Hamming scheme $\boldsymbol{H}(\boldsymbol{d}, \boldsymbol{n})$

Let $d, n \in \mathbb{N}$ and $\Sigma=\{0,1, \ldots, n-1\}$.
The vertex set of the association scheme $H(d, n)$ are all d-tuples of elements on Σ. Assume $0 \leq i \leq d$.

Vertices x and y are in i-th relation iff they differ in i places.

We obtain a d-class association scheme on n^{d} vertices.

Bilinear Forms Scheme $\mathcal{M}_{d \times m}(\boldsymbol{q})$

(a variation from linear algebra) Let $d, m \in \mathbb{N}$ and q a power of some prime.

All $(d \times m)$-dim. matrices over $\mathrm{GF}(q)$ are the vertices of the scheme,
two being in i-th relation, $0 \leq i \leq d$, when the rank of their difference is i.

Johnson Scheme $J(n, d)$

Let $d, n \in \mathbb{N}, d \leq n$ and X a set with n elements.

The vertex set of the association scheme $J(n, d)$ are all d-subsets of X.

Vertices x and y are in i-th $0 \leq i \leq \min \{d, n-d\}$, relation iff their intersection has $d-i$ elements.

We obtain an association scheme with $\min \{d, n-d\}$ classes and on $\binom{n}{d}$ vertices.

q-analog of Johnson scheme $J_{q}(n, d)$ (Grassman scheme)

The vertex set consists of all d-dim. subspaces of n-dim. vector space V over $\operatorname{GF}(q)$.

Two subspaces A and B of dim. d are in i-th relation, $0 \leq i \leq d$, when $\operatorname{dim}(A \cap B)=d-i$.

Cyclomatic scheme

Let q be a prime power and d a divisor of $q-1$.
Let C_{1} be a subgroup of the multiplicative group of the finite field $\mathrm{GF}(q)$ with index d, and let C_{1}, \ldots, C_{d} be the cosets of the subgroup C_{1}.

The vertex set of the scheme are all elements of $\operatorname{GF}(q)$, x and y being in i-th relation when $x-y \in C_{i}$ (and in 0 relation when $x=y$).

We need $-1 \in C_{1}$ in order to have symmetric relations, so $2 \mid d$, if q is odd.

How can we verify if some set of matrices represents an association scheme?

The condition (b) does not need to be verified directly. It suffices to check that the RHS of (4) is independent of the vertices (without computing $p_{i j}^{h}$).

We can use symmetry.
Let X be the vertex set and $\Gamma_{1}, \ldots, \Gamma_{d}$ the set of graphs with $V\left(\Gamma_{i}\right)=X$ and whose adjacency matrices together with the identity matrix satisfies the condition (a).

Symmetry

An automorphism of this set of graphs is a permutation of vertices, that preserves adjacency.

Adjacency matrices of the graphs $\Gamma_{1}, \ldots, \Gamma_{d}$, together with the identity matrix is an association scheme if
$\forall i$ the automorphism group acts transitively on pairs of vertices that are adjacent in Γ_{i}
(this is a sufficient condition).

Primitivity and imprimitivity

A d-class association scheme is primitive, if all its graphs $\Gamma_{i}, 1 \leq i \leq d$, are connected, and imprimitive othervise.

The trivial scheme is primitive.
Johnson scheme $J(n, d)$ is primitive iff $n \neq 2 d$. In the case $n=2 d$ the graph Γ_{d} is disconnected. Hamming scheme $H(d, n)$ is primitive iff $n \neq 2$. In the case $n=2$ the graphs $\Gamma_{i}, 1 \leq i \leq\lfloor d / 2\rfloor$, and the graph Γ_{d} are disconnected.

Let $\left\{A_{0}, \ldots, A_{d}\right\}$ be a d-class associative scheme \mathcal{A} and let π be a partition of $\{1, \ldots, d\}$ on $m \in \mathbb{N}$ nonempty cells. Let $A_{1}^{\prime}, \ldots, A_{m}^{\prime}$ be the matrices of the form

$$
\sum_{i \in C} A_{i}
$$

where C runs over all cells of partition π, and set $A_{0}^{\prime}=I$. These binary matrices are the elements of the Bose-Mesner algebra \mathcal{M}, they commute, and their sum is J.

Very often the form an associative scheme, denoted by \mathcal{A}^{\prime}, in which case we say that \mathcal{A}^{\prime} was obtained from \mathcal{A} by merging of classes (also by fusion).

For $m=1$ we obtain the trivial associative scheme.

Brouwer and Van Lint used merging to construct some new 2 -class associative schemes (i.e., $m=2$).

For example, in the Johnson scheme $J(7,3)$ we merge A_{1} and A_{3} to obtain a strongly regular graph, which is the line graph of $P G(3,2)$.

Two bases and duality

Theorem. Let $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ be an associative scheme on n vertices. Then there exists orthogonal idempotent matrices E_{0}, \ldots, E_{d} and $p_{i}(j)$, such that
(a) $\sum_{j=0}^{d} E_{j}=I$,
(b) $A_{i} E_{j}=p_{i}(j) E_{j}$,
(c) $E_{0}=\frac{1}{n} J$,
(d) matrices E_{0}, \ldots, E_{d} are a basis of a $(d+1)$-dim. vector space, generated by A_{0}, \ldots, A_{d}.

Proof. Let $i \in\{1,2, \ldots, d\}$. From the spectral analysis of normal matrices we know that $\forall A_{i}$ there exist pairwise orthogonal idempotent matrices $Y_{i j}$ and real numbers $\theta_{i j}$, such that $A_{i} Y_{i j}=\theta_{i j} Y_{i j}$ and

$$
\begin{equation*}
\sum_{j} Y_{i j}=I \tag{5}
\end{equation*}
$$

Furthermore, each matrix $Y_{i j}$ can be expressed as a polynomial of the matrix A_{i}.

Since \mathcal{M} is a commutative algebra, the matrices $Y_{i j}$ commute and also commute with matrices A_{0}, \ldots, A_{d}. Therefore, each product of this matrices is an idempotent matrix (that can be also 0).

We multiply equations (5) for $i=1, \ldots, d$. to obtain an equation of the following form

$$
\begin{equation*}
I=\sum_{j} E_{j} \tag{6}
\end{equation*}
$$

where each E_{j} is an idempotent that is equal to a product of d idempotents $Y_{i k_{i}}$, where $Y_{i k_{i}}$ is an idempotent from the spectral decompozition of A_{i}.

Hence, the idempotents E_{j} are pairwise orthogonal, and for each matrix A_{i} there exists $p_{i}(j) \in \mathbb{R}$, such that $A_{i} E_{j}=p_{i}(j) E_{j}$.

Therefore,

$$
A_{i}=A_{i} I=A_{i} \sum_{j} E_{j}=\sum_{j} p_{i}(j) E_{j}
$$

This tells us that each matrix A_{i} is a linear combination of the matrices E_{j}.

Since the nonzero matrices E_{j} are pairwise othogonal, they are also linearly independent.

Thus they form a basis of the BM-algebra \mathcal{M}, and there is exactly $d+1$ nonzero matrices among E_{j} 's.

The proof of (c) is left for homework.

The matrices E_{0}, \ldots, E_{d} are called primitive idempotents of the associative scheme \mathcal{A}. Schur (or Hadamard) product of matrices is an entry-wise product. denoted by "o". Since $A_{i} \circ A_{j}=\delta_{i j} A_{i}$, the BM-algebra is closed for Schur product.

The matrices A_{i} are pairwise othogonal idempotents for Schure multiplication, so they are also called Schur idempotents of \mathcal{A}.

Since the matrices E_{0}, \ldots, E_{d} are a basis of the vector space spanned by A_{0}, \ldots, A_{d}, also the following statement follows.

Corollary. Let $\mathcal{A}=\left\{A_{0}, \ldots, A_{d}\right\}$ be an associative scheme and E_{0}, \ldots, E_{d} its primitive idempotents. Then $\exists q_{i j}^{h} \in \mathbb{R}$ and $q_{i}(h) \in \mathbb{R}(i, j, h \in\{0, \ldots, d\})$, such that
(a) $E_{i} \circ E_{j}=\frac{1}{n} \sum_{h=0}^{d} q_{i j}^{h} E_{h}$,
(b) $\quad E_{i}=\frac{1}{n} \sum_{h=0}^{d} q_{i}(h) A_{h}$,
(c) matrices A_{i} have at most $d+1$ distinct eigenvalues.

There exists a basis of $d+1$ (orthogonal) primitive idempotents E_{i} of the BM-algebra \mathcal{M} such that

$$
\begin{gathered}
E_{0}=\frac{1}{n} J \quad \text { and } \quad \sum_{i=0}^{d} E_{i}=I \\
E_{i} \circ E_{j}=\frac{1}{n} \sum_{h=0}^{d} q_{i j}^{h} E_{h}, \quad A_{i}=\sum_{h=0}^{d} p_{i}(h) E_{h} \\
\text { and } \quad E_{i}=\frac{1}{n} \sum_{h=0}^{d} q_{i}(h) A_{h} \quad(0 \leq i, j \leq d)
\end{gathered}
$$

The parameters $q_{i j}^{h}$ are called Krein parameters, $p_{i}(0), \ldots, p_{i}(d)$ are eigenvalues of matrix A_{i}, and $q_{i}(0), \ldots, q_{i}(d)$ are the dualne eigenvalues of E_{i}.

