For $\theta \in \operatorname{ev}(\Gamma)$ and associated primitive idempotent E :

$$
E=\frac{m_{\theta}}{|V \Gamma|} \sum_{h=0}^{d} \omega_{h} A_{h} \quad(0 \leq i \leq d)
$$

$\omega_{0}, \ldots, \omega_{d}$ is the cosine sequence of E (or θ).
Lemma. Γ distance-regular, diam. $d \geq 2, E$ is a primitive idempotent of Γ corresponding to θ, $\omega_{0}, \ldots, \omega_{d}$ is the cosine sequence of θ.
For $x, y \in V \Gamma, i=\partial(x, y)$ we have
(i) $\langle E x, E y\rangle=x y$-entry of $E=\omega_{i} \frac{m_{\theta}}{|V \Gamma|}$.
(ii) $\omega_{0}=1$ and $c_{i} \omega_{i-1}+a_{i} \omega_{i}+b_{i} \omega_{i+1}=\theta \omega_{i}$ for $0 \leq i \leq d$.

$$
\omega_{1}=\frac{\theta}{k}, \quad \omega_{2}=\frac{\theta^{2}-a_{1} \theta-k}{k b_{1}}
$$

and
$\omega_{1}-\omega_{2}=\frac{(k-\theta)\left(a_{1}+1\right)}{k b_{1}}, 1-\omega_{2}=\frac{(k-\theta)\left(\theta+b_{1}+1\right)}{k b_{1}}$.

Using the Sturm's theorem for the sequence

$$
b_{0} \ldots b_{i} \omega_{i}(x)
$$

we obtain

Theorem. Let $\theta_{0} \geq \cdots \geq \theta_{d}$ be the eigenvalues of a distance regular graph. The sequence of cosines corresponding to the i-th eigenvalue θ_{i} has precisely i sign changes.

Modules

Γ distance-regular, diam. $d \geq 2$. Suppose $a_{1} \neq 0$. Then for $i \neq d, a_{i} \neq 0$, i.e., $D_{i}^{i} \neq \emptyset$. Moreover, $D_{d}^{d}=\emptyset$ iff $a_{d}=0$.

Let $w_{i j}$ be a characteristic vector of the set D_{i}^{j} and $W=W(x, y):=\operatorname{Span}\left\{w_{i j} \mid i, j=0, \ldots, d\right\}$. Then

$$
\operatorname{dim} W= \begin{cases}3 d & \text { if } a_{d} \neq 0 \\ 3 d-1 & \text { if } a_{d}=0\end{cases}
$$

For $\forall x y \in E \Gamma$, we define the scalar $f=f(x, y)$:
$f=\frac{1}{a_{1}}\left|\left\{(z, w) \in X^{2} \mid z, w \in \Gamma(x, y), \partial(z, w)=2\right\}\right|$.
f is the average degree of the complement of the
λ-graph. Then $0 \leq f \leq a_{1}-1, b_{1}$ and for $\theta \in \operatorname{ev}(\Gamma)$, $E=E(\theta)$ the Gram matrix of $E \hat{x}, E \hat{y}, w_{11}$ is

$$
\frac{m_{\theta}^{3}}{n} \operatorname{det}\left(\begin{array}{ccc}
\omega_{0} & \omega_{1} & a_{1} \omega_{1} \\
\omega_{1} & \omega_{0} & a_{1} \omega_{1} \\
a_{1} \omega_{1} & a_{1} \omega_{1} & c
\end{array}\right)
$$

where $c=a_{1}\left(\omega_{0}+\left(a_{1}-f-1\right) \omega_{1}+f \omega_{2}\right)$.

So

$$
\left(\omega-\omega_{2}\right)(1+\omega) f \leq(1-\omega)\left(a_{1} \omega+1+\omega\right),
$$

i.e.,

$$
(k+\theta)(1+\theta) f \leq b_{1}\left(k+\theta\left(a_{1}+1\right)\right)
$$

We now consider which of $\theta_{1}, \theta_{2}, \ldots, \theta_{d}$ gives the best bounds for f. Let θ denote one of $\theta_{1}, \theta_{2}, \ldots, \theta_{d}$, and assume $\theta \neq-1$. If $\theta>-1$ (resp. $\theta<-1$), the obtained inequality gives an upper (resp. lower) bound for f.

Consider the partial fraction decompostion

$$
b_{1} \frac{k+\theta\left(a_{1}+1\right)}{(k+\theta)(1+\theta)}=\frac{b_{1}}{k-1}\left(\frac{k a_{1}}{k+\theta}+\frac{b_{1}}{1+\theta}\right) .
$$

Since the map $F: \mathbb{R} \backslash\{-k,-1\} \longrightarrow \mathbb{R}$, defined by

$$
x \mapsto \frac{k a_{1}}{k+x}+\frac{b_{1}}{1+x}
$$

is strictly decreasing on the intervals $(-k,-1)$ and $(-1, \infty)$, we find that the least upper bound for f is obtained at $\theta=\theta_{1}$, and and the greatest lower bound is obtained at $\theta=\theta_{d}$:

$$
b_{1} \frac{k+\theta_{d}\left(a_{1}+1\right)}{\left(k+\theta_{d}\right)\left(1+\theta_{d}\right)} \leq f \leq b_{1} \frac{k+\theta_{1}\left(a_{1}+1\right)}{\left(k+\theta_{1}\right)\left(1+\theta_{1}\right)}
$$

Set $H=H(x, y):=\operatorname{Span}\left\{\hat{x}, \hat{y}, w_{11}\right\}$
Suppose Γ is 1-homogeneous. So $A W=W$. The Bose-Mesner algebra \mathcal{M} is generated by A, so also $\mathcal{M} W=W=\mathcal{M} H(:=\operatorname{Span}\{m h \mid m \in \mathcal{M}, h \in H\})$.
$E_{0}, E_{1}, \ldots, E_{d}$ is a basis for \mathcal{M}, so $E_{i} E_{j}=\delta_{i j} E_{i}$ and

$$
\left.\mathcal{M} H=\sum_{i=0}^{d} E_{i} H \quad \text { (direct sum }\right)
$$

Note $\operatorname{dim}\left(E_{0} H\right)=1$ and $3 \geq \operatorname{dim}\left(E_{i} H\right) \geq 2$, and $\operatorname{dim}\left(E_{i} H\right)=2$ implies $i \in\{1, d\}$.

If $t:=\left|\left\{i \mid \operatorname{dim}\left(E_{i} H\right)=2\right\}\right|$, then $t \in\{0,1,2\}$ and $\operatorname{dim}(\mathcal{M} H)=3 d+1-t . \quad$ Hence $t=2$ when $a_{d}=0$.

