The **eigenmatrices** of the associative scheme \mathcal{A} are (d+1)-dimensional square matrices \boldsymbol{P} and \boldsymbol{Q} defined by

$$(P)_{ij} = p_i(j)$$
 and $(Q)_{ij} = q_i(j).$

The eigenvalue $p_i(1)$ of the matrix A_1 has multiplicity $m_i = q_i(0)$ and is equal to the rank (E_i) .

By Theorem (b) and Corollary (b), PQ = nI.

It is not difficult to verify also

$$\Delta_k Q = (\Delta_m P)^T,$$

where Δ_k and Δ_m are the diagonal matrices with entries $(\Delta_k)_{ii} = k_i$ and $(\Delta_m)_{ii} = m_i$.

Aleksandar Jurišić

Using the eigenvalues we can express all intersection numbers and Krein parameters.

For example, if we multiply the equality in Corollary (a) by E_h , we obtain

$$q_{ij}^h E_h = n E_h (E_i \circ E_j),$$

i.e.,

$$q_{ij}^{h} = \frac{n}{m_{h}} \operatorname{trace}(E_{h}(E_{i} \circ E_{j}))$$
(7)

$$= \frac{n}{m_h} \operatorname{sum}(E_h \circ E_i \circ E_j), \tag{8}$$

where the sum of a matrix is equal to the sum of all of its elements.

Aleksandar Jurišić

Algebraic Combinatorics, 2007

By Corollary (b), it follows also

$$E_i \circ E_j \circ E_h = \frac{1}{n^3} \sum_{\ell=0}^d q_i(\ell) q_j(\ell) q_h(\ell) A_\ell,$$

therefore, by $\Delta_k Q = (\Delta_m P)^T$, we obtain

$$q_{ij}^{h} = \frac{1}{nm_{h}} \sum_{\ell=0}^{d} q_{i}(\ell) q_{j}(\ell) q_{h}(\ell) k_{\ell}$$

$$= \frac{m_i m_j}{n} \sum_{\ell=0}^d \frac{p_\ell(i) \, p_\ell(j) \, p_\ell(h)}{k_{\ell^2}}.$$

Aleksandar Jurišić

Krein parameters satisfy the so-called **Krein conditions**:

Theorem [Scott].

Let \mathcal{A} be an associative scheme with n vertices and $\mathbf{e}_1, \ldots, \mathbf{e}_n$ the standard basis in \mathbb{R}^n . Then

$$q_{ij}^h \ge 0.$$

Moreover, for
$$\boldsymbol{v} = \sum_{i=1}^{n} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{i}$$
, we have

$$q_{ij}^{h} = \frac{n}{m_{h}} ||(E_{i} \otimes E_{j} \otimes E_{h})\boldsymbol{v}||^{2},$$
and $q_{ij}^{h} = 0$ iff $(E_{i} \otimes E_{j} \otimes E_{h})\boldsymbol{v} = 0.$

Aleksandar Jurišić

PROOF (Godsil's sketch). Since the matrices E_i are pairwise orthogonal idempotents, we derive from Corollary (b) (by multiplying by E_h)

$$(E_i \circ E_j)E_h = \frac{1}{n} q_{ij}^h E_h.$$

Thus q_{ij}^h/n is an eigenvalue of the matrix $E_i \circ E_j$ on a subspace of vectors that are determined by the columns of E_h .

The matrices E_i are positive semidefinite (since they are symmetric, and all their eigenvalues are 0 or 1).

On the other hand, the Schur product of semidefinite matrices is again semidefinite, so the matrix $E_i \circ E_j$ has nonnegative eigenvalues. Hence, $q_{ij}^h \ge 0$.

Algebraic Combinatorics, 2007

By (7) and the well known tensor product identity $(A \otimes B)(x \otimes y) = Ax \otimes By$ for $A, B \in \mathbb{R}^{n \times n}$ and $x, y \in \mathbb{R}^n$, we obtain $q_{ij}^h = \frac{n}{m_h} \operatorname{sum}(E_i \circ E_j \circ E_h)$ $= \frac{n}{m_h} \boldsymbol{v}^T (E_i \otimes E_j \otimes E_h) \boldsymbol{v}.$

Now the statement follows from the fact that

 $E_i \otimes E_j \otimes E_h$

is a symmetric idempotent.

Another strong criterion for an existence of associative schemes is an **absolute bound**, that bounds the rank of the matrix $E_i \circ E_j$.

Theorem. Let \mathcal{A} be a *d*-class associative scheme. Then its multiplicities m_i , $1 \leq i \leq d$, satisfy inequalities

$$\sum_{q_{ij}^{h} \neq 0} m_{h} \leq \begin{cases} m_{i}m_{j} & \text{if } i \neq j, \\ \frac{1}{2}m_{i}(m_{i}+1) & \text{if } i = j. \end{cases}$$

PROOF (sketch). The LHS is equal to the rank $(E_i \circ E_j)$ and is greater or equal to the

$$\operatorname{rank}(E_i \otimes E_j) = m_i m_j.$$

Suppose now i = j. Among the rows of the matrix E_i we can choose m_i rows that generate all the rows.

Then the rows of the matrix $E_i \circ E_i$, whose elements are the squares of the elements of the matrix E_i , are generated by

$$m_i + \binom{m_i}{2}$$
 rows,

that are the Schur products of all the pairs of rows among all the m_i rows.

An association scheme \mathcal{A} is *P***-polynomial** (called also **metric**) when there there exists a permutation of indices of A_i 's, s.t.

 \exists polynomials p_i of degree *i* s.t. $A_i = p_i(A_1)$,

i.e., the intersection numbers satisfy the $\Delta\text{-condition}$

(that is, $\forall i, j, h \in \{0, \dots, d\}$

• $p_{ij}^h \neq 0$ implies $h \leq i+j$ and • $p_{ij}^{i+j} \neq 0$).

An associative scheme \mathcal{A} is *Q***-polynomial** (called also **cometric**) when there exists a permutation of indices of E_i 's, s.t. the Krein parameters q_{ij}^h satisfy the Δ -condition.

Aleksandar Jurišić

```
SRG(162, 56, 10, 24), denoted by \Gamma,
is unique by Cameron, Goethals and Seidel.
vertices: special vertex \infty,
             56 hyperovals in PG(2, 4) in a L_3(4)-orbit,
             105 flags of PG(2, 4)
adjacency: \infty is adjacent to the hyperovals
    hyperovals \mathcal{O} \sim \mathcal{O}' \iff \mathcal{O} \cap \mathcal{O}' = \emptyset
              (p,L) \sim \mathcal{O} \iff |\mathcal{O} \cap L \setminus \{p\}| = 2
         (p,L) \sim (q,M) \iff p \neq q, L \neq M and
                                     (p \in M \text{ or } q \in L).
The hyperovals induce the Gewirtz graph,
i.e., the unique SRG(56,10,0,2))
and the flags induce a SRG(105,32,4,12).
```

Theorem. Assume AP = PB. (a) If $B\mathbf{x} = \theta \mathbf{x}$, then $AP\mathbf{x} = \theta P\mathbf{x}$. (b) If $A\mathbf{y} = \theta \mathbf{y}$, then $\mathbf{y}^T PB = \theta \mathbf{y}^T P$. (c) The characteristic polynomial of matrix Bdivides the characteristic polynomial of matrix A.

An eigenvector x of Γ/π corresponding to θ extends to an eigenvector of Γ , which is constant on parts, so

$$m_{\theta}(\Gamma/\pi) \leq m_{\theta}(\Gamma).$$

 $\tau \in ev(\Gamma) \setminus ev(\Gamma/\pi) \implies$ each eigenvector of Γ corresponding to τ sums to zero on each part.