V. Association schemes

- definition
- Bose-Mesner algebra
- examples
- symmetry
- duality
- Krein conditions

colored triangles over a fixed base

For a pair of given d-tuples \boldsymbol{a} in \boldsymbol{b} over an alphabet with $n \geq 2$ symbols, there are $d+1$ possible relations: they can be equal, they can coincide on $d-1$ places, $d-2$ places, \ldots, or they can be distinct on all the places.

For a pair of given d-subsets A and B of the set with n elements, where $n \geq 2 d$, we have $d+1$ possible relations:
they can be equal, they can intersect in $d-1$ elements, $d-2$ elements,.. , or they can be disjoint.

The above examples, together with the list of relations are examples of association schemes that we will introduce shortly.

In 1938 Bose and Nair introduced association schemes for applications in statistics.

However, it was Philippe Delsarte who showed in his thesis that association schemes can serve as a common framework for problems ranging from errorcorrecting codes, to combinatorial designs. Further connections include

- group theory (primitivity and imprimitivity),
- linear algebra (spectral theory),
- metric spaces,
- study of duality
- character theory,
- representation and orthogonal polynomials.

Bannai and Ito:
We can describe algebraic combinatorics as

$$
\begin{gathered}
\text { "a study of combinatorial objects } \\
\text { with theory of characters" }
\end{gathered}
$$

or as
"a study of groups without a group"

Even more connections:

- knot theory (spin modules),
- linear programming bound,
- finite geometries.

A (symmetric) d-class association scheme on n vertices is a set of binary symmetric $(n \times n)$-matrices $I=A_{0}, A_{1}, \ldots, A_{d}$ s.t.
(a) $\sum_{i=0}^{d} A_{i}=J$, where J is the all-one matrix,
(b) for all $i, j \in\{0,1, \ldots, d\}$ the product $A_{i} A_{j}$ is a linear combination of matrices A_{0}, \ldots, A_{d}.

It is essentially a colouring of the edges of the complete graph K_{n} with d colours, such that the number of triangles with a given colouring on a given edge depends only on the colouring and not on the edge.

Bose-Mesner algebra

Subspace of $n \times n$ dim. matrices over \mathbb{R} generated by A_{0}, \ldots, A_{d} is, by (b), a commutative algebra, known as the Bose-Mesner algebra of \mathcal{A} and denoted by \mathcal{M}.

Since A_{i} is a symmetric binary matrix, it is the adjacency matrix of an (undirected) graph Γ_{i} on n vertices.

If the vertices x and y are connected in Γ_{i}, we will write $\boldsymbol{x} \boldsymbol{\Gamma}_{\boldsymbol{i}} \boldsymbol{y}$ and say that they are in \boldsymbol{i}-th relation.

The condition (a) implies that for every vertices x and y there exists a unique i, such that $x \Gamma_{i} y$, and that $\Gamma_{i}, i \neq 0$, has no loops.

The condition (b) implies that there exist such constants $p_{i j}^{h}, i, j, h \in\{0, \ldots, d\}$, that

$$
\begin{equation*}
A_{i} A_{j}=\sum_{h=0}^{d} p_{i j}^{h} A_{h} . \tag{3}
\end{equation*}
$$

They are called intersection numbers of the association scheme \mathcal{A}. Since matrices A_{i} are symmetric, they commute. Thus also $p_{i j}^{h}=p_{j i}^{h}$.

By (3), the combinatorial meaning of intersection numbers $p_{i j}^{h}$, implies that they are integral and nonnegative.

Suppose $x \Gamma_{h} y$. Then

$$
\begin{equation*}
p_{i j}^{h}=\mid\left\{z ; z \Gamma_{i} x \text { in } z \Gamma_{j} y\right\} \mid \tag{4}
\end{equation*}
$$

Therefore, Γ_{i} is regular graph of valency $k_{i}:=p_{i i}^{0}$ and we have $p_{i j}^{0}=\delta_{i j} k_{i}$.

By counting in two different ways all triples (x, y, z), such that

$$
x \Gamma_{h} y, \quad z \Gamma_{i} x \quad \text { and } \quad z \Gamma_{j} y
$$

we obtain also $k_{h} p_{i j}^{h}=k_{j} p_{i h}^{j}$.

Examples

Let us now consider some examples of associative schemes.

A scheme with one class consists of the identity matrix and the adjacency matrix of a graph, in which every two vertices are adjacent, i.e., a graph of diameter 1, i.e., the completer graph K_{n}.

We will call this scheme trivial.

