Algebraic Combinatorics, 2007	
	1
Classical generalized quadrangles	
due to J. Tits (all associated with classical groups)	
An orthogonal generalized quadrangle $Q(d, q)$ is determined by isotropic points and lines of nondegenerate quadratic form in	<mark>1</mark>) a
$PG(d,q), \text{ for } d \in \{3,4,5\}.$	
Aleksandar Jurišić	101

For d = 3 we have t = 1. An orthogonal generalized quadrangle Q(4, q) has parameters (q, q).

Its dual is called **symplectic** (or **null**)

generalized quadrangle W(q)

(since it can be defined on points of PG(3, q), together with the self-polar lines of a null polarity),

and it is for even q isomorphic to Q(4, q).

Aleksandar Jurišić

Let H be a nondegenerate hermitian variety (e.g., $V(x_0^{q+1} + \cdots + x_d^{q+1})$) in $PG(d, q^2)$.

Then its points and lines form a generalized quadrangle called a **unitary** (or **Hermitean**) generalized quadrangle $\mathcal{U}(d, q^2)$.

A unitary generalized quadrangle $\mathcal{U}(3, q^2)$ has parameters (q^2, q) and is isomorphic to a dual of orthogonal generalized quadrangle Q(5, q).

Aleksandar Jurišić

Finally, we describe one more construction (Ahrens, Szekeres and independently M. Hall)

Let \mathcal{O} be a hyperoval of PG(2, q), $q = 2^h$, i.e., (i.e., a set of q+2 points meeting \forall line in 0 or 2 points), and imbed PG(2, q) = H as a plane in PG(3, q) = P.

Define a generalized quadrangle $T_2^*(\mathcal{O})$ with parameters

(q-1,q+1)

by taking for points just the points of $P \setminus H$, and for lines just the lines of P which are not contained in Hand meet \mathcal{O} (necessarily in a unique point).

Aleksandar Jurišić

For a systematic combinatorial treatment of generalized quadrangles we recommend the book by **Payne and Thas**.

The order of each known generalized quadrangle or its dual is one of the following: (s, 1) for $s \ge 1$;

$$(q,q), \ (q,q^2), \ (q^2,q^3), \ (q-1,q+1),$$

where q is a prime power.

Aleksandar Jurišić

105

Algebraic Combinatorics, 2007

Small examples

$$s = 2$$
: $!(2,2), !(2,4)$
 $s = 3$: $(3,3) = W(3)$ or $Q(4,3),$
 $(3,5) = T_2^*(\mathcal{O}),$
 $(3,9) = Q(5,3)$
 $s = 4$: $(4,4) = W(4),$

one known example for each (4,6), (4,8), (4,16) existence open for (4,11), (4,12).

Aleksandar Jurišić

106

The flag geometry of a generalized polygon \mathcal{G} has as pts the vertices of \mathcal{G} (of both types), and as lines the flags of \mathcal{G} , with the obvious incidence.

It is easily checked to be a generalised 2n-gon in which every line has two points; and any generalised 2ngon with two points per line is the flag geometry of a generalised n-gon.

Theorem (Feit and Higman). A thick generalised n-gon can \exists only for n = 2, 3, 4, 6 or 8. Additional information:

• if
$$n = 4$$
 or $n = 8$, then $t \le s^2$ and $s \le t^2$;

- if n = 6, then st is a square and $t \le s^3$, $s \le t^3$.
- if n = 8, then 2st is a square.

Aleksandar Jurišić

107