For $\theta \in ev(\Gamma)$ and associated primitive idempotent E:

$$E = \frac{m_{\theta}}{|V\Gamma|} \sum_{h=0}^{d} \omega_h A_h \quad (0 \le i \le d),$$

 $\omega_0, \ldots, \omega_d$ is the **cosine sequence** of E (or θ).

Lemma. Γ distance-regular, diam. $d \ge 2$, E is a primitive idempotent of Γ corresponding to θ , $\omega_0, \ldots, \omega_d$ is the cosine sequence of θ . For $x, y \in V\Gamma$, $i = \partial(x, y)$ we have (i) $\langle Ex, Ey \rangle = xy$ -entry of $E = \omega_i \frac{m_{\theta}}{|V\Gamma|}$. (ii) $\omega_0 = 1$ and $c_i \omega_{i-1} + a_i \omega_i + b_i \omega_{i+1} = \theta \omega_i$ for $0 \le i \le d$.

Aleksandar Jurišić

$$\omega_1 = \frac{\theta}{k}, \qquad \omega_2 = \frac{\theta^2 - a_1\theta - k}{kb_1}$$

and

$$\omega_1 - \omega_2 = \frac{(k - \theta)(a_1 + 1)}{kb_1}, \ 1 - \omega_2 = \frac{(k - \theta)(\theta + b_1 + 1)}{kb_1}.$$

Using the Sturm's theorem for the sequence

$$b_0 \dots b_i \, \omega_i(x)$$

we obtain

Theorem. Let $\theta_0 \geq \cdots \geq \theta_d$ be the eigenvalues of a distance regular graph. The sequence of cosines corresponding to the *i*-th eigenvalue θ_i has precisely *i* sign changes.

Aleksandar Jurišić

For
$$\forall xy \in E\Gamma$$
, we define the scalar $f = f(x, y)$:

$$\begin{aligned} f &= \frac{1}{a_1} \Big| \{(z, w) \in X^2 \mid z, w \in \Gamma(x, y), \ \partial(z, w) = 2\} \Big|. \end{aligned}$$

$$f \text{ is the average degree of the complement of the } \lambda \text{-graph. Then } 0 \leq f \leq a_1 - 1, b_1 \text{ and for } \theta \in \text{ev}(\Gamma), \\ E &= E(\theta) \text{ the Gram matrix of } E\hat{x}, E\hat{y}, w_{11} \text{ is} \end{aligned}$$

$$\begin{aligned} \frac{m_{\theta}^3}{n} \det \begin{pmatrix} \omega_0 & \omega_1 & a_1 \omega_1 \\ \omega_1 & \omega_0 & a_1 \omega_1 \\ a_1 \omega_1 & a_1 \omega_1 & c \end{pmatrix}$$
where $c = a_1 (\omega_0 + (a_1 - f - 1)\omega_1 + f\omega_2).$

$$(\omega - \omega_2)(1 + \omega)f \le (1 - \omega)(a_1\omega + 1 + \omega),$$

i.e.,

$$(k+\theta)(1+\theta) f \leq b_1(k+\theta(a_1+1)).$$

We now consider which of $\theta_1, \theta_2, \ldots, \theta_d$ gives the best bounds for f. Let θ denote one of $\theta_1, \theta_2, \ldots, \theta_d$, and assume $\theta \neq -1$. If $\theta > -1$ (resp. $\theta < -1$), the obtained inequality gives an upper (resp. lower) bound for f.

Aleksandar Jurišić

Consider the partial fraction decomposition

$$b_1 \frac{k + \theta(a_1 + 1)}{(k + \theta)(1 + \theta)} = \frac{b_1}{k - 1} \Big(\frac{ka_1}{k + \theta} + \frac{b_1}{1 + \theta} \Big).$$

Since the map $F : \mathbb{R} \setminus \{-k, -1\} \longrightarrow \mathbb{R}$, defined by

$$x \mapsto \frac{ka_1}{k+x} + \frac{b_1}{1+x}$$

is strictly decreasing on the intervals (-k, -1) and $(-1, \infty)$, we find that the least upper bound for f is obtained at $\theta = \theta_1$, and and the greatest lower bound is obtained at $\theta = \theta_d$:

$$b_1 \frac{k + \theta_d(a_1 + 1)}{(k + \theta_d)(1 + \theta_d)} \le f \le b_1 \frac{k + \theta_1(a_1 + 1)}{(k + \theta_1)(1 + \theta_1)}.$$

Aleksandar Jurišić

Set
$$H = H(x, y) := \operatorname{Span}\{\hat{x}, \hat{y}, w_{11}\}$$

Suppose Γ is 1-homogeneous. So AW = W. The Bose-Mesner algebra \mathcal{M} is generated by A, so also $\mathcal{M}W = W = \mathcal{M}H$ (:=Span{ $mh \mid m \in \mathcal{M}, h \in H$ }). E_0, E_1, \ldots, E_d is a basis for \mathcal{M} , so $E_iE_j = \delta_{ij}E_i$ and $\mathcal{M}H = \sum_{i=0}^d E_iH$ (direct sum), Note dim $(E_0H) = 1$ and $3 \ge \dim(E_iH) \ge 2$, and dim $(E_iH) = 2$ implies $i \in \{1, d\}$.

If $\mathbf{t} := |\{i \mid \dim(E_iH) = 2\}|$, then $t \in \{0, 1, 2\}$ and $\dim(\mathcal{M}H) = 3d + 1 - t$. Hence t = 2 when $a_d = 0$.

Aleksandar Jurišić