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The eigenmatrices of the associative scheme A are
(d + 1)-dimensional square matrices P and Q defined
by

(P )ij = pi(j) and (Q)ij = qi(j).

The eigenvalue pi(1) of the matrix A1 has multiplicity
mi = qi(0) and is equal to the rank(Ei).

By Theorem (b) and Corollary (b), PQ = nI .

It is not difficult to verify also

∆kQ = (∆mP )T ,

where ∆k and ∆m are the diagonal matrices with
entries (∆k)ii = ki and (∆m)ii = mi.
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Using the eigenvalues we can express all intersection
numbers and Krein parameters.

For example, if we multiply the equality in Corollary
(a) by Eh, we obtain

qh
ij Eh = nEh(Ei ◦ Ej),

i.e.,

qh
ij =

n

mh
trace(Eh(Ei ◦ Ej)) (7)

=
n

mh
sum(Eh ◦ Ei ◦ Ej), (8)

where the sum of a matrix is equal to the sum of all of
its elements.
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By Corollary (b), it follows also

Ei ◦ Ej ◦ Eh =
1

n3

d
∑

ℓ=0

qi(ℓ) qj(ℓ) qh(ℓ) Aℓ,

therefore, by ∆kQ = (∆mP )T , we obtain

qh
ij =

1

nmh

d
∑

ℓ=0

qi(ℓ) qj(ℓ) qh(ℓ) kℓ

=
mimj

n

d
∑

ℓ=0

pℓ(i) pℓ(j) pℓ(h)

kℓ2.
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Krein parameters satisfy the so-called
Krein conditions:

Theorem [Scott].

Let A be an associative scheme with n vertices
and e1, . . . ,en the standard basis in R

n. Then

qh
ij ≥ 0.

Moreover, for v =
n

∑

i=1

ei ⊗ ei ⊗ ei, we have

qh
ij =

n

mh
‖(Ei ⊗ Ej ⊗ Eh)v‖

2,

and qh
ij = 0 iff (Ei ⊗ Ej ⊗ Eh)v = 0.
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Proof (Godsil’s sketch). Since the matrices Ei

are pairwise orthogonal idempotents, we derive from
Corollary (b) (by multiplying by Eh)

(Ei ◦ Ej)Eh =
1

n
qh
ijEh.

Thus qh
ij/n is an eigenvalue of the matrix Ei ◦ Ej

on a subspace of vectors that are determined by the
columns of Eh.

The matrices Ei are positive semidefinite (since they
are symmetric, and all their eigenvalues are 0 or 1).

On the other hand, the Schur product of semidefinite
matrices is again semidefinite, so the matrix Ei ◦ Ej

has nonnegative eigenvalues. Hence, qh
ij ≥ 0.
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By (7) and the well known tensor product identity

(A ⊗ B)(x ⊗ y) = Ax ⊗ By

for A, B ∈ R
n×n and x, y ∈ R

n, we obtain

qh
ij =

n

mh
sum(Ei ◦ Ej ◦ Eh)

=
n

mh
vT (Ei ⊗ Ej ⊗ Eh)v.

Now the statement follows from the fact that

Ei ⊗ Ej ⊗ Eh

is a symmetric idempotent.
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Another strong criterion for an existence of associative
schemes is an absolute bound, that bounds the rank
of the matrix Ei ◦ Ej.

Theorem. Let A be a d-class associative scheme.
Then its multiplicities mi, 1 ≤ i ≤ d, satisfy
inequalities

∑

qh
ij 6=0

mh ≤







mimj if i 6= j,

1

2
mi (mi + 1) if i = j.
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Proof (sketch). The LHS is equal to the
rank(Ei ◦ Ej) and is greater or equal to the

rank(Ei ⊗ Ej) = mimj.

Suppose now i = j. Among the rows of the matrix Ei

we can choose mi rows that generate all the rows.

Then the rows of the matrix Ei ◦ Ei, whose elements
are the squares of the elements of the matrix Ei, are
generated by

mi +

(

mi

2

)

rows,

that are the Schur products of all the pairs of rows
among all the mi rows.

Aleksandar Jurǐsić 142
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An association scheme A is P -polynomial (called
also metric) when there there exists a permutation
of indices of Ai’s, s.t.

∃ polynomials pi of degree i s.t. Ai = pi(A1),

i.e., the intersection numbers satisfy the ∆-condition

(that is, ∀ i, j, h ∈ {0, . . . , d}

• ph
ij 6= 0 implies h ≤ i + j and

• pi+j
ij 6= 0).

An associative scheme A is Q-polynomial (called
also cometric) when there exists a permutation of
indices of Ei’s, s.t. the Krein parameters qh

ij satisfy
the ∆-condition.
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Theorem. [Cameron, Goethals and Seidel]

In a strongly regular graph vanishing of either of

Krein parameters q1
11 and q2

22 implies that first and

second subconstituent graphs are strongly regular.
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SRG(162, 56, 10, 24), denoted by Γ,
is unique by Cameron, Goethals and Seidel.

vertices: special vertex ∞,
56 hyperovals in PG(2, 4) in a L3(4)-orbit,
105 flags of PG(2, 4)

adjacency: ∞ is adjacent to the hyperovals

hyperovals O ∼ O′ ⇐⇒ O ∩O′ = ∅
(p, L) ∼ O ⇐⇒ |O ∩ L\{p}| = 2

(p, L) ∼ (q,M) ⇐⇒ p 6= q, L 6= M and
(p ∈ M or q ∈ L).

The hyperovals induce the Gewirtz graph,
i.e., the unique SRG(56,10,0,2))
and the flags induce a SRG(105,32,4,12).
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Theorem. Assume AP = PB.
(a) If Bx = θx, then APx = θPx.

(b) If Ay = θy, then yTPB = θyTP .

(c) The characteristic polynomial of matrix B
divides the characteristic polynomial of matrix A.

An eigenvector x of Γ/π corresponding to θ extends
to an eigenvector of Γ, which is constant on parts, so

mθ(Γ/π) ≤ mθ(Γ).

τ ∈ ev(Γ)\ev(Γ/π) =⇒ each eigenvector of Γ
corresponding to τ sums to zero on each part.
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