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Theorem (Gardiner, 1974). If H is antipodal

r-cover of G, then ι(H) is (almost) determined by

ι(G) and r,

DH ∈ {2dΓ, 2dΓ + 1} and 2 ≤ r ≤ k,
and

bi = cD−i for i = 0, . . . , D, i 6= d, r = 1 +
bd

cD−d
.

Lemma. A distance-regular antipodal graph Γ of
diameter d is a cover of its antipodal quotient with
components of Γd as its fibres unless d = 2.
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Lemma. Γ antipodal distance-regular, diameter d.

Then a vertex x of Γ, which is at distance i ≤ bd/2c
from one vertex in an antipodal class, is at distance
d − i from all other vertices in this antipodal class.
Hence

Γd−i(x) = ∪{Γd(y) | y ∈ Γi(x)} for 0 ≤ i ≤ bd/2c .

For each vertex u of a cover H we denote the fibre
which contains u by F (u).

A geodesic in a graph G is a path g0, . . . , gt, where
dist(g0, gt) = t.
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Theorem. G distance-regular, diameter d and
parameters bi, ci; H its r-cover of diameter D > 2.

Then the following statements are equivalent:

(i) The graph H is antipodal with its fibres as the

antipodal classes (hence an antipodal cover of G)

and each geodesic of length at least b(D + 1)/2c in

H can be extended to a geodesic of length D.

(ii) For any u ∈ V (H) and 0 ≤ i ≤ bD/2c}
we have

SD−i(u) = ∪{F (v)\{v} : v ∈ Si(u)}.
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(iii) The graph H is distance-regular with

D ∈ {2d, 2d + 1} and intersection array

{

b0, . . . , bd−1,
(r−1)cd

r
, cd−1, . . . , c1;

c1, . . . , cd−1,
cd

r
, bd−1, . . . , b0

}

for D even,

and
{

b0, . . . , bd−1, (r−1)t, cd, . . . , c1;

c1, . . . , cd, t, bd−1, . . . , b0

}

for D odd and some integer t.
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The distance distribution corresponding to the
antipodal class {y1, . . . , yr} in the case when
d is even (left) and the case when d is odd (right).

Inside this partition there is a partition of the
neighbourhood of the vertex x.
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For θ ∈ ev(Γ) and associated primitive idempotent E:

E =
mθ

|V Γ|

d
∑

h=0

ωhAh (0 ≤ i ≤ d),

ω0, . . . , ωd is the cosine sequence of E (or θ).

Lemma. Γ distance-regular, diam. d ≥ 2, E is a
primitive idempotent of Γ corresponding to θ,
ω0, . . . , ωd is the cosine sequence of θ.

For x, y ∈ V Γ, i = ∂(x, y) we have

(i) 〈Ex,Ey〉 = xy-entry of E = ωi
mθ

|V Γ|.
(ii) ω0 = 1 and ciωi−1 + aiωi + biωi+1 = θωi

for 0 ≤ i ≤ d.
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ω1 =
θ

k
, ω2 =

θ2 − a1θ − k

kb1

Using the Sturm’s theorem for the sequence

wi(x) = b0 . . . bi ωi(x)

we obtain

Theorem. Let θ0 ≥ · · · ≥ θd be the eigenvalues of
a distance regular graph. The sequence of cosines
corresponding to the i-th eigenvalue θi has precisely
i sign changes.
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Theorem. Let Γ be a distance regular graph and
H a distance regular antipodal r-cover of G. Then
every eigenvalue θ of Γ is also an eigenvalue of H
with the same multiplicity.

Proof. Let H has diameter D, and Γ n vertices, so
HD = n · Kr (Kr’s are corrsp. to the fibres of H).

Therefore, HD has for eigenvalues r − 1
with multiplicity n and −1 with multiplicity nr − n.

The eigenvectors corresponding to eigenvalue r − 1
are constant on fibres and those corresponding to −1
sum to zero on fibres.
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Take θ to be an eigenvalue of H , which is also an
eigenvalue of Γ.

An eigenvector of Γ corresponding to θ can be extended
to an eigenvector of H which is constant on fibres.

We know that the eigenvectors of H are also the
eigenvectors of HD, therefore, we have vD(θ) = r − 1.

So we conclude that all the eigenvectors of H
corresponding to θ are constant on fibres and therefore
give rise to eigenvectors of Γ corresponding to θ.
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Connections

– projective and affine planes,
for D = 3, or D = 4 and r = k (covers of Kn or Kn,n),

– Two graphs (Q-polynomial), for D = 3 and r = 2,

– Moore graphs, for D = 3 and r = k,

– Hadamard matrices, D = 4 and r = 2
(covers of Kn,n),

– group divisible resolvable designs,
D = 4 (cover of Kn,n),

– coding theory (perfect codes),
– group theory (class. of finite simple groups),
– orthogonal polynomials.
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Tools:

– graph theory, counting,

– matrix theory (rank mod p),

– eigenvalue techniques,

– representation theory of graphs,

– geometry (Euclidean and finite),

– algebra and association schemes,

– topology (covers and universal objects).
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Goals:

– structure of antipodal covers,

– new infinite families,

– nonexistence and uniqueness,

– characterization,

– new techniques

(which can be applied to drg or even more general)

Difficult problems:

Find a 7-cover of K15.
Find a double-cover of Higman-Sims graph
({22, 21; 1, 6}).
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