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tion numbers of association schemes discovered by Scott [117] and theabsolute
bounddiscovered by Neumaier [106].

2.3.2 THEOREM (Krein condition). LetG be a distance-regular graph withn vertices, diameterd and eigenvalues�0 > �1 > � � � > �d with multiplicitiesm0; : : : ;md. Let the polynomialsvi(x) and the numberski be as above. Then
the Krein parameters (also called the dual intersection numbers)qij(h) = mimjn dXa=0 va(�i)va(�j)va(�h)k2a
are nonnegative for alli; j; h 2 f0; : : : ; dg.
2.3.3 THEOREM (Absolute bound). LetG be a distance-regular graph of
diameterd. Then the multiplicitiesm0; : : : ;md of its eigenvalues satisfyXqij(h)6=0mh � � 12mi(mi + 1) if i = jmimj if i 6= j
where theqij(h) are the Krein parameters.4. Antipodal distane-regular graphs
Let G be a graph with a partition� of its vertices into cells satisfying the
following conditions:
(a) each cell is an independent set,
(b) between any two cells there are either no edges or there isa matching.

Let G=� be the graph with the cells of� as vertices and with two of them
adjacent if and only if there is a matching between them. Thenwe say thatG
is acoverof G=� and we call the cells and the matchings thefibres of vertices
and thefibres of edgesrespectively. IfG=� is connected, then all cells have the
same size which is called theindexof the cover, and is denoted byr. In this
caseG is called anr-cover ofG=�. In this thesis we will always require thatr > 1.

We can give an equivalent definition of a coverH ofG using the projection
map p from V (H) to V (G). We say thatH is a cover ofG if there is a
mapp : V (H) ! V (G) called aprojectionwhich is a graph morphism, i.e.,
preserves adjacency, and a local isomorphism, i.e., for each vertexu of H the
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mapp restricted tofug [ S(u) is bijective. Thenfp�1(u); u 2 Gg is the set
of fibres andr = jp�1(u)j is the index of the covering. If we consider our
graphs as simplicial complexes, coverings graphs are covering spaces in the
usual topological sense.

If a graphG is a cover ofG=� and� consists of its antipodal classes, thenG
is called anantipodal cover. Furthermore, if the graphG is also distance-regular,
we say thatG is adistance-regular antipodal cover.

2.4.1 LEMMA. A distance-regular antipodal graphG of diameter d is a cover
of its antipodal quotient with components ofGd as its fibres unlessd = 2.

To prove the above result we need only the facts thatG is antipodal,
connected and thatbd�1(u; v) > 0 for any vertexu andv 2 Sd�1(u).

In order to gain more insight into the structure of the distance-regular
antipodal covers of distance-regular graphs let us first prove the following ex-
tension of a result due to Gardiner [60]. The part (i) is new, and (ii) modified,
however the proofs of (i))(ii) and (i)&(ii))(iii) are motivated by his proof.

For each vertexu of a coverH we denote the fibre which containsu byF (u). A geodesicin a graphG is a pathg0; : : : ; gt, where dist(g0; gt) = t.
2.4.2 THEOREM. Let G be a distance-regular graph of diameterd with
parametersbi, i and H its r-cover of diameterD > 2. Then the following
statements are equivalent:

(i) The graphH is antipodal with its fibres as the antipodal classes (hence an
antipodal cover ofG) and each geodesic of length at leastb(D + 1)=2 inH can be extended to a geodesic of lengthD.

(ii) For any u 2 V (H) and i 2 f0; 1; : : : ; bD=2g we haveSD�i(u) = [fF (v)nfvg : v 2 Si(u)g:
(iii) The graphH is distance-regular withD 2 f2d; 2d + 1g and intersection

array�b0; : : : ; bd�1; (r�1)dr ; d�1; : : : ; 1; 1; : : : ; d�1; dr ; bd�1; : : : ; b0	
for D even, and�b0; : : : ; bd�1; (r � 1)t; d; : : : ; 1; 1; : : : ; d; t; bd�1; : : : ; b0	
for D odd and some integert.

Proof. Let H be an antipodal cover. If two paths both have length less thanD and they go through the same fibres in the same order, then we will say that
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they areparallel. Note that two parallel paths have the same length and that one
of them and a vertex from the other one uniquely determine theother path. By
antipodality, a path of length less thanD contains at most one vertex from each
fibre, therefore two parallel paths are either disjoint or equal corresponding to
their intersection being empty or not. Finally, the parallelism is an equivalence
relation, each parallel class corresponds bijectively to apath in the antipodal
quotient ofH, and each parallel class containsr elements. The last, for example,
implies that for two distinct fibres any vertex from them liesin a shortest path
between them (cf. [27, Lemma 11.1.4]).

(i))(ii): Let u andv be any two vertices ofH which are at distancei � bD=2.
SinceF (v) is an antipodal class, the distance fromu to any vertex ofF (v) is at
leasti. LetP be a path of lengthi betweenu andv. ThenP is a shortest path
betweenF (u) andF (v). Note that the set of all ends of paths from the parallel
class ofP equalsF (u)[F (v), and consider the distance partition corresponding
to u. LetP 0 be a parallel path ofP which has one end inSD(u) and the other
end inSj(u) for somej � D � i. The required property of geodesics implies
the existence of a path of lengthD � j betweenV (P 0) \ Sj(u) andSD(u).
But this is also a path betweenF (v) andF (u), soD � j � i. Thereforej = D � i andSD(v) � SD�i(u). Now letw be any vertex inSD�i(u). Then
the extension of a geodesic fromu to w to SD(u) is a shortest path betweenF (u) andF (w) and a path from its parallel class starting atu has to end inSi(u). Hence[fSD(v) : v 2 Si(u)g � SD�i(u).
(i)((ii): i = 0 implies that the graphH is antipodal with its fibres as the
antipodal classes and thereforeSD�i(u) = [fSD(v) : v 2 Si(u)g. The rest
is now straightforward.

(i)&(ii) )(iii): A geodesicP of length d corresponds to a parallel class of
geodesics of lengthd < D. These are the shortest paths between two fibres
sinceP is a geodesic. Therefore by (ii)D � 2d. If D � 2d + 2 then by (ii)
there exists a geodesic inH of lengthd+ 1 which is the shortest path between
two fibres and therefore diam(G) � d + 1. Contradiction! The remainder of
this part of the proof is only sketched. SupposeD = 2d and letfu1; : : : ; urg
be an antipodal class ofH. Then the ballsBd�1(ui) of radiusd � 1 centered
at ui (i.e., fuig [ S1(ui) [ : : : [ Sd�1(ui)) for i = 1; : : : ; r are disjoint and
there are no edges between any two of them. Their induced graphs are parallel
in the above sense and therefore isomorphic to their projection. This implies
the desired parameters ofH. The case whenD is odd can be treated similarly.

(i)((iii) It suffices to prove that, for a vertexu 2 V (H), any two distinct
verticesv andw in SD(u) are at distance at leastD. Suppose thatBi(v) \Bi(w) = ; and that there are no edges betweenBi�1(v) andBi�1(w) for some



20 PRELIMINARIESi 2 f1; : : : ; bD=2g. This is certainly satisfied fori = 1, sinceaD(H) = 0 andbD�1(H) = 1. If i = (D�1)=2our work is done, otherwiseaD�i(H) = ai(H)
implies that there is no edges betweenSi(v) andSi(w). If i = D=2 our work is
done again, otherwise byD�i�1(H) = bi+1(H) the setsSi+1(v) andSi+1(w)
are disjoint. So the induction assumption is satisfied fori+ 1.

Remarks: Statement (ii) gives us an idea how to draw the distance partition
of an antipodal cover over the corresponding distance partition of its antipodal
quotient and why we say that a distance-regular antipodal cover folds to its
antipodal quotient (see Figures 3.1, 4.1 and 4.3).

(i) In D = 2d case the integrality of entries in the intersection array impliesrjd. By the monotonicity of parametersBi andCi there is alsod�1 � dr
and(1� 1r )d � bd�1.

(ii) In D = 2d + 1 case the integert satisfies the conditionst(r � 1) �
min(bd�1; ad) andd � t.
The following corollary can again be found in Gardiner [60].

2.4.3 COROLLARY. If H is a distance-regular antipodal graph, thenH has
a distance-regular antipodal cover only ifH is either a cycle, a complete graph
or a complete bipartite graph.

In the reminder of this section we determine also the eigenvalues of antipo-
dal distance-regular graphs and their multiplicities.

2.4.4 THEOREM. Let G be a distance-regular graph andH a distance-
regular antipodal r-cover ofG. Then every eigenvalue� of G is also an
eigenvalue ofH with the same multiplicity.

The above result can be proved by combining the properties ofthe antipodal
partition of H and the quotient graph ofH, but it can also be derived as a
consequence of the following theorem of Biggs [14]:

2.4.5 THEOREM. The multiplicity of an eigenvalue� of a distance-regular
graphG with diameterd andn vertices is equal tonPdi=0 kiwi(�)2 :

Now we can finally state a result due to Biggs and Gardiner [16]:
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2.4.6 THEOREM. LetH be a distance-regular antipodalr-cover with diam-
eterD of the distance-regular graphG with diameterd and parametersai, bi,i. TheD�d eigenvalues ofH which are not eigenvalues ofG are, in the case
whenD = 2d, the eigenvalues of thed� d matrix0BBBBBB� 0 b01 a1 b1 02 a2 b2

. ..
. . .

. . .0 d�2 ad�2 bd�2d�1 ad�1
1CCCCCCA

and, in the case whenD = 2d + 1, the eigenvalues of the(d + 1) � (d + 1)
matrix 0BBBBBB� 0 b01 a1 b1 02 a2 b2

. . .
. . .

. . .0 d�1 ad�1 bd�1d ad � rt
1CCCCCCA

If �0 � �1 � � � � � �D are the eigenvalues ofH and �0 � �1 � � � � � �d are
the eigenvalues ofG, then�0 = �0; �1 = �2; � � � ; �d = �2d
i.e., the eigenvalues ofG interlace the ‘new’ eigenvalues ofH.

Thus, in the even case the new eigenvalues do not depend onr and are
the roots ofwd(�) = 0. Their multiplicities are proportional tor � 1. In the
odd diameter case the new eigenvalues depend only onrt and are the roots ofdwd�1(�) + wd(�)(ad � rt� �) = 0.


