Theorem (Gardiner, 1974). If H is antipodal
r-cover of G, then $\iota(H)$ is (almost) determined by
$\iota(G)$ and r,
$\quad D_{H} \in\left\{2 d_{\Gamma}, 2 d_{\Gamma}+1\right\} \quad$ and $\quad 2 \leq r \leq k$,
and
$b_{i}=c_{D-i}$ for $\quad i=0, \ldots, D, i \neq d, \quad r=1+\frac{b_{d}}{c_{D-d}}$.

Lemma. A distance-regular antipodal graph Γ of diameter d is a cover of its antipodal quotient with components of Γ_{d} as its fibres unless $d=2$.

Lemma. Γ antipodal distance-regular, diameter d. Then a vertex x of Γ, which is at distance $i \leq\lfloor d / 2\rfloor$ from one vertex in an antipodal class, is at distance $d-i$ from all other vertices in this antipodal class. Hence

$$
\Gamma_{d-i}(x)=\cup\left\{\Gamma_{d}(y) \mid y \in \Gamma_{i}(x)\right\} \quad \text { for } 0 \leq i \leq\lfloor d / 2\rfloor .
$$

For each vertex u of a cover H we denote the fibre which contains u by $F(u)$.
A geodesic in a graph G is a path g_{0}, \ldots, g_{t}, where $\operatorname{dist}\left(g_{0}, g_{t}\right)=t$.

Theorem. G distance-regular, diameter d and parameters $b_{i}, c_{i} ; H$ its r-cover of diameter $D>2$. Then the following statements are equivalent:
(i) The graph H is antipodal with its fibres as the antipodal classes (hence an antipodal cover of G) and each geodesic of length at least $\lfloor(D+1) / 2\rfloor$ in H can be extended to a geodesic of length D.
(ii) For any $u \in V(H)$ and $0 \leq i \leq\lfloor D / 2\rfloor\}$ we have

$$
S_{D-i}(u)=\cup\left\{F(v) \backslash\{v\}: v \in S_{i}(u)\right\} .
$$

(iii) The graph H is distance-regular with $D \in\{2 d, 2 d+1\}$ and intersection array
$\left\{b_{0}, \ldots, b_{d-1}, \frac{(r-1) c_{d}}{r}, c_{d-1}, \ldots, c_{1} ;\right.$
$\left.c_{1}, \ldots, c_{d-1}, \frac{c_{d}}{r}, b_{d-1}, \ldots, b_{0}\right\} \quad$ for D even,
and

$$
\begin{gathered}
\left\{b_{0}, \ldots, b_{d-1},(r-1) t, c_{d}, \ldots, c_{1} ;\right. \\
\left.\quad c_{1}, \ldots, c_{d}, t, b_{d-1}, \ldots, b_{0}\right\}
\end{gathered}
$$

for D odd and some integer t.

The distance distribution corresponding to the antipodal class $\left\{y_{1}, \ldots, y_{r}\right\}$ in the case when d is even (left) and the case when d is odd (right). Inside this partition there is a partition of the neighbourhood of the vertex x.

For $\theta \in \operatorname{ev}(\Gamma)$ and associated primitive idempotent E :

$$
E=\frac{m_{\theta}}{|V \Gamma|} \sum_{h=0}^{d} \omega_{h} A_{h} \quad(0 \leq i \leq d),
$$

$\omega_{0}, \ldots, \omega_{d}$ is the cosine sequence of E (or θ).
Lemma. Γ distance-regular, diam. $d \geq 2, E$ is a primitive idempotent of Γ corresponding to θ, $\omega_{0}, \ldots, \omega_{d}$ is the cosine sequence of θ.
For $x, y \in V \Gamma, i=\partial(x, y)$ we have
(i) $\langle E x, E y\rangle=x y$-entry of $E=\omega_{i} \frac{m_{\theta}}{|V \Gamma|}$.
(ii) $\omega_{0}=1$ and $c_{i} \omega_{i-1}+a_{i} \omega_{i}+b_{i} \omega_{i+1}=\theta \omega_{i}$ for $0 \leq i \leq d$.

$$
\omega_{1}=\frac{\theta}{k}, \quad \omega_{2}=\frac{\theta^{2}-a_{1} \theta-k}{k b_{1}}
$$

Using the Sturm's theorem for the sequence

$$
w_{i}(x)=b_{0} \ldots b_{i} \omega_{i}(x)
$$

we obtain

> Theorem. Let $\theta_{0} \geq \cdots \geq \theta_{d}$ be the eigenvalues of a distance regular graph. The sequence of cosines corresponding to the i-th eigenvalue θ_{i} has precisely i sign changes.
Theorem. Let Γ be a distance regular graph and
H a distance regular antipodal r-cover of G. Then
every eigenvalue θ of Γ is also an eigenvalue of H
with the same multiplicity.

Proof. Let H has diameter D, and Γn vertices, so $H_{D}=n \cdot K_{r}\left(K_{r}\right.$'s are corrsp. to the fibres of $\left.H\right)$.

Therefore, H_{D} has for eigenvalues $r-1$ with multiplicity n and -1 with multiplicity $n r-n$.

The eigenvectors corresponding to eigenvalue $r-1$ are constant on fibres and those corresponding to -1 sum to zero on fibres.

Take θ to be an eigenvalue of H, which is also an eigenvalue of Γ.

An eigenvector of Γ corresponding to θ can be extended to an eigenvector of H which is constant on fibres.

We know that the eigenvectors of H are also the eigenvectors of H_{D}, therefore, we have $v_{D}(\theta)=r-1$.

So we conclude that all the eigenvectors of H corresponding to θ are constant on fibres and therefore give rise to eigenvectors of Γ corresponding to θ.

Connections

- projective and affine planes,
for $D=3$, or $D=4$ and $r=k$ (covers of K_{n} or $K_{n, n}$),
- Two graphs (Q-polynomial), for $D=3$ and $r=2$,
- Moore graphs, for $D=3$ and $r=k$,
- Hadamard matrices, $D=4$ and $r=2$
(covers of $K_{n, n}$),
- group divisible resolvable designs, $D=4\left(\right.$ cover of $\left.K_{n, n}\right)$,
- coding theory (perfect codes),
- group theory (class. of finite simple groups),
- orthogonal polynomials.

Tools:

- graph theory, counting,
- matrix theory $(\operatorname{rank} \bmod p)$,
- eigenvalue techniques,
- representation theory of graphs,
- geometry (Euclidean and finite),
- algebra and association schemes,
- topology (covers and universal objects).

Goals:

- structure of antipodal covers,
- new infinite families,
- nonexistence and uniqueness,
- characterization,
- new techniques
(which can be applied to drg or even more general)
Difficult problems:
Find a 7 -cover of K_{15}.
Find a double-cover of Higman-Sims graph ($\{22,21 ; 1,6\}$).

