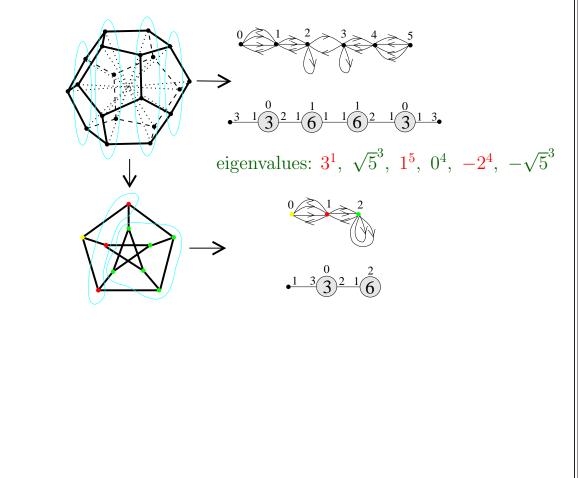


Equitable partitions give rise to **quotient** graphs G/π , which are directed multigraphs with cells as vertices and c_{ij} arcs going from C_i to C_j .



Aleksandar Jurišić

149

Set $X := V\Gamma$ and n := |X|. Let $V = \mathbb{R}^n$ be the vector space over \mathbb{R} consisting of all column vectors whose coordinates are indexed by X.

For a subset $S \subseteq X$ let its **characteristic vector** be an element of V, whose coordinates are equal 1 if they correspond to the elements of S and 0 otherwise.

Let $\pi = \{C_1, \ldots, C_s\}$ be a partition of X. The **characteristic matrix** P of π is $(n \times s)$ matrix, whose column vectors are the characteristic vectors of the parts of π (i.e., $P_{ij} = 1$ if $i \in C_j$ and 0 otherwise).

```
Let \operatorname{Mat}_X(\mathbb{R}) be the \mathbb{R}-algebra consisting of all real matrices, whose rows and columns are indexed by X.
Let A \in \operatorname{Mat}_X(\mathbb{R}) be the adjacency matrix of \Gamma.
```

 $\operatorname{Mat}_X(\mathbb{R})$ acts on V by left multiplication.

Theorem. Let π be a partition of $V\Gamma$ with the characteristic matrix P. TFAE

(i) π equitable,

(ii) $\exists a \ s \times s \ matrix \ B \ s.t. \ A(\Gamma)P = PB$

(iii) the span(col(P)) is $A(\Gamma)$ -invariant.

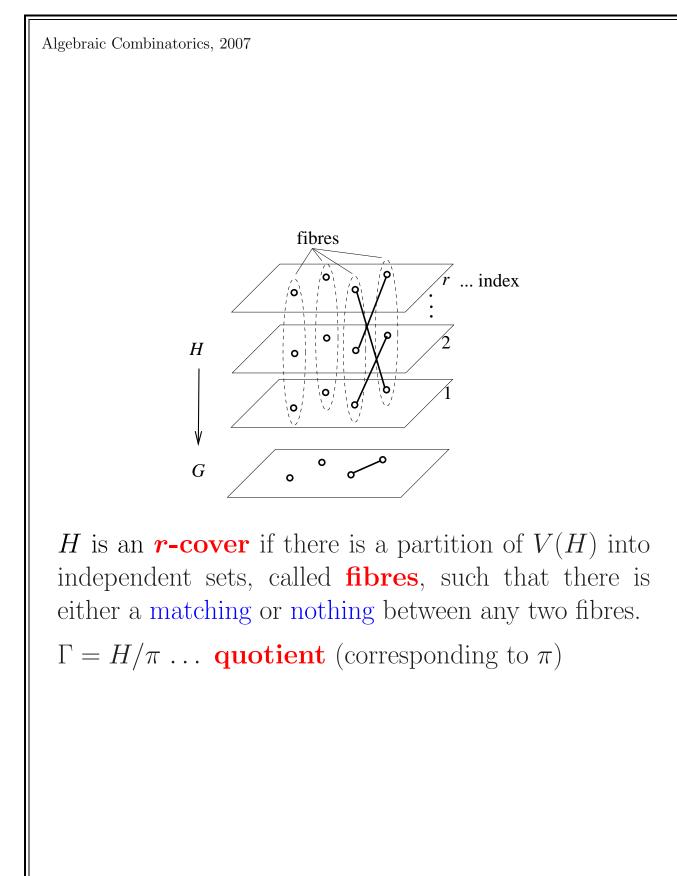
If π is equitable then $B = A(\Gamma/\pi)$.

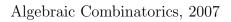
Theorem. Assume AP = PB. (a) If $B\mathbf{x} = \theta \mathbf{x}$, then $AP\mathbf{x} = \theta P\mathbf{x}$. (b) If $A\mathbf{y} = \theta \mathbf{y}$, then $\mathbf{y}^T PB = \theta \mathbf{y}^T P$. (c) The characteristic polynomial of matrix Bdivides the characteristic polynomial of matrix A.

An eigenvector x of Γ/π corresponding to θ extends to an eigenvector of Γ , which is constant on parts, so

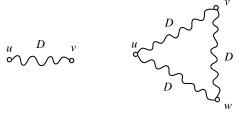
$$m_{\theta}(\Gamma/\pi) \leq m_{\theta}(\Gamma).$$

 $\tau \in ev(\Gamma) \setminus ev(\Gamma/\pi) \implies$ each eigenvector of Γ corresponding to τ sums to zero on each part.





If being at distance 0 or D is an equivalence relation on V(H), we say that H is **antipodal**.



If an antipodal graph H covers H/π and π consists of antipodal classes, then H is called **antipodal cover**.