � i � d� 1), and re
all by Lemma 2.2(iii) that
i(�i�1 � �i)� bi(�i � �i+1) = k(� � 1)�i; (61)
i(�i�1 � �i)� bi(�i � �i+1) = k(�� 1)�i: (62)19



To solve this linear system for 
i and bi, 
onsider the determinantDi := det �i�1 � �i �i � �i+1�i�1 � �i �i � �i+1 ! :Using Lemma 2.4, we routinely �nd Di 6= 0. Now (61), (62) has the unique solution (58), (59) byelementary linear algebra. The denominators in (58), (59) both equal Di; in parti
ular they are notzero. To get (57), set i = 1 and 
1 = 1 in (59), and solve for k.Theorem 10.2 Let � denote a nonbipartite distan
e-regular graph with diameter d � 3, and let�0; �1; : : : �d; "; h denote 
omplex s
alars. Then the following are equivalent.(i) � is tight, �0; �1; : : : �d is a feasible 
osine sequen
e for �, " is the asso
iated auxiliary parameterfrom (51), and h = (1� �)(1 � �2)(�2 � �2)(1� "�) : (63)(ii) �0 = 1, �d�1 = ��d, " 6= �1,k = h� � "� � 1 ; (64)bi = h(�i�1 � ��i)(�i+1 � "�i)(�i�1 � �i+1)(�i+1 � �i) (1 � i � d� 1); (65)
i = h(�i+1 � ��i)(�i�1 � "�i)(�i+1 � �i�1)(�i�1 � �i) (1 � i � d� 1); (66)
d = h� � "� � 1 ; (67)and denominators in (64){(67) are all nonzero.Proof. Let �0 > �1 > � � � > �d denote the eigenvalues of �.(i) =) (ii) Observe �0 = 1 by Lemma 2.2(ii), and " 6= �1 by Lemma 8.2(ii). Let � denote theeigenvalue asso
iated with �0; �1; : : : ; �d, and observe by De�nition 9.2 that � is one of �1; �d. Let�0 denote the 
omplement of � in f�1; �dg, and let �0; �1; : : : ; �d denote the 
osine sequen
e for �0.Observe Theorem 9.3(i) holds. Applying that theorem, we obtain (55). Eliminating �0; �1; : : : ; �d in(57){(60) using (55), we routinely obtain (64){(67), and that �d�1 = ��d.(ii) =) (i) One readily 
he
ks
i(�i�1 � �i)� bi(�i � �i+1) = k(� � 1)�i (1 � i � d);where �d+1 is an indeterminant. Applying Lemma 2.2(i),(iii), we �nd �0; �1; : : : ; �d is a 
osine sequen
efor �, with asso
iated eigenvalue � := k�. By (64), (65), and sin
e k; b1; : : : ; bd�1 are nonzero,�j 6= "�j�1 (1 � j � d):20



Set �i := iYj=1 �j�1 � "�j�j � "�j�1 (0 � i � d): (68)One readily 
he
ks �0 = 1, and that
i(�i�1 � �i)� bi(�i � �i+1) = k(�� 1)�i (1 � i � d);where �d+1 is an indeterminant. Applying Lemma 2.2(i),(iii), we �nd �0; �1; : : : ; �d is a 
osinesequen
e for �, with asso
iated eigenvalue �0 := k�. We 
laim �0 is not trivial. Suppose �0 is trivial.Then � = 1. Setting i = 1 and � = 1 in (68) we �nd ��" = 1�"� , for
ing (1��)(1+") = 0. Observe� 6= 1 sin
e the denominator in (67) is not zero, and we assume " 6= �1, so we have a 
ontradi
tion.We have now shown �0 is nontrivial, so Theorem 9.3(ii) holds. Applying that theorem, we �nd � istight, � is feasible, and that " is the auxiliary parameter of �. To see (63), set i = 1 and 
1 = 1 in(66), and solve for h.Proposition 10.3 With the notation of Theorem 10.2, suppose (i), (ii) hold, and let �0 > �1 > � � � >�d denote the eigenvalues of �. If " > 0, then�1 = �(� � ")(1 � �2)(1� "�)(�2 � �2) ; �d = 1� �2�2 � �2 : (69)If " < 0, then �1 = 1� �2�2 � �2 ; �d = �(� � ")(1 � �2)(1� "�)(�2 � �2) : (70)We remark that the denominators in (69), (70) are nonzero.Proof. Let � denote the eigenvalue of � asso
iated with �0; �1; : : : ; �d. By Lemma 2.2(iii) and (64),we obtain � = k�= �(� � ")(1 � �2)(1� "�)(�2 � �2) : (71)Observe � 2 f�1; �dg sin
e �0; �1; : : : ; �d is feasible. Let �0 denote the 
omplement of � in f�1; �dg,and let � denote the �rst 
osine asso
iated with �0. Observe 
ondition (i) holds in Theorem 9.3, so(55) holds. Setting i = 1 in that equation, we �nd� = 1� "�� � " : (72)By Lemma 2.2(iii), (64), and (72), we obtain�0 = k�= 1� �2�2 � �2 : (73)To �nish the proof, we observe by Lemma 8.2(i) that � = �1, �0 = �d if " > 0, and � = �d, �0 = �1 if" < 0. 21



Theorem 10.4 Let � denote a tight distan
e-regular graph with diameter d � 3, and eigenvalues�0 > �1 > � � � > �d. Then (i) and (ii) hold below.(i) ad = 0.(ii) Let �0; �1; : : : ; �d denote the 
osine sequen
e for �1 or �d, and let " denote the asso
iated auxiliaryparameter from (51).Then ai = g (�i+1 � ��i)(�i�1 � ��i)(�i+1 � �i)(�i�1 � �i) (1 � i � d� 1); (74)where g = ("� 1)(1 � �2)(�2 � �2)(1 � "�) : (75)Proof. (i) Comparing (64), (67), we see k = 
d, and it follows ad = 0.(ii) First assume �0; �1; : : : ; �d is the 
osine sequen
e for �1, and re
all this sequen
e is feasible. Leth be as in (63). Then Theorem 10.2(i) holds, so Theorem 10.2(ii) holds. Evaluating the right sideof ai = k � bi � 
i using (64){(66), and simplifying the result using (63), we obtain (74), (75). To�nish the proof, let �0; �1; : : : ; �d denote the 
osine sequen
e for �d, and re
all by De�nition 8.1 thatthe asso
iated auxiliary parameter is "0 = �". We showai = ("0 � 1)(1� �2)(�2 � �2)(1� "0�) (�i+1 � ��i)(�i�1 � ��i)(�i+1 � �i)(�i�1 � �i) : (76)By Theorem 7.2(ii) (with i repla
ed by i+ 1),11 + � �i+1 � ��i�i+1 � �i = 11 + � �i+1 � ��i�i+1 � �i : (77)Subtra
ting 1 from both sides of Theorem 7.2(ii), and simplifying, we obtain11 + � �i�1 � ��i�i�1 � �i = 11 + � �i�1 � ��i�i�1 � �i : (78)By (53), ("� 1)(1 � �2)(1 + �)2(�2 � �2)(1 � "�) = ("0 � 1)(1 � �2)(1 + �)2(�2 � �2)(1� "0�) : (79)Multiplying together (77){(79) and simplifying, we obtain (76), as desired.We end this se
tion with some inequalities.Lemma 10.5 Let � denote a tight distan
e-regular graph with diameter d � 3, and eigenvalues�0 > �1 > � � � > �d. Let � denote one of �1; �d, and let �0; �1; : : : ; �d denote the 
osine sequen
e for �.Suppose � = �1. Then(i) �i�1 > ��i (1 � i � d� 1);(ii) ��i�1 > �i (2 � i � d). 22



Suppose � = �d. Then(iii) (�1)i(��i � �i�1) > 0 (1 � i � d� 1);(iv) (�1)i(�i � ��i�1) > 0 (2 � i � d).Proof. (i) We �rst show �i�1 � ��i is nonnegative. Re
all a1 6= 0 by Proposition 6.5, so Theorem4.1 applies. Let x; y denote adja
ent verti
es in X, and re
all by Corollary 6.3 that the edge xy istight with respe
t to �. Now Theorem 4.1(i) holds, so (22) holds. Observe the left side of (22) isnonnegative, so the right side is nonnegative. In that expression on the right, the fa
tors 1 + � and�i�1 � �i are positive, so the remaining fa
tor �i�1 � ��i is nonnegative, as desired. To �nish theproof, observe �i�1 � ��i is a fa
tor on the right in (74), so it is not zero in view of Proposition 6.5.(ii){(iv) Similar to the proof of (i) above.11 The 1-homogeneous propertyIn this se
tion, we show the 
on
ept of tight is 
losely related to the 
on
ept of 1-homogeneous thatappears in the work of K. Nomura [13℄, [14℄, [15℄.Theorem 11.1 Let � = (X;R) denote a tight distan
e-regular graph with diameter d � 3, andeigenvalues �0 > �1 > � � � > �d. Let �0; �1; : : : ; �d denote the 
osine sequen
e asso
iated with �1 or �d.Fix adja
ent verti
es x; y 2 X. Then with the notation of De�nition 2.10 we have the following: Forall integers i (1 � i � d� 1), and for all verti
es z 2 Dii,j�i�1(z) \D11j = 
i (�2 � �2)(�i � �i+1)(� � �2)(��i � �i+1) ; (80)j�i+1(z) \D11j = bi (�2 � �2)(�i�1 � �i)(� � �2)(�i�1 � ��i) : (81)Proof. First assume �0; �1; : : : ; �d is the 
osine sequen
e for �1, and let �0; �1; : : : ; �d denote the 
osinesequen
e for �d. The edge xy is tight with respe
t to both �1, �d, so by Theorem 4.2(ii),j�i+1(z) \D11j = j�i�1(z) \D11j �i�1 � �i�i � �i+1 + a1 1� �1 + � �i�i � �i+1 ; (82)j�i+1(z) \D11j = j�i�1(z) \D11j �i�1 � �i�i � �i+1 + a1 1� �1 + � �i�i � �i+1 : (83)Eliminating �0; �1; : : : ; �d in (83) using (55), we obtainj�i+1(z) \D11j = j�i�1(z) \D11j �i�1 � �i�i � �i+1 �i+1 � "�i�i�1 � "�i+ a1 (1� �)(�i+1 � "�i)(1 + �)(1 � ")(�i � �i+1) ; (84)23



where " denotes the auxiliary parameter asso
iated with �1. Solving (82), (84) for j�i+1(z) \D11j andj�i�1(z) \D11j, and evaluating the result using (63), (65), (66), (74), we get (80), (81), as desired. To�nish the proof observe by Theorem 7.2(ii),(iii) that(�2 � �2)(�i � �i+1)(� � �2)(��i � �i+1) = (�2 � �2)(�i � �i+1)(�� �2)(��i � �i+1) ; (85)(�2 � �2)(�i�1 � �i)(� � �2)(�i�1 � ��i) = (�2 � �2)(�i�1 � �i)(�� �2)(�i�1 � ��i) : (86)Theorem 11.2 Let � = (X;R) denote a tight distan
e-regular graph with diameter d � 3, andeigenvalues �0 > �1 > � � � > �d. Let �0; �1; : : : ; �d denote the 
osine sequen
e for �1 or �d. Fixadja
ent verti
es x; y 2 X. Then with the notation of De�nition 2.10 we have the following (i), (ii).(i) For all integers i (1 � i � d� 1), and for all z 2 Dii,j�(z) \Di�1i�1j = 
i (�i � �i+1)(��i�1 � �i)(�i�1 � �i)(��i � �i+1) ; (87)j�(z) \Di+1i+1j = bi (�i�1 � �i)(�i � ��i+1)(�i � �i+1)(�i�1 � ��i) : (88)(ii) For all integers i (2 � i � d), and for all z 2 Dii�1 [Di�1i ,j�(z) \Di�1i�1j = ai�1 (1� �)(�2i�1 � �i�2�i)(�i�1 � �i)(�i�2 � ��i�1) : (89)Proof. (i) To prove (87), we assume i � 2; otherwise both sides are zero. Let �i denote the expressionon the right in (80). Let N denote the number of ordered pairs uv su
h thatu 2 �i�1(z) \D11 ; v 2 �(z) \Di�1i�1; �(u; v) = i� 2:We 
ompute N in two ways. On one hand, by (80), there are pre
isely �i 
hoi
es for u, and given u,there are pre
isely 
i�1 
hoi
es for v, so N = �i
i�1: (90)On the other hand, there are pre
isely j�(z) \Di�1i�1j 
hoi
es for v, and given v, there are pre
isely�i�1 
hoi
es for u, so N = j�(z) \Di�1i�1j�i�1: (91)Observe by Lemma 2.4, Lemma 6.6, and (80) that �i�1 6= 0; 
ombining this with (90), (91), we �ndj�(z) \Di�1i�1j = 
i�1�i��1i�1:Eliminating �i�1, �i in the above line using (80), we obtain (87), as desired. Con
erning (88), �rst24



assume i = d � 1. We show both sides of (88) are zero. To see the left side is zero, re
all ad = 0 byTheorem 10.4, for
ing p1dd = 0 by Lemma 2.9, so Ddd = ; by the last line in De�nition 2.10. The rightside of (88) is zero sin
e the fa
tor �d�1 � ��d in the numerator is zero by Lemma 2.3(vi). We nowshow (88) for i � d� 2. Let �i denote the expression on the right in (81). Let N 0 denote the numberof ordered pairs uv su
h thatu 2 �i+1(z) \D11 ; v 2 �(z) \Di+1i+1; �(u; v) = i+ 2:We 
ompute N 0 in two ways. On one hand, by (81), there are pre
isely �i 
hoi
es for u, and given u,there are pre
isely bi+1 
hoi
es for v, so N 0 = �ibi+1: (92)On the other hand, there are pre
isely j�(z) \Di+1i+1j 
hoi
es for v, and given v, there are pre
isely�i+1 
hoi
es for u, so N 0 = j�(z) \Di+1i+1j�i+1: (93)Observe by Lemma 2.4, Lemma 6.6, and (81) that �i+1 6= 0; 
ombining this with (92), (93), we �ndj�(z) \Di+1i+1j = bi+1�i��1i+1:Eliminating �i, �i+1 in the above line using (81), we obtain (88), as desired.(ii) Let 
i denote the expression on the right in (21), and let Æi denote the expression on the right in(87). Let N 00 denote the number of ordered pairs uv su
h thatu 2 �i�1(z) \D11 ; v 2 �(z) \Di�1i�1; �(u; v) = i� 2:We 
ompute N 00 in two ways. On one hand, by Theorem 4.1(ii), there are pre
isely 
i 
hoi
es for u.Given u, we �nd by (87) (with x and i repla
ed by u and i� 1, respe
tively) that there are pre
isely
i�1 � Æi�1 
hoi
es for v; 
onsequently N 00 = 
i(
i�1 � Æi�1): (94)On the other hand, there are pre
isely j�(z)\Di�1i�1j 
hoi
es for v, and given v, there are pre
isely �i�1
hoi
es for u, where �i�1 is from the proof of (i) above. Hen
eN 00 = j�(z) \Di�1i�1j�i�1: (95)Combining (94), (95), j�(z) \Di�1i�1j = 
i(
i�1 � Æi�1)��1i�1:Eliminating �i�1, 
i, Æi�1 in the above line using (80), (21), (87), respe
tively, and simplifying theresult using Theorem 10.4(ii), we obtain (89), as desired.25



De�nition 11.3 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3, and �x adja
entverti
es x; y 2 X.(i) For all integers i; j we de�ne the ve
tor wij = wij(x; y) bywij = Xz2Dji ẑ ; (96)where Dji = Dji (x; y) is from (15).(ii) Let L denote the set of ordered pairsL = fij j 0 � i; j � d; p1ij 6= 0g: (97)We observe that for all integers i; j, wij 6= 0 if and only if ij 2 L.(iii) We de�ne the ve
tor spa
e W =W (x; y) byW = Spanfwij j ij 2 Lg: (98)Lemma 11.4 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3, and assumea1 6= 0. Then(i) L = fi� 1; i j 1 � i � dg [ fi; i � 1 j 1 � i � dg [ fii j 1 � i � eg,where e = d� 1 if ad = 0 and e = d if ad 6= 0.(ii) jLj = ( 3d if ad 6= 0,3d� 1 if ad = 0. (99)(iii) Let x; y denote adja
ent verti
es in X, and let W =W (x; y) be as in (98). ThendimW = ( 3d if ad 6= 0,3d� 1 if ad = 0. (100)Proof. Routine appli
ation of Lemma 2.8 and Lemma 2.9.Lemma 11.5 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3, �x adja
entverti
es x; y 2 X, and let the ve
tor spa
e W = W (x; y) be as in (98). Then the following areequivalent.(i) The ve
tor spa
e W is A-invariant.(ii) For all integers i; j; r; s (ij 2 L and rs 2 L), and for all z 2 Dji , the s
alar j�(z) \ Dsr j is a
onstant independent of z. 26



(iii) The following 
onditions hold.(a) For all integers i (1 � i � d), and for all z 2 Dii, the s
alars j�(z)\Di�1i�1 j and j�(z)\Di+1i+1 jare 
onstants independent of z.(b) For all integers i (2 � i � d), and for all z 2 Dii�1 [ Di�1i , the s
alar j�(z) \ Di�1i�1j is a
onstant independent of z.Proof. (i) () (ii) Routine.(ii) =) (iii) Clear.(iii) =) (ii) Follows dire
tly from Lemma 2.11.De�nition 11.6 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3. For ea
h edgexy 2 R, the graph � is said to be 1-homogeneous with respe
t to xy whenever (i){(iii) hold inLemma 11.5. The graph � is said to be 1-homogeneous whenever it is 1-homogeneous with respe
tto all edges in R.Theorem 11.7 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3. Then thefollowing are equivalent.(i) � is tight,(ii) a1 6= 0, ad = 0, and � is 1-homogeneous,(iii) a1 6= 0, ad = 0, and � is 1-homogeneous with respe
t to at least one edge.Proof. (i) =) (ii) Observe a1 6= 0 by Proposition 6.5, and ad = 0 by Theorem 10.4. Pi
k anyedge xy 2 R. By Theorem 11.2, we �nd 
onditions (iii)(a), (iii)(b) hold in Lemma 11.5, so � is1-homogeneous with respe
t to xy by De�nition 11.6. Apparently � is 1-homogeneous with respe
t toevery edge, so � is 1-homogeneous.(ii) =) (iii) Clear.(iii) =) (i) Suppose � is 1-homogeneous with respe
t to the edge xy 2 R. We show xy is tight withrespe
t to both �1; �d. To do this, we show the tightness t = t(x; y) from De�nition 5.1 equals 2.Consider the ve
tor spa
e W = W (x; y) from (98), and the ve
tor spa
e H from (37). Observe W isA-invariant by Lemma 11.5, andW 
ontains H, so it 
ontainsMH, whereM denotes the Bose-Mesneralgebra of �. The spa
e W has dimension 3d � 1 by (100), so MH has dimension at most 3d � 1.Applying (36), we �nd t � 2. From the dis
ussion at the end of De�nition 5.1, we observe t = 2, andthat xy is tight with respe
t to both �1, �d. Now � is tight in view of Corollary 6.3(iv) and De�nition6.4. 27



12 The lo
al graphDe�nition 12.1 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3. For ea
h vertexx 2 X, we let � = �(x) denote the vertex subgraph of � indu
ed on �(x). We refer to � as the lo
algraph asso
iated with x. We observe � has k verti
es, and is regular with valen
y a1. We furtherobserve � is not a 
lique.In this se
tion, we show the lo
al graphs of tight distan
e-regular graphs are strongly-regular. Webegin by re
alling the de�nition and some basi
 properties of strongly-regular graphs.De�nition 12.2 [3, p.3℄ A graph � is said to be strongly-regular with parameters (�; �; �; �) when-ever � has � verti
es and is regular with valen
y �, adja
ent verti
es of � have pre
isely � 
ommonneighbors, and distin
t non-adja
ent verti
es of � have pre
isely � 
ommon neighbors.Lemma 12.3 [3, Thm. 1.3.1℄ Let � denote a 
onne
ted strongly-regular graph with parameters(�; �; �; �), and assume � is not a 
lique. Then � has pre
isely three distin
t eigenvalues, one ofwhi
h is �. Denoting the others by r; s,� = (�� r)(�� s)�+ rs ; � = �+ r + s+ rs; � = �+ rs: (101)The multipli
ity of � as an eigenvalue of � equals 1. The multipli
ities with whi
h r; s appear aseigenvalues of � are given bymultr = �(s+ 1)(� � s)�(s� r) ; mults = �(r + 1)(� � r)�(r � s) : (102)Theorem 12.4 Let � = (X;R) denote a tight distan
e-regular graph with diameter d � 3, andeigenvalues �0 > �1 > � � � > �d. Pi
k � 2 f�1; �dg, let �, �2 denote the �rst and se
ond 
osines for�, respe
tively, and let " denote the asso
iated auxiliary parameter from (51). Then for any vertexx 2 X, the lo
al graph � = �(x) satis�es (i){(iv) below.(i) � is strongly-regular with parameters (k; a1; �; �), where k is the valen
y of �, anda1 = �(1� �2)(1 + �)(1� ")(� � �2)(1� "�) ; (103)� = a1 2�1 + � � a1 1� �1 + � �2� � �2 � 1� �2� � �2 ; (104)� = a11 + � �2 � �2� � �2 : (105)(ii) � is 
onne
ted and not a 
lique.(iii) The distin
t eigenvalues of � are a1, r, s, wherer = a1�1 + � ; s = � 1� �2� � �2 : (106)28



(iv) The multipli
ities of r, s are given bymultr = (1 + �)(� � ")�2 � �2 ; mults = �(1� ")(1 + �)(�2 � "�)(�2 � �2)(1 � "�) : (107)Proof. (i) Clearly � has k verti
es and is regular with valen
y a1. The formula (103) is fromTheorem 10.4(ii). Pi
k distin
t verti
es y; z 2 �. We 
ount the number of 
ommon neighbors of y; zin �. First suppose y; z are adja
ent. By (28) (with i = 1) we �nd y; z have pre
isely � 
ommonneighbors in �, where � is given in (104). Next suppose y; z are not adja
ent. By (21) (with i = 2),we �nd y; z have pre
isely � 
ommon neighbors in �, where � is given in (105). The result nowfollows in view of De�nition 12.2.(ii) We saw in De�nition 12.1 that � is not a 
lique. Observe the s
alar � in (105) is not zero, sin
ea1 6= 0 by Proposition 6.5, and sin
e �2 6= �2 by Lemma 6.6(ii),(iii). It follows � is 
onne
ted.(iii) The s
alar a1 is an eigenvalue of � by Lemma 12.3. Using (104), (105), we �nd the s
alars r; sin (106) satisfy � = a1 + r + s+ rs; � = a1 + rs:Comparing this with the two equations on the right in (101), we �nd the s
alars r; s in (106) are theremaining eigenvalues of �.(iv) By (102) and (i) above,multr = a1(s+ 1)(a1 � s)�(s� r) ; mults = a1(r + 1)(a1 � r)�(r � s) :Eliminating a1; �; r; s in the above equations using (103), (105), (106), we routinely obtain (107).De�nition 12.5 Let � denote a distan
e-regular graph with diameter d � 3, and eigenvalues �0 >�1 > � � � > �d. We de�neb� := �1 � b11 + �1 ; b+ := �1 � b11 + �d :We re
all a1 � k � �d < �1 < �1 by Lemma 2.6, so b� < �1, b+ � 0.Theorem 12.6 Let � = (X;R) denote a distan
e-regular graph with diameter d � 3. Then thefollowing are equivalent.(i) � is tight.(ii) For all x 2 X, the lo
al graph �(x) is 
onne
ted strongly-regular with eigenvalues a1, b+, b�.(iii) There exists x 2 X for whi
h the lo
al graph �(x) is 
onne
ted strongly-regular with eigenvaluesa1, b+, b�. 29



Proof. (i) =) (ii) Pi
k any x 2 X, and let � = �(x) denote the lo
al graph. By Theorem 12.4, thegraph � is 
onne
ted and strongly-regular. The eigenvalues of � other than a1 are given by (106),where for 
onvenien
e we take the eigenvalue � involved to be �1. Eliminating �, �2 in (106) using�1 = k� and Lemma 2.3(i), and simplifying the results using equality in the fundamental bound (42),we routinely �nd r = b+, s = b�.(ii) =) (iii) Clear.(iii) =) (i) Sin
e � = �(x) is 
onne
ted, its valen
y a1 is not zero. In parti
ular � is not bipartite.The graph � is not a 
lique, so (101) holds for �. Applying the equation on the left in that line, weobtain k(a1 + b+b�) = (a1 � b+)(a1 � b�): (108)Eliminating b+, b� in (108) using De�nition 12.5, and simplifying the result, we routinely obtainequality in the fundamental bound (42). Now � is tight, as desired.13 Examples of tight distan
e-regular graphsThe following examples (i)-(xii) are tight distan
e-regular graphs with diameter at least 3. In ea
h 
asewe give the interse
tion array, the se
ond largest eigenvalue �1, and the least eigenvalue �d, togetherwith their respe
tive 
osine sequen
es f�ig, f�ig, and the auxiliary parameter " for �1. Also, we givethe parameters and nontrivial eigenvalues of the lo
al graphs.(i) The Johnson graph J(2d; d) has diameter d and interse
tion numbers ai = 2i(d�i), bi = (d�i)2,
i = i2 for i = 0; : : : ; d, 
f. [3, p. 255℄. It is distan
e-transitive, an antipodal double-
over, and Q-polynomial with respe
t to �1.Ea
h lo
al graph is a latti
e graph Kd �Kd, with parameters (d2; 2(d � 1); d � 2; 2) and nontrivialeigenvalues r = d� 2, s = �2, 
f. [3, p. 256℄.(ii) The halved 
ube 12H(2d; 2) has diameter d and interse
tion numbers ai = 4i(d � i), bi =(d� i)(2d� 2i� 1), 
i = i(2i� 1) for i = 0; : : : d, 
f. [3, p. 264℄. It is distan
e-transitive, an antipodaldouble-
over, and Q-polynomial with respe
t to �1.Ea
h lo
al graph is a Johnson graph J(2d; 2), with parameters (d(2d � 1); 4(d � 1); 2(d � 1); 4) andnontrivial eigenvalues r = 2d� 4, s = �2, 
f. [3, p. 267℄.(iii) The Taylor graphs are nonbipartite double-
overs of 
omplete graphs, i.e., distan
e-regulargraphs with interse
tion array of the form fk; 
2; 1; 1; 
2; kg, where 
2 < k � 1. They have diameter3, and are Q-polynomial with respe
t to both �1, �d. These eigenvalues are given by �1 = �, �d = �,where �+ � = k � 2
2 � 1; �� = �k;30



and � > �. See Taylor [18℄, and Seidel and Taylor [16℄ for more details.Ea
h lo
al graph is strongly-regular with parameters (k; a1; �; �), where a1 = k � 
2 � 1, � =(3a1�k� 1)=2 and � = a1=2. We note both a1; 
2 are even and k is odd. The nontrivial eigenvaluesof the lo
al graph are r = �� 12 ; s = � � 12 :(iv) The graph 3:Sym(7) has interse
tion array f10; 6; 4; 1; 1; 2; 6; 10g and 
an be obtained from asporadi
 Fisher group, 
f. [3, pp. 397-400℄. It is sometimes 
alled the Conway-Smith graph. It isdistan
e-transitive, an antipodal 3-fold 
over, and is not Q-polynomial.Ea
h lo
al graph is a Petersen graph, with parameters (10; 3; 0; 1) and nontrivial eigenvalues r = 1,s = �2, see [11℄, [3, 13.2.B℄.(v) The graph 3:O�6 (3) has interse
tion array f45; 32; 12; 1; 1; 6; 32; 45g and 
an be obtained from asporadi
 Fisher group, 
f. [3, pp. 397-400℄. It is distan
e-transitive, an antipodal 3-fold 
over, and isnot Q-polynomial.Ea
h lo
al graph is a generalized quadrangle GQ(4; 2), with parameters (45; 12; 3; 3) and nontrivialeigenvalues r = 3, s = �3. See [3, p. 399℄.(vi) The graph 3:O7(3) has interse
tion array f117; 80; 24; 1; 1; 12; 80; 117g and 
an be obtained froma sporadi
 Fisher group, 
f. [3, pp. 397-400℄. It is distan
e-transitive, an antipodal 3-fold 
over, andis not Q-polynomial.Ea
h lo
al graph is strongly-regular with parameters (117; 36; 15; 9), and nontrivial eigenvalues r = 9,s = �3. [3, 13.2.D℄.(vii) The graph 3:F i24 has interse
tion array f31671; 28160; 2160; 1; 1; 1080; 28160; 31671g and 
an beobtained from a sporadi
 Fisher group, 
f. [3, pp. 397℄. It is distan
e-transitive, an antipodal 3-fold
over, and is not Q-polynomial.Ea
h lo
al graph is strongly-regular with parameters (31671; 3510; 693; 351) and nontrivial eigenvaluesr = 351, s = �9. They are related to Fi23.(viii) The Soi
her1 graph has interse
tion array f56; 45; 16; 1; 1; 8; 45; 56g, 
f. [2℄, [4, 11.4I℄, [17℄. Itis distan
e-transitive, an antipodal 3-fold 
over, and is not Q-polynomial.Ea
h lo
al graph is a Gewirtz graph with parameters (56; 10; 0; 2) and nontrivial eigenvalues r = 2,s = �4, [3, p.372℄.(ix) The Soi
her2 graph has interse
tion array f416; 315; 64; 1; 1; 32; 315; 416g, 
f. [17℄ [4, 13.8A℄. Itis distan
e-transitive, an antipodal 3-fold 
over, and is not Q-polynomial.Ea
h lo
al graph is strongly-regular with parameters (416; 100; 36; 20) and nontrivial eigenvalues r =20, s = �4. 31



(x) The Meixner1 graph has interse
tion array f176; 135; 24; 1; 1; 24; 135; 176g, 
f. [12℄ [4, 12.4A℄. Itis distan
e-transitive, an antipodal 2-fold 
over, and is Q-polynomial.Ea
h lo
al graph is strongly-regular with parameters (176; 40; 12; 8) and nontrivial eigenvalues r = 8,s = �4.(xi) The Meixner2 graph has interse
tion array f176; 135; 36; 1; 1; 12; 135; 176g, 
f. [12℄ [4, 12.4A℄.It is distan
e-transitive, an antipodal 4-fold 
over, and is not Q-polynomial.Ea
h lo
al graph is strongly-regular with parameters (176; 40; 12; 8) and nontrivial eigenvalues r = 8,s = �4.(xii) The Patterson graph has interse
tion array f280; 243; 144; 10; 1; 8; 90; 280g, and 
an be 
on-stru
ted from the Suzuki group, see [3, 13.7℄. It is primitive and distan
e-transitive, but not Q-polynomial.Ea
h lo
al graph is a generalized quadrangle GQ(9; 3) with parameters (280; 36; 8; 4) and nontrivialeigenvalues r = 8, s = �4, [3, Thm. 13.7.1℄.Name �1 �d f�ig f�ig "J(2d; d) d(d� 2) �d �i = d� 2id �i = (�1)i �1�2 � � � id(d�1) � � � (d�i+1) d+ 2d12H(2d; 2) (2d�1)(d�2) �d �i = d�2id �i = (�1)i �1�3 � � � (2i�1)(2d�1)(2d�3) � � � (2d�2i+1) d+ 1d� 1Taylor � � (1; �k ; ��k ;�1) (1; �k ; ��k ;�1) k + 1���3.Sym(7) 5 �4 (1; 12 ; 0; �14 ; �12 ) (1; �25 ; 310 ; �25 ; 1) 433:O�6 (3) 15 �9 (1; 13 ; 0; �16 ; �12 ) (1; �15 ; 110 ; �15 ; 1) 23:O7(3) 39 �9 (1; 13 ; 0; �16 ; �12 ) (1; �113 ; 265 ; �113 ; 1) 523:F i24 3519 �81 (1; 19 ; 0; �118 ; �12 ) (1; �1391 ; 517204 ; �1391 ; 1) 445Soi
her1 14 �16 (1; 14 ; 0; �18 ; �12 ) (1; �27 ; 17 ; �27 ; 1) 2Soi
her2 104 �16 (1; 14 ; 0; �18 ; �12 ) (1; �126 ; 191 ; �126 ; 1) 72Meixner1 44 �16 (1; 14 ; 0; �14 ;�1) (1; �111 ; 133 ; �111 ; 1) 3Meixner2 44 �16 (1; 14 ; 0; �112 ; �13 ) (1; �111 ; 133 ; �111 ; 1) 3Patterson 80 �28 (1; 27 ; 121 ; �263 ; �19 ) (1; �110 ; 145 ; �154 ; 527) 83ACKNOWLEDGEMENT: We would like to thank Prof. Yoshiara for mentioning that the Pattersongraph satis�es the Fundamental Bound. 32
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14 Appendix A: 1-homogeneous partitions of the known examplesof the AT4 family and the Patterson graphIn [21℄ a tight nonbipartite antipodal distan
e-regular graph � with diameter four was parametrizedby the eigenvalues r and �s of the lo
al graphs and the size t of its antipodal 
lasses. The graph �was 
alled an antipodal tight graph of diameter four and with parameters (r; s; t), and denoted byAT4(r; s; t).
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ube 12H(8; 2), and (d) the 3:O�6 (3).
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