Classical generalized quadrangles

due to J. Tits (all associated with classical groups)
An orthogonal generalized quadrangle $Q(d, q)$ is determined by isotropic points and lines of a nondegenerate quadratic form in

$$
\mathrm{PG}(d, q), \text { for } d \in\{3,4,5\} \text {. }
$$

For $d=3$ we have $t=1$. An orthogonal generalized quadrangle $Q(4, q)$ has parameters $(\boldsymbol{q}, \boldsymbol{q})$.

Its dual is called symplectic (or null) generalized quadrangle $\boldsymbol{W}(\boldsymbol{q})$
(since it can be defined on points of $\mathrm{PG}(3, q)$, together with the self-polar lines of a null polarity),
and it is for even q isomorphic to $Q(4, q)$.

Let H be a nondegenerate hermitian variety (e.g., $V\left(x_{0}^{q+1}+\cdots+x_{d}^{q+1}\right)$) in $\mathrm{PG}\left(d, q^{2}\right)$.

Then its points and lines form a generalized quadrangle called a unitary (or Hermitean) generalized quadrangle $\mathcal{U}\left(\boldsymbol{d}, \boldsymbol{q}^{2}\right)$.

A unitary generalized quadrangle $\mathcal{U}\left(3, q^{2}\right)$ has parameters $\left(\boldsymbol{q}^{\mathbf{2}}, \boldsymbol{q}\right)$ and is isomorphic to a dual of orthogonal generalized quadrangle $Q(5, q)$.

Finally, we describe one more construction (Ahrens, Szekeres and independently M. Hall)

Let \mathcal{O} be a hyperoval of $\operatorname{PG}(2, q), q=2^{h}$, i.e., (i.e., a set of $q+2$ points meeting \forall line in 0 or 2 points), and imbed $\mathrm{PG}(2, q)=H$ as a plane in $\mathrm{PG}(3, q)=P$.

Define a generalized quadrangle $\boldsymbol{T}_{2}^{*}(\mathcal{O})$ with parameters

$$
(q-1, q+1)
$$

by taking for points just the points of $P \backslash H$, and for lines just the lines of P which are not contained in H and meet \mathcal{O} (necessarily in a unique point).

For a systematic combinatorial treatment of generalized quadrangles we recommend the book by Payne and Thas.

The order of each known generalized quadrangle or its dual is one of the following: $(s, 1)$ for $s \geq 1$;

$$
\begin{gathered}
(q, q), \\
\left(q, q^{2}\right) \\
\left(q^{2}, q^{3}\right), \\
(q-1, q+1),
\end{gathered}
$$

where q is a prime power.

Small examples

$$
\begin{aligned}
& s=2: \quad \begin{array}{l}
\quad(2,2),!(2,4) \\
s=3: \\
(3,3)=W(3) \text { or } Q(4,3) \\
\\
(3,5)=T_{2}^{*}(\mathcal{O}) \\
(3,9)=Q(5,3) \\
s=4: \\
\\
\quad(4,4)=W(4) \\
\quad \text { one known example for each }(4,6),(4,8),(4,16) \\
\\
\quad \text { existence open for }(4,11),(4,12)
\end{array}
\end{aligned}
$$

The flag geometry of a generalized polygon \mathcal{G} has as pts the vertices of \mathcal{G} (of both types), and as lines the flags of \mathcal{G}, with the obvious incidence.
It is easily checked to be a generalised $2 n$-gon in which every line has two points; and any generalised $2 n$ gon with two points per line is the flag geometry of a generalised n-gon.

Theorem (Feit and Higman). A thick generalised n-gon can \exists only for $n=2,3,4,6$ or 8 . Additional information:

- if $n=4$ or $n=8$, then $t \leq s^{2}$ and $s \leq t^{2}$;
- if $n=6$, then st is a square and $t \leq s^{3}, s \leq t^{3}$.
- if $n=8$, then $2 s t$ is a square.

