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tion numbers of association schemes discovered by Scatp §itd theabsolute
bounddiscovered by Neumaier [106].

2.3.2 THEOREM (Krein condition). LetG be a distance-regular graph with
n vertices, diameted and eigenvalueg, > 6, > --- > 6, with multiplicities
my, ..., my. Letthe polynomials,(z) and the numbers, be as above. Then
the Krein parameters (also called the dual intersection bars)

d
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are nonnegative for all, j. h € {0, ..., d}. O

2.3.3 THEOREM (Absolute bound). Let G be a distance-regular graph of

diameterd. Then the multiplicitiesn,, ..., m, of its eigenvalues satisfy
Lon (m., if 7=
OIS E
qij (h)#0 v
where theg; ;(h) are the Krein parameters. O

4. Antipodal distance-reqular graphs

Let G be a graph with a partitiomr of its vertices into cells satisfying the
following conditions:

(a) each cell is an independent set,

(b) between any two cells there are either no edges or thereetching.

Let G/= be the graph with the cells of as vertices and with two of them
adjacent if and only if there is a matching between them. Twersay thatz

is acoverof G/m and we call the cells and the matchings fieees of vertices
and thefibres of edgesespectively. IfG /7 is connected, then all cells have the
same size which is called thiedex of the cover, and is denoted by In this
case( is called anr-cover of G/. In this thesis we will always require that
r>1.

We can give an equivalent definition of a covéof G using the projection
mapp from V(H) to V(G). We say thatH is a cover ofG if there is a
mapp : V(H) — V(G) called aprojectionwhich is a graph morphism, i.e.,
preserves adjacency, and a local isomorphism, i.e., fdr eadexu of H the
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mapp restricted to{u} U S(u) is bijective. Then{p~!(u),u € G} is the set
of fibres andr = |p~1(u)| is the index of the covering. If we consider our
graphs as simplicial complexes, coverings graphs are ic@vepaces in the
usual topological sense.

If a graphG is a cover of7 /m andr consists of its antipodal classes, th@n
is called arantipodal cover Furthermore, if the grapfi is also distance-regular,
we say thati is adistance-regular antipodal cover

24.1 LEMMA. Adistance-regular antipodal grap of diameter dis a cover
of its antipodal quotient with components Gf; as its fibres unlesg = 2.

To prove the above result we need only the facts tHails antipodal,
connected and tha},_, (u,v) > 0 for any vertexu andv € S;_,(u).

In order to gain more insight into the structure of the disgregular
antipodal covers of distance-regular graphs let us firsigtbe following ex-
tension of a result due to Gardiner [60]. The part (i) is newq i) modified,
however the proofs of (#(ii) and (i)&(ii) =(iii) are motivated by his proof.

For each vertex. of a coverH we denote the fibre which containsby
F(u). A geodesidn a graphG is a pathg,, . .., g,, where distg,, g;) = ¢.

242 THEOREM. Let G be a distance-regular graph of diametérwith
parametersh,, ¢; and H its r-cover of diameterD > 2. Then the following
statements are equivalent:

(i) The graphH is antipodal with its fibres as the antipodal classes (hente a
antipodal cover ofz) and each geodesic of length at leagD + 1)/2] in
H can be extended to a geodesic of lenfth

(i) Foranyu € V(H) andi € {0,1,...,|D/2]} we have

Sp_i(u) = U{F()\{v} : v e 5, (u)}.
(iii) The graph H is distance-regular withD € {2d,2d + 1} and intersection
array
{Bys oy bg g, EZ0 e e Gty by b )
for D even, and
{bo,...,bdfl,(r - 1)t,cd,...,c1;cl,...,cd,t,bdfl,...,bo}
for D odd and some integet

Proof. Let H be an antipodal cover. If two paths both have length less than
D and they go through the same fibres in the same order, then lhsawihat
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they areparallel. Note that two parallel paths have the same length and tleat on
of them and a vertex from the other one uniquely determin@ther path. By
antipodality, a path of length less th&ncontains at most one vertex from each
fibre, therefore two parallel paths are either disjoint araaorresponding to
their intersection being empty or not. Finally, the patata is an equivalence
relation, each parallel class corresponds bijectively path in the antipodal
quotient ofH, and each parallel class containslements. The last, for example,
implies that for two distinct fibres any vertex from them liasa shortest path
between them (cf. [27, Lemma 11.1.4]).

(i)=(ii): Let v andv be any two vertices off which are at distance< | D/2].
SinceF (v) is an antipodal class, the distance frarto any vertex ofF'(v) is at
leasti. Let P be a path of length betweeru andv. ThenP is a shortest path
betweenF'(u) andF(v). Note that the set of all ends of paths from the parallel
class ofP equalsF'(u)U F'(v), and consider the distance partition corresponding
tou. Let P’ be a parallel path o which has one end i§,(u) and the other
end inS;(u) for somej > D —i. The required property of geodesics implies
the existence of a path of lengih — j betweenV (') N S;(u) and Sp(u).
But this is also a path betweefi(v) and F'(u), soD — j > i. Therefore
j=D—iandSp(v) C Sp_,;(u). Now letw be any vertex i, _,(u). Then
the extension of a geodesic fromto w to Sp,(u) is a shortest path between
F(u) and F(w) and a path from its parallel class startinguahas to end in

S, (u). Henced{Sp(v) : v € S;(u)} C Sp_,(u).

()<(ii): ¢+ = 0 implies that the graph{ is antipodal with its fibres as the
antipodal classes and therefdfg _, (u) = U{Sp(v) : v € S;(u)}. The rest

is now straightforward.

(D&(ii) =(iii): A geodesic P of length d corresponds to a parallel class of
geodesics of lengtd < D. These are the shortest paths between two fibres
since P is a geodesic. Therefore by (i) > 2d. If D > 2d + 2 then by (ii)
there exists a geodesic # of lengthd + 1 which is the shortest path between
two fibres and therefore diai@&) > d + 1. Contradiction! The remainder of
this part of the proof is only sketched. Suppd3e= 2d and let{u,,...,u,}

be an antipodal class df. Then the balls3,_, (u,) of radiusd — 1 centered
atu,; (i.e.,{u;} US;(u;) U...US,;_;(u;)) fori = 1,...,r are disjoint and
there are no edges between any two of them. Their inducedhgee parallel
in the above sense and therefore isomorphic to their profectThis implies
the desired parameters Bf. The case whei® is odd can be treated similarly.

(i)<=(iii) It suffices to prove that, for a vertex € V(H), any two distinct
verticesv andw in S, (u) are at distance at leaf). Suppose thaB;(v) N
B;(w) = 0 and that there are no edges betwén, (v) andB,_, (w) for some
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i€{l,...,|D/2]}. Thisis certainly satisfied far= 1, sincea,(H) = 0 and
bp_,(H)=1.Ifi = (D—-1)/2ourworkisdone, otherwise,_,(H) = a,(H)
implies that there is no edges betwegw) andS; (w). If i = D/2 our work is
done again, otherwise by, _; _,(H) = b, ,(H) the setsS,  ;(v) andsS,  , (w)
are disjoint. So the induction assumption is satisfied ferl. O

Remarks. Statement (ii) gives us an idea how to draw the distancetioarti
of an antipodal cover over the corresponding distancetjpertof its antipodal
qguotient and why we say that a distance-regular antipodetrctiolds to its
antipodal quotient (see Figures 3.1, 4.1 and 4.3).

() In D = 2d case the integrality of entries in the intersection arraglies
r|cy. By the monotonicity of parametefs; andC; there is alse,; | < °¢
and(1 — L)c; < b,_;.

(i) In D = 2d + 1 case the integet satisfies the conditions(r — 1) <
min(b,;_,,a,;) andc, < t.

The following corollary can again be found in Gardiner [60].

24.3 COROLLARY. If H isadistance-regular antipodal graph, théhhas
a distance-regular antipodal cover only H is either a cycle, a complete graph
or a complete bipartite graph. O

In the reminder of this section we determine also the eigaagaof antipo-
dal distance-regular graphs and their multiplicities.

244 THEOREM. Let G be a distance-regular graph ané a distance-
regular antipodal r-cover ofG. Then every eigenvalug of G is also an
eigenvalue ofH with the same multiplicity. O

The above result can be proved by combining the propertigga@ntipodal
partition of H and the quotient graph dff, but it can also be derived as a
consequence of the following theorem of Biggs [14]:

245 THEOREM. The multiplicity of an eigenvalué of a distance-regular
graph G with diameterd andn vertices is equal to

n

S o kw; (0)2

Now we can finally state a result due to Biggs and Gardiner. [16]
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24.6 THEOREM. LetH be a distance-regular antipodatcover with diam-
eter D of the distance-regular grapty with diameterd and parameters,, b,,
¢;. TheD — d eigenvalues off which are not eigenvalues @f are, in the case
whenD = 2d, the eigenvalues of théx d matrix

0 Cio Qg by
Cig—1 Qq—1

and, in the case wheP = 2d + 1, the eigenvalues of thgl + 1) x (d + 1)
matrix

0 Ca-1 g1 by
cqg ag— 1t

If 6> 6, >--- > 0, are the eigenvalues off and¢, > ¢, > --- > ¢, are
the eigenvalues of7, then

50:907 51:927 B fdzezd

i.e., the eigenvalues d¥ interlace the ‘new’ eigenvalues ¥ . O

Thus, in the even case the new eigenvalues do not depemrdand are
the roots ofw,(#) = 0. Their multiplicities are proportional to — 1. In the
odd diameter case the new eigenvalues depend onty and are the roots of
cqwg_1(0) +wy(0)(a; —rt —0) =0.



