**Theorem (Gardiner, 1974).** If *H* is antipodal *r*-cover of *G*, then  $\iota(H)$  is (almost) determined by  $\iota(G)$  and *r*,  $D_H \in \{2d_{\Gamma}, 2d_{\Gamma} + 1\}$  and  $2 \leq r \leq k$ , and  $b_i = c_{D-i}$  for  $i = 0, \ldots, D, i \neq d, r = 1 + \frac{b_d}{c_{D-d}}$ .

**Lemma.** A distance-regular antipodal graph  $\Gamma$  of diameter d is a cover of its antipodal quotient with components of  $\Gamma_d$  as its fibres unless d = 2.

**Lemma.**  $\Gamma$  antipodal distance-regular, diameter d. Then a vertex x of  $\Gamma$ , which is at distance  $i \leq \lfloor d/2 \rfloor$ from one vertex in an antipodal class, is at distance d - i from all other vertices in this antipodal class. Hence

 $\Gamma_{d-i}(x) = \bigcup \{ \Gamma_d(y) \mid y \in \Gamma_i(x) \} \quad \text{for } 0 \le i \le \lfloor d/2 \rfloor.$ 

For each vertex u of a cover H we denote the fibre which contains u by F(u).

A **geodesic** in a graph G is a path  $g_0, \ldots, g_t$ , where  $dist(g_0, g_t) = t$ .

**Theorem.** G distance-regular, diameter d and parameters  $b_i$ ,  $c_i$ ; H its r-cover of diameter D > 2. Then the following statements are equivalent:

(i) The graph H is antipodal with its fibres as the antipodal classes (hence an antipodal cover of G) and each geodesic of length at least  $\lfloor (D+1)/2 \rfloor$  in H can be extended to a geodesic of length D.

(ii) For any  $u \in V(H)$  and  $0 \le i \le \lfloor D/2 \rfloor$ we have

$$S_{D-i}(u) = \bigcup \{ F(v) \setminus \{ v \} : v \in S_i(u) \}.$$

(iii) The graph H is distance-regular with  

$$D \in \{2d, 2d + 1\}$$
 and intersection array  
 $\{b_0, \dots, b_{d-1}, \frac{(r-1)c_d}{r}, c_{d-1}, \dots, c_1;$   
 $c_1, \dots, c_{d-1}, \frac{c_d}{r}, b_{d-1}, \dots, b_0\}$  for D even,  
and  
 $\{b_0, \dots, b_{d-1}, (r-1)t, c_d, \dots, c_1;$   
 $c_1, \dots, c_d, t, b_{d-1}, \dots, b_0\}$   
for D odd and some integer t.



Algebraic Combinatorics, 2007

For  $\theta \in ev(\Gamma)$  and associated primitive idempotent E:

$$E = \frac{m_{\theta}}{|V\Gamma|} \sum_{h=0}^{d} \omega_h A_h \quad (0 \le i \le d),$$

 $\omega_0, \ldots, \omega_d$  is the **cosine sequence** of E (or  $\theta$ ).

**Lemma.**  $\Gamma$  distance-regular, diam.  $d \ge 2$ , E is a primitive idempotent of  $\Gamma$  corresponding to  $\theta$ ,  $\omega_0, \ldots, \omega_d$  is the cosine sequence of  $\theta$ . For  $x, y \in V\Gamma$ ,  $i = \partial(x, y)$  we have (i)  $\langle Ex, Ey \rangle = xy$ -entry of  $E = \omega_i \frac{m_{\theta}}{|V\Gamma|}$ . (ii)  $\omega_0 = 1$  and  $c_i \omega_{i-1} + a_i \omega_i + b_i \omega_{i+1} = \theta \omega_i$ for  $0 \le i \le d$ .

Aleksandar Jurišić

179

Algebraic Combinatorics, 2007

$$\omega_1 = \frac{\theta}{k}, \qquad \omega_2 = \frac{\theta^2 - a_1\theta - k}{kb_1}$$

Using the Sturm's theorem for the sequence

$$w_i(x) = b_0 \dots b_i \omega_i(x)$$

we obtain

**Theorem.** Let  $\theta_0 \geq \cdots \geq \theta_d$  be the eigenvalues of a distance regular graph. The sequence of cosines corresponding to the *i*-th eigenvalue  $\theta_i$  has precisely *i* sign changes.

**Theorem.** Let  $\Gamma$  be a distance regular graph and H a distance regular antipodal r-cover of G. Then every eigenvalue  $\theta$  of  $\Gamma$  is also an eigenvalue of H with the same multiplicity.

**PROOF.** Let *H* has diameter *D*, and  $\Gamma$  *n* vertices, so  $H_D = n \cdot K_r$  ( $K_r$ 's are corrsp. to the fibres of *H*).

Therefore,  $H_D$  has for eigenvalues r-1with multiplicity n and -1 with multiplicity nr-n.

The eigenvectors corresponding to eigenvalue r - 1are constant on fibres and those corresponding to -1sum to zero on fibres.

Take  $\theta$  to be an eigenvalue of H, which is also an eigenvalue of  $\Gamma$ .

An eigenvector of  $\Gamma$  corresponding to  $\theta$  can be extended to an eigenvector of H which is constant on fibres.

We know that the eigenvectors of H are also the eigenvectors of  $H_D$ , therefore, we have  $v_D(\theta) = r - 1$ .

So we conclude that all the eigenvectors of H corresponding to  $\theta$  are constant on fibres and therefore give rise to eigenvectors of  $\Gamma$  corresponding to  $\theta$ .



## Connections

- projective and affine planes,

for D = 3, or D = 4 and r = k (covers of  $K_n$  or  $K_{n,n}$ ),

- **Two graphs** (*Q*-polynomial), for D = 3 and r = 2,
- Moore graphs, for D = 3 and r = k,
- Hadamard matrices, D = 4 and r = 2(covers of  $K_{n,n}$ ),
- group divisible resolvable designs, D = 4 (cover of  $K_{n,n}$ ),
- coding theory (perfect codes),
- group theory (class. of finite simple groups),
- orthogonal polynomials.

| Algebraic Combinatorics, 2007                                                                                                                                                                                                                                                                    |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Tools:                                                                                                                                                                                                                                                                                           |     |
| <ul> <li>graph theory, counting,</li> <li>matrix theory (rank mod p),</li> <li>eigenvalue techniques,</li> <li>representation theory of graphs,</li> <li>geometry (Euclidean and finite),</li> <li>algebra and association schemes,</li> <li>topology (covers and universal objects).</li> </ul> |     |
| Aleksandar Jurišić                                                                                                                                                                                                                                                                               | 184 |

| Algebraic | Combinatorics | s, 2007 |
|-----------|---------------|---------|
|-----------|---------------|---------|

## **Goals:**

- structure of antipodal covers,
- new infinite families,
- nonexistence and uniqueness,
- characterization,
- new techniques

(which can be applied to drg or even more general)

Difficult problems:

Find a 7-cover of  $K_{15}$ . Find a double-cover of Higman-Sims graph  $(\{22, 21; 1, 6\}).$