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The eigenmatrices of the associative scheme A are
(d + 1)-dimensional square matrices P and ) defined
by

(Pij =pilj) and  (Q)ij = @i())-
The eigenvalue p;(1) of the matrix A; has multiplicity
m; = ¢;(0) and is equal to the rank(FE;).
By Theorem (b) and Corollary (b), PQ =nl.

[t is not difficult to verity also
AkQ — (AmP)T7

where A; and A, are the diagonal matrices with
entries (Ag)i = k; and (A,,)i = my.
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Using the eigenvalues we can express all intersection
numbers and Krein parameters.

For example, if we multiply the equality in Corollary
(a) by Ej, we obtain

¢ By, = nEy(E; o Ej),

l.e.,
n
qzhj = m—h trace(E(E; o E;)) (7)
— i SU.HI(E}L o EZ' o E]); (8)
mp

where the sum of a matrix is equal to the sum of all of
its elements.
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By Corollary (b), it follows also

d
1
Eio Ejo by =— > ail0) q;(0) qu(0) Ay,
(=0
therefore, by ArLQ = (A,,P)!, we obtain
d
Z qi(€) 4;() qn(€) ke
(=0

mim; <= peli) pe(j) pel(h)

n k@.

1

h
4i; = ——
nme
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Krein parameters satisfy the so-called
Krein conditions:

Theorem [Scott].

Let A be an associative scheme with n vertices
and ey, ..., e, the standard basis in R". Then

n
Moreover, for v = E e, ®e; ®e;, we have
i=1

h_ N p
qz‘j—HhH(Ei@)Ej@Eh)’UH ;
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PROOF (Godsil’s sketch). Since the matrices F;
are pairwise orthogonal idempotents, we derive from
Corollary (b) (by multiplying by Ej)

! LB,

(Ei o Ej)Ej 7, 4

Thus qihj /n is an eigenvalue of the matrix E; o E
on a subspace of vectors that are determined by the
columns of Ej,.

The matrices E; are positive semidefinite (since they
are symmetric, and all their eigenvalues are 0 or 1).

On the other hand, the Schur product of semidefinite
matrices is again semidefinite, so the matrix E; o I
has nonnegative eigenvalues. Hence, qzhj > 0.
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By (7) and the well known tensor product identity
(A® B)(zr®y) = Ar ® By

for A, B € R"" and x,y € R", we obtain

hooon
i = - sum(E; o Ej o E})
nor
mp

Now the statement follows from the fact that
E, @ E;® by

is a symmetric idempotent.
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Another strong criterion for an existence of associative
schemes is an absolute bound, that bounds the rank
of the matrix E; o E;.

Theorem. Let A be a d-class associative scheme.
Then its multiplicities m;, 1 <1 < d, satisfy
inequalities

i lf?,#],
D mn <91 L
A0 émi(mﬁ— ) if i =7.
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PROOF (sketch). The LHS is equal to the
rank(F; o E;) and is greater or equal to the

rank(F; @ Ej) = m;m,;.

Suppose now ¢ = 7. Among the rows of the matrix FE;
we can choose m; rows that generate all the rows.

Then the rows of the matrix F; o E;, whose elements
are the squares of the elements of the matrix FE;, are

generated by
my;
m; + ( 9 ) TOWS,

that are the Schur products of all the pairs of rows
among all the m; rows. |
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An association scheme A is P-polynomial (called
also metric) when there there exists a permutation
of indices of A;’s, s.t.

3 polynomials p; of degree ¢ s.t. A; = p;(A1),
i.e., the intersection numbers satisty the A-condition
(that is, V4,5, h € {0,...,d}
opzhj#OimplieshSi—l—j and
ol #0).
An associative scheme A is @Q-polynomial (called
also cometric) when there exists a permutation of

indices of E;’s, s.t. the Krein parameters qzhj satisty
the A-condition.
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Theorem. [Cameron, Goethals and Seidel]

In a strongly regular graph vanishing of either of
Krein parameters qi, and ¢3, implies that first and

second subconstituent graphs are strongly regular.
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SRG(162, 56, 10, 24), denoted by T,
is unique by Cameron, Goethals and Seidel.

vertices: special vertex oo,
56 hyperovals in PG(2,4) in a L3(4)-orbit,
105 flags of PG(2,4)

adjacency: oo is adjacent to the hyperovals

hyperovals O ~ 0" < ONO =10
(p,L) ~ O < |ONL\{p} =2
(p, L) ~(q, M) <= p#q, L+ M and
(pe MorqelL).

The hyperovals induce the Gewirtz graph,
i.e., the unique SRG(56,10,0,2))
and the flags induce a SRG(105,32,4,12).
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Theorem. Assume AP = PB.
(a) If Bx = 0x, then APx = 0Px.

(b) If Ay = Oy, then y' PB = 0y’ P.

(c) The characteristic polynomial of matrix B
divides the characteristic polynomial of matrix A.

An eigenvector x of I'/m corresponding to 6 extends
to an eigenvector of I', which is constant on parts, so

my(L' /7)) < my(T).

7 € ev(D)\ev(l'/mr) = each eigenvector of I'
corresponding to 7 sums to zero on each part.
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