The eigenmatrices of the associative scheme $\mathcal{A}$ are ( $d+1$ )-dimensional square matrices $\boldsymbol{P}$ and $\boldsymbol{Q}$ defined by

$$
(P)_{i j}=p_{i}(j) \quad \text { and } \quad(Q)_{i j}=q_{i}(j) .
$$

The eigenvalue $p_{i}(1)$ of the matrix $A_{1}$ has multiplicity $m_{i}=q_{i}(0)$ and is equal to the $\operatorname{rank}\left(E_{i}\right)$.

By Theorem (b) and Corollary (b), $\quad P Q=n I$.
It is not difficult to verify also

$$
\Delta_{k} Q=\left(\Delta_{m} P\right)^{T}
$$

where $\Delta_{k}$ and $\Delta_{m}$ are the diagonal matrices with entries $\left(\Delta_{k}\right)_{i i}=k_{i}$ and $\left(\Delta_{m}\right)_{i i}=m_{i}$.

Using the eigenvalues we can express all intersection numbers and Krein parameters.

For example, if we multiply the equality in Corollary (a) by $E_{h}$, we obtain

$$
q_{i j}^{h} E_{h}=n E_{h}\left(E_{i} \circ E_{j}\right),
$$

i.e.,

$$
\begin{align*}
q_{i j}^{h} & =\frac{n}{m_{h}} \operatorname{trace}\left(E_{h}\left(E_{i} \circ E_{j}\right)\right)  \tag{7}\\
& =\frac{n}{m_{h}} \operatorname{sum}\left(E_{h} \circ E_{i} \circ E_{j}\right), \tag{8}
\end{align*}
$$

where the sum of a matrix is equal to the sum of all of its elements.

By Corollary (b), it follows also

$$
E_{i} \circ E_{j} \circ E_{h}=\frac{1}{n^{3}} \sum_{\ell=0}^{d} q_{i}(\ell) q_{j}(\ell) q_{h}(\ell) A_{\ell}
$$

therefore, by $\Delta_{k} Q=\left(\Delta_{m} P\right)^{T}$, we obtain

$$
\begin{aligned}
q_{i j}^{h} & =\frac{1}{n m_{h}} \sum_{\ell=0}^{d} q_{i}(\ell) q_{j}(\ell) q_{h}(\ell) k_{\ell} \\
& =\frac{m_{i} m_{j}}{n} \sum_{\ell=0}^{d} \frac{p_{\ell}(i) p_{\ell}(j) p_{\ell}(h)}{k_{\ell^{2}}}
\end{aligned}
$$

Krein parameters satisfy the so-called Krein conditions:

Theorem [Scott].
Let $\mathcal{A}$ be an associative scheme with $n$ vertices and $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ the standard basis in $\mathbb{R}^{n}$. Then

$$
\begin{gathered}
\boxed{q_{i j}^{h} \geq 0} \\
\text { Moreover, for } \boldsymbol{v}=\sum_{i=1}^{n} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{i}, \text { we have } \\
q_{i j}^{h}=\frac{n}{m_{h}}\left\|\left(E_{i} \otimes E_{j} \otimes E_{h}\right) \boldsymbol{v}\right\|^{2} \\
\text { and } q_{i j}^{h}=0 \operatorname{iff}\left(E_{i} \otimes E_{j} \otimes E_{h}\right) \boldsymbol{v}=0
\end{gathered}
$$

Proof (Godsil's sketch). Since the matrices $E_{i}$ are pairwise orthogonal idempotents, we derive from Corollary (b) (by multiplying by $E_{h}$ )

$$
\left(E_{i} \circ E_{j}\right) E_{h}=\frac{1}{n} q_{i j}^{h} E_{h}
$$

Thus $q_{i j}^{h} / n$ is an eigenvalue of the matrix $E_{i} \circ E_{j}$ on a subspace of vectors that are determined by the columns of $E_{h}$.

The matrices $E_{i}$ are positive semidefinite (since they are symmetric, and all their eigenvalues are 0 or 1 ).

On the other hand, the Schur product of semidefinite matrices is again semidefinite, so the matrix $E_{i} \circ E_{j}$ has nonnegative eigenvalues. Hence, $q_{i j}^{h} \geq 0$.

By (7) and the well known tensor product identity

$$
(A \otimes B)(x \otimes y)=A x \otimes B y
$$

for $A, B \in \mathbb{R}^{n \times n}$ and $x, y \in \mathbb{R}^{n}$, we obtain

$$
\begin{aligned}
q_{i j}^{h} & =\frac{n}{m_{h}} \operatorname{sum}\left(E_{i} \circ E_{j} \circ E_{h}\right) \\
& =\frac{n}{m_{h}} \boldsymbol{v}^{T}\left(E_{i} \otimes E_{j} \otimes E_{h}\right) \boldsymbol{v}
\end{aligned}
$$

Now the statement follows from the fact that

$$
E_{i} \otimes E_{j} \otimes E_{h}
$$

is a symmetric idempotent.

Another strong criterion for an existence of associative schemes is an absolute bound, that bounds the rank of the matrix $E_{i} \circ E_{j}$.

Theorem. Let $\mathcal{A}$ be a d-class associative scheme. Then its multiplicities $m_{i}, 1 \leq i \leq d$, satisfy inequalities

$$
\sum_{q_{i j}^{h} \neq 0} m_{h} \leq \begin{cases}m_{i} m_{j} & \text { if } i \neq j, \\ \frac{1}{2} m_{i}\left(m_{i}+1\right) & \text { if } i=j .\end{cases}
$$

Proof (sketch). The LHS is equal to the $\operatorname{rank}\left(E_{i} \circ E_{j}\right)$ and is greater or equal to the

$$
\operatorname{rank}\left(E_{i} \otimes E_{j}\right)=m_{i} m_{j}
$$

Suppose now $i=j$. Among the rows of the matrix $E_{i}$ we can choose $m_{i}$ rows that generate all the rows.

Then the rows of the matrix $E_{i} \circ E_{i}$, whose elements are the squares of the elements of the matrix $E_{i}$, are generated by

$$
m_{i}+\binom{m_{i}}{2} \text { rows }
$$

that are the Schur products of all the pairs of rows among all the $m_{i}$ rows.

An association scheme $\mathcal{A}$ is $\boldsymbol{P}$-polynomial (called also metric) when there there exists a permutation of indices of $A_{i}$ 's, s.t.
$\exists$ polynomials $p_{i}$ of degree $i$ s.t. $A_{i}=p_{i}\left(A_{1}\right)$,
i.e., the intersection numbers satisfy the $\Delta$-condition
(that is, $\forall i, j, h \in\{0, \ldots, d\}$

- $p_{i j}^{h} \neq 0$ implies $h \leq i+j$ and
- $\left.p_{i j}^{i+j} \neq 0\right)$.

An associative scheme $\mathcal{A}$ is $Q$-polynomial (called also cometric) when there exists a permutation of indices of $E_{i}$ 's, s.t. the Krein parameters $q_{i j}^{h}$ satisfy the $\Delta$-condition.

Theorem. [Cameron, Goethals and Seidel]
In a strongly regular graph vanishing of either of Krein parameters $q_{11}^{1}$ and $q_{22}^{2}$ implies that first and second subconstituent graphs are strongly regular.


SRG(162, 56, 10, 24), denoted by $\Gamma$,
is unique by Cameron, Goethals and Seidel.
vertices: special vertex $\infty$,
56 hyperovals in $\mathrm{PG}(2,4)$ in a $L_{3}(4)$-orbit, 105 flags of $\mathrm{PG}(2,4)$
adjacency: $\infty$ is adjacent to the hyperovals

$$
\begin{aligned}
\text { hyperovals } \mathcal{O} \sim \mathcal{O}^{\prime} & \Longleftrightarrow \mathcal{O} \cap \mathcal{O}^{\prime}=\emptyset \\
(p, L) \sim \mathcal{O} & \Longleftrightarrow|\mathcal{O} \cap L \backslash\{p\}|=2 \\
(p, L) \sim(q, M) & \Longleftrightarrow p \neq q, L \neq M \text { and } \\
& (p \in M \text { or } q \in L)
\end{aligned}
$$

The hyperovals induce the Gewirtz graph,
i.e., the unique $\operatorname{SRG}(56,10,0,2))$
and the flags induce a $\operatorname{SRG}(105,32,4,12)$.

Theorem. Assume $A P=P B$.
(a) If $B \boldsymbol{x}=\theta \boldsymbol{x}$, then $A P \boldsymbol{x}=\theta P \boldsymbol{x}$.
(b) If $A \boldsymbol{y}=\theta \boldsymbol{y}$, then $\boldsymbol{y}^{T} P B=\theta \boldsymbol{y}^{T} P$.
(c) The characteristic polynomial of matrix $B$ divides the characteristic polynomial of matrix $A$.

An eigenvector $x$ of $\Gamma / \pi$ corresponding to $\theta$ extends to an eigenvector of $\Gamma$, which is constant on parts, so

$$
m_{\theta}(\Gamma / \pi) \leq m_{\theta}(\Gamma) .
$$

$\tau \in \operatorname{ev}(\Gamma) \backslash \operatorname{ev}(\Gamma / \pi) \quad \Longrightarrow$ each eigenvector of $\Gamma$ corresponding to $\tau$ sums to zero on each part.

