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Theorem. Let I' be a distance regular graph
and H a distance regular antipodal r-cover of I'.
Then every eigenvalue 6 of I is also

an eigenvalue of H with the same multiplicity:.

PROOF. Let H has diameter D, and ' has n vertices,
so Hp =n - K, (K,’s corresp. to the fibres of H).

Therefore, Hp has for eigenvalues r — 1
with multiplicity n and —1 with multiplicity nr — n.

The eigenvectors corresponding to eigenvalue r — 1
are constant on fibres and those corresponding to —1
sum to zero on fibres.
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Take 6 to be an eigenvalue of H, which is also an
eigenvalue of I

An eigenvector of I' corresponding to 6 can be extended
to an eigenvector of H which is constant on fibres.

We know that the eigenvectors of H are also the
eigenvectors of Hp, therefore, we have vp(8) = r — 1.

So we conclude that all the eigenvectors of H
corresponding to € are constant on fibres and therefore
give rise to eigenvectors of I' corresponding to . N
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All the eigenvalues: A(I'/7), Ny or A(I'/7), Ny:

0 by
C1 a1 bl 0
0 Co
0 .. bge
K Cq Qg
0 bg
C1 a1 b1 0
0 Co
0 .. o bgq
\ Cq Qg
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Theorem. H distance-regular antipodal r-cover,
diameter D, of the distance-regular graph T’,
diameter d and parameters a;, b;, c;.

The D — d eigenvalues of H which are not in ev(I')
(the ‘new’ ones) are for D = 2d (resp. D =2d+ 1),
the eigenvalues of the matrix Ny (resp. Ni).

Ity >0, > --- > 0p are the eigenvalues of H and
o > & > - > &, are the eigenvalues of I, then

Eo="00, & =0o ---, & = O,

i.e., the ev(I") interlace the ‘new’ eigenvalues of H .
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Connections

— projective and affine planes,
for D =3,or D =4 and r = k (covers of K,, or K, ,,),

—Two graphs (Q-polynomial), for D = 3 and r = 2,
— Moore graphs, for D =3 and r = k,

— Hadamard matrices, D =4 and r = 2
(covers of K, ),

— group divisible resolvable designs,
D =4 (cover of K, ),

— coding theory (perfect codes),
— group theory (class. of finite simple groups),
— orthogonal polynomials.
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Tools:

— graph theory, counting,

— matrix theory (rank mod p),

— eigenvalue techniques,

— representation theory of graphs,
— geometry (Euclidean and finite),
— algebra and association schemes,

— topology (covers and universal objects).
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Goals:

— structure of antipodal covers,
— new infinite families,

— nonexistence and uniqueness,
— characterization,

— new techniques

(which can be applied to drg or even more general)

Difficult problems:

Find a 7-cover of Kjs.

Find a double-cover of Higman-Sims graph
({22,21;1,6}).
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Antipodal covers of diameter 3

[ an antipodal distance-regular with diameter 3.
Then it is an r-cover of the complete graph K.
[ts intersection array is {n—1, (r—1)co, 1;1, co,n—1}.

The distance partition corresp. to an antipodal class.
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Examples: 3-cube, the icosahedron.

A graph is locally C if the neighbours of each vertex
induce C  (or a member of C).

Lemma (A.J. 1994). [ distance-regular, k < 10
and locally C'.. Then I' is

— one of the Platonic solids with /\’s as faces,
— Paley graph P(13), Shrikhande graph,
— Klein graph (i.e., the 3-cover of Kg).

Problem. Find a locally (5 distance-regular graph.
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Platonic solids with A’s as faces

The 1-skeletons of

(a) the tetrahedron= Ky,
(b) the octahedron= K,

(¢) the icosahedron.
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There is only one feasible intersection array of distance-
regular covers of Kg: {7,4,1;1,2,7} - the Klein graph,
i.e., the dual of the famous Klein map on a surface of
genus 3. It must be the one coming from Mathon’s
construction.
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Mathon’s construction of an r-cover of K,

A version due to Neumaier: using a subgroup K of
the GF(q)* of index r. For, let ¢ = rc+ 1 be a prime
power and either ¢ is even or ¢ — 1 is a power of 2.

We use an equivalence relation R for GF(q)?\{0}:
(v1, v2)R(uy, uz) iff b € K s.t. (vih, voh) = (ug, us).

vertices: equiv. classes vK, v € GF(q)*\{0} of R,
and (vy, vy) K~(uq, ug) K iff vius — vouy € K|

[t is an antipodal distance-regular graph of diam. 3,
with 7(q¢ + 1) = (¢ — 1) /c vertices, index r, co = ¢
(vertex transitive, and also distance-transitive when r
is prime and the char. of GF(q) is primitive mod r).
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Theorem (Brouwer, 1983).
GQ(s,t) minus a spread, t > 1

—> (s + 1)-cover of K41 with co =t — 1.

- good construction: g a prime power:

'gq,q), |
. q_17q+17
(5:8) = 3 (g+1,q—1),if 2|q

(g, 4%).

- good characterization (geometric graphs),

- nonexistence
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n o ra; C a cover [' of K, #of I’
5 3 11 L(Petersen) 1

6 2 2 2 Icosahedron 1

7 6 01 So(Hoffman-Singleton) 1

8 3 2 2 Klein graph 1

9 3 1 3 GQ(2,4)\ spread 2

9 7 1 1 lequivalent to the unique PG(2,8) 1
10 2 4 4 Johnson graph J(6, 3) 1
10 4 2 2 GQ(3,3)\ unique spread > 1
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n r a; Co a cover I' of K, #of I’
11 9 11 does not exist (PG(2,10)) 0
12 5 2 2 Mathon’s construction > 1
13 11 1 1 open (PG(2,12)) ?
114 2 6 6 equivalent to Paley graph {6,3;1,3} 1
14 3 4 4 Mathon’s construction > 1
14 6 2 2 Mathon’s construction > 1
16 2 6 8 [dCMM], [So] and [Thl] 1
16 2 8 6 unique two-graph, i.e., %H(G, 2) 1
16 4 2 4 GQ(3,5)\ spread >5
16 6 4 2 GQ(5,3)\ spread > 1
16 7 2 2 OPEN 7
16 8 0 2 > 1
17 3 5 5 Mathon’s construction > 1
17 5 3 3 GQ(4,4)\ unique spread > 2
|17 15 1 1 |equivalent to PG(2,16), Mathon’s construction | > 1
18 2 8 8 Mathon’s construction 1
18 4 4 4 Mathon’s construction > 1
18 8 2 2 Mathon’s construction > 1
19 4 25 [Hae2] (GQ(3,6) does not exist 0
19 7 5 2 [God] (GQ(6,3) does not exist 0
19 17 1 1 open (PG(2,18)) ?
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Antipodal covers of diameter 4

Let I' be an antipodal distance-regular graph of
diameter 4, with v vertices, and let r be the size of
its antipodal classes.

The intersection array {bg, b1, bo, b3; 1, Co, 3,4} s
determined by (k, ay, co, 7), and has the following form

{k,k—ay—1,(r —1)co, 1,1, 0,k —ay — 1, k},

A systematic approach:
— a list of all small feasible parameters

— Krein conditions and absolute bounds
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Let k =0y > 60; >0, > 03 >0, be ev(F).

The antipodal quotient is SRG(v/r, k, ay, rcs),
0y = k, 05, 0, are the roots of

v — (a; —reg)r — (b —rey) =0

and 0y, 05 are the roots of 2> —a;x —k = 0.
The following relations hold for the eigenvalues:
6y = —6163, and ((92 + 1)((94 + 1) = ((91 + 1)(93 + 1).

The multiplicities are mg = 1, my = (v/r) — mg — 1,

(04 + 1)k(k — 04) (r—1)v

= d — .
e TCQ<(94 — (92) bl m173 7“(2 + a191,3/k)
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Parameters of the antipodal quotient can be expressed
in terms of eigenvalues and r: &k = 6,

0y + 650
a; =601 +03 b = —(92+1>(94—|—1), Co = L 2 4.

The eigenvalues 65, 64 are integral, 8, < —2, 0 < 69,
with 6, = 0 iff I' is bipartite.

Furthermore, 63 < —1, and the eigenvalues 64, 63 are
integral when a; # 0.
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We define for s € {0,1,2,3,4} the symmetric 4 x 4
matrix P(s) with its ij-entry being equal to p;;(s).

FOl"bl:]{—l—A, ]{2:7“]{[?1/,&,
as =k — pand by = (r — 1)u/r we have

k 0O 0 0
| ko0 0
P(0)= G-k 0 |
r—1
A b 00
. lfg—bﬂ“ b1<7"—1> 0
Pl)= Ar—1) r—1]|"
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,LL/’I“ a9 ba y
B ko —r(as+1) (r—=1)k—p) r—1
P2) = bhir—1) 0 |
0
0 b A 1
. ]fg — Tbl bl(T — 1) 0
P3) = Ar—2) r—2|
0
0 0 k 0
| k0 0
P) = Er—2) 0
r—2
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The matrix of eigenvalues P(I") (with w;(6;) being its
ji-entry) has the following form:

P(T') =
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(1 90 (9()[91/62 90(7“— 1) r — 1\
—1

1 64 0 —b61
1 6 —7“((92 + 1) (92(7” — 1) r—1
1 65 0 —03 —1

\1 0 —r(Os+1) Ou(r—1) 7 —1)
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Theorem. (JK 1995).

[ antipodal distance-regular graph, diam 4,

and eigenvalues k = 6y > 61 > 0y > 03 > 0.

Then qiy. Gy, Qis, G52 G220 B3> Goas 33 > 0,
r=21iffq, =0 iff ¢}, = 0 iff ¢{3 = 0 iff ¢35 = 0,

1y = Qs = q14 = G20 = Qo3 = @34 = 0 and

(i) (04+ 1)*(k*+03) > (62 + 1)(k + 020,),

with equality iff ¢35, = 0,

(i) (O 4+ 1)*(K*+63) > (04 + 1)(k + 050,),
with equality iff ¢}, = 0,

(iii) 03 > —0,, with equality iff q{; = 0.
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Let E be a primitive idempotent of a distance-regular
graph of diameter d. The representation diagram
A is the undirected graph with vertices 0,1,...d,
where we join two distinct vertices ¢ and 7 whenever

C]fj = jS # 0.
Recall Terwilliger’s characterization of ()-polynomial
association schemes that a d-class association scheme is
()-polynomial iff the representation diagram a minimal
idempotent, is a path. For s = 1 and r = 2 we get the
following graph:
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Based on the above information we have:

Corollary. I' antipodal, distance-regular graph
with diam. 4. TFAE

(i) T is @Q-polynomial.

(ii) 7 =2 and ¢}, = 0.

Suppose (i)-(ii) hold, then 6y, 61, 05, 03, 0,

is a unique ()-polynomial ordering, and

qzhj = (0 when i1+ j + h is odd, i.e.,

the ()-polynomial structure is dual bipartite.
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An antipodal distance-regular graph of diameter 4

(the distance partition corresponding to an antipodal class).
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# | n k X u |H rorn
1 |! Folded 5-cube 16 5 0 2 ||! Wells graph 2 32
2 |1 T(6) 15 6 1 3 ||!3.Sym(6).2 3 45
31 T(7) 21 10 3 6 |! 3.Sym(7) 3 63
4 |folded J(8,4) 35 16 6 8 |! Johnson graph J(8,4)|2 70
5 |! truncated 3-Golay code 81 20 1 6 | shortened 3-Golay code|3 243
6 |! folded halved 8-cube 64 28 12 12 ||! halved 8-cube 2 128
7 | Sa(Sa(MecL.)) 105 32 4 12 | Sy(Soicherl graph) 3 315
8 |Zara graph (126,6,2) 126 45 12 18 |3.04 (3) 3 378
9 |! Sy(McLaughlin graph) [Br3]| 162 56 10 24 ||! Soicherl graph 3 486
10 | hyperbolic pts. of PG(6,3) 378 117 36 36 |3.07(3) 3 1134
11| Suzuki graph 1781 416 100 96 | Soicher2 [Soi] 3 5346
12 306936 31671 3510 3240 | 3.F'iy, 3
Non-bipartite antipodal distance-regular graphs of diameter 4.
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(@1@‘

\
o %

S g(u)

# | n k A pu |H r t rn
1]! Petersen graph 10 3 0 1 |! Dodecahedron 2 1 20
2| 3-Golay code 243 22 1 2 |short. ext. 3-Golay code|3 9 729
3| folded Johnson graph J(10,5) [126 25 8 8 |! Johnson graph J(10,5)| 2 9 252
4 |folded halved 10-cube 256 45 16 6 |! halved 10-cube 2 15 512

Non-bipartite antipodal distance-regular graphs of diameter 5.
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