Theorem. Let Γ be a distance regular graph and H a distance regular antipodal r-cover of Γ . Then every eigenvalue θ of Γ is also an eigenvalue of H with the same multiplicity.

PROOF. Let *H* has diameter *D*, and Γ has *n* vertices, so $H_D = n \cdot K_r$ (K_r 's corresp. to the fibres of *H*).

Therefore, H_D has for eigenvalues r-1with multiplicity n and -1 with multiplicity nr-n.

The eigenvectors corresponding to eigenvalue r - 1are constant on fibres and those corresponding to -1sum to zero on fibres.

Take θ to be an eigenvalue of H, which is also an eigenvalue of Γ .

An eigenvector of Γ corresponding to θ can be extended to an eigenvector of H which is constant on fibres.

We know that the eigenvectors of H are also the eigenvectors of H_D , therefore, we have $v_D(\theta) = r - 1$.

So we conclude that all the eigenvectors of H corresponding to θ are constant on fibres and therefore give rise to eigenvectors of Γ corresponding to θ .

All the eigenvalues: $A(\Gamma/\pi), N_0$ or $A(\Gamma/\pi), N_1$:

$$\begin{pmatrix} 0 & b_{0} \\ c_{1} & a_{1} & b_{1} & 0 \\ 0 & c_{2} & \ddots & \ddots \\ 0 & \ddots & b_{d-1} \\ & & c_{d} & a_{d} \end{pmatrix} , \begin{pmatrix} 0 & b_{0} \\ c_{1} & a_{1} & b_{1} & 0 \\ c_{2} & a_{2} & b_{2} \\ & \ddots & \ddots & \ddots \\ 0 & c_{d-2} & a_{d-2} & b_{d-2} \\ & & c_{d-1} & a_{d-1} \end{pmatrix}$$
$$\begin{pmatrix} 0 & b_{0} \\ c_{1} & a_{1} & b_{1} & 0 \\ 0 & c_{2} & \ddots & \ddots \\ 0 & c_{2} & a_{2} & b_{2} \\ & \ddots & \ddots & \ddots \\ 0 & c_{d-1} & a_{d-1} & b_{d-1} \\ & & c_{d} & a_{d} - rt \end{pmatrix}$$

```
Algebraic Combinatorics, 2007
  Theorem. H distance-regular antipodal r-cover,
  diameter D, of the distance-regular graph \Gamma,
  diameter d and parameters a_i, b_i, c_i.
  The D-d eigenvalues of H which are not in ev(\Gamma)
  (the 'new' ones) are for D = 2d (resp. D = 2d + 1),
  the eigenvalues of the matrix N_0 (resp. N_1).
  If \theta_0 \ge \theta_1 \ge \cdots \ge \theta_D are the eigenvalues of H and
 \xi_0 \geq \xi_1 \geq \cdots \geq \xi_d are the eigenvalues of \Gamma, then
             \xi_0 = \theta_0, \quad \xi_1 = \theta_2, \quad \cdots, \quad \xi_d = \theta_{2d},
 i.e., the ev(\Gamma) interlace the 'new' eigenvalues of H.
```


Connections

- projective and affine planes,

for D = 3, or D = 4 and r = k (covers of K_n or $K_{n,n}$),

- **Two graphs** (*Q*-polynomial), for D = 3 and r = 2,
- Moore graphs, for D = 3 and r = k,
- Hadamard matrices, D = 4 and r = 2 (covers of $K_{n,n}$),
- group divisible resolvable designs, D = 4 (cover of $K_{n,n}$),
- coding theory (perfect codes),
- group theory (class. of finite simple groups),
- orthogonal polynomials.

Tools:	
– graph theory, counting,	
- matrix theory (rank mod p),	
– eigenvalue techniques,	
– representation theory of graphs,	
– geometry (Euclidean and finite),	
– algebra and association schemes,	
– topology (covers and universal objects).	
Aleksandar Jurišić	186

Goals:

- structure of antipodal covers,
- new infinite families,
- nonexistence and uniqueness,
- characterization,
- new techniques

(which can be applied to drg or even more general)

Difficult problems:

Find a 7-cover of K_{15} . Find a double-cover of Higman-Sims graph $(\{22, 21; 1, 6\}).$

Examples: 3-cube, the icosahedron.

A graph is **locally** C if the neighbours of each vertex induce C (or a member of C).

Lemma (A.J. 1994). Γ distance-regular, $k \leq 10$ and locally C_k . Then Γ is

- one of the Platonic solids with \triangle 's as faces,

- Paley graph P(13), Shrikhande graph,

- Klein graph (i.e., the 3-cover of K_8).

Problem. Find a locally C_{15} distance-regular graph.

There is only one feasible intersection array of distanceregular covers of K_8 : $\{7, 4, 1; 1, 2, 7\}$ - the Klein graph, i.e., the dual of the famous Klein map on a surface of genus 3. It must be the one coming from Mathon's construction. $_{u_5}$

Mathon's construction of an *r*-cover of K_{q+1}

A version due to Neumaier: using a subgroup K of the $GF(q)^*$ of index r. For, let q = rc + 1 be a prime power and either c is even or q - 1 is a power of 2.

We use an equivalence relation \mathcal{R} for $GF(q)^2 \setminus \{0\}$: $(v_1, v_2)\mathcal{R}(u_1, u_2)$ iff $\exists h \in K$ s.t. $(v_1h, v_2h) = (u_1, u_2)$.

vertices: equiv. classes vK, $v \in GF(q)^2 \setminus \{0\}$ of \mathcal{R} , and $(v_1, v_2)K \sim (u_1, u_2)K$ iff $v_1u_2 - v_2u_1 \in K$,

It is an antipodal distance-regular graph of diam. 3, with $r(q+1) = (q^2 - 1)/c$ vertices, index $r, c_2 = c$ (vertex transitive, and also distance-transitive when r is prime and the char. of GF(q) is primitive mod r).

Theorem (Brouwer, 1983). GQ(s,t) minus a spread, t > 1 \implies (s+1)-cover of K_{st+1} with $c_2 = t - 1$. - good construction: q a prime power: $(s,t) = \begin{cases} (q,q), \\ (q-1,q+1), \\ (q+1,q-1), \text{ if } 2 \mid q \\ (q,q^2) \end{cases}$ - good characterization (geometric graphs), - nonexistence Aleksandar Jurišić

193

Algebr	aic C	ombi	natori	acs, 2007	
n	r	a_1	c_2	a cover Γ of K_n	#of Γ
5	3	1	1	L(Petersen)	1
6	2	2	2	Icosahedron	1
7	6	0	1	$S_2(\text{Hoffman-Singleton})$	1
8	3	2	2	Klein graph	1
9	3	1	3	$\mathrm{GQ}(2,4) \setminus \mathrm{spread}$	2
9	7	1	1	equivalent to the unique $PG(2, 8)$	1
10	2	4	4	Johnson graph $J(6,3)$	1
10	4	2	2	$\mathrm{GQ}(3,3)\setminus$ unique spread	≥ 1
Aleksa	ndar	Juriš	ić		194

n	r	a_1	c_2	a cover Γ of K_n	$\#$ of Γ		
11	9	1	1	does not exist $(PG(2,10))$	0		
12	5	2	2	Mathon's construction	≥ 1		
13	11	1	1	open $(PG(2,12))$?		
14	2	6	6	equivalent to Paley graph $\{6, 3; 1, 3\}$	1		
14	3	4	4	Mathon's construction	≥ 1		
14	6	2	2	Mathon's construction	≥ 1		
16	2	6	8	[dCMM], [So] and [Th1]	1		
16	2	8	6	unique two-graph, i.e., $\frac{1}{2}H(6,2)$	1		
16	4	2	4	$GQ(3,5)$ \ spread	≥ 5		
16	6	4	2	$GQ(5,3)$ \ spread	≥ 1		
16	7	2	2	ÓPÉŇ	?		
16	8	0	2		≥ 1		
17	3	5	5	Mathon's construction	≥ 1		
17	5	3	3	$GQ(4,4)\setminus$ unique spread	≥ 2		
17	15	1	1	equivalent to $PG(2,16)$, Mathon's construction	≥ 1		
18	2	8	8	Mathon's construction	1		
18	4	4	4	Mathon's construction	≥ 1		
18	8	2	2	Mathon's construction	≥ 1		
19	4	2	5	[Hae2] $(GQ(3,6)$ does not exist	0		
19	7	5	2	[Go4] (GQ(6,3) does not exist	0		
19	17	1	1	open $(PG(2,18))$?		
Aleksa	Aleksandar Jurišić 1						

Antipodal covers of diameter 4

Let Γ be an antipodal distance-regular graph of diameter 4, with v vertices, and let r be the size of its antipodal classes.

The intersection array $\{b_0, b_1, b_2, b_3; c_1, c_2, c_3, c_4\}$ is determined by (k, a_1, c_2, r) , and has the following form

 $\{k, k - a_1 - 1, (r - 1)c_2, 1; 1, c_2, k - a_1 - 1, k\},\$

A systematic approach:

- a list of all small feasible parameters
- Krein conditions and absolute bounds

Let
$$k = \theta_0 > \theta_1 > \theta_2 > \theta_3 > \theta_4$$
 be $ev(\Gamma)$.
The antipodal quotient is $SRG(v/r, k, a_1, rc_2)$,
 $\theta_0 = k, \theta_2, \theta_4$ are the roots of
 $x^2 - (a_1 - rc_2)x - (k - rc_2) = 0$
and θ_1, θ_3 are the roots of $x^2 - a_1x - k = 0$.
The following relations hold for the eigenvalues:
 $\theta_0 = -\theta_1\theta_3$, and $(\theta_2 + 1)(\theta_4 + 1) = (\theta_1 + 1)(\theta_3 + 1)$.
The multiplicities are $m_0 = 1, m_4 = (v/r) - m_2 - 1$,
 $m_2 = \frac{(\theta_4 + 1)k(k - \theta_4)}{rc_2(\theta_4 - \theta_2)}$ and $m_{1,3} = \frac{(r - 1)v}{r(2 + a_1\theta_{1,3}/k)}$.
Aleksandar Jurišié

Parameters of the antipodal quotient can be expressed in terms of eigenvalues and r: $k = \theta_0$,

 $a_1 = \theta_1 + \theta_3, \ b_1 = -(\theta_2 + 1)(\theta_4 + 1), \ c_2 = \frac{\theta_0 + \theta_2 \theta_4}{r}.$

The eigenvalues θ_2 , θ_4 are integral, $\theta_4 \leq -2$, $0 \leq \theta_2$, with $\theta_2 = 0$ iff Γ is bipartite.

Furthermore, $\theta_3 < -1$, and the eigenvalues θ_1 , θ_3 are integral when $a_1 \neq 0$.

We define for
$$s \in \{0, 1, 2, 3, 4\}$$
 the symmetric 4×4
matrix $P(s)$ with its ij -entry being equal to $p_{ij}(s)$.
For $b_1 = k - 1 - \lambda$, $k_2 = rkb_1/\mu$,
 $a_2 = k - \mu$ and $b_2 = (r - 1)\mu/r$ we have
$$P(0) = \begin{pmatrix} k & 0 & 0 & 0 \\ k_2 & 0 & 0 \\ (r - 1)k & 0 \\ r - 1 \end{pmatrix},$$
$$P(1) = \begin{pmatrix} \lambda & b_1 & 0 & 0 \\ k_2 - b_1 r & b_1(r - 1) & 0 \\ \lambda(r - 1) & r - 1 \\ 0 \end{pmatrix},$$

$$P(2) = \begin{pmatrix} \mu/r & a_2 & b_2 & 0 \\ k_2 - r(a_2 + 1) & (r - 1)(k - \mu) & r - 1 \\ b_2(r - 1) & 0 \\ 0 \end{pmatrix},$$
$$P(3) = \begin{pmatrix} 0 & b_1 & \lambda & 1 \\ k_2 - rb_1 & b_1(r - 1) & 0 \\ \lambda(r - 2) & r - 2 \\ 0 \end{pmatrix},$$
$$P(4) = \begin{pmatrix} 0 & 0 & k & 0 \\ k_2 & 0 & 0 \\ k(r - 2) & 0 \\ r - 2 \end{pmatrix}.$$
Alesandar Jurisió 200

The matrix of eigenvalues $P(\Gamma)$ (with $\omega_j(\theta_i)$ being its *ji*-entry) has the following form:

$$P(\Gamma) = \begin{pmatrix} 1 & \theta_0 & \theta_0 b_1/c_2 & \theta_0(r-1) & r-1 \\ 1 & \theta_1 & 0 & -\theta_1 & -1 \\ 1 & \theta_2 & -r(\theta_2+1) & \theta_2(r-1) & r-1 \\ 1 & \theta_3 & 0 & -\theta_3 & -1 \\ 1 & \theta_4 & -r(\theta_4+1) & \theta_4(r-1) & r-1 \end{pmatrix}$$

Theorem. (JK 1995).

 Γ antipodal distance-regular graph, diam 4, and eigenvalues $k = \theta_0 > \theta_1 > \theta_2 > \theta_3 > \theta_4$. Then q_{11}^2 , q_{12}^3 , q_{13}^4 , q_{22}^2 , q_{22}^4 , q_{23}^3 , q_{24}^4 , $q_{33}^4 > 0$, r = 2 iff $q_{11}^1 = 0$ iff $q_{11}^3 = 0$ iff $q_{13}^3 = 0$ iff $q_{33}^3 = 0$, $q_{12}^2 = q_{12}^4 = q_{14}^4 = q_{22}^3 = q_{23}^4 = q_{34}^4 = 0$ and $(\theta_4 + 1)^2 (k^2 + \theta_2^3) \ge (\theta_2 + 1)(k + \theta_2 \theta_4),$ *(i)* with equality iff $q_{22}^2 = 0$, (ii) $(\theta_2 + 1)^2 (k^2 + \theta_4^3) \ge (\theta_4 + 1)(k + \theta_2 \theta_4),$ with equality iff $q_{44}^4 = 0$, (iii) $\theta_3^2 \ge -\theta_4$, with equality iff $q_{11}^4 = 0$. Aleksandar Jurišić

202

Let E be a primitive idempotent of a distance-regular graph of diameter d. The **representation diagram** Δ_E is the undirected graph with vertices $0, 1, \ldots d$, where we join two distinct vertices i and j whenever $q_{ij}^s = q_{ji}^s \neq 0$.

Recall Terwilliger's characterization of Q-polynomial association schemes that a d-class association scheme is Q-polynomial iff the representation diagram a minimal idempotent, is a path. For s = 1 and r = 2 we get the following graph: 3

Aleksandar Jurišić

203

Based on the above information we have:

Corollary. Γ antipodal, distance-regular graph with diam. 4. TFAE (i) Γ is Q-polynomial. (ii) r = 2 and $q_{11}^4 = 0$. Suppose (i)-(ii) hold, then θ_0 , θ_1 , θ_2 , θ_3 , θ_4 is a unique Q-polynomial ordering, and $q_{ij}^h = 0$ when i + j + h is odd, i.e., the Q-polynomial structure is dual bipartite.

Algebraic Combinatorics, 2007 $S_4(u)$ $S_4(u)$ $S_3(u)$ $S_3(u)$ S (u) $S_2(u)$ $S_3(u)$ ▷ $S_4(u)$ U $S_{3}(u)$ $S_3(u)$ $S_4(u)$ $\bullet S_4(u)$ An antipodal distance-regular graph of diameter 4 (the distance partition corresponding to an antipodal class). Aleksandar Jurišić 205

#	Γ	n	k	λ	μ	Н	r	r.n
1	! Folded 5-cube	16	5	0	2	! Wells graph	2	32
2	$! \overline{T(6)}$	15	6	1	3	! 3.Sym(6).2	3	45
3	$! \overline{T(7)}$	21	10	3	6	! 3.Sym(7)	3	63
4	folded $J(8,4)$	35	16	6	8	! Johnson graph $J(8,4)$	2	70
5	! truncated 3-Golay code	81	20	1	6	shortened 3-Golay code	3	243
6	! folded halved 8-cube	64	28	12	12	! halved 8-cube	2	128
7	$S_2(S_2(McL.))$	105	32	4	12	$S_2($ Soicher1 graph $)$	3	315
8	Zara graph $(126, 6, 2)$	126	45	12	18	$3.O_6^-(3)$	3	378
9	! S_2 (McLaughlin graph) [Br3]	162	56	10	24	! Soicher1 graph	3	486
10	hyperbolic pts. of $PG(6,3)$	378	117	36	36	$3.O_7(3)$	3	1134
11	Suzuki graph	1781	416	100	96	Soicher2 [Soi]	3	5346
12	30693	$3.Fi_{24}^{-}$	3					

Non-bipartite antipodal distance-regular graphs of diameter 4.

Algebraic Combinatorics, 2007										
$S_{5}(u)$ $S_{4}(u)$ $S_{3}(u)$ $S_{4}(u)$										
[#	Г	n	$k \lambda$	μ	Н	r	t	r.n	
	1	! Petersen graph	10	3 0	1	! Dodecahedron	2	1	20	
	2	3-Golay code	243 2	22 1	2	short. ext. 3-Golay code	3	9	729	
	3	folded Johnson graph $J(10,5)$	126 2	25 8	8 8	! Johnson graph $J(10,5)$	2	9	252	
	4	folded halved 10-cube	256 4	45 16	56	! halved 10-cube	2	15	512	
	Γ	Non-bipartite antipodal o	lista	ince	-reg	gular graphs of diamo	ete	r 5		
Aleksa	ind	ar Jurišić								207