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Theorem. Let Γ be a distance regular graph
and H a distance regular antipodal r-cover of Γ.
Then every eigenvalue θ of Γ is also
an eigenvalue of H with the same multiplicity.

Proof. Let H has diameter D, and Γ has n vertices,
so HD = n · Kr (Kr’s corresp. to the fibres of H).

Therefore, HD has for eigenvalues r − 1
with multiplicity n and −1 with multiplicity nr − n.

The eigenvectors corresponding to eigenvalue r − 1
are constant on fibres and those corresponding to −1
sum to zero on fibres.
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Take θ to be an eigenvalue of H , which is also an
eigenvalue of Γ.

An eigenvector of Γ corresponding to θ can be extended
to an eigenvector of H which is constant on fibres.

We know that the eigenvectors of H are also the
eigenvectors of HD, therefore, we have vD(θ) = r − 1.

So we conclude that all the eigenvectors of H
corresponding to θ are constant on fibres and therefore
give rise to eigenvectors of Γ corresponding to θ.
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All the eigenvalues: A(Γ/π), N0 or A(Γ/π), N1:
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Theorem. H distance-regular antipodal r-cover,
diameter D, of the distance-regular graph Γ,
diameter d and parameters ai, bi, ci.

The D − d eigenvalues of H which are not in ev(Γ)

(the ‘new’ ones) are for D = 2d (resp. D = 2d + 1),

the eigenvalues of the matrix N0 (resp. N1).

If θ0 ≥ θ1 ≥ · · · ≥ θD are the eigenvalues of H and
ξ0 ≥ ξ1 ≥ · · · ≥ ξd are the eigenvalues of Γ, then

ξ0 = θ0, ξ1 = θ2, · · · , ξd = θ2d,

i.e., the ev(Γ) interlace the ‘new’ eigenvalues of H.
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Connections

– projective and affine planes,
for D = 3, or D = 4 and r = k (covers of Kn or Kn,n),

– Two graphs (Q-polynomial), for D = 3 and r = 2,

– Moore graphs, for D = 3 and r = k,

– Hadamard matrices, D = 4 and r = 2
(covers of Kn,n),

– group divisible resolvable designs,
D = 4 (cover of Kn,n),

– coding theory (perfect codes),
– group theory (class. of finite simple groups),
– orthogonal polynomials.
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Tools:

– graph theory, counting,

– matrix theory (rank mod p),

– eigenvalue techniques,

– representation theory of graphs,

– geometry (Euclidean and finite),

– algebra and association schemes,

– topology (covers and universal objects).
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Goals:

– structure of antipodal covers,

– new infinite families,

– nonexistence and uniqueness,

– characterization,

– new techniques

(which can be applied to drg or even more general)

Difficult problems:

Find a 7-cover of K15.
Find a double-cover of Higman-Sims graph
({22, 21; 1, 6}).
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Antipodal covers of diameter 3

Γ an antipodal distance-regular with diameter 3.
Then it is an r-cover of the complete graph Kn.
Its intersection array is {n−1, (r−1)c2, 1; 1, c2, n−1}.

The distance partition corresp. to an antipodal class.
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Examples: 3-cube, the icosahedron.

A graph is locally C if the neighbours of each vertex
induce C (or a member of C).

Lemma (A.J. 1994). Γ distance-regular, k ≤ 10

and locally Ck. Then Γ is

– one of the Platonic solids with △’s as faces,

– Paley graph P (13), Shrikhande graph,

– Klein graph (i.e., the 3-cover of K8).

Problem. Find a locally C15 distance-regular graph.
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Platonic solids with △’s as faces

The 1-skeletons of

(a) the tetrahedron= K4,

(b) the octahedron= K2,2,2,

(c) the icosahedron.
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There is only one feasible intersection array of distance-
regular covers of K8: {7, 4, 1; 1, 2, 7} - the Klein graph,
i.e., the dual of the famous Klein map on a surface of
genus 3. It must be the one coming from Mathon’s
construction.
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Mathon’s construction of an r-cover of Kq+1

A version due to Neumaier: using a subgroup K of
the GF(q)∗ of index r. For, let q = rc + 1 be a prime
power and either c is even or q − 1 is a power of 2.

We use an equivalence relation R for GF(q)2\{0}:
(v1, v2)R(u1, u2) iff ∃h ∈ K s.t. (v1h, v2h) = (u1, u2).

vertices: equiv. classes vK, v ∈ GF(q)2\{0} of R,
and (v1, v2)K∼(u1, u2)K iff v1u2 − v2u1 ∈ K,

It is an antipodal distance-regular graph of diam. 3,
with r(q + 1) = (q2 − 1)/c vertices, index r, c2 = c
(vertex transitive, and also distance-transitive when r
is prime and the char. of GF(q) is primitive mod r).
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Theorem (Brouwer, 1983).

GQ(s, t) minus a spread, t > 1

=⇒ (s + 1)-cover of Kst+1 with c2 = t − 1.

- good construction: q a prime power:

(s, t) =















(q, q),
(q − 1, q + 1),
(q + 1, q − 1), if 2 | q
(q, q2).

- good characterization (geometric graphs),

- nonexistence
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n r a1 c2 a cover Γ of Kn #of Γ

5 3 1 1 L(Petersen) 1
6 2 2 2 Icosahedron 1
7 6 0 1 S2(Hoffman-Singleton) 1
8 3 2 2 Klein graph 1
9 3 1 3 GQ(2, 4)\ spread 2
9 7 1 1 equivalent to the unique PG(2, 8) 1

10 2 4 4 Johnson graph J(6, 3) 1
10 4 2 2 GQ(3, 3)\ unique spread ≥ 1
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n r a1 c2 a cover Γ of Kn # of Γ
11 9 1 1 does not exist (PG(2,10)) 0
12 5 2 2 Mathon’s construction ≥ 1
13 11 1 1 open (PG(2,12)) ?
14 2 6 6 equivalent to Paley graph {6, 3; 1, 3} 1
14 3 4 4 Mathon’s construction ≥ 1
14 6 2 2 Mathon’s construction ≥ 1
16 2 6 8 [dCMM], [So] and [Th1] 1
16 2 8 6 unique two-graph, i.e., 1

2H(6, 2) 1
16 4 2 4 GQ(3,5)\ spread ≥ 5
16 6 4 2 GQ(5,3)\ spread ≥ 1
16 7 2 2 OPEN ?
16 8 0 2 ≥ 1
17 3 5 5 Mathon’s construction ≥ 1
17 5 3 3 GQ(4,4)\ unique spread ≥ 2
17 15 1 1 equivalent to PG(2,16), Mathon’s construction ≥ 1
18 2 8 8 Mathon’s construction 1
18 4 4 4 Mathon’s construction ≥ 1
18 8 2 2 Mathon’s construction ≥ 1
19 4 2 5 [Hae2] (GQ(3,6) does not exist 0
19 7 5 2 [Go4] (GQ(6,3) does not exist 0
19 17 1 1 open (PG(2,18)) ?
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Antipodal covers of diameter 4

Let Γ be an antipodal distance-regular graph of
diameter 4, with v vertices, and let r be the size of
its antipodal classes.

The intersection array {b0, b1, b2, b3; c1, c2, c3, c4} is
determined by (k, a1, c2, r), and has the following form

{k, k − a1 − 1, (r − 1)c2, 1; 1, c2, k − a1 − 1, k},

A systematic approach:

– a list of all small feasible parameters

– Krein conditions and absolute bounds
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Let k = θ0 > θ1 > θ2 > θ3 > θ4 be ev(Γ).

The antipodal quotient is SRG(v/r, k, a1, rc2),
θ0 = k, θ2, θ4 are the roots of

x2 − (a1 − rc2)x − (k − rc2) = 0

and θ1, θ3 are the roots of x2 − a1x − k = 0.

The following relations hold for the eigenvalues:

θ0 = −θ1θ3, and (θ2 + 1)(θ4 + 1) = (θ1 + 1)(θ3 + 1).

The multiplicities are m0 = 1, m4 = (v/r) − m2 − 1,

m2 =
(θ4 + 1)k(k − θ4)

rc2(θ4 − θ2)
and m1,3 =

(r − 1)v

r(2 + a1θ1,3/k)
.
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Parameters of the antipodal quotient can be expressed
in terms of eigenvalues and r: k = θ0,

a1 = θ1 + θ3, b1 = −(θ2 + 1)(θ4 + 1), c2 =
θ0 + θ2θ4

r
.

The eigenvalues θ2, θ4 are integral, θ4 ≤ −2, 0 ≤ θ2,
with θ2 = 0 iff Γ is bipartite.

Furthermore, θ3 < −1, and the eigenvalues θ1, θ3 are
integral when a1 6= 0.
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We define for s ∈ {0, 1, 2, 3, 4} the symmetric 4 × 4
matrix P (s) with its ij-entry being equal to pij(s).

For b1 = k − 1 − λ, k2 = rkb1/µ,
a2 = k − µ and b2 = (r − 1)µ/r we have

P (0)=









k 0 0 0
k2 0 0

(r − 1)k 0
r − 1









,

P (1)=









λ b1 0 0
k2 − b1r b1(r − 1) 0

λ(r − 1) r − 1
0









,
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P (2) =









µ/r a2 b2 0
k2 − r(a2 + 1) (r − 1)(k − µ) r − 1

b2(r − 1) 0
0









,

P (3) =









0 b1 λ 1
k2 − rb1 b1(r − 1) 0

λ(r − 2) r − 2
0









,

P (4) =









0 0 k 0
k2 0 0

k(r − 2) 0
r − 2









.
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The matrix of eigenvalues P (Γ) (with ωj(θi) being its
ji-entry) has the following form:

P (Γ) =













1 θ0 θ0b1/c2 θ0(r − 1) r − 1
1 θ1 0 −θ1 −1
1 θ2 −r(θ2 + 1) θ2(r − 1) r − 1
1 θ3 0 −θ3 −1
1 θ4 −r(θ4 + 1) θ4(r − 1) r − 1
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Theorem. (JK 1995).

Γ antipodal distance-regular graph, diam 4,
and eigenvalues k = θ0 > θ1 > θ2 > θ3 > θ4.

Then q2
11, q3

12, q4
13, q2

22, q4
22, q3

23, q4
24, q4

33 > 0,

r = 2 iff q1
11 = 0 iff q3

11 = 0 iff q3
13 = 0 iff q3

33 = 0,

q2
12 = q4

12 = q4
14 = q3

22 = q4
23 = q4

34 = 0 and

(i) (θ4 + 1)2(k2 + θ3
2) ≥ (θ2 + 1)(k + θ2θ4),

with equality iff q2
22 = 0,

(ii) (θ2 + 1)2(k2 + θ3
4) ≥ (θ4 + 1)(k + θ2θ4),

with equality iff q4
44 = 0,

(iii) θ2
3 ≥ −θ4, with equality iff q4

11 = 0.
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Let E be a primitive idempotent of a distance-regular
graph of diameter d. The representation diagram
∆E is the undirected graph with vertices 0, 1, . . . d,
where we join two distinct vertices i and j whenever
qs
ij = qs

ji 6= 0.

Recall Terwilliger’s characterization of Q-polynomial
association schemes that a d-class association scheme is
Q-polynomial iff the representation diagram a minimal
idempotent, is a path. For s = 1 and r = 2 we get the
following graph: 3

0 1

24
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Based on the above information we have:

Corollary. Γ antipodal, distance-regular graph
with diam. 4. TFAE

(i) Γ is Q-polynomial.

(ii) r = 2 and q4
11 = 0.

Suppose (i)-(ii) hold, then θ0, θ1, θ2, θ3, θ4

is a unique Q-polynomial ordering, and

qh
ij = 0 when i + j + h is odd, i.e.,

the Q-polynomial structure is dual bipartite.
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An antipodal distance-regular graph of diameter 4

(the distance partition corresponding to an antipodal class).
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# Γ n k λ µ H r r.n

1 ! Folded 5-cube 16 5 0 2 ! Wells graph 2 32

2 ! T (6) 15 6 1 3 ! 3.Sym(6).2 3 45

3 ! T (7) 21 10 3 6 ! 3.Sym(7) 3 63

4 folded J(8,4) 35 16 6 8 ! Johnson graph J(8,4) 2 70

5 ! truncated 3-Golay code 81 20 1 6 shortened 3-Golay code 3 243

6 ! folded halved 8-cube 64 28 12 12 ! halved 8-cube 2 128

7 S2(S2(McL.)) 105 32 4 12 S2(Soicher1 graph) 3 315

8 Zara graph (126,6,2) 126 45 12 18 3.O−
6

(3) 3 378

9 ! S2(McLaughlin graph) [Br3] 162 56 10 24 ! Soicher1 graph 3 486

10 hyperbolic pts. of PG(6,3) 378 117 36 36 3.O7(3) 3 1134

11 Suzuki graph 1781 416 100 96 Soicher2 [Soi] 3 5346

12 306936 31671 3510 3240 3.F i−
24

3

Non-bipartite antipodal distance-regular graphs of diameter 4.
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55

# Γ n k λ µ H r t r.n

1 ! Petersen graph 10 3 0 1 ! Dodecahedron 2 1 20

2 3-Golay code 243 22 1 2 short. ext. 3-Golay code 3 9 729

3 folded Johnson graph J(10,5) 126 25 8 8 ! Johnson graph J(10,5) 2 9 252

4 folded halved 10-cube 256 45 16 6 ! halved 10-cube 2 15 512

Non-bipartite antipodal distance-regular graphs of diameter 5.
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