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Let i ∈ N0, i ≤ t and let λi(S) denotes the number of
blocks containing a given i-set S. Then

(1) S is contained in λi(S) blocks and each of them
contains

(

s−i
t−i

)

distinct t-sets with S as subset;

(2) the set S can be enlarged to t-set in
(

v−i
t−i

)

ways
and each of these t-set is contained in λt blocks:

λi(S)

(

s − i

t − i

)

= λt

(

v − i

t − i

)

Therefore, λi(S) is independent of S (so we can denote
it simply by λi) and hence a t-design is also i-design,
for 0 ≤ i ≤ t.
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Incidence structures

t-(v, s, λt) design is

• a collection of s-subsets (blocks)

• of a set with v elements (points),

• where each t-subset of points is contained in exactly
λt blocks.

If λt = 1, then the t-design is called Steiner System
and is denoted by S(t, s, v).

Aleksandar Jurǐsić 7
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I. Constructions of some
famous combinatorial objects

• Incidence structures

• Orthogonal Arrays (OA)

• Latin Squares (LS), MOLS

• Transversal Designs (TD)

• Hadamard matrices

Heawood’s graph

the point/block incidence graph

of the unique 2-(11,5,2) design.
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We will study as many topics as time permits that
include:

• algebraic graph theory and eigenvalue
techniques (specter of a graph and characteristic polynomial; equitable partitions:

quotients and covers; strongly regular graphs and partial geometries, examples; distance-regular

graphs, primitivity and classification, classical families),

• associative schemes (Bose-Mesner algebra, Krein conditions and absolute

bounds; eigenmatrices and orthogonal relations, duality and formal duality, P-polynomial schemes,

Q-polynomial schemes),

• finite geometries and designs (projective and affine plane:

duality; projective geometries: spaces PG(d − 1, q). generalized quadrangles: quadratic forms and a

classification of isotropic spaces, classical constructions, small examples, spreads and regular points).
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More important areas of application of algebraic
combinatorics are

• coding theory and error correction codes,

• statistical design of experiments, and

• (through finite geometries and finite fields) also
cryptography.

We investigate several interesting combinatorial
structures. Our aim is a general introduction to
algebraic combinatorics and illumination of some the
important results in the past 10 years.
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Introduction

We study an interplay between

algebra and combinatorics,

that is known under the name

algebraic combinatorics.

This is a discrete mathematics, where objects and
structures contain some degree of regularity or
symmetry.
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Algebraic Combinatorics, 2007

2. PG(2, 3) can be obtained from 3 × 3 grid
(or AG(2, 3)).
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Examples:

1. The projective plane PG(2, 2) is also called the
Fano plane (7 points and 7 lines).
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PG(2, n) is a 2-(q2 + q + 1, q + 1, 1)-design, i.e.,

• v = q2 + q + 1 is the number of points (and lines b),
• each line contains k = q + 1 points

(on each point we have r = q + 1 lines),

• each pair of points is on λ = 1 lines

(each two lines intersect in a precisely one point),

which is in turn a projective plane (see Assignment 1).
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The projective space PG(d, n) (of dimension d and
order q) is obtained from [GF(q)]d+1 by taking the
quotient over linear spaces.

In particular, the projective space PG(2, n) is the
incidence structure with 1- and 2-dim. subspaces of
[GF(q)]3 as points and lines (blocks), and
“being a subspace” as an incidence relation.
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A partial linear space is an incidence structure in
which any two points are incident with at most one
line. This implies that any two lines are incident with
at most one point.

A projective plane is a partial linear space
satisfying the following three conditions:

(1) Any two lines meet in a unique point.

(2) Any two points lie in a unique line.

(3) There are three pairvise noncolinear points
(a triangle).
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By the first part of BRC theorem there exists PG(2, n)
for all n ∈ {2, . . . , 9}, except possibly for n = 6.

The second part of BRC rules out this case, since there
is no nontrivial solution of z2 = 6x2 − y2.

For n = 10 the same approach fails for the first time,
since the equation z2 = 10x2 − y2 has a solution
(x, y, z) = (1, 1, 3).

Several hounderd hours on Cray 1 eventually ruled out
this case.
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Bruck-Ryser-Chowla Theorem

BRC Theorem (1963). Suppose ∃SBIBD(v, k, λ).

If v is even, then k − λ is a square.
If v is odd, then the Diophantine equation

x2 = (k − λ)y2 + (−1)(v−1)/2λz2

has nonzero solution in x, y and z.

H.J. Ryser M. Hall Street\&Wallis H.J. Ryser

Combin. math. Combin. Th. Combinatorics paper

1963 1967 1982 (Witt cancellation law)

All use Lagrange theorem: m = a2 + b2 + c2 + d2.
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For λ0 = b and λ1 = r, when t ≥ 2, we have

bs = rv and r(s − 1) = λ2(v − 1)

or

r = λ2
v − 1

s − 1
and b = λ2

v(v − 1)

s(s − 1)

Aleksandar Jurǐsić 9
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Theorem. If OA(v, s, λ) exists, then we have
in the case λ = 1

s ≤ v + 1,

and in general

λ ≥ s(v − 1) + 1

v2
.

Transversal design TDλ(s, v) is an incidence
structure of blocks of size s, in which points are
partitioned into s groups of size v so that an
arbitrary points lie in λ blocks when they belong to
distinct groups and there is no block containing them
otherwise.
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K

K

K A J

J Q

Q

A

A Q JK

J A

Q

Three pairwise orthogonal Latin squares of order 4,

i.e., each pair symbol-letter or letter-color or

color-symbol appears exactly once.
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If we use the first two columns of OA(v, s, 1) for
coordinates, the third column gives us a Latin
square, i.e., (v×v)-dim. matrix in which all symbols

{1, . . . , v} appear in each row and each column.

Example : OA(3, 3, 1)





























0 0 0
1 1 1
2 2 2
0 1 2
1 2 0
2 0 1
0 2 1
1 0 2
2 1 0

































0 2 1
2 1 0
1 0 2




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Orthogonal Arrays

An orthogonal array, OA(v, s, λ), is such (λv2×s)-
dimensional matrix with v symbols, that each two
columns each of v2 possible pairs of symbols appears
in exactly λ rows.

This and to them equivalent structures (e.g.
transversal designs, pairwise orthogonal Latin squares,
nets,...) are part of design theory.
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The general linear group GLn(q) consists of all
invertible n × n matrices with entries in GF(q).

The special linear group SLn(q) is the subgroup
of all matrices with determinant 1.

The projective general linear group PGLn(q)
and the projective special linear group PSLn(q)
are the groups obtained from GLn(q) and SLn(q) by
taking the quotient over scalar matrices (i.e., scalar
multiple of the identity matrix).

For n ≥ 2 the group PSLn(q) is simple
(except for PSL2(2) = S3 and PSL2(3) = A4)
and is by Artin’s convention denoted by Ln(q).

Aleksandar Jurǐsić 20
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Examples:

• the vertices of a triangle and the center of the circle
in Fano plane,

• the vertices of a square in PG(2, 3) form oval,

• the set of vertices {0, 1, 2, 3, 5, 14} in the above
PG(2, 4) is a hyperoval.
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Let O be a subset of points of PG(2, n) such that no
three are on the same line.

Then |O| ≤ n + 1 if n is odd

and |O| ≤ n + 2 if n is even.

If equality is attained then O is called
oval for n even, and hyperoval for n odd

Aleksandar Jurǐsić 18
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3. PG(2, 4) is obtained from Z21:
points = Z21 and
lines = {S + x | x ∈ Z21},
where S is a 5-element set {3, 6, 7, 12, 14}, i.e.,

{0, 3, 4, 9, 11} {1, 4, 5, 10, 12} {2, 5, 6, 11, 13}
{3, 6, 7, 12, 14} {4, 7, 8, 13, 15} {5, 8, 9, 14, 16}
{6, 9, 10, 15, 17} {7, 10, 11, 16, 18} {8, 11, 12, 17, 19}
{9, 12, 13, 18, 20} {10, 13, 14, 19, 0} {11, 14, 15, 20, 1}
{12, 15, 16, 0, 2} {13, 16, 17, 1, 3} {14, 17, 18, 2, 4}
{15, 18, 19, 3, 5} {16, 19, 20, 4, 6} {17, 20, 0, 5, 7}
{18, 0, 1, 6, 8} {19, 1, 2, 7, 9} {20, 2, 3, 8, 10}
Note: Similarly the Fano plane can be obtained from
{0, 1, 3} in Z7.

Aleksandar Jurǐsić 17
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Graphs

A graph Γ is a pair (V Γ, EΓ), where V Γ is a finite
set of vertices and EΓ is a set of unordered pairs xy
of vertices called edges (no loops or multiple edges).

Let V Γ = {1, . . . , n}. Then a (n× n)-dim. matrix A
is the adjacency matrix of Γ, when

Ai,j =

{

1, if {i, j} ∈ E,
0, otherwise

Lemma. (Ah)ij = # walks from i to j of length h.
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II. Graphs, eigenvalues

and regularity

• adjacency matrix and walks,

• eigenvalues,

• regularity,

• eigenvalue multiplicities,

• Peron-Frobenious Theorem,

• interlacing.
the four-cube
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A recursive construction of a Hadamard matrix Hnm

using Hn, Hm and Kronecker product (hint: use
(A ⊗ B)(C ⊗ D) = (AB) ⊗ (BD) and (A ⊗ B)t =
At ⊗ Bt).

We could also use conference matrices (Belevitch
1950, use for teleconferencing) with 0 on the diagonal
and CCt = (n − 1)I . in order to obtain two simple
constructions: if C is antisymmetric (H = I + C)
or symmetric (H2n consists of four blocks of the form
±I ± C).
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n = 2 :

(

1 1
1 −1

)

n = 4 :









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









n = 8 :

























+ + + + + + + +
+ + − − − + − +
+ + + − − − + −
+ − + + − − − +
+ + − + + − − −
+ − + − + + − −
+ − − + − + + −
+ − − − + − + +

























Hadamard matrix of order 4s is equivalent to

2-(4s − 1, 2s − 1, s − 1) design.
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Algebraic Combinatorics, 2007

(n × n)-dim. matrix H with elements ±1, for which

HHT = nIn

holds is called a Hadamard matrix of order n.

Such a matrix exists only if n = 1, n = 2 or 4 |n.

A famous Hadamard matrix conjecture (1893):

a Hadamard matrix of order 4s exists ∀s∈N.

In 2004 Iranian mathematicians H. Kharaghani and
B. Tayfeh-Rezaie constructed a Hadamard matrix of
order 428. The smallest open case is now 668.

Aleksandar Jurǐsić 28
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Hadamard matrices

Let A be n × n matrix with |aij| ≤ 1.

How large can det A be?

Since each column of A is a vector of length at most√
n, we have

det A ≤ nn/2.

Can equality hold? In this case all entries must be ±1
and any two distinct columns must me orthogonal.
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Theorem. For a prime p there exists

OA(p, p, 1), and there also exists

OA(p, (pd − 1)/(p − 1), pd−2) for d ∈ N\{1}

Proof: Set λ = 1. For i, j, s ∈ Zp we define

eij(s) = is + j mod p.

For λ 6= 1 we can derive the existence from the
construction of projective geometry PG(n, d).

For homework convince yourself that each OA(n, n, 1),
n ∈ N, can be extended for one more column, i.e., to
OA(n, n + 1, 1).
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Proof: The number of all lines that intersect a chosen
line of TD1(s, v) is equal to (v−1)s and is less or equal
to the number of all lines without the chosen line, that
is v2 − 1.

In transversal design TDλ(s, v), λ 6= 1 we count in
a similar way and then use the inequality between
arithmetic and quadratic mean (that can be derived
from Jensen inequality).
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Semidefinitness
A real symmetric matrix A is positive semidefinite
if

uTAu ≥ 0 for all vectors u.

It is positive definite if it is positive semidefinite
and

uTAu = 0 ⇐⇒ u = 0.

Characterizations.

• A positive semidefinite matrix is positive definite
iff invertible

• A matrix is positive semidefinite matrix iff all its
eigenvalues are nonnegative.

• If A = BTB for some matrix, then A is positive
semidefinite.
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Line graphs and their eigenvalues

We call φ(Γ, x) = det(xI − A(Γ))
the characteristics polynomial of a graph Γ.

Lemma. Let B be the incidence matrix of the
graph Γ, L its line graph and ∆(Γ) the diagonal

matrix of valencies. Then

BTB = 2I + A(L) and BBT = ∆(Γ) + A(Γ).

Furthermore, if Γ is k-regular, then

φ(L, x) = (x + 2)e−nφ(Γ, x − k + 2).
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Lemma. Let Γ be a k-regular graph on n vertices

with eigenvalues k, θ2, . . . , θn. Then Γ and Γ have

the same eigenvectors, and the eigenvalues of Γ
are n − k − 1, −1 − θ2, . . . ,−1 − θn.

Calculate the eigenvalues of many simple graphs:

• m ∗ Kn and their complements,
• circulant graphs
• Cn,
• Kn × Kn,
• Hamming graphs,...
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Regularity

A graph is regular, if each vertex has the same
number of neighbours.

Set j to the be all-one vector in R
n.

Lemma. A graph is regular iff j is its eigenvector.

Lemma. If Γ is a regular graph of valency k, then
the multiplicity of k is equal to the number of
connected components of Γ,

and the multiplicity of −k is equal to the number
of bipartite components of Γ.
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Lemma. The eigenvalues of a disconnected graph
are just the eigenvalues of its components and
their multiplicities are sums of the corresponding
multiplicities in each component.
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Review of basic matrix theory

Lemma. Let A be a real symetric matrix. Then

• its eigenvalues are real numbers, and

• the eigenvectors corresponding to distinct
eigenvalues, then they are orthogonal.

• If U is an A-invariant subspace of Rn,
then U⊥ is also A-invariant.

• R
n has an orthonormal basis consisting of

eigenvectors of A.

• There are matrices L and D, such that

LTL = LLT = I and LALT = D,

where D is a diagonal matrix of eigenvalues of A.
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A graph with precisely one eigenvalue is a graph
with one vertex, i.e., a graph with diameter 0.

A graph with two eigenvalues is the complete graph
Kn, n ≥ 2, i.e., the graph with diameter 1.

Theorem. A connected graph of diameter d has
at least d + 1 distinct eigenvalues.
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Eigenvalues

The number θ ∈ R is an eigenvalue of Γ, when for
a vector x ∈ Rn\{0} we have

Ax = θx, i.e., (Ax)i =
∑

{j,i}∈E

xj = θxi.

• There are cospectral graphs, e.g. K1,4 and K1 ∪ C4.

• A triangle inequality implies that the maximum
degree of a graph Γ, denoted by ∆(Γ), is greater or
equal to |θ|, i.e.,

∆(Γ) ≥ |θ|.
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Examples

5-cycle is SRG(5, 2, 0, 1),

the Petersen graph is SRG(10, 3, 0, 1).

What are the trivial examples?

Kn, m · Kn,

The Cocktail Party graph C(n), i.e., the graph
on 2n vertices of degree 2n−2, is also strongly regular.
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Definition

Two similar regularity conditions are:

(a) any two adjacent vertices have exactly λ common
neighbours,

(b) any two nonadjacent vertices have exactly µ common
neighbours.

A regular graph is called strongly regular when it
satisfies (a) and (b). Notation SRG(n, k, λ, µ),
where k is the valency of Γ and n = |V Γ|.
Strongly regular graphs can also be treated as extremal
graphs and have been studied extensively.
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III. Strongly regular graphs

• definition of strongly regular graphs

• characterization with adjacency matrix

• classification (type I in II)

• Paley graphs

• Krein condition and Smith graphs

• more examples (Steiner and LS graphs)

• feasibility conditions and a table
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Theorem [Haemers]. Let A be a complete

hermitian n × n matrix, partitioned into m2 block
matrices, such that all diagonal matrices are square.
Let B be the m × m matrix, whose i, j-th entry
equals the average row sum of the i, j-th block
matrix of A for i, j = 1, . . . ,m. Then the eigenvalues
α1 ≥ · · · ≥ αn and β1 ≥ · · · ≥ βm of A and B resp.
satisfy

αi ≥ βi ≥ αi+n−m, for i = 1, . . . , m.

Moreover, if for some k ∈ N0, k ≤ m, αi = βi for
i = 1, . . . , k and βi = αi+n−m for i = k + 1, . . . ,m,
then all the block matrices of A have constant
row and column sums.
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So f has a local extreme iff (u, Ax) = 0 ∀u ⊥ x and
||u|| = 1 iff for every u ⊥ x we have u ⊥ Ax iff
Ax = θx for some θ ∈ R. More precisely:

Theorem [Courant-Fischer].

Let A be a symmetric n×n matrix with eigenvalues
θ1 ≥ · · · ≥ θn. Then

θk = max
dim(U)=k

min
x∈U

(x, Ax)

(x, x)
= min

dim(U)=n−k+1
max
x∈U

(x, Ax)

(x,x)
.

Using this result, it is not difficult to prove the
following (generalized) interlacing result.
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Let A be a symmetric n × n matrix and let us define
a real-valued function f on Rn by

f(x) :=
(x, Ax)

(x,x)
.

Let x and u be orthogonal unit vectors in Rn and set
x(ε) := x + εu. Then

(

x(ε),x(ε)
)

= 1 + ε2,

f(x(ε)) =
(x, Ax) + 2ε(u, Ax) + ε2(u, Au)

1 + ε2

and

lim
ε→0

f(x(ε)) − f(x)

ε
= 2(u, Ax).
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Peron-Frobenious Theorem. Suppose A is a
nonnegative n×n matrix, whose underlying directed
graph X is strongly connected. Then

(a) ρ(A) is a simple eigenvalue of A. If x an

eigenvector for ρ, then no entries of x are zero,

and all have the same sign.

(b) Suppose A1 is a real nonnegative n × n matrix

such that A − A1 is nonnegative.

Then ρ(A1) ≤ ρ(A), with equality iff A1 = A.

(c) If θ is an eigenvalue of A and |θ| = ρ(A), then

θ/ρ(A) is an mth root of unity and e2πir/mρ(A)

is an eigenvalue of A for all r. Furthermore,

all cycles in X have length divisible by m.
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The Gram matrix of vectors u1, . . . , un ∈ R
m is

n × n matrix G s.t. Gij = ut
iuj.

Note that BTB is the Gram matrix of the columns of
B, and that any Gram matrix is positive semidefinite.
The converse is also true.

Corollary. The least eigenvalue of a line graph is
at least −2. If ∆ is an induced subgraph of Γ, then

θmin(Γ) ≤ θmin(∆) ≤ θmax(∆) ≤ θmax(Γ).

Let ρ(A) be the spectral radious of a matrix A.
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Paley graphs

q a prime power, q ≡ 1 (mod 4) and set F = GF(q).
The Paley graph P (q)= (V, E) is defined by:

V = F and E = {(a, b) ∈ F × F | (a − b) ∈ (F∗)2}.
i.e., two vertices are adjacent if their difference is a non-
zero square. P (q) is undirected, since −1 ∈ (F∗)2.

Consider the map x → x + a, where a ∈ F, and the
map x → xb, where b ∈ F is a square or a nonsquare,
to show P (q) is strongly regular with

valency k =
q − 1

2
, λ =

q − 5

4
and µ =

q − 1

4
.
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Classification

We classify strongly regular graphs into two types:

Type I (or conference) graphs: for these graphs

(n−1)(µ−λ) = 2k, which implies λ = µ−1, k = 2µ
and n = 4µ + 1, i.e., the strongly regular graphs with
the same parameters as their complements.

They exist iff n is the sum of two squares.

Type II graphs: for these graphs (µ−λ)2 +4(k−µ) is a
perfect square ∆2, where ∆ divides (n−1)(µ−λ)−2k
and the quotient is congruent to n − 1 (mod 2).
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Multiplicities

Solve the system:

1 + mσ + mτ = n

1 · k + mσ · σ + mτ · τ = 0.

to obtain

mσ and mτ =
1

2

(

n − 1 ± (n − 1)(µ − λ) − 2k
√

(µ − λ)2 + 4(k − µ)

)

.
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For a connected graph, i.e., µ 6= 0, we have

n =
(k−σ)(k−τ )

k + στ
, λ = k+σ+τ+στ, µ = k+στ

and the multiplicities of σ and τ are

mσ =
(n−1)τ + k

τ − σ
=

(τ + 1)k(k − τ )

µ(τ − σ)

and mτ = n − 1 − mσ.
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Theorem. A connected regular graph with
precisely three eigenvalues is strongly regular.

Proof. Consider the following matrix polynomial:

M :=
(A − σ)(A − τ )

(k − σ)(k − τ )

If A = A(Γ), where Γ is a connected k-regular graph
with eigenvalues k, σ and τ , then all the eigenvalues of
M are 0 or 1. But all the eigenvectors corresponding
to σ and τ lie in Ker(A), so rankM=1 and Mj = j,

hence M =
1

n
J. and A2 ∈ span{I, J, A}.
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Let J be the all-one matrix of dim. (n × n).

A graph Γ on n vertices is strongly regular if and only
if its adjacency matrix A satisfies

A2 = kI + λA + µ(J − I − A),

for some integers k, λ and µ.

Therefore, the valency k is an eigenvalue with
multiplicity 1 and the nontrivial eigenvalues, denoted
by σ and τ , are the roots of

x2 − (λ − µ)x + (µ − k) = 0,

and hence λ − µ = σ + τ , µ − k = στ .
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Counting the edges between the neighbours and non-
neighbours of a vertex in a connected strongly regular
graph we obtain:

µ(n − 1 − k) = k(k − λ − 1),

i.e.,

n = 1 + k +
k(k − λ − 1)

µ
.

Lemma. The complement of SRG(n, k, λ, µ) is

again strongly regular graph:

SRG(n, k, λ, µ) = (n, n−k−1, n−2k+µ−2, n−2k+λ).
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Lemma. A strongly regular graph Γ is disconnected
iff µ = 0.

If µ = 0, then each component of Γ is isomorphic to
Kk+1 and we have λ = k − 1.

Corollary. A complete multipartite graph is
strongly regular iff its complement is
a union of complete graphs of equal size.

Homework: Determine all SRG with µ = k.
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The fact that Steiner triple system with v points
exists for all v ≡ 1 or 3 (mod 6) goes back to
Kirkman in 1847. More recently Wilson showed that
the number n(v) of Steiner triple systems on an
andmissible number v of points satisfies

n(v) ≥ exp(v2 log v/6 − cv2).

A Steiner triple system of order v > 15 can be
recovered uniquely from its line graph, hence there
are super-exponentially many SRG(n, 3s, s + 3, 9), for
n = (s + 1)(2s + 3)/3 and s ≡ 0 or 2 (mod 3).
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When in a design D the block size is two, the number of
edges of the point graph equals the number of blocks
of the design D. In this case the line graph of the
design D is the line graph of the point graph of D.
This justifies the name: the line graph of a graph.

A point graph of a Steiner system is a complete graph,
thus a line graph of a Steiner system S(2, v) is the
line graph of a complete graph Kv, also called the
triangular graph.

(If D is a square design, i.e., v− 1 = s(s− 1), then its
line graph is the complete graph Kv.)
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Steiner graph is the block (line) graph of a 2-(v, s, 1)
design with v−1 > s(s−1), and it is strongly regular
with parameters

n =

(

v
2

)

(

s
2

), k = s
(v−1

s−1
− 1
)

,

λ =
v−1

s−1
− 2 + (s − 1)2, µ = s2.

and eigenvalues

k1,

(

v − s2

s − 1

)v−1

, −sn−v.
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More examples of strongly regular graphs:

L(Kv) is strongly regular with parameters

n =

(

v

2

)

, k = 2(v − 1), λ = v − 2, µ = 4.

For v 6= 8 this is the unique srg with these parameters.

Similarly, L(Kv,v) = Kv×Kv is strongly regular, with
parameters

n = v2, k = 2(v − 2), λ = v − 2, µ = 2.

and eigenvalues 2(v−1)1, v − 22(v−1), −2(v−1)2.

For v 6= 4 this is the unique srg with these parameters.
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A strongly regular graph with eigenvalues k > σ > τ is
said to be of (negative) Latin square type when
µ = τ (τ + 1) (resp. µ = σ(σ + 1)).

The complement of a graph of (negative) Latin square
type is again of (negative) Latin square type.

A graph of Latin square type is denoted by Lu(v),
where u = −σ, v = τ − σ and it has the same
parameters as the line graph of a TDu(v).

Graphs of negative Latin square type ware introduced
by Mesner, and are denoted by NLe(f), where e = τ ,
f = τ − σ and its parameters can be obtained from
Lu(v) by replacing u by −e and v by −f .
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If k > s > t eigenvalues of a strongly regular graph,
then the first inequality translates to

k ≥ −s
(2t + 1)(t − s) − t(t + 1)

(t − s) + t(t + 1)
,

λ ≥ −(s + 1)t
(t − s) − t(t + 3)

(t − s) + t(t + 1)
,

µ ≥ −s(t + 1)
(t − s) − t(t + 1)

(t − s) + t(t + 1)
,

A strongly regular graph with parameters (k, λ, µ)
given by taking equalities above, where t and s are
integers such that t − s ≥ t(t + 3) (i.e., λ ≥ 0) and
k > t > s is called a Smith graph.

Aleksandar Jurǐsić 59
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Krein conditions

Of the other conditions satisfied by the parameteres of
SRG, the most important are the Krein conditions,
first proved by Scott using a result of Krein from
harmonic analysis:

(σ + 1)(k + σ + 2στ ) ≤ (k + σ)(τ + 1)2

and

(τ + 1)(k + τ + 2στ ) ≤ (k + τ )(σ + 1)2.

Some parameter sets satisfy all known necessary
conditions. We will mention some of these.
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Seidel showed that these graphs are uniquely
determined with their parameters for q ≤ 17.

There are some results in the literature showing that
Paley graphs behave in many ways like random graphs
G(n, 1/2).

Bollobás and Thomason proved that the Paley graphs
contain all small graphs as induced subgraphs.
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Shrikhande graph

The Shrikhande graph drawn on two ways:
(a) on a torus, (b) with imbedded four-cube.

The Shrikhande graph is not distance transitive, since
some µ-graphs, i.e., the graphs induced by common
neighbours of two vertices at distance two, are K2 and
some are 2.K1.
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Clebsch graph

Two drawings of the complement of the Clebsch graph.
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Tutte 8-cage

The Tutte’s 8-cage is the GQ(2, 2) = W (2).

A cage is the smallest possible regular graph
(here degree 3) that has a prescribed girth.
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Paley graph P (13)
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imbedded on a torus

The Shrikhande graph and P (13) are the only
distance-regular graphs which are locally C6 (one has
µ = 2 and the other µ = 3).
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n k λ µ σ τ mσ mτ graph

! 5 2 0 1
−1 +

√
5

2

−1 −
√

5

2
2 2 C5 = P (5) - Seidel

! 9 4 1 2 1 −2 4 4 C3 × C3 = P (9)

! 10 3 0 1 1 −2 5 4 Petersen=compl. T (5)

! 13 6 2 3
−1+

√
13

2

−1−
√

13

2
6 6 P (13)

! 15 6 1 3 1 −3 9 5 GQ(2,2)=compl. T (6)

! 16 5 0 2 1 −3 10 5 Clebsch

2! 16 6 2 2 2 −2 6 9 Shrikhande, K4 × K4

! 17 8 3 4
−1+

√
17

2

−1−
√

17

2
8 8 P (17)

! 21 10 3 6 1 −4 14 6 compl. T(7)

0 21 10 4 5
−1+

√
21

2

−1−
√

21

2
10 10 conference

! 25 8 3 2 3 −2 8 16 K5 × K5

15! 25 12 5 6 2 −3 12 12 P (25) (Paulus)

10! 26 10 3 4 2 −3 12 13 (Paulus)

! 27 10 1 5 1 −5 20 6 GQ(2,4)=compl. Schlaefli

4! 28 12 6 4 4 −2 7 20 T (8) (Chang)

41! 29 14 6 7
−1+

√
29

2

−1−
√

29

2
14 14 P (29), (Bussemaker & Spence)
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Algebraic Combinatorics, 2007

Feasibility conditions and a table

- divisibility conditions
- integrality of eigenvalues
- integrality of multiplicities
- Krein conditions
- Absolute bounds

n ≤ 1

2
mσ(mσ + 3),

and if q1
11 6= 0 even

n ≤ 1

2
mσ(mσ + 1).

Aleksandar Jurǐsić 67
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The number of Latin squares of order k is
asymptotically equal to

exp(k2 log k − 2k2)

Theorem (Neumaier). The strongly regular

graph with the smallest eigenvalue −m, m ≥ 2
integral, is with finitely many exceptions, either a
complete multipartite graph, a Steiner graph, or
the line graph of a transversal design.
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For 2 ≤ s ≤ v the block graph of a transversal
design TD(s, v) (two blocks being adjacent iff they
intersect) is strongly regular with parameters n = v2,

k = s(v−1), λ = (v−2)+(s−1)(s−2), µ = s(s−1).

and eigenvalues

s(v − 1)1, v − ss(v−1), −s(v−1)(v−s+1).

Note that a line graph of TD(s, v) is a conference graph
when v = 2s−1. For s = 2 we get the lattice graph
Kv × Kv.
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Pseudo-geometric

The point graph of a pg(P,L, I) is the graph with
vertex set X = P whose edges are the pairs of collinear
points (also known as the collinearity graph).

The point graph of a pg(R,K, T ) is SRG:
k = R(K−1), λ = (R−1)(T−1)+K−2, µ = RT ,
and eigenvalues r = K − 1 − T and s = −R.

A SRG is called pseudo-geometric (R, K, T ) if its
parameters are as above.
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An example

L(Petersen) is the point graph of the GQ(2, 2) minus
a spread (where spread consists of antipodal classes).

What about trivial examples?
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Classification

We divide partial geometries into four classes:

1. T = K: 2-(v,K, 1) design,

2. T = R − 1: net,

T = K − 1: transversal design,

3. T = 1: a generalized quadrangle GQ(K−1, R−1),

4. For 1 < T < min{K − 1, R− 1} we say we have a
proper partial geometry.

A pg(t + 1, s + 1, 1) is a
generalized quadrangle GQ(s, t).
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A triple (P,L, I), i.e., (points,lines,incidence),
is called a partial geometry pg(R,K, T ),
when ∀ℓ, ℓ′ ∈ L, ∀p, p′ ∈ P :

• |ℓ| = K, |ℓ ∩ ℓ′| ≤ 1,

• |p| = R, at most one line on p and p′,

• if p 6∈ ℓ, then there are exactly T points on ℓ that are
collinear with p.

The dual (L,P, I t) of a pg(R, K, T ) is again a partial
geometry, with parameters (K, R, T ).
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IV. Geometry

• partial geometries

• classfication

• pseudogeometric

• quadratic forms

• isotropic spaces

• classical generalized quadrangles

• small examples

A unique spread

in GQ(3,3)=W(3)
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A Moore graph of diameter two is a regular
graph with girth five and diameter two.

The only Moore graphs are

• the pentagon,

• the Petersen graph,

• the Hoffman-Singleton graph, and

• possibly a strongly regular graph on 3250 vertices.
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Let Γ be a graph of diameter d.

Then Γ has girth at most 2d + 1,

while in the bipartite case the girth is at most 2d.

Graphs with diameter d and girth 2d + 1 are called
Moore graphs (Hoffman and Singleton).

Bipartite graphs with diameter d and girth 2d are
known as generalized polygons (Tits).
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Schläfly graph

How to construct the Schläfli graph:
make a cyclic 3-cover corresponding to arrows,
and then join vertices in every antipodal class.

Aleksandar Jurǐsić 73
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Classical generalized quadrangles

due to J. Tits (all associated with classical groups)

An orthogonal generalized quadrangle Q(d, q)
is determined by isotropic points and lines of a
nondegenerate quadratic form in

PG(d, q), for d ∈ {3, 4, 5}.
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The dimension of maximal isotropic flats:

Theorem. A nondegenerate quadric Q in PG(n, q)

has the following number of points and maximal
projective dim. of a flat F , F ⊆ Q:

(i)
qn − 1

q − 1
,

n − 2

2
, parabolic

(ii)
(q(n+1)/2 − 1)(q(n+1)/2 + 1)

q − 1
,

n − 1

2
hyperbolic,

(iii)
(q(n+1)/2 − 1)(q(n+1)/2 + 1)

q − 1
,

n − 3

2
elliptic.
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Theorem. Any nondegenerate quadratic form

Q(x) over GF(q) is projectively equivalent to

(i) for n=2s: P2s = x2
0+
∑s

i=1 x2ix2i−1 (parabolic),

(ii) for n = 2s − 1

(a) H2s−1 =
∑s−1

i=0 x2ix2i+1 (hyperbolic),

(b) H2s−1 =
∑s−1

i=1 x2ix2i+1 + f(x0, x1), (elliptic)

where f is an irreducible quadratic form.
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Theorem. A nondegenerate quadric Q(x) in

PG(n, q), q odd, has the following canonical form

(i) for n even: Q(x) =
∑n

i=0 x2
i ,

(ii) for n odd:

(a) Q(x) =
∑n

i=0 x2
i ,

(b) Q(x) = ηx2
0+
∑n

i=1 x2
i , where η is not a square.
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Isotropic spaces

A flat of projective space PG(n, q)
(defined over (n + 1)-dim. space V )
consists of 1-dim. subspaces of V
that are contained in some subspace of V .

A flat is said to be isotropic when all its points are
isotropic.

The dimension of maximal isotropic flats will be
determined soon.
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For q odd a subspace U is degenerate whenever

U ∩ U⊥ 6= ∅,
i.e., whenever its orthogonal complement U⊥ is
degenerate, where ⊥ denotes the inner product on the
vector space V (n + 1, q) defined by

(x, y) := Q(x + y) − Q(x) − Q(y).
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Two quadratic forms Q1(x) and Q2(x) are
projectively equivalent if there is an
invertible matrix A and λ 6= 0 such that

Q2(x) = λQ1(xA).

The rank of a quadratic form is the smallest number of
indeterminates that occur in a projectively equivalent
quadratic form.

A quadratic form Q(x0, . . . , xn) (or the quadric Q in
PG(n, q) determined by it) is nondegenerate if its
rank is n + 1. (i.e., Q ∩ Q⊥ = 0 and also to Q⊥ = 0).

Aleksandar Jurǐsić 82
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Quadratic forms

A quadratic form Q(x0, x1, . . . , xn) over GF(q)
is a homogeneous polynomial of degree 2,

i.e., for x = (x0, x1, . . . , xn) and
an (n + 1)-dim square matrix C over GF(q):

Q(x) =

n
∑

i,j=0

cijxixj = xCxT .

A quadric in PG(n, q) is the set of isotropic points:

Q = {〈x〉 |Q(x) = 0},
where 〈x〉 is the 1-dim. subspace of GF(q)n+1

generated by x ∈ (GF(q))n+1.
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For a pair of given d-tuples a in b over an alphabet
with n ≥ 2 symbols, there are d+ 1 possible relations:

they can be equal, they can coincide on d − 1 places,
d − 2 places, . . . , or they can be distinct on all the
places.

For a pair of given d-subsets A and B of the set
with n elements, where n ≥ 2d, we have d+1 possible
relations:

they can be equal, they can intersect in d−1 elements,
d − 2 elements, . . . , or they can be disjoint.
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V. Association schemes

• definition

• Bose-Mesner algebra

• examples

• symmetry

• duality

• Krein conditions

color  jcolor  i

type of a triangle
vertices give thisp h

ij

color  h
α β

i,   ,h,   ,j( )α β

colored triangles
over a fixed base
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The flag geometry of a generalized polygon G has as
pts the vertices of G (of both types), and as lines the
flags of G, with the obvious incidence.

It is easily checked to be a generalised 2n-gon in which
every line has two points; and any generalised 2n-
gon with two points per line is the flag geometry of
a generalised n-gon.

Theorem (Feit and Higman). A thick

generalised n-gon can ∃ only for n = 2, 3, 4, 6 or 8.

Additional information:

• if n = 4 or n = 8, then t ≤ s2 and s ≤ t2;

• if n = 6, then st is a square and t ≤ s3, s ≤ t3.

• if n = 8, then 2st is a square.
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Small examples

s = 2: !(2,2), !(2,4)

s = 3: (3, 3) = W (3) or Q(4, 3),
(3, 5) = T ∗

2 (O),
(3, 9) = Q(5, 3)

s = 4: (4, 4) = W (4),

one known example for each (4,6), (4,8), (4,16)

existence open for (4,11), (4,12).
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For a systematic combinatorial treatment
of generalized quadrangles we recommend
the book by Payne and Thas.

The order of each known generalized quadrangle or its
dual is one of the following: (s, 1) for s ≥ 1;

(q, q),

(q, q2),

(q2, q3),

(q − 1, q + 1),

where q is a prime power.
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Finally, we describe one more construction
(Ahrens, Szekeres and independently M. Hall)

Let O be a hyperoval of PG(2, q), q = 2h, i.e.,
(i.e., a set of q+2 points meeting ∀ line in 0 or 2 points),

and imbed PG(2, q)=H as a plane in PG(3, q)=P .

Define a generalized quadrangle T ∗
2 (O) with

parameters
(q − 1, q + 1)

by taking for points just the points of P\H , and for
lines just the lines of P which are not contained in H
and meet O (necessarily in a unique point).
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Let H be a nondegenerate hermitian variety
(e.g., V (xq+1

0 + · · · + xq+1
d )) in PG(d, q2).

Then its points and lines form a generalized quadrangle
called a unitary (or Hermitean)
generalized quadrangle U(d, q2).

A unitary generalized quadrangle U(3, q2) has
parameters (q2, q) and is isomorphic to a dual of
orthogonal generalized quadrangle Q(5, q).
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For d = 3 we have t = 1. An orthogonal generalized
quadrangle Q(4, q) has parameters (q, q).

Its dual is called symplectic (or null)

generalized quadrangle W (q)

(since it can be defined on points of PG(3, q),
together with the self-polar lines of a null polarity),

and it is for even q isomorphic to Q(4, q).
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Examples

Let us now consider some examples of associative
schemes.

A scheme with one class consists of the identity matrix
and the adjacency matrix of a graph, in which every
two vertices are adjacent, i.e., a graph of diameter 1,
i.e., the completer graph Kn.

We will call this scheme trivial.
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By (1), the combinatorial meaning of intersection
numbers ph

ij, implies that they are integral and
nonnegative.

Suppose x Γh y. Then

ph
ij = |{z ; z Γi x in z Γj y}|. (2)

Therefore, Γi is regular graph of valency ki := p0
ii and

we have p0
ij =δijki.

By counting in two different ways all triples (x, y, z),
such that

x Γh y, z Γi x and z Γj y

we obtain also kh ph
ij = kj pj

ih.
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Algebraic Combinatorics, 2007

The condition (a) implies that for every vertices x and
y there exists a unique i, such that x Γi y, and that
Γi, i 6= 0, has no loops.

The condition (b) implies that there exist such
constants ph

ij , i, j, h ∈ {0, . . . , d}, that

AiAj =
d
∑

h=0

ph
ijAh. (1)

They are called intersection numbers of the
association scheme A. Since matrices Ai are
symmetric, they commute. Thus also ph

ij = ph
ji.
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Bose-Mesner algebra

Subspace of n× n dim. matrices over R generated by
A0, . . . , Ad is, by (b), a commutative algebra, known
as the Bose-Mesner algebra of A and denoted by
M.

Since Ai is a symmetric binary matrix, it is the
adjacency matrix of an (undirected) graph Γi on n
vertices.

If the vertices x and y are connected in Γi, we will
write x Γi y and say that they are in i-th relation.
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A (symmetric) d-class association scheme on n
vertices is a set of binary symmetric (n × n)-matrices
I = A0, A1, . . . , Ad s.t.

(a)
∑d

i=0 Ai = J , where J is the all-one matrix,

(b) for all i, j ∈ {0, 1, . . . , d} the product AiAj

is a linear combination of the matrices A0, . . . , Ad.

It is essentially a colouring of the edges of the complete
graph Kn with d colours, such that the number
of triangles with a given colouring on a given edge
depends only on the colouring and not on the edge.
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Bannai and Ito:

We can describe algebraic combinatorics as

“a study of combinatorial objects
with theory of characters”

or as

“a study of groups without a group” .

Even more connections:

– knot theory (spin modules),
– linear programming bound,
– finite geometries.
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However, it was Philippe Delsarte who showed
in his thesis that association schemes can serve as a
common framework for problems ranging from error-
correcting codes, to combinatorial designs. Further
connections include
– group theory (primitivity and imprimitivity),
– linear algebra (spectral theory),
– metric spaces,
– study of duality
– character theory,
– representation and orthogonal polynomials.
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The above examples, together with the list of relations
are examples of association schemes that we will
introduce shortly.

In 1938 Bose and Nair introduced association
schemes for applications in statistics.
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Primitivity and imprimitivity

A d-class association scheme is primitive, if all
its graphs Γi, 1 ≤ i ≤ d, are connected, and
imprimitive othervise.

The trivial scheme is primitive.

Johnson scheme J(n, d) is primitive iff n 6= 2d.
In the case n = 2d the graph Γd is disconnected.

Hamming scheme H(d, n) is primitive iff n 6= 2.
In the case n = 2 the graphs Γi, 1 ≤ i ≤ ⌊d/2⌋,
and the graph Γd are disconnected.
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Symmetry

An automorphism of this set of graphs is a
permutation of vertices, that preserves adjacency.

Adjacency matrices of the graphs Γ1, . . . , Γd, together
with the identity matrix is an association scheme if

∀i the automorphism group acts transitively
on pairs of vertices that are adjacent in Γi

(this is a sufficient condition).
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How can we verify if some set of matrices
represents an association scheme?

The condition (b) does not need to be verified directly.

It suffices to check that the RHS of (2) is independent
of the vertices (without computing ph

ij).

We can use symmetry.

Let X be the vertex set and Γ1, . . . , Γd the set of
graphs with V (Γi) = X and whose adjacency matrices
together with the identity matrix satisfies the condition
(a).
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Cyclomatic scheme

Let q be a prime power and d a divisor of q − 1.

Let C1 be a subgroup of the multiplicative group of
the finite field GF(q) with index d, and let C1, . . . , Cd

be the cosets of the subgroup C1.

The vertex set of the scheme are all elements of GF(q),
x and y being in i-th relation when x − y ∈ Ci

(and in 0 relation when x = y).

We need−1 ∈ C1 in order to have symmetric relations,
so 2 | d, if q is odd.
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q-analog of Johnson scheme Jq(n, d)
(Grassman scheme)

The vertex set consists of all d-dim.
subspaces of n-dim. vector space V over GF(q).

Two subspaces A and B of dim. d are in i-th relation,
0 ≤ i ≤ d, when dim(A ∩ B) = d − i.
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Johnson Scheme J(n, d)

Let d, n ∈ N, d ≤ n and X a set with n elements.

The vertex set of the association scheme J(n, d) are
all d-subsets of X .

Vertices x and y are in i-th 0 ≤ i ≤ min{d, n − d},
relation iff their intersection has d − i elements.

We obtain an association scheme with min{d, n − d}
classes and on

(

n
d

)

vertices.
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Bilinear Forms Scheme Md×m(q)

(a variation from linear algebra) Let d, m ∈ N and q
a power of some prime.

All (d×m)-dim. matrices over GF(q) are the vertices
of the scheme,

two being in i-th relation, 0 ≤ i ≤ d,
when the rank of their difference is i.
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Hamming scheme H(d, n)

Let d, n ∈ N and Σ = {0, 1, . . . , n − 1}.
The vertex set of the association scheme H(d, n) are
all d-tuples of elements on Σ. Assume 0 ≤ i ≤ d.

Vertices x and y are in i-th relation iff they differ in i
places.

We obtain a d-class association scheme on nd vertices.
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Corollary. Let A = {A0, . . . , Ad} be an associative

scheme and E0, . . . , Ed its minimal idempotents.

Then ∃ qh
ij ∈ R and qi(h) ∈ R (i, j, h ∈ {0, . . . , d}),

such that

(a) Ei ◦ Ej =
1

n

d
∑

h=0

qh
ijEh,

(b) Ei◦Aj =
1

n
qi(j)Aj, i.e., Ei =

1

n

d
∑

h=0

qi(h)Ah,

(c) matrices Ai have at most d + 1 distinct

eigenvalues.
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The matrices E0, . . . , Ed are called minimal
idempotents of the associative scheme A. Schur
(or Hadamard) product of matrices is an entry-wise
product. denoted by “◦”. Since Ai ◦ Aj = δijAi, the
BM-algebra is closed for Schur product.

The matrices Ai are pairwise othogonal idempotents
for Schure multiplication, so they are also called
Schur idempotents of A.

Since the matrices E0, . . . , Ed are a basis of the
vector space spanned by A0, . . . , Ad, also the following
statement follows.
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Therefore,

Ai = AiI = Ai

∑

j

Ej =
∑

j

pi(j)Ej.

This tells us that each matrix Ai is a linear
combination of the matrices Ej.

Since the nonzero matrices Ej are pairwise othogonal,
they are also linearly independent.

Thus they form a basis of the BM-algebra M, and
there is exactly d + 1 nonzero matrices among Ej’s.

The proof of (c) is left for homework.
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We multiply equations (3) for i = 1, . . . , d. to obtain
an equation of the following form

I =
∑

j

Ej, (4)

where each Ej is an idempotent that is equal to
a product of d idempotents Yiki

, where Yiki
is an

idempotent from the spectral decompozition of Ai.

Hence, the idempotents Ej are pairwise orthogonal,
and for each matrix Ai there exists pi(j) ∈ R, such
that AiEj = pi(j)Ej.
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Proof. Let i ∈ {1, 2, . . . , d}. From the spectral
analysis of normal matrices we know that ∀Ai there
exist pairwise orthogonal idempotent matrices Yij and
real numbers θij, such that AiYij = θijYij and

∑

j

Yij = I. (3)

Furthermore, each matrix Yij can be expressed as a
polynomial of the matrix Ai.

Since M is a commutative algebra, the matrices Yij

commute and also commute with matrices A0, . . . , Ad.

Therefore, each product of this matrices is an
idempotent matrix (that can be also 0).
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Two bases and duality

Theorem. Let A = {A0, . . . , Ad} be an associative

scheme on n vertices. Then there exists orthogonal

idempotent matrices E0, . . . , Ed and pi(j), such that

(a)

d
∑

j=0

Ej = I,

(b) AiEj = pi(j)Ej, i.e., Ai =

d
∑

j=0

pi(j)Ej,

(c) E0 =
1

n
J ,

(d) matrices E0, . . . , Ed are a basis of a (d + 1)-dim.

vector space, generated by A0, . . . , Ad.
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For m = 1 we obtain the trivial associative scheme.

Brouwer and Van Lint used merging to construct some
new 2-class associative schemes (i.e., m = 2).

For example, in the Johnson scheme J(7, 3) we merge
A1 and A3 to obtain a strongly regular graph, which
is the line graph of PG(3, 2).
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Let {A0, . . . , Ad} be a d-class associative scheme A
and let π be a partition of {1, . . . , d} on m ∈ N

nonempty cells. Let A′
1, . . . , A

′
m be the matrices of

the form
∑

i∈C

Ai,

where C runs over all cells of partition π, and set
A′

0 = I . These binary matrices are the elements of
the Bose-Mesner algebra M, they commute, and their
sum is J .

Very often the form an associative scheme, denoted by
A′, in which case we say that A′ was obtained from A
by merging of classes (also by fusion).
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By (5) and the well known tensor product identity

(A ⊗ B)(x ⊗ y) = Ax ⊗ By

for A, B ∈ Rn×n and x, y ∈ Rn, we obtain

qh
ij =

n

mh
sum(Ei ◦ Ej ◦ Eh)

=
n

mh
vT (Ei ⊗ Ej ⊗ Eh)v.

Now the statement follows from the fact that

Ei ⊗ Ej ⊗ Eh

is a symmetric idempotent.
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Proof (Godsil’s sketch). Since the matrices Ei

are pairwise orthogonal idempotents, we derive from
Corollary (b) (by multiplying by Eh)

(Ei ◦ Ej)Eh =
1

n
qh
ijEh.

Thus qh
ij/n is an eigenvalue of the matrix Ei ◦ Ej

on a subspace of vectors that are determined by the
columns of Eh.

The matrices Ei are positive semidefinite (since they
are symmetric, and all their eigenvalues are 0 or 1).

On the other hand, the Schur product of semidefinite
matrices is again semidefinite, so the matrix Ei ◦ Ej

has nonnegative eigenvalues. Hence, qh
ij ≥ 0.
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Krein parameters satisfy the so-called
Krein conditions:

Theorem [Scott].

Let A be an associative scheme with n vertices
and e1, . . . ,en the standard basis in Rn. Then

qh
ij ≥ 0.

Moreover, for v =
n
∑

i=1

ei ⊗ ei ⊗ ei, we have

qh
ij =

n

mh
‖(Ei ⊗ Ej ⊗ Eh)v‖2,

and qh
ij = 0 iff (Ei ⊗ Ej ⊗ Eh)v = 0.
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By Corollary (b), it follows also

Ei ◦ Ej ◦ Eh =
1

n3

d
∑

ℓ=0

qi(ℓ) qj(ℓ) qh(ℓ) Aℓ,

therefore, by ∆kQ = (∆mP )T , we obtain

qh
ij =

1

nmh

d
∑

ℓ=0

qi(ℓ) qj(ℓ) qh(ℓ) kℓ

=
mimj

n

d
∑

ℓ=0

pℓ(i) pℓ(j) pℓ(h)

kℓ2.
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Using the eigenvalues we can express all intersection
numbers and Krein parameters.

For example, if we multiply the equality in Corollary
(a) by Eh, we obtain

qh
ij Eh = nEh(Ei ◦ Ej),

i.e.,

qh
ij =

n

mh
trace(Eh(Ei ◦ Ej)) (5)

=
n

mh
sum(Eh ◦ Ei ◦ Ej), (6)

where the sum of a matrix is equal to the sum of all of
its elements.
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Take the trace of the identity in Theorem (b):

∆kQ = P T∆m,

where ∆k and ∆m are the diagonal matrices with
entries (∆k)ii = ki and (∆m)ii = mi.

This relation implies P∆−1
k P T = n∆−1

m , and by
comparing the diagonal entries also

d
∑

h=0

ph(i)
2/kh = n/mi.

which gives us an expression for the multiplicity mi in
terms of eigenvalues.
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Algebraic Combinatorics, 2007

The eigenmatrices of the associative scheme A are
(d + 1)-dimensional square matrices P and Q defined
by

(P )ij = pj(i) and (Q)ij = qj(i).

By setting j = 0 in the left identity of Corollary (b)
and taking traces, we see that the eigenvalue pi(1) of
the matrix A1 has multiplicity mi = qi(0) = rank(Ei).

By Theorem (b) and Corollary (b), we obtain

PQ = nI = QP .

There is another relation between P and Q.
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There exists a basis of d + 1 (orthogonal) minimal
idempotents Ei of the BM-algebra M such that

E0 =
1

n
J and

d
∑

i=0

Ei = I,

Ei ◦ Ej =
1

n

d
∑

h=0

qh
ijEh, Ai =

d
∑

h=0

pi(h)Eh

and Ei =
1

n

d
∑

h=0

qi(h)Ah (0 ≤ i, j ≤ d),

The parameters qh
ij are called Krein parameters,

pi(0), . . . , pi(d) are eigenvalues of matrix Ai, and

qi(0), . . . , qi(d) are the dualne eigenvalues of Ei.
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Orbits of a group acting on Γ form an equitable
partition.

But not all equitable partitions come from groups:

{{1, 2, 4, 5, 7, 8}, {3, 6}}.
1

2

3 4 5 6

7

8
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An equitable partition of a graph Γ is a partition
of the vertex set V (Γ) into parts C1, C2, . . . , Cs s.t.

(a) vertices of each part Ci induce a regular graph,

(b) edges between Ci and Cj induce a half-regular
graph.

C2
C

3

Cs
Cj c

ij

C1

C
i ic i Example: the dodecahedron

Numbers cij are the parameters of the partition.
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VI. Equitable partitions

• definition

• quotients

• eigenvectors

• (antipodal) covers
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SRG(162, 56, 10, 24), denoted by Γ,
is unique by Cameron, Goethals and Seidel.

vertices: special vertex ∞,
56 hyperovals in PG(2, 4) in a L3(4)-orbit,
105 flags of PG(2, 4)

adjacency: ∞ is adjacent to the hyperovals

hyperovals O ∼ O′ ⇐⇒ O ∩O′ = ∅
(p, L) ∼ O ⇐⇒ |O ∩ L\{p}| = 2

(p, L) ∼ (q,M) ⇐⇒ p 6= q, L 6= M and
(p ∈ M or q ∈ L).

The hyperovals induce the Gewirtz graph,
i.e., the unique SRG(56,10,0,2))
and the flags induce a SRG(105,32,4,12).
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Theorem. [Cameron, Goethals and Seidel]

In a strongly regular graph vanishing of either of

Krein parameters q1
11 and q2

22 implies that first and

second subconstituent graphs are strongly regular.
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An association scheme A is P -polynomial (called
also metric) when there there exists a permutation
of indices of Ai’s, s.t.

∃ polynomials pi of degree i s.t. Ai = pi(A1),

i.e., the intersection numbers satisfy the ∆-condition

(that is, ∀ i, j, h ∈ {0, . . . , d}
• ph

ij 6= 0 implies h ≤ i + j and

• pi+j
ij 6= 0).

An associative scheme A is Q-polynomial (called
also cometric) when there exists a permutation of
indices of Ei’s, s.t. the Krein parameters qh

ij satisfy
the ∆-condition.
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Proof (sketch). The LHS is equal to the
rank(Ei ◦ Ej) and is greater or equal to the

rank(Ei ⊗ Ej) = mimj.

Suppose now i = j. Among the rows of the matrix Ei

we can choose mi rows that generate all the rows.

Then the rows of the matrix Ei ◦ Ei, whose elements
are the squares of the elements of the matrix Ei, are
generated by

mi +

(

mi

2

)

rows,

that are the Schur products of all the pairs of rows
among all the mi rows.
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Another strong criterion for an existence of associative
schemes is an absolute bound, that bounds the rank
of the matrix Ei ◦ Ej.

Theorem. Let A be a d-class associative scheme.
Then its multiplicities mi, 1 ≤ i ≤ d, satisfy
inequalities

∑

qh
ij 6=0

mh ≤







mimj if i 6= j,

1

2
mi (mi + 1) if i = j.
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Algebraic Combinatorics, 2007

Distance-regularity:

Γ graph, diameter d, ∀ x ∈ V (Γ)
the distance partition {Γ0(x), Γ1(x), . . . , Γd(x)}

corresponding to x

 (x)Γ

 (x)Γ
 (x)Γ

x

k

a

b

a

b
1

1b

1
2 i-1 i i+1

2

2 i

i

icc2

a1

Γ  (x) Γ  (x)

y

i
i

i
 A (x,y)

 C (x,y)  B (x,y)

is equitable and the intersection array
{b0, b1, . . . , bd−1; c1, c2, . . . , cd} is independent of x.

1
k

i a d
d

b1 b

a1

c i dk k i

i

k
a

c
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VII. Distance-regular graphs

• distance-regularity

• intersection numbers

• eigenvalues and cosine sequences

• classification

• classical infinite families

• antipodal distance-regular graphs

Coxeter graph

unique, cubic, DT

28 vertices, diameter 4, girth 7

Aut=PGL(2,7), pt stab. D12
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H graph, D diameter

If being at distance 0 or D is an equivalence relation
on V (H), we say that H is antipodal.

D vu

D

v

u

w

D

D

If an antipodal graph H covers H/π and π consists of
antipodal classes, then H is called antipodal cover.
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G

r

2

1

... index

fibres

H

H is an r-cover if there is a partition of V (H) into
independent sets, called fibres, such that there is
either a matching or nothing between any two fibres.

Γ = H/π . . . quotient (corresponding to π)
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Theorem. Assume AP = PB.
(a) If Bx = θx, then APx = θPx.

(b) If Ay = θy, then yTPB = θyTP .

(c) The characteristic polynomial of matrix B
divides the characteristic polynomial of matrix A.

An eigenvector x of Γ/π corresponding to θ extends
to an eigenvector of Γ, which is constant on parts, so

mθ(Γ/π) ≤ mθ(Γ).

τ ∈ ev(Γ)\ev(Γ/π) =⇒ each eigenvector of Γ
corresponding to τ sums to zero on each part.
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Let MatX(R) be the R-algebra consisting of all real
matrices, whose rows and columns are indexed by X .
Let A ∈MatX(R) be the adjacency matrix of Γ.

MatX(R) acts on V by left multiplication.

Theorem. Let π be a partition of V Γ with the
characteristic matrix P . TFAE
(i) π equitable,

(ii) ∃ a s × s matrix B s.t. A(Γ)P = PB

(iii) the span(col(P )) is A(Γ)-invariant.

If π is equitable then B = A(Γ/π).
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Set X := V Γ and n := |X|. Let V = Rn be the
vector space over R consisting of all column vectors
whose coordinates are indexed by X .

For a subset S ⊆ X let its characteristic vector
be an element of V , whose coordinates are equal 1 if
they correspond to the elements of S and 0 otherwise.

Let π = {C1, . . . , Cs} be a partition of X .
The characteristic matrix P of π is (n×s) matrix,
whose column vectors are the characteristic vectors of
the parts of π (i.e., Pij = 1 if i ∈ Cj and 0 otherwise).
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Equitable partitions give rise to quotient graphs
G/π, which are directed multigraphs with cells as
vertices and cij arcs going from Ci to Cj.

21 3 4 50

0 1 2

0
231

2
13 6

1 1
0

2 1
1

1
1

21
0

333 6 613

eigenvalues: 31,
√

5
3
, 15, 04, −24, −

√
5

3
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Lemma. A connected graph G of diameter d is
distance-regular iff ∃ ai, bi and ci such that

AAi = bi−1Ai−1 +aiAi + ci+1Ai+1 for 0 ≤ i ≤ d.

If G is a distance-regular graph, then Ai = vi(A) for

some polynomial vi(x) of degree i, for 0 ≤ i ≤ d + 1.

The sequence {vi(x)} is determined with v−1(x) = 0,
v0(x) = 1, v1(x) = x and for i ∈ {0, 1, . . . , d} with

ci+1vi+1(x) = (x − ai)vi(x) − bi−1vi−1(x).

In this sense distance-regular graphs are combinatorial
representation of orthogonal polynomials.
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Proof. (i) Obviously b0 > b1. Set 2 ≤ i ≤ d. Let
v, u ∈ V Γ be at distance d and v = v0, v1, . . . , vd = u
be a path. The vertex vi has bi neighbours, that are
at distance i + 1 from v. All these bi vertices are at
distance i from v1, so bi−1 ≥ bi.

(iii) The number of edges from Γi−1(v) to Γi(v) is
bi−1ki−1, while from Γi(v) to Γi−1(v) is ciki.

(iv) The vertex vi has ci neighbours, that are at
distance i−1 from v. All these vertices are at distance
j + 1 from vi+j. Hence ci ≤ bj.

The statement (ii) can be proven the same way as (i),
and (v) follows directly from (i), (ii) and (iii).
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Algebraic Combinatorics, 2007

Lemma. Γ distance-regular, diameter d and

intersection array {b0, b1, . . . , bd−1; c1, c2, . . . , cd}.
Then

(i) b0 > b1 ≥ b2 ≥ · · · ≥ bd−1 ≥ 1,

(ii) 1 = c1 ≤ c2 ≤ · · · ≤ cd,

(iii) bi−1ki−1 = ciki for 1 ≤ i ≤ d,

(iv) if i + j ≤ d, then ci ≤ bj,

(v) the sequence k0, k1, . . . , kd is unimodal, (i.e.,

there exists such indices h, ℓ (1 ≤ h ≤ ℓ ≤ d),

that k0 < · · · < kh = · · · = kℓ > · · · > kd.
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An arbitrary list of numbers bi and ci does not
determine a distance-regular graph.

It has to satisfy numerous feasiblity conditions
(e.g. all intersection numbers have to be integral).

One of the main questions of the theory of distance-
regular graphs is for a given intersection array

• to construct a distance-regular graph,

• to prove its uniqueness,

• to prove its nonexistence.

Some basic properties of the intersection numbers will
be collected in the following result.

Aleksandar Jurǐsić 149
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pij
hpi,j−

h
1 pi,j+

h
1

pi+  ,j
h

1ph
1i+  ,j−1

ph
1i− ,j+1

pi+  ,j+
h

1 1

pi− ,j
h
1

x
E

x
S

x
W

x
N

x
C

ph
1i− ,j−1

b

b
−1

c
+1

c
+1

−1j

i

j

i

xW + xC + xE = ai and xN + xC + xS = aj.
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All the intersection numbers are determined by the
numbers in the intersection array

{b0, b1, . . . , bd−1; c1, c2, . . . , cd}

of Γ. This can be proved by induction on i, using the
following recurrence relation:

cj+1p
h
i,j+1+ajp

h
ij+bj−1p

h
i,j−1 = ci+1p

h
i+1,j+aip

h
ij+bi−1p

h
i−1,j

obtained by a 2-way counting for vertices u and v at
distance h of edges with one end in Γi(u) and another
in Γj(v) (see the next slide). Therefore,

the intersection numbers do not depend on
the choice of vertices u and v at distance r.
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Intersection numbers

Set ph
ij := |Γi(u) ∩ Γj(v)|, where ∂(u, v)=h. Then

ai = pi
i1, bi = pi

i+1,1, ci = pi
i−1,1, ki = p0

ii,

ki = ph
i0 + · · · + ph

id and in particular ai + bi + ci = k.

A connected graph is distance-transitive when
any pair of its vertices can be mapped (by a graph
authomorphism, i.e., an adjacency preserving map) to
any other pair of its vertices at the same distance.

distance-transitivity =⇒ distance-regularity
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A small example of a distance-regular graph:
(antipodal, i.e., being at distance diam. is a transitive relation)

i
c

i
a

ib

u

2 1

2
11

4

1 0
4

1 2 30

0
c a

b
b1 11 a2c2 b

0
=

ac3 3
2

0

0
11

1 1
4

2
2
4

The above parameters are the same for each vertex u:

{b0, b1, b2; c1, c2, , c3}
= {4, 2, 1; 1, 1, 4}. 1 1 4

14
2

1 2 0
8

2
4
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A distance-regular graph with diameter d is called
classical, if its intersection parametres can be
parametrized with four parameters (diameter d and
numbers b, α and β) in the following way:

bi =

(

[

d

1

]

−
[

i

1

]

)(

β − α

[

i

1

]

)

, 0 ≤ i ≤ d − 1

ci =

[

i

1

]

(

1 + α

[

i − 1

1

]

)

, 1 ≤ i ≤ d,

where
[

j

1

]

:= 1 + b + b2 + · · · + bj−1.
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The Gauss binomal coefficient
[j

i

]

is equal
(

j
i

)

for b = 1 and
i−1
∏

k=0

bj − bk

bi − bk

otherwise.

If V is an n-dim. vector space over a finite field with b
elements, then

[

n
m

]

is the number of m-dim. subspaces
of V .
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Classical infinite families

graph diameter b α β

Johnson graph J(n, d) min (d, n − d) 1 1 n − d

Grassmann graph min (k, v − k) q q
[

n−d+1
1

]

− 1

Hammin graph H(d, n) d 1 0 n − 1

Bilinear forms graph k q q − 1 qn − 1

Dual polar graph ??? q 0 qe

Alternating forms graph ⌊n/2⌋ q2 q2 − 1 qm − 1

Hermitean forms graph n −r −r − 1 −(−r)d − 1

Quadratic forms graph ⌊(n + 1)/2⌋ q2 q2 − 1 qm − 1
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Classification

Γ distance-regular, diam. d. We say Γ is primitive,
when all the distance graphs Γ1, . . . , Γd are connected
(and imprimitive otherwise).

Theorem (Smith).

An imprimitive distance-regular
graph is either antipodal or bipartite.

The big project of classifying distance-regular graphs:

(a) find all primitive distance-regular graphs,

(b) given a distance-regular graph Γ, find all
imprimitive graphs, which give rise to Γ.
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ω1 =
θ

k
, ω2 =

θ2 − a1θ − k

kb1

and

ω1−ω2 =
(k − θ)(a1 + 1)

kb1
, 1−ω2 =

(k − θ)(θ + b1 + 1)

kb1
.

Using the Sturm’s theorem for the sequence

b0 . . . bi ωi(x)

we obtain

Theorem. Let θ0 ≥ · · · ≥ θd be the eigenvalues of
a distance regular graph. The sequence of cosines
corresponding to the i-th eigenvalue θi has precisely
i sign changes.
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For θ ∈ ev(Γ) and associated primitive idempotent E:

E =
mθ

|V Γ|

d
∑

h=0

ωhAh (0 ≤ i ≤ d),

ω0, . . . , ωd is the cosine sequence of E (or θ).

Lemma. Γ distance-regular, diam. d ≥ 2, E is a
primitive idempotent of Γ corresponding to θ,
ω0, . . . , ωd is the cosine sequence of θ.

For x, y ∈ V Γ, i = ∂(x, y) we have

(i) 〈Ex,Ey〉 = xy-entry of E = ωi
mθ

|V Γ|.
(ii) ω0 = 1 and ciωi−1 + aiωi + biωi+1 = θωi

for 0 ≤ i ≤ d.
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The vector v =
(

v0(θ), . . . , vd(θ)
)T

is a left eigenvector
of this matrix corresponding to the eigenvalue θ.

Similarly a vector w = (w0(θ), . . . , wd(θ))T defined
by w−1(x) = 0, w0(x) = 1, w1(x) = x/k and for
i ∈ {0, 1, . . . , d} by

xwi(x) = ciwi−1(x) + aiwi(x) + biwi+1(x)

is a right eigenvector of this matrix, corresponding to
the eigenvalue θ.

There is the following relation between coordinates of
vectors w and v: wi(x)ki = vi(x).
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Eigenvalues

The intersection array of a distance-regular graph Γ

{k, b1, . . . , bd−2, bd−1; 1, c2, . . . , cd−1, cd},
i.e., the quotient graph Γ/π with the adjacency matrix

A(Γ/π) =

















a0 b0

c1 a1 b1 0
0 c2 . .

. . .
0 . . bd−1

cd ad

















, determines

all the eigenvalues of Γ and their multiplicities.
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y2

cd

cd

1y
dc

ad

x

y
r

y2

1y
dc

ad

x

cd+1

cd+1

y
r

The distance distribution corresponding to the
antipodal class {y1, . . . , yr} in the case when
d is even (left) and the case when d is odd (right).

Inside this partition there is a partition of the
neighbourhood of the vertex x.
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(iii) The graph H is distance-regular with

D ∈ {2d, 2d + 1} and intersection array

{

b0, . . . , bd−1,
(r−1)cd

r
, cd−1, . . . , c1;

c1, . . . , cd−1,
cd

r
, bd−1, . . . , b0

}

for D even,

and
{

b0, . . . , bd−1, (r−1)t, cd, . . . , c1;

c1, . . . , cd, t, bd−1, . . . , b0

}

for D odd and some integer t.
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Theorem. G distance-regular, diameter d and
parameters bi, ci; H its r-cover of diameter D > 2.

Then the following statements are equivalent:

(i) The graph H is antipodal with its fibres as the

antipodal classes (hence an antipodal cover of G)

and each geodesic of length at least ⌊(D + 1)/2⌋ in

H can be extended to a geodesic of length D.

(ii) For any u ∈ V (H) and 0 ≤ i ≤ ⌊D/2⌋}
we have

SD−i(u) = ∪{F (v)\{v} : v ∈ Si(u)}.
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Lemma. Γ antipodal distance-regular, diameter d.

Then a vertex x of Γ, which is at distance i ≤ ⌊d/2⌋
from one vertex in an antipodal class, is at distance
d − i from all other vertices in this antipodal class.
Hence

Γd−i(x) = ∪{Γd(y) | y ∈ Γi(x)} for 0 ≤ i ≤ ⌊d/2⌋ .

For each vertex u of a cover H we denote the fibre
which contains u by F (u).

A geodesic in a graph G is a path g0, . . . , gt, where
dist(g0, gt) = t.
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Theorem (Gardiner, 1974). If H is antipodal

r-cover of G, then ι(H) is (almost) determined by

ι(G) and r,

DH ∈ {2dΓ, 2dΓ + 1} and 2 ≤ r ≤ k,
and

bi = cD−i for i = 0, . . . , D, i 6= d, r = 1 +
bd

cD−d
.

Lemma. A distance-regular antipodal graph Γ of
diameter d is a cover of its antipodal quotient with
components of Γd as its fibres unless d = 2.
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A generalized Odd graph of diameter d is a drg,
s.t. a1 = · · · = ad−1 = 0, ad 6= 0)

Known examples for D = 5 (and d = 2):

– Desargues graph (i.e., the Double Petersen)
– five-cube
– the Double of Hoffman-Singleton
– the Double Gewirtz
– the Double 77-graph
– the Double Higman-Sims
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Theorem (A.J. 1991). H is a bipartite antipodal

cover with D odd
iff

H ∼= K2 ⊗ (H/π), (i.e., bipartite double),

and H/π is a generalized Odd graph.

(cf. Biggs and Gardiner, also [BCN])
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Antipodal distane-regular graphs

Theorem (Van Bon and Brouwer, 1987).

Most classical distance-regular graphs have no
antipodal covers.

Theorem (Terwilliger, 1993).
P - and Q-poly. association scheme with d ≥ 3

(not Cn, Qn,
1
2
Qn or 1

2
J(s, 2s)) is not the quotient

of an antipodal P -polynomial scheme with d ≥ 7.
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Antipodal covers of diameter 3

Γ an antipodal distance-regular with diameter 3.
Then it is an r-cover of the complete graph Kn.
Its intersection array is {n−1, (r−1)c2, 1; 1, c2, n−1}.

The distance partition corresp. to an antipodal class.
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Algebraic Combinatorics, 2007

Goals:

– structure of antipodal covers,

– new infinite families,

– nonexistence and uniqueness,

– characterization,

– new techniques

(which can be applied to drg or even more general)

Difficult problems:

Find a 7-cover of K15.
Find a double-cover of Higman-Sims graph
({22, 21; 1, 6}).
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Tools:

– graph theory, counting,

– matrix theory (rank mod p),

– eigenvalue techniques,

– representation theory of graphs,

– geometry (Euclidean and finite),

– algebra and association schemes,

– topology (covers and universal objects).

Aleksandar Jurǐsić 174
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Connections

– projective and affine planes,
for D = 3, or D = 4 and r = k (covers of Kn or Kn,n),

– Two graphs (Q-polynomial), for D = 3 and r = 2,

– Moore graphs, for D = 3 and r = k,

– Hadamard matrices, D = 4 and r = 2
(covers of Kn,n),

– group divisible resolvable designs,
D = 4 (cover of Kn,n),

– coding theory (perfect codes),
– group theory (class. of finite simple groups),
– orthogonal polynomials.
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Theorem. H distance-regular antipodal r-cover,
diameter D, of the distance-regular graph Γ,
diameter d and parameters ai, bi, ci.

The D − d eigenvalues of H which are not in ev(Γ)

(the ‘new’ ones) are for D = 2d (resp. D = 2d + 1),

the eigenvalues of the matrix N0 (resp. N1).

If θ0 ≥ θ1 ≥ · · · ≥ θD are the eigenvalues of H and
ξ0 ≥ ξ1 ≥ · · · ≥ ξd are the eigenvalues of Γ, then

ξ0 = θ0, ξ1 = θ2, · · · , ξd = θ2d,

i.e., the ev(Γ) interlace the ‘new’ eigenvalues of H.
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All the eigenvalues: A(Γ/π), N0 or A(Γ/π), N1:
















0 b0

c1 a1 b1 0
0 c2 . .

. . .
0 . . bd−1

cd ad

















,

















0 b0

c1 a1 b1 0
c2 a2 b2

. . . . . . . . .
0 cd−2 ad−2 bd−2

cd−1 ad−1

































0 b0

c1 a1 b1 0
0 c2 . .

. . .
0 . . bd−1

cd ad

















,

















0 b0

c1 a1 b1 0
c2 a2 b2

. . . . . . . . .
0 cd−1 ad−1 bd−1

cd ad−rt
















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Take θ to be an eigenvalue of H , which is also an
eigenvalue of Γ.

An eigenvector of Γ corresponding to θ can be extended
to an eigenvector of H which is constant on fibres.

We know that the eigenvectors of H are also the
eigenvectors of HD, therefore, we have vD(θ) = r − 1.

So we conclude that all the eigenvectors of H
corresponding to θ are constant on fibres and therefore
give rise to eigenvectors of Γ corresponding to θ.
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Theorem. Let Γ be a distance regular graph
and H a distance regular antipodal r-cover of Γ.
Then every eigenvalue θ of Γ is also
an eigenvalue of H with the same multiplicity.

Proof. Let H has diameter D, and Γ has n vertices,
so HD = n · Kr (Kr’s corresp. to the fibres of H).

Therefore, HD has for eigenvalues r − 1
with multiplicity n and −1 with multiplicity nr − n.

The eigenvectors corresponding to eigenvalue r − 1
are constant on fibres and those corresponding to −1
sum to zero on fibres.
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Antipodal covers of diameter 4

Let Γ be an antipodal distance-regular graph of
diameter 4, with v vertices, and let r be the size of
its antipodal classes (we also use λ := a1 and µ := c2).

The intersection array {b0, b1, b2, b3; c1, c2, c3, c4} is
determined by (k, a1, c2, r), and has the following form

{k, k − a1 − 1, (r − 1)c2, 1; 1, c2, k − a1 − 1, k},

A systematic approach:

– make a list of all small feasible parameters

– check also the Krein conditions and absolute bounds
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n r a1 c2 a cover Γ of Kn # of Γ
11 9 1 1 does not exist (PG(2,10)) 0
12 5 2 2 Mathon’s construction ≥ 1
13 11 1 1 open (PG(2,12)) ?
14 2 6 6 equivalent to Paley graph {6, 3; 1, 3} 1
14 3 4 4 Mathon’s construction ≥ 1
14 6 2 2 Mathon’s construction ≥ 1
16 2 6 8 [dCMM], [So] and [Th1] 1
16 2 8 6 unique two-graph, i.e., 1

2H(6, 2) 1
16 4 2 4 GQ(3,5)\ spread ≥ 5
16 6 4 2 GQ(5,3)\ spread ≥ 1
16 7 2 2 OPEN ?
16 8 0 2 ≥ 1
17 3 5 5 Mathon’s construction ≥ 1
17 5 3 3 GQ(4,4)\ unique spread ≥ 2
17 15 1 1 equivalent to PG(2,16), Mathon’s construction ≥ 1
18 2 8 8 Mathon’s construction 1
18 4 4 4 Mathon’s construction ≥ 1
18 8 2 2 Mathon’s construction ≥ 1
19 4 2 5 [Hae2] (GQ(3,6) does not exist 0
19 7 5 2 [Go4] (GQ(6,3) does not exist 0
19 17 1 1 open (PG(2,18)) ?
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n r a1 c2 a cover Γ of Kn #of Γ

5 3 1 1 L(Petersen) 1
6 2 2 2 Icosahedron 1
7 6 0 1 S2(Hoffman-Singleton) 1
8 3 2 2 Klein graph 1
9 3 1 3 GQ(2, 4)\ spread 2
9 7 1 1 equivalent to the unique PG(2, 8) 1

10 2 4 4 Johnson graph J(6, 3) 1
10 4 2 2 GQ(3, 3)\ unique spread ≥ 1
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Theorem (Brouwer, 1983).

GQ(s, t) minus a spread, t > 1

=⇒ (s + 1)-cover of Kst+1 with c2 = t − 1.

- good construction: q a prime power:

(s, t) =















(q, q),
(q − 1, q + 1),
(q + 1, q − 1), if 2 | q
(q, q2).

- good characterization (geometric graphs),

- nonexistence
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Mathon’s construction of an r-cover of Kq+1

A version due to Neumaier: using a subgroup K of
the GF(q)∗ of index r. For, let q = rc + 1 be a prime
power and either c is even or q − 1 is a power of 2.

We use an equivalence relation R for GF(q)2\{0}:
(v1, v2)R(u1, u2) iff ∃h ∈ K s.t. (v1h, v2h) = (u1, u2).

vertices: equiv. classes vK, v ∈ GF(q)2\{0} of R,
and (v1, v2)K∼(u1, u2)K iff v1u2 − v2u1 ∈ K,

It is an antipodal distance-regular graph of diam. 3,
with r(q + 1) = (q2 − 1)/c vertices, index r, c2 = c
(vertex transitive, and also distance-transitive when r
is prime and the char. of GF(q) is primitive mod r).
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There is only one feasible intersection array of distance-
regular covers of K8: {7, 4, 1; 1, 2, 7} - the Klein graph,
i.e., the dual of the famous Klein map on a surface of
genus 3. It must be the one coming from Mathon’s
construction.

u

2

3

4

5

6

7

7

6

5

4

3

2

6

1

1

u

u

u

u

u

u

u

v

v

v

v

v
v

v

w

ww
3 7

5
w

w
4

w
1w2
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Platonic solids with △’s as faces

The 1-skeletons of

(a) the tetrahedron= K4,

(b) the octahedron= K2,2,2,

(c) the icosahedron.

Aleksandar Jurǐsić 178
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Examples: 3-cube, the icosahedron.

A graph is locally C if the neighbours of each vertex
induce C (or a member of C).

Lemma (A.J. 1994). Γ distance-regular, k ≤ 10

and locally Ck. Then Γ is

– one of the Platonic solids with △’s as faces,

– Paley graph P (13), Shrikhande graph,

– Klein graph (i.e., the 3-cover of K8).

Problem. Find a locally C15 distance-regular graph.
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Based on the above information we have:

Corollary. Γ antipodal, distance-regular graph
with diam. 4. TFAE

(i) Γ is Q-polynomial.

(ii) r = 2 and q4
11 = 0.

Suppose (i)-(ii) hold, then θ0, θ1, θ2, θ3, θ4

is a unique Q-polynomial ordering, and

qh
ij = 0 when i + j + h is odd, i.e.,

the Q-polynomial structure is dual bipartite.
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Let E be a primitive idempotent of a distance-regular
graph of diameter d. The representation diagram
∆E is the undirected graph with vertices 0, 1, . . . d,
where we join two distinct vertices i and j whenever
qs
ij = qs

ji 6= 0.

Recall Terwilliger’s characterization of Q-polynomial
association schemes that a d-class association scheme is
Q-polynomial iff the representation diagram a minimal
idempotent, is a path. For s = 1 and r = 2 we get the
following graph: 3

0 1

24
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Theorem. (JK 1995).

Γ antipodal distance-regular graph, diam 4,
and eigenvalues k = θ0 > θ1 > θ2 > θ3 > θ4.

Then q2
11, q3

12, q4
13, q2

22, q4
22, q3

23, q4
24, q4

33 > 0,

r = 2 iff q1
11 = 0 iff q3

11 = 0 iff q3
13 = 0 iff q3

33 = 0,

q2
12 = q4

12 = q4
14 = q3

22 = q4
23 = q4

34 = 0 and

(i) (θ4 + 1)2(k2 + θ3
2) ≥ (θ2 + 1)(k + θ2θ4),

with equality iff q2
22 = 0,

(ii) (θ2 + 1)2(k2 + θ3
4) ≥ (θ4 + 1)(k + θ2θ4),

with equality iff q4
44 = 0,

(iii) θ2
3 ≥ −θ4, with equality iff q4

11 = 0.
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The matrix of eigenvalues P (Γ) (with ωj(θi) being its
ji-entry) has the following form:

P (Γ) =













1 θ0 θ0b1/c2 θ0(r − 1) r − 1
1 θ1 0 −θ1 −1
1 θ2 −r(θ2 + 1) θ2(r − 1) r − 1
1 θ3 0 −θ3 −1
1 θ4 −r(θ4 + 1) θ4(r − 1) r − 1












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P (2) =









µ/r a2 b2 0
k2 − r(a2 + 1) (r − 1)(k − µ) r − 1

b2(r − 1) 0
0









,

P (3) =









0 b1 λ 1
k2 − rb1 b1(r − 1) 0

λ(r − 2) r − 2
0









,

P (4) =









0 0 k 0
k2 0 0

k(r − 2) 0
r − 2









.
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We define for s ∈ {0, 1, 2, 3, 4} the symmetric 4 × 4
matrix P (s) with its ij-entry being equal to pij(s).

For b1 = k − 1 − λ, k2 = rkb1/µ,
a2 = k − µ and b2 = (r − 1)µ/r we have

P (0)=









k 0 0 0
k2 0 0

(r − 1)k 0
r − 1









,

P (1)=









λ b1 0 0
k2 − b1r b1(r − 1) 0

λ(r − 1) r − 1
0









,
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The multiplicities are m0 = 1, m4 = (v/r) − m2 − 1,

m2 =
(θ4 + 1)k(k − θ4)

rc2(θ4 − θ2)
and m1,3 =

(r − 1)v

r(2 + a1θ1,3/k)
.

Parameters of the antipodal quotient can be expressed
in terms of eigenvalues and r: k = θ0,

a1 = θ1 + θ3, b1 = −(θ2 + 1)(θ4 + 1), c2 =
θ0 + θ2θ4

r
.

The eigenvalues θ2, θ4 are integral, θ4 ≤ −2, 0 ≤ θ2,
with θ2 = 0 iff Γ is bipartite.

Furthermore, θ3 < −1, and the eigenvalues θ1, θ3 are
integral when a1 6= 0.
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Let k = θ0 > θ1 > θ2 > θ3 > θ4 be ev(Γ). The

antipodal quotient is SRG(v/r, k, a1, rc2),

the old eigenvalues, i.e., θ0 = k, θ2, θ4, are the roots of

x2 − (a1 − rc2)x − (k − rc2) = 0

and the new eigenvalues, i.e., θ1, θ3, are the roots of

x2 − a1x − k = 0.

The following relations hold for the eigenvalues:

θ0 = −θ1θ3, and (θ2 + 1)(θ4 + 1) = (θ1 + 1)(θ3 + 1).
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Some examples of 1-homogeneous graphs

distance-regular graphs with at most one i, s.t. ai 6= 0:

– bipartite graphs,
– generalized Odd graphs;

c2

c2

c2-1

c2-1c2-1
2a

c2(  -1)r

-1k

c2a -r2

c2(  -1)r

c2(  -1)rc2

c2

2aa2

-1k

2a

-1k

-1kc2

D2
2

D2
3

D3
2 3

4D

D3
4

1

1

1

1

0 0

0
0

2
1

1
2D

1

1
Dy

x
0

c2-1

r(  -1)

0
1

1
0 0

0 0

1

1
1

1

1

1
1

1 1

1 4

4 4

3

4

44
3 3

11

1

1 11

4

4

1

3

12

the Wells graph
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b3

b3b2

b2

c2

c2

b1

b1

−τib i

−τib i
i

i
D

ci−1 bi

−σci i

−σci i

db −1

c −2d

a1

a1

1
1D

−1Di
i D i

+1i

iτia b cii

D
i−1

D2
2
1

3D

DD2
2 3

3

D3
1
2

2D

1

1

1

1

τ3σ3

3ρ
y

x

Dd
dσd

d

dρ

ρ

−1

−1

−  −  +  +σi

i − ρ−1 i

a−     +ρi−1i

b −1 −1c

c
d

d

−2d d−1ci−2

i

i−1c ii c−    −ρ
a

a

D
+1
i+1

i

D +1i
i −2

−1d

dd

Dd−1
d

−1

Dd−1
d

−1

Dd−1
d

Dd−2
−1

DD
i
i
−1

D
i
i−1
−2

−1i
iD−1

3ρ

ρ2

1

1
τ1 σ2 τ2

ρ2

σi τ i σd
τ −1d

dρ

dρiρ

For i ∈ {1, . . . , d}

|Di
i−1| = |Di−1

i | =
b1b2 . . . bi−1

c1c2 . . . ci−1
, |Di

i| = ai
b1b2 . . . bi−1

c1c2 . . . ci
,

and therefore Di−1
i 6= ∅ 6= Di

i−1.

A distance-regular graph Γ is 1-homogeneous when
the distance distribution corresponding to an edge is
equitable.
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x
C

pij
hpi,j−

h
1 pi,j+

h
1

pi+  ,j
h

1

ph
1i− ,j−1

ph
1i+  ,j−1

ph
1i− ,j+1

pi+  ,j+
h

1 1

x
S

x
SW

x
W

x
E

x
NW

x
SE

x
NE

x
N

pi− ,j
h
1

xSW + xS + xSE = ci, xW + xC + xE = ai, xNW + xN + xNE = bi,

xNW +xW +xSW = cj, xN +xC +xS = aj, xNE +xE +xSE = bj.
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Homogeneous property
(in the sense of Nomura)

Γ graph, diameter d, x, y ∈ V (Γ), s.t. ∂(x, y) = h,

i, j∈{0, . . . , d}. Set Dj
i = Dj

i (x, y) :=Γi(x)∩Γj(y)

and note |Dj
i | = ph

ij.

The graph Γ is h-homogeneous when the partition

{Dj
i | 0 ≤ i, j ≤ d, Dj

i 6= ∅}
is equitable for every x, y ∈ V (Γ), ∂(x, y) = h, and
the parameters corresponding to equitable partitions
are independent of x and y.

0-homogeneous ⇐⇒ distance-regular
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VIII. 1-homogeneous graphs

• a homogemeous property

• examples

• a local approach and the CAB property

• recursive relations on parameters

• algorithm

• a classification of Terwilliger graphs

• modules
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3

u

S (u)

S (u)

S (u)

S (u)
3

S (u)

S (u)

S (u)

3
S (u) S (u)

3

S (u)
3

S (u)S (u)

S (u) S (u)

S (u)

S (u)S (u)

1 2

4 4

4 4

4

5 5

5

55

# Γ n k λ µ H r t r.n

1 ! Petersen graph 10 3 0 1 ! Dodecahedron 2 1 20

2 3-Golay code 243 22 1 2 short. ext. 3-Golay code 3 9 729

3 folded Johnson graph J(10,5) 126 25 8 8 ! Johnson graph J(10,5) 2 9 252

4 folded halved 10-cube 256 45 16 6 ! halved 10-cube 2 15 512

Non-bipartite antipodal distance-regular graphs of diameter 5.
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# Γ n k λ µ H r r.n

1 ! Folded 5-cube 16 5 0 2 ! Wells graph 2 32

2 ! T (6) 15 6 1 3 ! 3.Sym(6).2 3 45

3 ! T (7) 21 10 3 6 ! 3.Sym(7) 3 63

4 folded J(8,4) 35 16 6 8 ! Johnson graph J(8,4) 2 70

5 ! truncated 3-Golay code 81 20 1 6 shortened 3-Golay code 3 243

6 ! folded halved 8-cube 64 28 12 12 ! halved 8-cube 2 128

7 S2(S2(McL.)) 105 32 4 12 S2(Soicher1 graph) 3 315

8 Zara graph (126,6,2) 126 45 12 18 3.O−

6
(3) 3 378

9 ! S2(McLaughlin graph) [Br3] 162 56 10 24 ! Soicher1 graph 3 486

10 hyperbolic pts. of PG(6,3) 378 117 36 36 3.O7(3) 3 1134

11 Suzuki graph 1781 416 100 96 Soicher2 [Soi] 3 5346

12 306936 31671 3510 3240 3.F i−
24

3

Non-bipartite antipodal distance-regular graphs of diameter 4.
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1

3

u

S (u)

S (u)

S (u)

S (u)
3

S (u)

4

S (u)
4

4

4

S (u)
4

S (u)
2

3
S (u) S (u)

3

S (u)
3

S (u)

An antipodal distance-regular graph of diameter 4

(the distance partition corresponding to an antipodal class).
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An bf algorithm to calculate all possible intersection
arrays of 1-homogeneous graphs for which we know
that local graphs are connected SRGs with given
parameters,

Given the parameters (k′, λ′, µ′) of a connected SRG,
calculate its eigenvalues k′ = a1 > p > q and

k = v′ =
(a1−p)(a1−q)

a1 + pq
, b1 = k−a1−1, α1 = 1,

β1 = a1 − λ′ − 1, γ1 = 0, δ1 = µ′.
and initialize the sets F := ∅ (final), N := ∅ (new) and
S := {{k, b1, δ1}} (current).

Aleksandar Jurǐsić 208
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Let Γ be a 1-homogeneous graph with diameter d that
is locally connected and let δ0 := 0.

Then ai 6= 0, a1 − γi 6= 0, and we have the following
recursion: γi =δi−1,

αi =
(a1−δi−1)ci

ai
, δi =

aiµ
′

a1−δi−1
, βi =biδi/ai,

for i ∈ {1, 2, . . . , d − 1}, and when i=d

γd = δd−1, αd = (a1 − δd−1)cd/ad, if ad 6= 0,

and γd = a1, if ad = 0.
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The quotient matrices corresponding to CABi

partitions are, for 1 ≤ i ≤ j, i 6= d,

Qi =





γi a1 − γi 0
αi a1 − βi − αi βi

0 δi a1 − δi



 ,

and when j =d also Qd =

(

γd a1 − γd

αd a1 − αd

)

,

if ad 6= 0, and Qd = (γd), if ad = 0
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Theorem [JK’00]. Γ drg, diam. d, a1 6= 0. Then

Γ is 1-homogeneous ⇐⇒ Γ has the CAB property.

A two way counting gives us for i = 2, . . . , d:

αici−1 = σi αi−1,

βi−1bi = τi−1 βi,

γi(ci−1 − σi−1) = ρi αi−1.
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A local approach

For x, y ∈ V (Γ), s.t. ∂(x, y) = i, let CABi(x, y) be
the partition {Ci(x, y), Ai(x, y), Bi(x, y)} of Γ(y).

c aa −γ1
γd

d d dαd
ic ai

a
iba

a
iδ

1

−γ
−δ−α −i i

1

1 i
γi a −α1 d

αi βi

βi

Γ has the CABj property, if ∀i ≤ j the partition
CABi(x, y) is equitable ∀x, y ∈ V (Γ), s.t. ∂(x, y) = i.

the CAB1 property ⇐⇒ Γ is locally strongly regular
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The local graph ∆(x) is the subgraph of Γ induced
by the neighbours of x. It has k vertices & valency a1.

All local graphs of a 1-homogeneous graph are

(i) connected strongly regular graphs

with the same parameters, or

(ii) disjoint unions of (a1+1)-cliques.
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Some examples of 1-homo. graphs, cont.

• the Taylor graphs,

• the Johnson graph J(2d, d),

• the folded Johnson graph J(4d, 2d),

• the halved n-cube H(n, 2),

• the folded halved (2n)-cube,

• cubic distance-regular graphs.

0
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0
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2 1
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2 1
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1 1
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1
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the dodecahedron
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4

2

4

0 4

1
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1

2 112
1

1

1

11

1

1

0 0

0
1

0

2

1
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1

the Coxeter graph

1
2
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2 1
0
4 22

1

1
2 1

0

2 2 1
0

4 2
0

1 1 1
1

1 1
1
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1

11

8
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11 1 1
1

1

1 1

1

8
1 1

0

1
1

8

0
11

1

8

8

8 8

88

8

1

1

11 1

1

0
1

the Biggs-Smith graph
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A 1-homogeneous graph Γ of diameter d ≥ 2 and
a1 6= 0 is locally disconnected iff it is a regular near
2d-gon (i.e., a distance-regular graph with ai = cia1

and no induced K1,2,1).

a1

b3b2b1

a1

σ2 bib1 b2 b3

bi

b3c2b2b1

c2
ci

D
i

i
i

Di

D
+1
i+1

i

i

D

a
D2

2
1

3D

DD2
1
1

2 3
3D

D3
1
2

2D

1

1

1

1

1

1

σ3

y

x −1

−1 Dd
D

D

D d

D

d d

d dσd

cai i−   + σi

σ
d−1

c

σi

i

ci−1

−1

i−σ

iic−σ

bd−1 −1cd

−1d

c
d −2 bd−1 −1cd

bd−1

D
i−1

D
i+1

i

i

ci−  
ci

i−ai−1
+1

i−1a

−1Di d−2
d−1

d−2 -1
d
dDi−2

i−1

i
−1
−1

−2
D

i
i−1

Dd−1
−2

If Γ is locally disconnected, then for i = 1, . . . , d − 1.

τi = bi and σi+1 =
ci+1ai

ai+1
.
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Set H = H(x, y) := Span{x̂, ŷ, w11}
Suppose Γ is 1-homogeneous. So AW = W . The
Bose-Mesner algebra M is generated by A, so also
MW =W =MH (:=Span{mh |m ∈ M, h ∈ H}).
E0, E1, . . . , Ed is a basis for M, so EiEj = δijEi and

MH =
d
∑

i=0

EiH (direct sum),

Note dim(E0H) = 1 and 3 ≥ dim(EiH) ≥ 2, and
dim(EiH) = 2 implies i ∈ {1, d}.
If t := |{i | dim(EiH) = 2}|, then t ∈ {0, 1, 2} and
dim(MH) = 3d + 1− t. Hence t = 2 when ad = 0.
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Consider the partial fraction decompostion

b1
k + θ(a1 + 1)

(k + θ)(1 + θ)
=

b1

k − 1

( ka1

k + θ
+

b1

1 + θ

)

.

Since the map F : R \ {−k,−1} −→ R, defined by

x 7→ ka1

k + x
+

b1

1 + x

is strictly decreasing on the intervals (−k,−1) and
(−1,∞), we find that the least upper bound for f is
obtained at θ = θ1, and and the greatest lower bound
is obtained at θ = θd:

b1
k + θd(a1+1)

(k+θd)(1+θd)
≤ f ≤ b1

k + θ1(a1+1)

(k+θ1)(1+θ1)
.
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So

(ω − ω2)(1 + ω)f ≤ (1 − ω)(a1ω + 1 + ω),

i.e.,

(k + θ)(1 + θ) f ≤ b1

(

k + θ(a1 + 1)
)

.

We now consider which of θ1, θ2, . . . , θd gives the best
bounds for f . Let θ denote one of θ1, θ2, . . . , θd, and
assume θ 6= −1. If θ > −1 (resp. θ < −1), the
obtained inequality gives an upper (resp. lower) bound
for f .
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For ∀xy ∈ EΓ, we define the scalar f = f(x, y):

f =
1

a1

∣

∣

∣{(z, w) ∈ X2 | z, w ∈ Γ(x, y), ∂(z, w) = 2}
∣

∣

∣.

f is the average degree of the complement of the
λ-graph. Then 0 ≤ f ≤ a1 − 1, b1 and for θ ∈ ev(Γ),
E = E(θ) the Gram matrix of Ex̂, Eŷ, w11 is

m3
θ

n
det





ω0 ω1 a1ω1

ω1 ω0 a1ω1

a1ω1 a1ω1 c





where c = a1

(

ω0 + (a1 − f − 1)ω1 + fω2

)

.
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Modules

Γ distance-regular, diam. d ≥ 2. Let x and y be
adjacent vertices and Dj

i = Dj
i (x, y).

Suppose a1 6= 0. Then for i 6= d, ai 6= 0, i.e.,
Di

i 6= ∅. Moreover, Dd
d = ∅ iff ad = 0.

Let wij be a characteristic vector of the set Dj
i and

W = W (x, y):= Span{wij | i, j = 0, . . . , d}. Then

dim W =

{

3d if ad 6= 0,
3d − 1 if ad = 0.
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Terwilliger graphs

A connected graph with diameter at least two is called
a Terwilliger graph when every µ-graph has the
same number of vertices and is complete.

A distance-regular graph with diameter d ≥ 2 is a
Terwilliger graph iff it contains no induced C4.

Corollary [JK’00]. A Terwilliger graph with c2≥2

is 1-homogeneous iff it is one of the following graphs:
(i) the icosahedron,

(ii) the Doro graph,

(iii) the Conway-Smith graph.
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Locally Moore graphs

Theorem [JK’00]. A graph whose local graphs

are Moore graphs is 1-homogeneous iff it is one
of the following graphs:
• the icosahedron ({5, 2, 1; 1, 2, 5}),
• the Doro graph ({10, 6, 4; 1, 2, 5}),
• the Conway-Smith graph ({10, 6, 4, 1; 1, 2, 6, 10}),
• the compl. of T (7) ({10, 6; 1, 6}).
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for i ≥ 2 and S 6= ∅ do

for {c2, . . . , ci−1, δi−1; k, b1, . . . , bi−1} ∈ S do

γi := δi−1;

if γi = a1 then ai = 0; ci = k; F := F ∪ {{k, b1, . . . , bi−1; 1, c2, c3, . . . , ci}} fi;

if γi < a1 then

assume diameter = i and calculate αi, ai, ci

if

(

ki ∈ N and αi, ai, ci ∈ N and ai(a1 − αi)/2, ciγi/2 ∈ N0

)

then F := F ∪ {{k, b1, . . . , bi−1; 1, c2, . . . , ci}} fi;

assume diameter > i;

for ci = max(ci−1, γi) + 1, . . . , b1 do

calculate αi, βi, δi, bi, ai

if

(

ki ∈ N and αi, βi, δi, bi, ai ∈ N and δi ≥ γi

and
ciγi

2
,

(a1 − βi − αi)ai

2
,

bi(a1 − δi)

2
∈ N0

)

then N := N ∪ {{c2, . . . , ci, δi; k, b1, . . . , bi}} fi;
od;

fi;
od;
S := N ; N := ∅;

od;
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Fundamental bound (FB) [JKT’00]

Γ distance-regular, diam. d ≥ 2,
and eigenvalues θ0 > θ1 > · · · > θd.

(

θ1 +
k

a1 + 1

)(

θd +
k

a1 + 1

)

≥ −ka1b1

(a1 + 1)2

If equality holds in the FB and Γ is nonbipartite,

then Γ is called a tight graph.

For d=2 we have b1 =−(1+θ1)(1+θ2), b+ =θ1, b−=θ2,
and thus Γ is tight (i.e., θ1 = 0) iff Γ = Kt×n with
t > 2 (i.e., a1 6= 0 and µ = k).
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Since k is the spectral radious, by the expression for
1 − ω2, we have θ > −b1 − 1 and thus also

(1 + θ)ηi ≥ −(θ + b1 + 1).

If θ > −1, then

ηi ≥ −θ + b1 + 1

θ + 1
= −1 − b1

θ + 1
.

The expression on the RHS is an increasing function,
so it is uper-bounded by b−.

Similarly if θ < −1, then ηi is lower-bounded by b+.

Aleksandar Jurǐsić 223
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Since Γ is not complete multipartite, we have ω2 6= 1
and

N = Ik + N1ω1 + (Jk − Ik − N1)ω2

= (1 − ω2)

(

Ik + N1
ω1 − ω2

1 − ω2
+ Jk

ω2

1 − ω2

)

.

The matrix N/(1 − ω2) is positive semi-definite,
so its eigenvalues are nonegative and we have
for i = 2, . . . , k:

1 +
ω1 − ω2

1 − ω2
ηi ≥ 0, i.e., 1 +

1 + θ

θ + b1 + 1
ηi ≥ 0.
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Theorem [Terwilliger]. Let x be a vertex of

a distance-regular graph Γ with diameter d ≥ 3,
a1 6= 0 and let

a1 = η1 ≥ η2 ≥ . . . ≥ ηk

be the eigenvalues of the local graph ∆(x). Then,

b+ ≥ η2 ≥ ηk ≥ b−.

Proof. Let us define N1 to be the adjacency matrix
of the local graph ∆ = ∆(x) for the vertex x and
let N to be the Gram matrix of the normalized
representations of all the vertices in ∆.

Aleksandar Jurǐsić 221
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Let us rewrite this for a local graph of a vertex of a
distance-regular graph:

k ≤ (a1 − b−)(a1 − b+)

a1 + b−b+
.

where b− and b+ are the lower and the upper bound

for the nontrivial eigenvalues of the local graph.

We define for a distance-regular graph with diam. d
and eigenvalues θ0 > θ1 > · · · > θd

b− = −1 − b1

θ1 + 1
and b+ = −1 − b1

θd + 1
,

and note b− < 0 and b+ > 0.
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Now suppose that r and s are resp. an upper and
lower bounds on the nontrivial eigenvalues.
Hence (ηi − r)(ηi − s) ≤ 0 for i 6= 1, and so

k
∑

i=2

(ηi − s)(ηi − r) ≤ 0,

which is equivalent to

n(k + rs) ≤ (k − s)(k − r).

Equality holds if and only if

ηi ∈ {r, s} for i = 2, . . . , n,

i.e., Γ is strongly regular with eigenvalues k, r and s.
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Lemma. Let Γ = be a k-regular, connected graph
on n vertices, e edges and t triangles, with
eigenvalues

k = η1 ≤ η2 ≤ · · · ≤ ηn.

Then

(i)
∑n

i=1 ηi = 0,

(ii)
∑n

i=1 η2
i = nk = 2e,

(iii)
∑n

i=1 η3
i = nkλ = 6t,

if λ is the number of triangles on every edge.
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IX. Tight distance-regular graphs

• alternative proof of the fundamental bound
• definition
• characterizations
• examples
• parametrization
• AT4 family
• complete multipartite µ-graphs
• classifications of AT4(qs, q, q) family
• uniqueness of the Patterson graph
• locally GQ
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(vi) The 3.O7(3)-graph has intersection array
{117, 80, 24, 1; 1, 12, 80, 117} and can be obtained from
a sporadic Fisher group. It is distance-transitive, an
antipodal 3-fold cover, and is not Q-polynomial.

Each local graph is strongly-regular with parameters
(117, 36, 15, 9), and nontrivial eigenvalues r = 9,
s = −3.

1

1

60

936
1

0

8

1
27

24

5436

1 1 2
0

1

36 72

80

540

80

80

36
80

54

24

60 15

54

15

20

20
2

2 54

27

9

1

1

9

168

57 168

4

12
27

12
27

1
9

14

14

1

36

120

20

2

16080

80 160

Aleksandar Jurǐsić 232
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(v) The 3.O−
6 (3)-graph has intersection array

{45, 32, 12, 1; 1, 6, 32, 45} and can be obtained from
a sporadic Fisher group. It is distance-transitive, an
antipodal 3-fold cover, and is not Q-polynomial.

Each local graph is a generalized quadrangle
GQ(4, 2), with parameters (45, 12, 3, 3) and
nontrivial eigenvalues r = 3, s = −3.

1

1

9

24 2

12
1
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1 0
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(iv) The Conway-Smith graph, 3.Sym(7) has
intersection array {10, 6, 4, 1; 1, 2, 6, 10} and can be
obtained from a sporadic Fisher group.

It is distance-transitive, an antipodal 3-fold cover, and
is not Q-polynomial.

Each local graph is a Petersen graph, with
parameters (10, 3, 0, 1) and nontrivial eigenvalues
r = 1, s = −2.

1

1

6
2

4

4
12

1
1

2

1

3
1

3

2 1

2
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(iii) The Taylor graphs are the double-covers of
complete graphs, i.e., distance-regular graphs with
intersection arrays {k, c2, 1; 1, c2, k}. They have
diameter 3, and are Q-polynomial with respect to both
θ1, θd, given by θ1 = α, θd = β, where

α + β = k − 2c2 − 1, αβ = −k, and α > β.

Each local graph is strongly-regular with parameters
(k, a1, λ, µ), where a1 = k − c2 − 1,

λ =
3a1 − k − 1

2
, µ =

a1

2
, r =

α − 1

2
and s =

β − 1

2
.

We note both a1, c2 are even and k is odd.

For example, the local graphs of the double-cover of
K18 with c2 = 8 are the Paley graphs P (17).
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(ii) The halved cube H(2d, 2) has diameter d and
intersection numbers (i = 0, . . . d)

ai = 4i(d−i), bi = (d−i)(2d−2i−1), ci = i(2i−1).

It is distance-transitive, antipodal double-cover and
Q-polynomial with respect to θ1.

Each local graph is a Johnson graph J(2d, 2),
with parameters (d(2d− 1), 4(d− 1), 2(d− 1), 4) and
nontrivial eigenvalues r = 2d − 4, s = −2.

1
1
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(i) The Johnson graph J(2d, d) has diameter d
and intersection numbers

ai = 2i(d − i), bi = (d − i)2, ci = i2 (i = 0, . . . , d).

It is distance-transitive, antipodal double-cover and
Q-polynomial with respect to θ1.

Each local graph is a lattice graph Kd × Kd,
with parameters (d2, 2(d − 1), d − 2, 2) and
nontrivial eigenvalues r = d − 2, s = −2.

1

1
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4

6
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4
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Examples of tight graphs

• the Johnson graph J(2d, d),

• the halved cube H(2d, 2),

• the Taylor graphs,

• the AT4 family
(antipodal tight DRG with diam. 4),

• the Patterson graph {280, 243, 144, 10; 1, 8, 90, 280}
(related to the sporadic simple group of Suzuki).
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Characterizations of tight graphs

Theorem [JKT’00]. A nonbipartite

distance-regular graph Γ with diam. d ≥ 3
and eigenvalues θ0 > θ1 > · · · > θd. TFAE
(i) Γ is tight.

(ii) Γ is 1-homogeneous and ad = 0.

(iii) the local graphs of Γ are connected strongly

regular graphs with eigenvalues a1, b
+, b−, where

b− = −1 − b1

θ1 + 1
and b+ = −1 − b1

θd + 1
.
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Characterization of tight graphs

Theorem [JKT’00]. Γ nonbipartite dr, diam.

d ≥ 3, and eigenvalues θ0 > θ1 > · · · > θd.

Let θ = θ1 and θ′ = θd with respective
cosine sequences σ0, σ1, . . . , σd and ρ0, ρ1, . . . , ρd.

Let ε = (σρ − 1)/(ρ − σ) > 1. TFAE

(i) Γ is tight.

(ii)
σσi−1 − σi

(1 + σ)(σi−1 − σi)
=

ρρi−1 − ρi

(1 + ρ)(ρi−1 − ρi)

(1 ≤ i ≤ d) and the denominators are nonzero.

(iii) σiρi−σi−1ρi−1 = ε(σi−1ρi−ρi−1σi) (1≤ i≤d).
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Let Γ be a distance-regular graph with diameter d ≥ 3.
Then for any complex numbers θ, σ0, . . . , σd, TFAE.

(i) θ is an eigenvalue of Γ, and σ0, σ1, . . . , σd is
the associated cosine sequence.

(ii) σ0 = 1, and for 0 ≤ i ≤ d,

ciσi−1 + aiσi + biσi+1 = θσi

where σ−1 and σd+1 are indeterminates.

(iii) σ0 = 1, kσ = θ, and for 1 ≤ i ≤ d,

ci(σi−1 − σi) − bi(σi − σi+1) = k(σ − 1)σi

where σd+1 is an indeterminate.
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Theorem [JKT’00]. Γ dr, diam. d ≥ 3.

Let θ, θ′ be a permutation of θ1, θd, with respective
cosine sequences σ0, σ1, . . . , σd and ρ0, ρ1, . . . , ρd.
Then for 1 ≤ i ≤ d − 1

k =
(σ − σ2)(1 − ρ) − (ρ − ρ2)(1 − σ)

(ρ − ρ2)(1 − σ)σ − (σ − σ2)(1 − ρ)ρ
,

bi = k
(σi−1−σi)(1−ρ)ρi − (ρi−1−ρi)(1−σ)σi

(ρi−ρi+1)(σi−1−σi) − (σi−σi+1)(ρi−1−ρi)

ci = k
(σi−σi+1)(1−ρ)ρi − (ρi − ρi+1)(1−σ)σi

(ρi−ρi+1)(σi−1−σi) − (σi−σi+1)ρi−1−ρi)

cd = kσd
σ − 1

σd−1 − σd
= kρd

ρ − 1

ρd−1 − ρd
,

and the denominators are never zero.
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(xi) The Meixner2 graph has intersection
array {176, 135, 36, 1; 1, 12, 135, 176}. It is
antipodal 4-cover and is distance-transitive.

Each local graph is SRG(176,40,12,8)
and r = 8, s = −4.
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(x) The Meixner1 graph has intersection
array {176, 135, 24, 1; 1, 24, 135, 176}. It is
antipodal 2-cover and is Q-polynomial.

Each local graph is SRG(176,40,12,8)
and r = 8, s = −4.
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(ix) The Soicher2 graph has intersection
array {416, 315, 64, 1; 1, 32, 315, 416}. It is
antipodal 3-cover and is not Q-polynomial.

Each local graph is SRG(416,100,36,20)
and r = 20, s = −4.
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(viii) The Soicher1 graph has intersection array
{56, 45, 16, 1; 1, 8, 45, 56}. It is antipodal 3-cover and
is not Q-polynomial.

Each local graph is the Gewirtz graph with
parameters (56, 10, 0, 2) and r = 2, s = −4.
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(vii) The 3.F i−
24-graph has intersection array

{31671, 28160, 2160, 1; 1, 1080, 28160, 31671} and can
be obtained from Fisher groups.
It is distance-transitive, antipodal 3-cover and is not
Q-polynomial.

Each local graph is SRG(31671,3510,693,351)
and r = 351, s = −9. They are related to Fi23.
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Known examples of AT4 family

# graph k p q r µ µ-graph

1 ! Conway-Smith 10 1 2 3 2 K2

2 ! J(8, 4) 16 2 2 2 4 K2,2

3 ! halved Q8 28 4 2 2 6 K3×2

5 3.O−
6 (3) 45 3 3 3 6 K3,3

4 ! Soicher1 56 2 4 3 8 2·K2,2

6 3.O7(3) 117 9 3 3 12 K4×3

7 Meixner1 176 8 4 2 24 2·K3×4

8 Meixner2 176 8 4 4 12 K3×4

9 Soicher2 416 20 4 3 32 K2-ext. of Q5

10 3.F i−24 31671 351 9 3 1080 O+
8 (3)
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Open cases
# k p q r µ µ-graph

1 81 6 3 3 9 6 ∃ by [JK]

3 96 4 4 4 8 6 ∃ by [JK]

7 175 5 5 5 10 6 ∃ by [JK]

9 189 15 3 3 18 6 ∃ by [JK]

2 96 4 4 2 16 2 · K4,4

4 115 3 5 2 20 2 · Petersen

5 115 3 5 4 10 Petersen

6 117 9 3 2 18 K9,9???

8 176 8 4 3 16 2 · K8,8

10 204 4 6 2 30 5 · K3×2

11 204 4 6 5 12 2 · K3×2

12 261 21 3 2 36 no idea???

13 288 6 6 2 36 3 · K6,6

14 288 6 6 3 24 2 · K6,6

15 329 5 7 2 42 7 · K6

16 336 16 4 2 40 2 · K5×4

17 416 20 4 2 48 2 · K6×4
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Ruled out cases
# k b+ −b− r (I)(II)(III)

1 45 3 3 2 *
2 45 3 3 6 * *
3 56 2 4 4 *
4 56 2 4 8 *
5 81 6 3 9 *
6 96 4 4 8 *
7 115 3 5 5 *
8 115 3 5 8 *
9 115 3 5 10 *

10 117 9 3 4 * *
11 117 9 3 6 *
12 117 9 3 9 * *
13 175 5 5 2 *
14 176 8 4 6 *
15 189 15 3 6 * *
16 189 15 3 2 *
17 204 4 6 3 *
18 204 4 6 4 *
19 261 21 3 4 *
20 414 9 6 2 * *
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Theorem. Γ antipodal tight graph AT4(p, q, r).
Then
(i) pq(p + q)/r is even,

(ii) r(p + 1) ≤ q(p + q),
with equality iff µ-graphs are complete,

(iii) r | p + q,

(iv) p ≥ q − 2, with equality iff q4
44 = 0.

(v) p + q | q2(q2 − 1),

(vi) p + q2 | q2(q2 − 1)(q2 + q − 1)(q − 2).
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Theorem. Γ antipodal distance-regular, diam. 4,
eigenvalues k = θ0 > · · · > θ4, p, q ∈ N. TFAE

(i) Γ is tight,

(ii) the antipodal quotient is

SRG(k=q(pq+p+q), λ=p(q+1), µ=q(p+q)),

(iii) θ0 =qθ1, θ1 =pq+p+q, θ2=p, θ3=−q, θ4 =−q2,

(iv) for each v ∈ V (Γ) the local graph of v is

SRG(k′=p(q+1), λ′=2p−q, µ′=p) (ev. p,−q).

If Γ satisfies (i)-(iv) and r is its antipodal class
size, then we call it an antipodal tight graph
AT4(p, q, r).
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(iii) Γ is nonbipartite and Eθ◦Eθ′ is a scalar multiple

of a primitive idempotent Eτ .

(iv) Γ is nonbipartite and for a vertex x the

irreducible T (x)-module with endpoint 1 is

short.

Moreover, if Γ is tight, then the above conditions
are satisfied for all edges and vertices of Γ,

{θ, θ′} = {θ1, θd}
and τ = θd−1.
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Parametrization

Theorem [JKT’00]. Γ nonbip., dr, diam. d ≥ 3,

and let σ0, σ1, . . . σd, ε, h ∈ C be scalars. TFAE

(i) Γ is tight, σ0, σ1, . . . σd is the cosine sequence

corresponding to θ1, associated parameter

ε = (k2 − θ1θd) / (k(θ1 − θd)) and

h = (1 − σ)(1 − σ2) / ((σ2 − σ2)(1 − εσ)).

(ii) σ0=1, σd−1 =σσd, ε > −1, k=h(σ−ε)/(σ−1),

cd = k, for 1 ≤ i ≤ d − 1

bi, ci = = h
(σi∓1 − σ1σi)(σi±1 − εσi)

(σi∓1 − σi±1)(σi±1 − σi)

and denominators are all nonzero.
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Conjecture [J’03].

AT4(p, q, r) family is finite and either

1. (p, q, r) ∈ {(1, 2, 3), (20, 4, 3), (351, 9, 3)},
2. q | p and r = q or r = 2, i.e.,

AT4(qs, q, q) or AT4(qs, q, 2)
(a local graph is pseudogeometric),

3. p = q − 2 and r = q or r = 2, i.e.,
AT4(q−2, q, q) or AT4(q−2, q, 2).

(Γ̃2(x) is strongly regular),
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Equality:
w11(u, v) = c(Eû + Ev̂),

where c is a constant, for any u, v, ∂(u, v) = 2 ⇐⇒
E corr. to θ4 and p = q − 2 (c = −2(q − 1)/4), or
E corr. to θ1 and r = 2 (c = (p + q)/2).

The case q | p

Lemma [JK’02]. Let Γ be a AT4(p, q, r). Then Γ

is pseudogeometric (p + 1 + p/q, q, p/q) iff q | p.
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Proof. Cauchy-Schwartz inequality

||w11||2||Eû + Ev̂||2 − w11(Eû + Ev̂) ≥ 0,

where
w11 =

∑

w∈D1
1(u,v)

Eŵ

for ∂(u, v) = 2, simplifies to

1 − γ2 +
c2(γ2+γ2

2−2γ2
1)

1+γ2
+ µ′(γ1 − γ2) ≥ 0.

where {γi} is the cosine seq. corr. to E, and µ′ is the
valency of D1

1(u, v).
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Algebraic Combinatorics, 2007

Example: The Soicher1 graph (q = 4 and r = 3).
Γ2(v) induces {32, 27, 8, 1; 1, 4, 27, 32}
(Soicher has found this with the aid of a computer).
The antipodal quotient of this graph is the strongly
regular graph, and it is the second subconstituent
graph of the second subconstituent graph of the
McLaughlin graph.

All local graphs are the incidence graphs of
AG(2, 4)\ a parallel class ({4, 3, 3, 1; 1, 1, 3, 4}), i.e.,
the antipodal 4-covers of K4,4.
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The case p = q − 2

Theorem [J’02]. Let Γ be AT4(p, q, r).

Let p = q − 2, i.e., q4
44 = 0. Then ∀v ∈ V (Γ)

Γ2(v) induces an antipodal drg with diam. 4.

If r = 2 then Γ is 2-homogeneous.
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Γ graph, diam.d ≥ 2, u, v ∈ V (Γ), dist(u, v) = 2.
The µ-graph of u and v is the graph induced by
D1

1(u, v) = Γ(u) ∩ Γ(v).
u v

Lemma [JK’03]. Γ distance-regular, local graphs
are strongly regular (v′, k′, λ′, µ′). Then
1. µ-graphs of Γ are µ′-regular,
2. c2µ

′ is even, and
3. c2 ≥ µ′ + 1, (equality ⇐⇒ µ-graphs are Kµ),

For the AT4 family we know also r | p+q, p ≥ q−2.
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Lemma. Let Γ have a CAB2 property with
µ-graphs Kt×n, n ≥ 2, t ≥ 3 and let α ≥ 3.
Let xyz be a triangle of Γ and L be a

lower bound on the valency of ∆(x, y, z). Then

(v′′ − 1 − k′′)µ′′ ≤ k′′(k′′ − 1 − L),

with equality iff ∀ edges xy ∆(x, y) is

SRG(v′′, k′′, λ′′, µ′′), where λ′′ = L.

We derive the following lower bound:

L := α − 2 + (n − 1)
(

(t − 3)n − (α − 3)
)

.
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Theorem [JK]. Γ drg, Kµ′,µ′ as µ-graphs and α=2.

Then the local graphs of Γ are GQ(∗, µ′ − 1) with

regular points. A line size c satisfies v′ = c(k′−c+2).

If the local graphs of Γ are SRG(v′, k′, λ′, µ′), then

they are GQ(λ′ + 1, µ′ − 1).

In particular, a local graph of P is the point graph

of the unique generalized quadrangle GQ(3, 9) with

all points regular.

We will use uniqueness of small
generalized quadrangles with all points regular
to prove uniqueness of much larger object.
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Corollary [JK]. The µ-graphs of AT4(qs, q, q) are

K(s+1)×q and α=s+1.

The µ-graphs of the Patterson graph (and of any

other graph P with the same intersection array)

are K4,4 and α = 2.
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Let x, y ∈ Γ, s.t. ∂(x, y) = 2 and let M = D1
1(x, y).

Then M induces the graph of valency µ′ on c2 vertices.
Let u, v ∈ M , s.t. ∂(u, v) = 2

Suppose D1
1(u, v) ∩ M

= {z1, z2, . . . , zt}
where t < p.

Then D1
1(u, v)∩D1

2(x, y)
= {y1, y2, . . . , ys}
and D1

1(u, v) ∩ D1
1(x, y)

= {x1, x2, . . . , xs}
where µ′ = s + t.
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When do we know the µ-graphs?

Theorem [JK]. Γ distance-regular, diam. d ≥ 2,

a2 6= 0, locally SRG(v′, k′, λ′, µ′), and ∃ α ≥ 1. Then

(i) If c2 > µ′ + 1 and 2c2 < 3µ′ + 6 − α, then

the µ-graphs are Kt×n, n = c2−µ′, t = c2/n.

(ii) If α = 1 and µ′ 6= 0, then c2 = 2µ′, λ′ = 0 and

the µ-graphs are Kµ′,µ′,

(iii) If α = 2, 2 ≤ µ′ and c2 ≤ 2µ′, then c2 = 2µ′

and the µ-graphs are Kµ′,µ′ or K3×µ′.
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Kt×n:= t · Kn (= Kt
n), for example K2×3 = K3,3.

Γ k-regular, v vertices and let any two vertices at
distance 2 have µ = µ(Γ) common neighbours. Then it
is called co-edge-regular with parameters (v, k, µ).

Lemma [JK’03]. Γ distance-regular, diam. d≥2,
Kt×n as µ-graphs, a2 6= 0 and ∃ α 6= 1. Then

(i) c2 = nt, each local graph of Γ is co-edge-regular
with parameters (v′ = k, k′ = a1, µ

′ = n(t − 1))
and αa2 = c2(a1 − µ′),

(ii) α = t or α = t − 1.
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CAB2 property and parameter α

Γ drg, d≥2, a2 6=0, ∂(x, z)=2=∂(y, z), ∂(x, y)=1:

α := Γ(z) ∩ Γ(y) ∩ Γ(x).
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We say ∃ α when α = α(x, y, z) ∀(x, y, z)∈ (V Γ)3

s.t. ∂(x, z)=2 = ∂(y, z), ∂(x, y)=1.
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Algebraic Combinatorics, 2007

Complete multipartite graphs:

Kt×n, and examples K2×3 = K3,3 and K3×3.
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The Patterson graph

is defined as the graph Γ with:

22.880 centers (of order 3) of the Sylow 3-groups of

the sporadic simple group of Suzuki (Suz, see Atlas)

of order 213 · 37 · 52 · 7 · 11 · 13 as the vertices,

two adjacent iff they generate an abelian subgroup
of order 32.

Problem ([BCN,p.410]): Is this graph unique?

(uniquely determined by its regularity properties)
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Algebraic Combinatorics, 2007

Meixner2

We obtained that the antipodal quotient of Meixner2
has parameters {176, 135; 1, 48},
with λ = 40 and µ-graphs 4.K3×4,
whose local graphs have parameters {40, 27; 1, 8},
with λ′ = 12 and µ-graphs K4,4,
whose local graphs have parameters {12, 9; 1, 4},
with λ′′ = 2 and µ-graphs 4.K1.
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The 3.O−
7 (3) graph

We obtained that the antipodal quotient of Γ
has parameters {117, 80; 1, 36},
with λ = 36 and µ-graphs 3.K4×3,
whose local graphs have parameters {36, 20; 1, 9},
with λ′ = 15 and µ-graphs K3×3,
whose local graphs have parameters {15, 8; 1, 6},
with λ′′ = 6 and µ-graphs K2×3,
whose local graphs have parameters {6, 4; 1, 3},
with λ′′′ = 1 and µ-graphs 3.K1.
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The 3.O−
6 (3) graph

{45, 32, 12, 1; 1, 6, 32, 45}, distance-transitive,
3-cover of SRG(126, 45, 12, 18), not Q-poly.,
locally generalized quadrangle GQ(4, 2).
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The Meixner2 graph

The graph Un has for its vertices the nonisotropic
points of the n-dim. vector space over GF (4) with a
nondegenerate Hermitean form,
and two points adjacent if they are orthogonal.

U4 is GQ(3, 3) (W3), and Un+1 is locally Un.

The Meixner2 graph is U6, so it has 2688 vertices,
valency 176 and (the local graphs of)2 it are
GQ(3, 3).
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The 3.O7(3) graph

is a 3-cover of the graph Γ,
defined on the hyperbolic points in PG(6, 3),
provided with a nondegenerate quadric,
and points adjacent when they are orthogonal.

It can be described in terms of a system of complex
vectors found in Atlas (p.108).
It has 1134 vertices and valency 117.

Then (the local graphs of)3 Γ and its covers are
GQ(2, 2).
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The 3.O−
6 (3) graph

is a 3-cover of the graph Γ,
defined on 126 points of one kind in PG(5, 3),
provided with a quadratic form
of a non-maximal Witt index
and two points adjacent when they are orthogonal.

It can be described with Hermitean form in PG(3,4).
It has 378 vertices and valency 45.

Then the local graphs of Γ and its covers are
GQ(4, 2).
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Classification of the AT4(qs, q, q) family

Theorem [JK]. The µ-graphs of Γ = AT4(p, q, r)
are complete multipartite graphs Kt×n iff Γ is

1. the Conway-Smith graph (locally Petersen graph),
2. the Johnson graph J(8, 4) (locally GQ(3, 1)),
3. the halved 8-cube (locally T (8)),
4. the 3.O−

6 (3) graph (locally GQ(4, 2),
5. the Meixner2 graph (locally locally GQ(3, 3)),
6. the 3.O7(3) graph (locally locally locally GQ(2, 2)).
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Γ tight, diam. 4, α = 2, Kt+1,t+1 as µ-graphs.

Example 1: If local graphs are GQ(t2, t), then

{(t2+1)(t3+1), t5, t2(t+1)(t−1)2, (t−1)(t2−t−1);

1, 2(t+1), 2t2(t+2), (t2+1)(t3+1)}.
For t = 2 we get the 3.O−

6 (3) graph and
for t = 3 the Patterson graph,
for t = 4 the existence is OPEN,
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Algebraic Combinatorics, 2007

Corollary. If an AT4(p, q, r) has a µ-graph that is
not complete multipartite, then either

1.
(p + q)(2q + 1)

3(p + 2)
≥ r ≥ q + 1,

2. r = q − 1 if and only if p = q − 2

3. r ≤ q − 2.
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The 1-homogeneous property and the CAB property.
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The distance-partitions of Γ corresp. to an edge

(i.e., the collection of nonempty sets Dh
j (x, y)) are also

equitable (∀xy ∈ EΓ):
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So the Patterson graph is 1-homogeneous.
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Theorem [BJK]. A distance-regular graph P
with intersection array

{280, 243, 144, 10; 1, 8, 90, 280} (22.880 vertices)

is unique.

For example, the icosahedron is a unique graph,
that is locally pentagon.

The Petersen graph is a unique strongly-regular
graph (10, 3, 0, 1), i.e., {3, 2; 1, 1}.
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The Patterson graph is distance-regular
with intersection array

{280, 243, 144, 10; 1, 8, 90, 280}
and eigenvalues 2801, 80364, 205940, −815795, −28780.

280
1

243
8 90

144 10280 2808505 13608 486

36 128 180 0

group Suz.2 (distance-transitive)
point stabilizer 3 · U4(3).(22)133

locally GQ(9, 3) (group U4(3).D8).
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The derived design of the Steiner system S(4, 7, 23)
defines the McLaughlin graph, i.e.,
the unique SRG(275, 112, 30, 56).

This graph is locally GQ(3, 9) and the second
subconstituent graph is a unique SRG(162, 56, 10, 24).

We can find it in the Suz as an induced subgraph.

4556
10

1
32

= 162v24
56 105Γ2(McLaughlin) = Σ

An alternative definition of the Patterson graph:
Induced Σ’s in Suz, adjacent when disjoint

11-cliques: partitions of Suz in 11 Σ’s
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The Suzuki tower
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Algebraic Combinatorics, 2007

Bibliography

Textbooks

• L.M. Batten, Combinatorics of Finite Geometries,
Cambridge University Press, 2nd Ed, 1997.

• P.J. Cameron and J.H. van Lint,
Designs, Graphs, Codes and Their Links,
London Math. Soc. Student Texts 22, Cambridge
Univ. Press, Cambridge, 1991.

• C.D. Godsil, Algebraic Combinatorics.
Chapman and Hall, New York, 1993.

• C.D. Godsil and G. Royle, Algebraic Graph Theory,
Springer Verlag (New York), 2001.

• J.H. van Lint and R.M. Wilson,
A Course in Combinatorics,
Cambridge Univ. Press, Cambridge, 1992.

Aleksandar Jurǐsić 282
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In Ex.1, the case t = 4 we have the following feasible
intersection array

{1105, 1024, 720, 33; 1, 10, 192, 1105},
and eigenvalues:

11051, 2551911, 55116688,−15424320, −658330.

If it exist, then it has 551,250 vertices
(k2 = 113, 152, k3 = 424, 320, k4 = 12, 672) and its
local graphs are GQ(16, 4) with all points being regular

this is most probably the hermitian generalized
quadrangle H(3, 16)).
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