Theorem. Let Γ be a distance regular graph and H a distance regular antipodal r-cover of Γ. Then every eigenvalue θ of Γ is also an eigenvalue of H with the same multiplicity.

Proof. Let H has diameter D, and Γ has n vertices, so $H_{D}=n \cdot K_{r}\left(K_{r}\right.$'s corresp. to the fibres of $\left.H\right)$.

Therefore, H_{D} has for eigenvalues $r-1$ with multiplicity n and -1 with multiplicity $n r-n$.
The eigenvectors corresponding to eigenvalue $r-1$ are constant on fibres and those corresponding to -1 sum to zero on fibres.

Take θ to be an eigenvalue of H, which is also an eigenvalue of Γ.

An eigenvector of Γ corresponding to θ can be extended to an eigenvector of H which is constant on fibres.

We know that the eigenvectors of H are also the eigenvectors of H_{D}, therefore, we have $v_{D}(\theta)=r-1$.

So we conclude that all the eigenvectors of H corresponding to θ are constant on fibres and therefore give rise to eigenvectors of Γ corresponding to θ.

All the eigenvalues: $A(\Gamma / \pi), N_{0}$ or $A(\Gamma / \pi), N_{1}$:
$\left(\begin{array}{ccccccc}0 & b_{0} & & & & \\ c_{1} & a_{1} & b_{1} & & 0 & \\ 0 & c_{2} & \cdot & \cdot & & \\ & & & \cdot & \cdot & \\ & & 0 & & \cdot & \cdot & b_{d-1} \\ & & & & c_{d} & a_{d}\end{array}\right),\left(\begin{array}{cccccccc}0 & b_{0} & & & & & \\ c_{1} & a_{1} & b_{1} & & & 0 & \\ & c_{2} & a_{2} & b_{2} & & \\ & & & \ddots & \ddots & \ddots & \\ & 0 & & c_{d-2} & a_{d-2} & b_{d-2} \\ & & & & & c_{d-1} & a_{d-1}\end{array}\right)$

$$
\left(\begin{array}{cccccc}
0 & b_{0} & & & & \\
c_{1} & a_{1} & b_{1} & & 0 & \\
0 & c_{2} & \cdot & \cdot & & \\
& & \cdot & \cdot & \cdot & \\
& 0 & & \cdot & \cdot & b_{d-1} \\
& & & & c_{d} & a_{d}
\end{array}\right),\left(\begin{array}{cccccc}
0 & b_{0} & & & & \\
c_{1} & a_{1} & b_{1} & & 0 & \\
& c_{2} & a_{2} & b_{2} & & \\
& & \ddots & \ddots & \ddots & \\
& 0 & & c_{d-1} & a_{d-1} & b_{d-1} \\
& & & & c_{d} & a_{d}-r t
\end{array}\right)
$$

Theorem. H distance-regular antipodal r-cover, diameter D, of the distance-regular graph Γ, diameter d and parameters a_{i}, b_{i}, c_{i}.

The $D-d$ eigenvalues of H which are not in ev (Γ) (the 'new' ones) are for $D=2 d$ (resp. $D=2 d+1$), the eigenvalues of the matrix N_{0} (resp. N_{1}).
If $\theta_{0} \geq \theta_{1} \geq \cdots \geq \theta_{D}$ are the eigenvalues of H and $\xi_{0} \geq \xi_{1} \geq \cdots \geq \xi_{d}$ are the eigenvalues of Γ, then

$$
\xi_{0}=\theta_{0}, \quad \xi_{1}=\theta_{2}, \quad \cdots, \quad \xi_{d}=\theta_{2 d}
$$

i.e., the ev((Γ) interlace the 'new' eigenvalues of H.

Connections

- projective and affine planes,
for $D=3$, or $D=4$ and $r=k$ (covers of K_{n} or $K_{n, n}$),
- Two graphs (Q-polynomial), for $D=3$ and $r=2$,
- Moore graphs, for $D=3$ and $r=k$,
- Hadamard matrices, $D=4$ and $r=2$
(covers of $K_{n, n}$),
- group divisible resolvable designs, $D=4\left(\right.$ cover of $\left.K_{n, n}\right)$,
- coding theory (perfect codes),
- group theory (class. of finite simple groups),
- orthogonal polynomials.

Tools:

- graph theory, counting,
- matrix theory $($ rank $\bmod p)$,
- eigenvalue techniques,
- representation theory of graphs,
- geometry (Euclidean and finite),
- algebra and association schemes,
- topology (covers and universal objects).

Goals:

- structure of antipodal covers,
- new infinite families,
- nonexistence and uniqueness,
- characterization,
- new techniques
(which can be applied to drg or even more general)
Difficult problems:
Find a 7 -cover of K_{15}.
Find a double-cover of Higman-Sims graph ($\{22,21 ; 1,6\}$).

Antipodal covers of diameter 3

Γ an antipodal distance-regular with diameter 3.
Then it is an r-cover of the complete graph K_{n}.
Its intersection array is $\left\{n-1,(r-1) c_{2}, 1 ; 1, c_{2}, n-1\right\}$.

The distance partition corresp. to an antipodal class.

Examples: 3-cube, the icosahedron.
A graph is locally \mathcal{C} if the neighbours of each vertex induce \mathcal{C} (or a member of \mathcal{C}).

Lemma (A.J. 1994). Γ distance-regular, $k \leq 10$ and locally C_{k}. Then Γ is

- one of the Platonic solids with \triangle 's as faces,
- Paley graph P(13), Shrikhande graph,
- Klein graph (i.e., the 3-cover of K_{8}).

Problem. Find a locally C_{15} distance-regular graph.

Platonic solids with \triangle 's as faces
The 1-skeletons of

(a) the tetrahedron $=K_{4}$,
(b) the octahedron $=K_{2,2,2}$,
(c) the icosahedron.

There is only one feasible intersection array of distanceregular covers of K_{8} : $\{7,4,1 ; 1,2,7\}$ - the Klein graph, i.e., the dual of the famous Klein map on a surface of genus 3. It must be the one coming from Mathon's construction.

Mathon's construction of an \boldsymbol{r}-cover of $\boldsymbol{K}_{\boldsymbol{q}+1}$

A version due to Neumaier: using a subgroup K of the $\operatorname{GF}(q)^{*}$ of index r. For, let $q=r c+1$ be a prime power and either c is even or $q-1$ is a power of 2 .

We use an equivalence relation \mathcal{R} for $\operatorname{GF}(q)^{2} \backslash\{0\}$: $\left(v_{1}, v_{2}\right) \mathcal{R}\left(u_{1}, u_{2}\right)$ iff $\exists h \in K$ s.t. $\left(v_{1} h, v_{2} h\right)=\left(u_{1}, u_{2}\right)$. vertices: equiv. classes $v K, v \in \operatorname{GF}(q)^{2} \backslash\{0\}$ of \mathcal{R}, and $\left(v_{1}, v_{2}\right) K \sim\left(u_{1}, u_{2}\right) K$ iff $v_{1} u_{2}-v_{2} u_{1} \in K$,

It is an antipodal distance-regular graph of diam. 3, with $r(q+1)=\left(q^{2}-1\right) / c$ vertices, index $r, c_{2}=c$ (vertex transitive, and also distance-transitive when r is prime and the char. of $\operatorname{GF}(q)$ is primitive $\bmod r)$.

> Theorem (Brouwer, 1983$)$. $\mathrm{GQ}(s, t)$ minus a spread, $t>1$
> $\Longrightarrow(s+1)$-cover of $K_{s t+1}$ with $c_{2}=t-1$

- good construction: q a prime power:

$$
(s, t)=\left\{\begin{array}{l}
(q, q) \\
(q-1, q+1), \\
(q+1, q-1), \text { if } 2 \mid q \\
\left(q, q^{2}\right)
\end{array}\right.
$$

- good characterization (geometric graphs),
- nonexistence

$\begin{array}{llll}n & r & a_{1} & c_{2}\end{array}$	a cover Γ of K_{n}	\#of Γ
$\begin{array}{lllll}5 & 3 & 1 & 1\end{array}$	L(Petersen)	1
222	Icosahedron	1
$\begin{array}{llll}7 & 6 & 0 & 1\end{array}$	S_{2} (Hoffman-Singleton)	1
$\begin{array}{lllll}8 & 3 & 2 & 2\end{array}$	Klein graph	1
$\begin{array}{llll}3 & 1 & 3\end{array}$	$\mathrm{GQ}(2,4) \backslash$ spread	2
$\begin{array}{llll}7 & 1 & 1\end{array}$	equivalent to the unique $P G(2,8)$	1
$\left\lvert\, \begin{array}{llll}10 & 2 & 4 & 4\end{array}\right.$	Johnson graph $J(6,3)$	1
$\left\lvert\, \begin{array}{llll}10 & 4 & 2 & 2\end{array}\right.$	$\mathrm{GQ}(3,3) \backslash$ unique spread	≥ 1

n	r	a_{1}	c_{2}	a cover Γ of K_{n}	$\#$ of Γ
11	9	1	1	does not exist $(P G(2,10))$	0
12	5	2	2	Mathon's construction	≥ 1
13	11	1	1	open $(P G(2,12))$	$?$
114	2	6	6	equivalent to Paley graph $\{6,3 ; 1,3\}$	1
14	3	4	4	Mathon's construction	≥ 1
14	6	2	2	Mathon's construction	≥ 1
16	2	6	8	[dCMM], [So] and [Th1]	1
116	2	8	6	unique two-graph, i.e., $\frac{1}{2} H(6,2)$	1
116	4	2	4	$G Q(3,5) \backslash$ spread	≥ 5
16	6	4	2	$G Q(5,3) \backslash$ spread	≥ 1
16	7	2	2	OPEN	$?$
16	8	0	2		≥ 1
17	3	5	5	Mathon's construction	≥ 1
17	5	3	3	$G Q(4,4) \backslash$ unique spread	≥ 2
17	15	1	1	equivalent to $P G(2,16)$, Mathon's construction	≥ 1
18	2	8	8	Mathon's construction	1
18	4	4	4	Mathon's construction	≥ 1
18	8	2	2	Mathon's construction	≥ 1
19	4	2	5	$[$ Hae2] $(G Q(3,6)$ does not exist	0
19	7	5	2	[Go4] (GQ(6,3) does not exist	0
19	17	1	1	open $(P G(2,18))$	$?$

Antipodal covers of diameter 4

Let Γ be an antipodal distance-regular graph of diameter 4 , with v vertices, and let r be the size of its antipodal classes.
The intersection array $\left\{b_{0}, b_{1}, b_{2}, b_{3} ; c_{1}, c_{2}, c_{3}, c_{4}\right\}$ is determined by $\left(k, a_{1}, c_{2}, r\right)$, and has the following form

$$
\left\{k, k-a_{1}-1,(r-1) c_{2}, 1 ; 1, c_{2}, k-a_{1}-1, k\right\},
$$

A systematic approach:

- a list of all small feasible parameters
- Krein conditions and absolute bounds

Let $k=\theta_{0}>\theta_{1}>\theta_{2}>\theta_{3}>\theta_{4}$ be ev (Γ).
The antipodal quotient is $\operatorname{SRG}\left(v / r, k, a_{1}, r c_{2}\right)$,
$\theta_{0}=k, \theta_{2}, \theta_{4}$ are the roots of

$$
x^{2}-\left(a_{1}-r c_{2}\right) x-\left(k-r c_{2}\right)=0
$$

and θ_{1}, θ_{3} are the roots of $x^{2}-a_{1} x-k=0$.
The following relations hold for the eigenvalues:

$$
\theta_{0}=-\theta_{1} \theta_{3}, \text { and }\left(\theta_{2}+1\right)\left(\theta_{4}+1\right)=\left(\theta_{1}+1\right)\left(\theta_{3}+1\right)
$$

The multiplicities are $m_{0}=1, m_{4}=(v / r)-m_{2}-1$,

$$
m_{2}=\frac{\left(\theta_{4}+1\right) k\left(k-\theta_{4}\right)}{r c_{2}\left(\theta_{4}-\theta_{2}\right)} \text { and } m_{1,3}=\frac{(r-1) v}{r\left(2+a_{1} \theta_{1,3} / k\right)}
$$

Parameters of the antipodal quotient can be expressed in terms of eigenvalues and $r: \quad k=\theta_{0}$,
$a_{1}=\theta_{1}+\theta_{3}, b_{1}=-\left(\theta_{2}+1\right)\left(\theta_{4}+1\right), c_{2}=\frac{\theta_{0}+\theta_{2} \theta_{4}}{r}$.
The eigenvalues θ_{2}, θ_{4} are integral, $\theta_{4} \leq-2,0 \leq \theta_{2}$, with $\theta_{2}=0$ iff Γ is bipartite.
Furthermore, $\theta_{3}<-1$, and the eigenvalues θ_{1}, θ_{3} are integral when $a_{1} \neq 0$.

We define for $s \in\{0,1,2,3,4\}$ the symmetric 4×4 matrix $P(s)$ with its $i j$-entry being equal to $p_{i j}(s)$.
For $b_{1}=k-1-\lambda, k_{2}=r k b_{1} / \mu$,
$a_{2}=k-\mu$ and $b_{2}=(r-1) \mu / r$ we have

$$
\begin{gathered}
P(0)=\left(\begin{array}{cccc}
k & 0 & 0 & 0 \\
& k_{2} & 0 & 0 \\
& & (r-1) k & 0 \\
& & & r-1
\end{array}\right), \\
P(1)=\left(\begin{array}{cccc}
\lambda & b_{1} & 0 & 0 \\
& k_{2}-b_{1} r & b_{1}(r-1) & 0 \\
& & \lambda(r-1) & r-1 \\
& & & \\
& & & 0
\end{array}\right),
\end{gathered}
$$

$$
\begin{aligned}
& P(2)=\left(\begin{array}{cccc}
\mu / r & a_{2} & b_{2} & 0 \\
& k_{2}-r\left(a_{2}+1\right) & (r-1)(k-\mu) & r-1 \\
& & b_{2}(r-1) & 0 \\
& & & 0
\end{array}\right), \\
& P(3)=\left(\begin{array}{cccc}
0 & b_{1} & \lambda & 1 \\
& k_{2}-r b_{1} & b_{1}(r-1) & 0 \\
& & \lambda(r-2) & r-2 \\
& & & 0
\end{array}\right), \\
& P(4)=\left(\begin{array}{cccc}
0 & 0 & k & 0 \\
& k_{2} & 0 & 0 \\
& & k(r-2) & 0 \\
& & & r-2
\end{array}\right) \text {. }
\end{aligned}
$$

The matrix of eigenvalues $P(\Gamma)$ (with $\omega_{j}\left(\theta_{i}\right)$ being its $j i$-entry) has the following form:

$$
P(\Gamma)=\left(\begin{array}{ccccc}
1 & \theta_{0} & \theta_{0} b_{1} / c_{2} & \theta_{0}(r-1) & r-1 \\
1 & \theta_{1} & 0 & -\theta_{1} & -1 \\
1 & \theta_{2} & -r\left(\theta_{2}+1\right) & \theta_{2}(r-1) & r-1 \\
1 & \theta_{3} & 0 & -\theta_{3} & -1 \\
1 & \theta_{4} & -r\left(\theta_{4}+1\right) & \theta_{4}(r-1) & r-1
\end{array}\right)
$$

Theorem. (JK 1995).
Γ antipodal distance-regular graph, diam 4, and eigenvalues $k=\theta_{0}>\theta_{1}>\theta_{2}>\theta_{3}>\theta_{4}$.
Then $q_{11}^{2}, q_{12}^{3}, q_{13}^{4}, q_{22}^{2}, q_{22}^{4}, q_{23}^{3}, q_{24}^{4}, q_{33}^{4}>0$, $r=2$ iff $q_{11}^{1}=0$ iff $q_{11}^{3}=0$ iff $q_{13}^{3}=0$ iff $q_{33}^{3}=0$, $q_{12}^{2}=q_{12}^{4}=q_{14}^{4}=q_{22}^{3}=q_{23}^{4}=q_{34}^{4}=0$ and
(i) $\left(\theta_{4}+1\right)^{2}\left(k^{2}+\theta_{2}^{3}\right) \geq\left(\theta_{2}+1\right)\left(k+\theta_{2} \theta_{4}\right)$, with equality iff $q_{22}^{2}=0$,
(ii) $\left(\theta_{2}+1\right)^{2}\left(k^{2}+\theta_{4}^{3}\right) \geq\left(\theta_{4}+1\right)\left(k+\theta_{2} \theta_{4}\right)$, with equality iff $q_{44}^{4}=0$,
(iii) $\theta_{3}^{2} \geq-\theta_{4}$, with equality iff $q_{11}^{4}=0$.

Let E be a primitive idempotent of a distance-regular graph of diameter d. The representation diagram Δ_{E} is the undirected graph with vertices $0,1, \ldots d$, where we join two distinct vertices i and j whenever $q_{i j}^{s}=q_{j i}^{s} \neq 0$.
Recall Terwilliger's characterization of Q-polynomial association schemes that a d-class association scheme is Q-polynomial iff the representation diagram a minimal idempotent, is a path. For $s=1$ and $r=2$ we get the following graph:

Based on the above information we have:

Corollary. Г antipodal, distance-regular graph with diam. 4. TFAE
(i) Γ is Q-polynomial.
(ii) $r=2$ and $q_{11}^{4}=0$.

Suppose (i)-(ii) hold, then $\theta_{0}, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ is a unique Q-polynomial ordering, and $q_{i j}^{h}=0$ when $i+j+h$ is odd, i.e., the Q-polynomial structure is dual bipartite.

An antipodal distance-regular graph of diameter 4 (the distance partition corresponding to an antipodal class).

Non-bipartite antipodal distance-regular graphs of diameter 4.

$\#$	Γ	n	k	λ	μ	H	r	t	$r . n$
1	! Petersen graph	10	3	0	1	! Dodecahedron	2	1	20
2	3-Golay code	243	22	1	2	short. ext. 3-Golay code	3	9	729
3	folded Johnson graph $J(10,5)$	126	25	8	8	! Johnson graph $J(10,5)$	2	9	252
4	folded halved 10-cube	256	45	16	6	! halved 10-cube	2	15	512

Non-bipartite antipodal distance-regular graphs of diameter 5 .

