We study an interplay between algebra and combinatorics, that is known under the name algebraic combinatorics. This is a discrete mathematics, where objects and structures contain some degree of regularity or symmetry.

More important areas of application of algebraic combinatorics are

- coding theory and error correction codes,
- statistical design of experiments, and
- (through finite geometries and finite fields) also cryptography.

We investigate several interesting combinatorial structures. Our aim is a general introduction to algebraic combinatorics and illumination of some important results in the past 10 years.

1. Constructions of some famous combinatorial objects

- Incidence structures
- Orthogonal Arrays (OA)
- Latin Squares (LS), MOLS
- Transversal Designs (TD)
- Hadamard matrices

Let $i \in \mathbb{N}_0$, $i \leq t$ and let $\lambda_i(S)$ denotes the number of blocks containing a given i-set S. Then

1. S is contained in $\lambda_i(S)$ blocks and each of them contains $\binom{v}{i+1}$ distinct t-sets with S as subset;
2. the set S can be enlarged to t-set in $\binom{v-i}{t-i}$ ways and each of these t-set is contained in λ_t blocks:

$$
\lambda_t(S) \binom{v-i}{t-i} = \lambda_t \binom{v-i}{t-i}
$$

Therefore, $\lambda_t(S)$ is independent of S (so we can denote it simply by λ_t) and hence a t-design is also i-design, for $0 \leq i \leq t$.

Incidence structures $t(v, s, \lambda_t)$ design is

- a collection of s-subsets (blocks)
- of a set with v elements (points),
- where each t-subset of points is contained in exactly λ_t blocks.

If $\lambda_t = 1$, then the t-design is called Steiner System and is denoted by $S(t,s,v)$.

We will study as many topics as time permits that include:

- algebraic graph theory and eigenvalue techniques
- associative schemes
- finite geometries and designs

pictures of a graph and characteristic polynomial, equitable partitions, spectral and cover, strongly regular graphs and partial geometries, examples, distance-regular graphs, primitivity and classification, classical families, orthogonal arrays, block designs and algebraic number theory, eigenvalues and their applications, distance-regular graphs, primitivity and classification, classical families, orthogonal arrays, block designs and algebraic number theory, eigenvalues and their applications, distance-regular graphs, primitivity and classification, classical families, orthogonal arrays, block designs and algebraic number theory, eigenvalues and their applications.
2. PG(2, 3) can be obtained from 3×3 grid (or AG(2, 3)).

A partial linear space is an incidence structure in which any two points are incident with at most one line. This implies that any two lines are incident with at most one point.

A projective plane is a partial linear space satisfying the following three conditions:

1. Any two lines meet in a unique point.
2. Any two points lie in a unique line.
3. There are three pairwise noncolinear points (a triangle).

The projective space PG(d, n) (of dimension d and order q) is obtained from $[GF(q)]^{d+1}$ by taking the quotient over linear spaces.

In particular, the projective space PG(2, n) is the incidence structure with 1- and 2-dim. subspaces of $[GF(q)]^3$ as points and lines (blocks), and “being a subspace” as an incidence relation.

The Bruck-Ryser-Chowla Theorem was established in 1963. Suppose \exists SBIBD(v, k, λ).

If v is even, then $k - \lambda$ is a square.

If v is odd, then the Diophantine equation

$$x^2 = (k - \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$$

has nonzero solution in x, y and z.

H.J. Ryser M. Hall Street/Stahl Witt cancellation law

All use Lagrange theorem: $m = a^2 + b^2 + c^2 + d^2$.

For $\lambda_0 = b$ and $\lambda_1 = r$, when $t \geq 2$, we have

$$bs = rv \quad \text{and} \quad r(s-1) = \lambda_2 (v-1)$$

or

$$r = \lambda_2 \frac{v-1}{s-1} \quad \text{and} \quad b = \lambda_2 \frac{v(v-1)}{s(s-1)}.$$

Examples:

1. The projective plane PG(2, 2) is also called the Fano plane (7 points and 7 lines).
3. PG(2, 4) is obtained from \(\mathbb{Z}_{21}\) points \(= \mathbb{Z}_{21}\) and lines \(= \{S + x \mid x \in \mathbb{Z}_{21}\}\) where \(S\) is a 5-element set \(\{3, 6, 7, 12, 14\}\), i.e.,

\[
\{0, 3, 4, 9, 11\} \cup \{1, 4, 5, 10, 12\} \cup \{2, 5, 6, 11, 13\} \cup \{3, 6, 7, 12, 14\} \cup \{4, 7, 8, 13, 15\} \cup \{5, 8, 9, 14, 16\} \cup \{6, 9, 10, 15, 17\} \cup \{7, 10, 11, 16, 18\} \cup \{8, 11, 12, 17, 19\} \cup \{9, 12, 13, 18, 20\} \cup \{10, 13, 14, 19, 0\} \cup \{11, 14, 15, 20, 1\} \cup \{12, 15, 16, 0, 2\} \cup \{13, 16, 17, 1, 3\} \cup \{14, 17, 18, 2, 4\} \cup \{15, 18, 19, 3, 5\} \cup \{16, 19, 20, 4, 6\} \cup \{17, 20, 0, 5, 7\} \cup \{18, 0, 1, 6, 8\} \cup \{19, 1, 2, 7, 9\} \cup \{20, 2, 3, 8, 10\}\]

Note: Similarly the Fano plane can be obtained from \(\{0, 1, 3\}\) in \(\mathbb{Z}_7\).

Orthogonal Arrays

An orthogonal array, OA\((v, s, λ)\), is such \((λv^2 × s)\)-dimensional matrix with \(v\) symbols, that each two columns each of \(v^2\) possible pairs of symbols appears in exactly \(λ\) rows.

This and to them equivalent structures (e.g. transversal designs, pairwise orthogonal Latin squares, nets,...) are part of design theory.

If we use the first two columns of OA\((v, s, 1)\) for coordinates, the third column gives us a Latin square, i.e., \((v × v)\)-dim. matrix in which all symbols \(\{1, \ldots, v\}\) appear in each row and each column.

Example: OA\((3, 3, 1)\)

\[
\begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1 \\
0 & 2 & 1 \\
1 & 0 & 2 \\
2 & 1 & 0
\end{pmatrix}
\]

Three pairwise orthogonal Latin squares of order 4, i.e., each pair symbol-letter or letter-color or color-symbol appears exactly once.

Examples:

- the vertices of a triangle and the center of the circle in Fano plane,
- the vertices of a square in \(\text{PG}(2, 3)\) form oval,
- \(\{0, 1, 2, 3, 5, 14\}\) is such \((λv^2 × s)\)-matrices with \(v\) symbols, that each two columns each of \(v^2\) possible pairs of symbols appears in exactly \(λ\) rows.

The general linear group \(\text{GL}_n(q)\) consists of all invertible \(n × n\) matrices with entries in \(\text{GF}(q)\).

The special linear group \(\text{SL}_n(q)\) is the subgroup of all matrices with determinant 1.

The projective general linear group \(\text{PGL}_n(q)\) and the projective special linear group \(\text{PSL}_n(q)\) are the groups obtained from \(\text{GL}_n(q)\) and \(\text{SL}_n(q)\) by taking the quotient over scalar matrices i.e., scalar multiple of the identity matrix.

For \(n ≥ 2\) the group \(\text{PSL}_2(q)\) is simple except for \(\text{PSL}_2(2) = S_4\) and \(\text{PSL}_2(3) = A_4\) and is by Artin’s convention denoted by \(L_n(q)\).

Theorem. If \(OA(v, s, λ)\) exists, then we have in the case \(λ = 1\)

\[s ≤ v + 1,\]

and in general

\[λ ≥ \frac{s(v - 1) + 1}{v^2}.\]

Transversal design. TD\((s, v)\) is an incidence structure of blocks of size \(s\), in which points are partitioned into \(s\) groups of size \(v\) so that an arbitrary points lie in \(λ\) blocks when they belong to distinct groups and there is no block containing them otherwise.
Proof: The number of all lines that intersect a chosen line of $TD_1(s, v)$ is equal to $(v - 1)s$ and is less or equal to the number of all lines without the chosen line, that is $v^2 - 1$.

In transversal design $TD_1(s, v)$, $\lambda \neq 1$ we count in a similar way and then use the inequality between arithmetic and quadratic mean (that can be derived from Jensen inequality).

Theorem. For a prime p there exists $OA(p,p,1)$, and there also exists $OA(p, (p^d - 1)/(p - 1), p^{d-2})$ for $d \in \mathbb{N}\setminus\{1\}$

Proof: Let $\lambda = 1$. For $i, j, s \in \mathbb{Z}_p$ we define $e_{ij}(s) = is + j \mod p$.

For $\lambda \neq 1$ we can derive the existence from the construction of projective geometry $PG(n, d)$.

For homework convince yourself that each $OA(n, n, 1)$, $n \in \mathbb{N}$, can be extended for one more column, i.e., to $OA(n, n+1, 1)$.

Hadamard matrices

Let A be an $n \times n$ matrix with $|a_{ij}| \leq 1$.

How large can $\det A$ be?

Since each column of A is a vector of length at most \sqrt{n}, we have $\det A \leq n^{n/2}$.

Can equality hold? In this case all entries must be ± 1 and any two distinct columns must be orthogonal.

$(n \times n)$-dim. matrix H with elements ± 1, for which $HH^T = nI_n$ holds is called a Hadamard matrix of order n.

Such a matrix exists only if $n = 1$, $n = 2$ or $4 | n$.

A famous Hadamard matrix conjecture (1893): a Hadamard matrix of order $4s$ exists $\forall s \in \mathbb{N}$.

In 2004 Iranian mathematicians H. Kharaghani and B. Tayfeh-Rezaie constructed a Hadamard matrix of order 428. The smallest open case is now 668.

II. Graphs, eigenvalues and regularity

- adjacency matrix and walks,
- eigenvalues,
- regularity,
- eigenvalue multiplicities,
- Perron-Frobenious Theorem,
- interlacing.

A recursive construction of a Hadamard matrix H_{nm} using H_m, H_n and Kronecker product (hint: use $(A \otimes B)(C \otimes D) = (AB) \otimes (BD)$ and $(A \otimes B)^t = A^t \otimes B^t$).

We could also use conference matrices (Belevitch 1950) use for teleconferencing) with 0 on the diagonal and $CC^t = (n - 1)I$ in order to obtain two simple constructions: if C is antisymmetric ($H = I + C$) or symmetric (H_{2n} consists of four blocks of the form $\pm I \pm C$).

Graphs

A graph Γ is a pair (VT, ET), where VT is a finite set of vertices and ET is a set of unordered pairs xy of vertices called edges (no loops or multiple edges).

Let $\text{VT} = \{1, \ldots, n \}$. Then a $(n \times n)$-dim. matrix A is the adjacency matrix of Γ, when $A_{ij} = \begin{cases} 1, & \text{if } \{i, j\} \in \text{ET}, \\ 0, & \text{otherwise} \end{cases}$

Lemma. $(A^h)_{ij} = \# \text{walks from } i \text{ to } j \text{ of length } h$.
Eigenvalues

The number $\theta \in \mathbb{R}$ is an eigenvalue of Γ, when for a vector $x \in \mathbb{R}^n \setminus \{0\}$ we have

$$Ax = \theta x, \quad \text{i.e.,} \quad (Ax) = \sum_{(j) \in E} x_j = \theta x.$$

- There are cospectral graphs, e.g., $K_{1,4}$ and $K_1 \cup C_4$.
- A triangle inequality implies that the maximum degree of a graph Γ, denoted by $\Delta(\Gamma)$, is greater or equal to $|\theta|$, i.e.,

$$\Delta(\Gamma) \geq |\theta|.$$

Review of basic matrix theory

Lemma. Let A be a real symmetric matrix. Then

- its eigenvalues are real numbers, and
- the eigenvectors corresponding to distinct eigenvalues, then they are orthogonal.
- If U is an A-invariant subspace of \mathbb{R}^n, then U^\perp is also A-invariant.

Lemma. The eigenvalues of a disconnected graph are just the eigenvalues of its components and their multiplicities are sums of the corresponding multiplicities in each component.

Line graphs and their eigenvalues

We call $\phi(\Gamma, x) = \det(xI - A(\Gamma))$ the characteristics polynomial of a graph Γ.

Lemma. Let B be the incidence matrix of the graph Γ, L its line graph and $\Delta(\Gamma)$ the diagonal matrix of valencies. Then

$$B^T B = 2I + A(L) \quad \text{and} \quad BB^T = \Delta(\Gamma) + A(\Gamma).$$

Furthermore, if Γ is k-regular, then

$$\phi(L, x) = (x + 2)^{-n} \phi(\Gamma, x - k + 2).$$

Semidefiniteness

A real symmetric matrix A is positive semidefinite if

$$u^T Au \geq 0 \quad \text{for all vectors } u.$$

It is positive definite if it is positive semidefinite and

$$u^T Au = 0 \iff u = 0.$$

Characterizations.

- A positive semidefinite matrix is positive definite if invertible.
- A matrix is positive semidefinite matrix iff all its eigenvalues are nonnegative.
- If $A = B^T B$ for some matrix, then A is positive semidefinite.
The Gram matrix of vectors $u_1, \ldots, u_n \in \mathbb{R}^m$ is an $n \times n$ matrix G s.t. $G_{ij} = u'_i u_j$.

Note that $B^T B$ is the Gram matrix of the columns of B, and that any Gram matrix is positive semidefinite. The converse is also true.

Corollary. The least eigenvalue of a line graph is at least -2. If Δ is an induced subgraph of Γ, then $\theta_{\min}(\Gamma) \leq \theta_{\min}(\Delta) \leq \theta_{\max}(\Delta)$.

Let $\rho(A)$ be the spectral radius of a matrix A.

Peron-Frobenious Theorem. Suppose A is a nonnegative $n \times n$ matrix, whose underlying directed graph X is strongly connected. Then

(a) $\rho(A)$ is a simple eigenvalue of A. If x an eigenvector for ρ, then no entries of x are zero, and all have the same sign.

(b) Suppose A_1 is a real nonnegative $n \times n$ matrix such that $A - A_1$ is nonnegative. Then $\rho(A_1) \leq \rho(A)$, with equality iff $A_1 = A$.

(c) If θ is an eigenvalue of A and $|\theta| = \rho(A)$, then $\theta/\rho(A)$ is an mth root of unity and $e^{2\pi i m/\rho(A)} = 1$.

Two similar regularity conditions are:

(a) any two adjacent vertices have exactly λ common neighbours,

(b) any two nonadjacent vertices have exactly μ common neighbours.

A regular graph is called strongly regular when it satisfies (a) and (b). Notation $\text{SRG}(n, k, \lambda, \mu)$, where k is the valency of Γ and $n = |\text{VT}|$.

Strongly regular graphs can also be treated as extremal graphs and have been studied extensively.

III. Strongly regular graphs

- definition of strongly regular graphs
- characterization with adjacency matrix
- classification (type I in II)
- Paley graphs
- Krein condition and Smith graphs
- more examples (Steiner and LS graphs)
- feasibility conditions and a table

Definition

Two similar regularity conditions are:

(a) any two adjacent vertices have exactly λ common neighbours,

(b) any two nonadjacent vertices have exactly μ common neighbours.

A regular graph is called strongly regular when it satisfies (a) and (b). Notation $\text{SRG}(n, k, \lambda, \mu)$, where k is the valency of Γ and $n = |\text{VT}|$.

Strongly regular graphs can also be treated as extremal graphs and have been studied extensively.

Examples

5-cycle is SRG(5, 2, 0, 1).

The Petersen graph is SRG(10, 3, 0, 1).

What are the trivial examples?

K_n, $m - K_n$.

The **Cocktail Party graph** $C(n)$, i.e., the graph on $2n$ vertices of degree $2n - 2$, is also strongly regular.
Lemma. A strongly regular graph Γ is disconnected if $\mu = 0$.

If $\mu = 0$, then each component of Γ is isomorphic to $K_{1,1}$ and we have $\lambda = k-1$.

Corollary. A complete multipartite graph is strongly regular iff its complement is a union of complete graphs of equal size.

Homework: Determine all SRG with $\mu = k$.

Counting the edges between the neighbours and non-neighbours of a vertex in a connected strongly regular graph we obtain:

$$\mu(n-1-k) = k(k-\lambda-1),$$

i.e.,

$$n = 1 + k + \frac{k(k-\lambda-1)}{\mu}.$$

Let J be the all-one matrix of dim. $(n \times n)$. A graph Γ on n vertices is strongly regular if and only if its adjacency matrix A satisfies

$$A^2 = kI + \lambda A + \mu(J - I - A),$$

for some integers k, λ and μ.

Therefore, the valency k is an eigenvalue with multiplicity 1 and the nontrivial eigenvalues, denoted by σ and τ, are the roots of

$$x^2 - (\lambda - \mu)x + (\mu - k) = 0,$$

and hence $\lambda - \mu = \sigma + \tau$, $\mu - k = \sigma \tau$.

Theorem. A connected regular graph with precisely three eigenvalues is strongly regular.

Proof. Consider the following matrix polynomial:

$$M := (A - \sigma)(A - \tau).$$

If $A = A(\Gamma)$, where Γ is a connected k-regular graph with eigenvalues k, σ and τ, then all the eigenvalues of M are 0 or 1. But all the eigenvectors corresponding to σ and τ lie in $\text{Ker}(A)$, so $\text{rank} M = 1$ and $M^2 = \mathbf{j}$, hence $M = \frac{1}{n} J$ and $A^2 \in \text{span}\{I, J, A\}$.

Multiplicities

Solve the system:

$$1 + m_\sigma + m_\tau = n$$

$$1 \cdot k + m_\sigma \cdot \sigma + m_\tau \cdot \tau = 0,$$

to obtain

$$m_\sigma = \frac{1}{2} \left(n - 1 + \frac{(n-1)(\mu - \lambda) - 2k}{\sqrt{(\mu - \lambda)^2 + 4(k-\mu)}} \right).$$

Classification

We classify strongly regular graphs into two types:

Type I (or conference) graphs: for these graphs $(\mu - \lambda)^2 = 2k$, which implies $\lambda = \mu - 1$, $k = 2\mu$ and $n = 4\mu + 1$, i.e., the strongly regular graphs with the same parameters as their complements.

They exist iff n is the sum of two squares.

Type II graphs: for these graphs $(\mu - \lambda)^2 + 4(k-\mu)$ is a perfect square Δ^2, where Δ divides $(n-1)(\mu - \lambda) - 2k$ and the quotient is congruent to $n-1$ (mod 2).

Paley graphs

q a prime power, $q \equiv 1 \pmod{4}$ and set $\mathbb{F} = \text{GF}(q)$. The **Paley graph** $P(q) = (V, E)$ is defined by:

$V = \mathbb{F}$ and $E = \{(a, b) \in \mathbb{F} \times \mathbb{F} | (a - b) \in (\mathbb{F}^*)^2\}$.

i.e., two vertices are adjacent if their difference is a non-zero square. $P(q)$ is **undirected**, since $1 \in (\mathbb{F}^*)^2$.

Consider the map $x \rightarrow x + a$, where $a \in \mathbb{F}$, and the map $x \rightarrow xb$, where $b \in \mathbb{F}$ is a square or a nonsquare, to show $P(q)$ is **strongly regular** with

valency $k = \frac{q-1}{2}$, $\lambda = \frac{q-5}{4}$ and $\mu = \frac{q-1}{4}$.

Classification

We classify strongly regular graphs into two types:

Type I (or conference) graphs: for these graphs $\mu = \lambda - 2k$ and $n = 4\mu + 1$.

They exist iff n is the sum of two squares.

Type II graphs: for these graphs $\mu = \lambda - 2k$ and $n = 4\mu + 1$.

They exist iff n is a perfect square and the quotient is congruent to $n-1$ (mod 2).
Krein conditions

Seidel showed that these graphs are uniquely determined with their parameters for \(q \leq 17 \).

There are some results in the literature showing that Paley graphs behave in many ways like random graphs \(G(n, 1/2) \).

Bollobás and Thomason proved that the Paley graphs contain all small graphs as induced subgraphs.

If \(k > s > t \) eigenvalues of a strongly regular graph, then the first inequality translates to

\[
k \geq -s \frac{(2t+1)(t-s) - t(t+1)}{(t-s) + t(t+1)}.
\]

\[
\lambda \geq -s \frac{(t-s) - t(t+3)}{(t-s) + t(t+1)}.
\]

\[
\mu \geq -s \frac{(t-s) - t(t+1)}{(t-s) + t(t+1)}.
\]

A strongly regular graph with parameters \((k, \lambda, \mu)\) given by taking equalities above, where \(t \) and \(s \) are integers such that \(t-s \geq t(t+3) \) (i.e., \(\lambda \geq 0 \)) and \(k > t > s \) is called a Smith graph.

More examples of strongly regular graphs:

For \(v \neq 8 \), the unique SRG with these parameters is

\[
L(K_v) = K_v \times K_v,
\]

with parameters

\[
n = v, \quad k = 2(v-1), \quad \lambda = v-2, \quad \mu = 4.
\]

For \(v \neq 4 \), the unique SRG with these parameters is

\[
L(K_v) = K_{v^2}, \quad K_v = K_v \times K_v,
\]

with parameters

\[
n = v^2, \quad k = 2(v-2), \quad \lambda = v-2, \quad \mu = 2.
\]

It has eigenvalues

\[
2(v-1)^2, \quad v - 2(v-1), \quad -2(v-1)^2.
\]

Steiner graph is the block (line) graph of a 2-(v, s, 1) design with \(v-1 > s(s-1) \), and it is strongly regular with parameters

\[
n = \frac{v}{2}, \quad k = s \left(\frac{v-1}{s-1} - 1 \right),
\]

\[
\lambda = \frac{v-1}{s-1} - 2 + (s-1)^2, \quad \mu = s^2,
\]

and eigenvalues

\[
k^1, \quad \left(\frac{v-s^2}{s-1} \right)^{s-1}, \quad -s^{v-s}.
\]

When in a design \(\mathcal{D} \) the block size is two, the number of edges of the point graph equals the number of blocks of the design \(\mathcal{D} \). In this case the line graph of the design \(\mathcal{D} \) is the line graph of the point graph of \(\mathcal{D} \). This justifies the name: the line graph of a graph.

A point graph of a Steiner system is a complete graph, thus a line graph of a Steiner system \(S(2, v) \) is the line graph of a complete graph \(K_v \), also called the triangular graph.

(If \(\mathcal{D} \) is a square design, i.e., \(v-1 = s(s-1) \), then its line graph is the complete graph \(K_v \).

The fact that Steiner triple system with \(v \) points exists for all \(v \equiv 1 \) or \(3 \) (mod \(6 \)) goes back to Kirkman in 1847. More recently Wilson showed that the number \(n(v) \) of Steiner triple systems on an admissible number \(v \) of points satisfies

\[
n(v) \geq \exp(v^2 \log v/6 - cv^2).
\]

A Steiner triple system of order \(v \) > 15 can be recovered uniquely from its line graph, hence there are super-exponentially many SRG\((n, 3s, s+3, 9)\), for \(n = (s+1)(2s+3)/3 \) and \(s \equiv 0 \) or \(2 \) (mod \(3 \)).
For $2 \leq s \leq v$ the block graph of a transversal design $TD(s,v)$ (two blocks being adjacent if they intersect) is strongly regular with parameters $n = v^2$, $k = s(v-1)$, $\lambda = (v-2)+(s-1)(s-2)$, $\mu = s(s-1)$, \(s(v-1)^3\), \(v - s(v-1)\), \(-s(v-1)(v-s+1)\).

Note that a line graph of $TD(s,v)$ is a conference graph when $v = 2s-1$. For $s = 2$ we get the lattice graph $K_e \times K_e$.

The number of Latin squares of order k is asymptotically equal to \(\exp(k^2 \log k - 2k^2)\).

Theorem (Neumaier). The strongly regular graph with the smallest eigenvalue $-m$, $m \geq 2$ integer, is with finitely many exceptions, either a complete multipartite graph, a Steiner graph, or the line graph of a transversal design.

Feasibility conditions and a table

- divisibility conditions
- integrality of eigenvalues
- integrality of multiplicities
- Krein conditions
- Absolute bounds

$$n \leq \frac{1}{2} m_s(m_s + 3),$$
and if $q_{11} \neq 0$ even

$$n \leq \frac{1}{2} m_s(m_s + 1).$$

Paley graph $P(13)$

The Shrikhande graph and $P(13)$ are the only distance-regular graphs which are locally C_6 (one has $\mu = 2$ and the other $\mu = 3$).

The Shrikhande graph and $P(13)$ are the only distance-regular graphs which are locally C_6 (one has $\mu = 2$ and the other $\mu = 3$).

Tutte 8-cage

The Tutte's 8-cage is the GQ(2, 2) = W(2).

A cage is the smallest possible regular graph (here degree 3) that has a prescribed girth.

Clebsch graph

Two drawings of the complement of the Clebsch graph.

Shrikhande graph

The Shrikhande graph drawn on two ways: (a) on a torus, (b) with imbedded four-cube.

The Shrikhande graph is not distance transitive, since some μ-graphs, i.e., the graphs induced by common neighbours of two vertices at distance two, are K_2 and some are $2K_1$.
A Moore graph of diameter two is a regular graph with girth five and diameter two.

The only Moore graphs are

- the pentagon,
- the Petersen graph,
- the Hoffman-Singleton graph, and
- possibly a strongly regular graph on 3250 vertices.

A unique spread in GQ(3,3) = W(3)

Let Γ be a graph of diameter d.

Then Γ has girth at most $2d + 1$.

while in the bipartite case the girth is at most $2d$.

Graphs with diameter d and girth $2d + 1$ are called Moore graphs (Hoffman and Singleton).

Bipartite graphs with diameter d and girth $2d$ are known as generalized polygons (Tits).

A Moore graph of diameter two is a regular graph with girth five and diameter two.

The only Moore graphs are

- the pentagon,
- the Petersen graph,
- the Hoffman-Singleton graph, and
- possibly a strongly regular graph on 3250 vertices.

A unique spread in GQ(3,3) = W(3)

Let Γ be a graph of diameter d.

Then Γ has girth at most $2d + 1$.

while in the bipartite case the girth is at most $2d$.

Graphs with diameter d and girth $2d + 1$ are called Moore graphs (Hoffman and Singleton).

Bipartite graphs with diameter d and girth $2d$ are known as generalized polygons (Tits).

A Moore graph of diameter two is a regular graph with girth five and diameter two.

The only Moore graphs are

- the pentagon,
- the Petersen graph,
- the Hoffman-Singleton graph, and
- possibly a strongly regular graph on 3250 vertices.
Quadratic forms

A quadratic form $Q(x_0, x_1, \ldots, x_n)$ over $GF(q)$ is a homogeneous polynomial of degree 2, i.e., for $x = (x_0, x_1, \ldots, x_n)$ and an $(n+1)$-dim square matrix C over $GF(q)$:

$$Q(x) = \sum_{i,j=0}^{n} c_{ij}x_ix_j = x^TCx^T.$$

A quadric in $PG(n, q)$ is the set of isotropic points:

$$Q = \{ (x) | Q(x) = 0 \},$$

where (x) is the 1-dim. subspace of $GF(q)^{n+1}$ generated by $x \in (GF(q))^{n+1}$.

Two quadratic forms $Q_1(x)$ and $Q_2(x)$ are projectively equivalent if there is an invertible matrix A and $\lambda \neq 0$ such that

$$Q_2(x) = \lambda Q_1(xA).$$

The rank of a quadratic form is the smallest number of indeterminates that occur in a projectively equivalent quadratic form.

A quadratic form $Q(x_0, \ldots, x_n)$ (or the quadric Q in $PG(n, q)$ determined by it) is nondegenerate if its rank is $n+1$. (i.e., $Q \cap Q^\perp = \emptyset$ and also to $Q^\perp = 0$).

Isotropic spaces

A flat of projective space $PG(n, q)$ (defined over $(n+1)$-dim. space V) consists of 1-dim. subspaces of V that are contained in some subspace of V.

A flat is said to be isotropic when all its points are isotropic.

The dimension of maximal isotropic flats will be determined soon.

Theorem. A nondegenerate quadric $Q(x)$ in $PG(n, q)$, q odd, has the following canonical form

(i) for n even: $Q(x) = \sum_{i=0}^{n} x_i^2$,

(ii) for n odd:

(a) $Q(x) = \sum_{i=0}^{n} x_i^2$,

(b) $Q(x) = \sum_{i=0}^{n} x_i^2 + \sum_{i=0}^{n} x_i^2$, where η is not a square.

Theorem. Any nondegenerate quadratic form $Q(x)$ over $GF(q)$ is projectively equivalent to

(i) for $n = 2s$: $P_{2s} = x_0^2 + \sum_{i=1}^{s} x_{2i-1}x_{2i}$ (parabolic),

(ii) for $n = 2s - 1$

(a) $H_{2s-1} = \sum_{i=1}^{s-1} x_{2i}x_{2i+1}$ (hyperbolic),

(b) $H_{2s-1} = \sum_{i=1}^{s-1} x_{2i}x_{2i+1} + f(x_0, x_1)$, (elliptic) where f is an irreducible quadratic form.

The dimension of maximal isotropic flats:

Theorem. A nondegenerate quadric Q in $PG(n, q)$ has the following number of points and maximal projective dim. of a flat F, $F \subseteq Q$:

(i) $q^n - 1$, $q - 1$, $\frac{n-2}{2}$, parabolic,

(ii) $\frac{(q^{n+1/2} - 1)(q^{n+1/2} + 1)}{q - 1}$, $\frac{n-1}{2}$, hyperbolic,

(iii) $\frac{(q^{n+1/2} - 1)(q^{n+1/2} + 1)}{q - 1}$, $\frac{n-3}{2}$, elliptic.

Classical generalized quadrangles

due to J. Tits (all associated with classical groups)

An orthogonal generalized quadrangle $Q(d, q)$ is determined by isotropic points and lines of a nondegenerate quadratic form in $PG(d, q)$, for $d \in \{3, 4, 5\}.$
For $d = 3$ we have $t = 1$. An orthogonal generalized quadrangle $Q(4, q)$ has parameters (q, q).

Its dual is called symplectic (or null) generalized quadrangle $W(q)$ (since it can be defined on points of $PG(3, q)$, together with the self-polar lines of a null polarity), and it is isomorphic to $Q(4, q)$.

Let H be a nondegenerate hermitian variety (e.g., $V(x_1^2 + \cdots + x_d^2)$) in $PG(d, q^2)$.

Then its points and lines form a generalized quadrangle called a unitary (or Hermitian) generalized quadrangle $U(d, q^2)$.

A unitary generalized quadrangle $U(3, q^2)$ has parameters (q^2, q) and is isomorphic to a dual of orthogonal generalized quadrangle $Q(5, q)$.

Finally, we describe one more construction (Ahrens, Szekeres and independently M. Hall)

Let \mathcal{O} be a hyperoval of $PG(2, q)$, $q = 2^h$, i.e., (i.e., a set of $q + 1$ points meeting a line in 0 or 2 points), and imbed $PG(2, q) = H$ as a plane in $PG(3, q) = P$.

Define a generalized quadrangle $T_1^2(\mathcal{O})$ with parameters $(q - 1, q + 1)$ by taking for points just the points of $P \setminus H$, and for lines just the lines of P which are not contained in H and meet \mathcal{O} (necessarily in a unique point).

For a systematic combinatorial treatment of generalized quadrangles we recommend the book by Payne and Thas.

The order of each known generalized quadrangle or its dual is one of the following: (q, q), (q, q^2), (q^2, q^3), $(q - 1, q + 1)$, where q is a prime power.

Small examples

$s = 2$: $(2,2)$, $(2,4)$

$s = 3$: $(3,3) = W(3)$ or $Q(4,3)$, $(3,5) = T_2^2(\mathcal{O})$, $(3,9) = Q(5,3)$

$s = 4$: $(4,4) = W(4)$, one known example for each $(4,6)$, $(4,8)$, $(4,16)$, existence open for $(4,11)$, $(4,12)$.

The flag geometry of a generalized polygon G has as pts the vertices of G (of both types), and as lines the flags of G, with the obvious incidence.

It is easily checked to be a generalised $2n$-gon in which every line has two points; and any generalised $2n$-gon with two points per line is the flag geometry of a generalised n-gon.

Theorem (Feit and Higman). A thick generalised n-gon can exist only for $n = 2, 3, 4, 6$ or 8.

Additional information:

- if $n = 4$ or $n = 8$, then $t \leq s^2$ and $s \leq t^2$;
- if $n = 6$, then st is a square and $t \leq s^3$, $s \leq t^3$;
- if $n = 8$, then $2st$ is a square.

For a pair of given d-tuples a in b over an alphabet with $n \geq 2$ symbols, there are $d + 1$ possible relations: they can be equal, they can coincide on $d - 1$ places, $d - 2$ places, . . ., or they can be distinct on all the places.

For a pair of given d-subsets A and B of the set with n elements, where $n \geq 2d$, we have $d + 1$ possible relations: they can be equal, they can intersect in $d - 1$ elements, $d - 2$ elements, . . ., or they can be disjoint.
The above examples, together with the list of relations are examples of association schemes that we will introduce shortly.

In 1938 Bose and Nair introduced association schemes for applications in statistics.

However, it was Philippe Delsarte who showed in his thesis that association schemes can serve as a common framework for problems ranging from error-correcting codes, to combinatorial designs. Further connections include

- group theory (primitivity and imprimitivity),
- linear algebra (spectral theory),
- metric spaces,
- study of duality
- character theory,
- representation and orthogonal polynomials.

Bannai and Ito:

We can describe algebraic combinatorics as

“a study of combinatorial objects with theory of characters”

or as

“a study of groups without a group”

Even more connections:

- knot theory (spin modules),
- linear programming bound,
- finite geometries.

It is essentially a colouring of the edges of the complete graph K_n with d colours, such that the number of triangles with a given colouring on a given edge depends only on the colouring and not on the edge.

A (symmetric) d-class association scheme on n vertices is a set of binary symmetric $(n \times n)$-matrices $I = A_0, A_1, \ldots, A_d$ s.t.

(a) $\sum_{i=0}^d A_i = J$, where J is the all-one matrix.
(b) for all $i, j \in \{0, 1, \ldots, d\}$ the product $A_i A_j$ is a linear combination of the matrices A_0, \ldots, A_d.

The above examples, together with the list of relations are examples of association schemes that we will introduce shortly.

By (1), the combinatorial meaning of intersection numbers p_{ij}^h, implies that they are integral and nonnegative.

Suppose $x \Gamma_i y$. Then

$$p_{ij}^h = |\{z : z \Gamma_i x \text{ in } z \Gamma_j y\}|.$$ \hspace{1cm} (2)

Therefore, Γ_i is regular graph of valency $k_i := p_{ii}^0$ and we have $p_{ij}^0 = \delta_{ij} k_i$.

By counting in two different ways all triples (x, y, z), such that

$$x \Gamma_i y, \quad z \Gamma_j x \quad \text{and} \quad z \Gamma_j y$$

we obtain also $k_i p_{ij}^0 = k_j p_{ji}^0$.

Examples

Let us now consider some examples of associative schemes.

A scheme with one class consists of the identity matrix and the adjacency matrix of a graph, in which every two vertices are adjacent, i.e., a graph of diameter 1, i.e., the complete graph K_n.

We will call this scheme trivial.
Hamming scheme $H(d, n)$

Let $d, n \in \mathbb{N}$ and $\Sigma = \{0, 1, \ldots, n - 1\}$. The vertex set of the association scheme $H(d, n)$ are all d-tuples of elements of Σ. Assume $0 \leq i \leq d$. Vertices x and y are in i-th relation iff they differ in i places.

We obtain a d-class association scheme on n^d vertices.

Bilinear Forms Scheme $\mathcal{M}_{d \times m}(q)$

(a variation from linear algebra) Let $d, m \in \mathbb{N}$ and q a power of some prime. All $(d \times m)$-dim. matrices over $\text{GF}(q)$ are the vertices of the scheme, two being in i-th relation, $0 \leq i \leq d$, when the rank of their difference is i.

Johnson Scheme $J(n, d)$

Let $d, n \in \mathbb{N}, d \leq n$ and X a set with n elements. The vertex set of the association scheme $J(n, d)$ are all d-subsets of X. Vertices x and y are in i-th $0 \leq i \leq \min(d, n - d)$ relation iff their intersection has $d - i$ elements.

We obtain an association scheme with $\min(d, n - d)$ classes and on $\binom{n}{d}$ vertices.

Cyclomatic scheme

Let q be a prime power and d a divisor of $q - 1$. Let C_1 be a subgroup of the multiplicative group of the finite field $\text{GF}(q)$ with index d, and let C_1, \ldots, C_d be the cosets of the subgroup C_1.

The vertex set of the scheme are all elements of $\text{GF}(q)$, x and y being in i-th relation when $x - y \in C_i$ (and in 0 relation when $x = y$).

We need $-1 \in C_1$ in order to have symmetric relations, so $2|d$, if q is odd.

How can we verify if some set of matrices represents an association scheme?

The condition (b) does not need to be verified directly. It suffices to check that the RHS of (2) is independent of the vertices (without computing p_i^k).

We can use symmetry. Let x be the vertex set and $\Gamma_1, \ldots, \Gamma_d$ the set of graphs with $V(\Gamma_i) = X$ and whose adjacency matrices together with the identity matrix satisfies the condition (a).

Symmetry

An automorphism of this set of graphs is a permutation of vertices, that preserves adjacency.

Adjacency matrices of the graphs $\Gamma_1, \ldots, \Gamma_d$, together with the identity matrix is an association scheme if

\[\forall i \text{ the automorphism group acts transitively on pairs of vertices that are adjacent in } \Gamma_i \]

(this is a sufficient condition).

Primitivity and imprimitivity

A d-class association scheme is primitive, if all its graphs $\Gamma_i, 1 \leq i \leq d$, are connected, and imprimitive otherwise.

The trivial scheme is primitive.

Johnson scheme $J(n, d)$ is primitive iff $n \neq 2d$.

In the case $n = 2d$ the graph Γ_d is disconnected.

Hamming scheme $H(d, n)$ is primitive iff $n \neq 2$.

In the case $n = 2$ the graphs $\Gamma_i, 1 \leq i \leq \lfloor d/2 \rfloor$, and the graph Γ_d are disconnected.
Let \(\{A_0, \ldots, A_d\} \) be a \(d \)-class associative scheme \(A \) and let \(\pi \) be a partition of \(\{1, \ldots, d\} \) on \(m \in \mathbb{N} \) nonempty cells. Let \(A_1', \ldots, A_m' \) be the matrices of the form

\[
\sum_{i \in C} \lambda_i A_i,
\]

where \(C \) runs over all cells of partition \(\pi \), and set \(A'_0 = I_d \). These binary matrices are the elements of the Bose-Mesner algebra \(\mathcal{M} \), they commute, and their sum is \(I_d \).

Very often the form an associative scheme, denoted by \(\mathcal{A}' \), in which case we say that \(\mathcal{A}' \) was obtained from \(\mathcal{A} \) by merging of classes (also by fusion).

For \(m = 1 \) we obtain the trivial associative scheme.

Brouwer and Van Lint used merging to construct some new 2-class associative schemes (i.e., \(m = 2 \)).

We multiply equations (3) for \(i = 1, \ldots, d \) to obtain an equation of the following form

\[
I = \sum_j E_j,
\]

where each \(E_j \) is an idempotent that is equal to a product of \(d \) idempotents \(Y_{h_i} \), where \(Y_{h_i} \) is an idempotent from the spectral decomposition of \(A_i \).

Hence, the idempotents \(E_j \) are pairwise orthogonal, and for each matrix \(A_i \) there exists \(p_i(j) \in \mathbb{R} \), such that \(A_i E_j = p_i(j) E_j \).

Therefore, \(A_i = A_i I = A_i \sum_j E_j = \sum_j p_i(j) E_j \).

This tells us that each matrix \(A_i \) is a linear combination of the matrices \(E_j \).

Since the nonzero matrices \(E_j \) are pairwise orthogonal, they are also linearly independent. Thus they form a basis of the BM-algebra \(\mathcal{M} \), and there is exactly \(d+1 \) nonzero matrices among \(E_j \)’s.

The proof of (c) is left for homework.

The matrices \(E_0, \ldots, E_d \) are called minimal idempotents of the associative scheme \(A \). Schur (or Hadamard) product of matrices is an entry-wise product, denoted by “\(\circ \)”. Since \(A_i \circ A_j = \delta_{ij} A_i \), the BM-algebra is closed for Schur product.

The matrices \(A_i \) are pairwise orthogonal idempotents for Schur multiplication, so they are also called Schur idempotents of \(A \).

Since the matrices \(E_0, \ldots, E_d \) are a basis of the vector space spanned by \(A_0, \ldots, A_d \), also the following statement follows.

Proof. Let \(i \in \{1, \ldots, d\} \). From the spectral analysis of normal matrices we know that \(\forall A_i \) there exist pairwise orthogonal idempotent matrices \(Y_{ij} \) and real numbers \(\theta_{ij} \), such that \(A_i Y_{ij} = \theta_{ij} Y_{ij} \) and

\[
\sum_j Y_{ij} = I_d.
\]

Furthermore, each matrix \(Y_{ij} \) can be expressed as a polynomial of the matrix \(A_i \).

Since \(\mathcal{M} \) is a commutative algebra, the matrices \(Y_{ij} \) commute and also commute with matrices \(A_0, \ldots, A_d \).

Therefore, each product of this matrices is an idempotent matrix (that can also be 0).

Corollary. Let \(A = \{A_0, \ldots, A_d\} \) be an associative scheme and \(E_0, \ldots, E_d \) its minimal idempotents. Then \(\exists \ q_{ij}^k \in \mathbb{R} \) and \(q_{ij}(h) \in \mathbb{R} \) \((i,j,h \in \{0, \ldots, d\}) \), such that

\[
(a) \quad E_i \circ E_j = \frac{1}{n} \sum_{k=0}^{d} q_{ij}^k E_k,
\]

\[
(b) \quad E_i \circ A_j = \frac{1}{n} q_{ij}(A), \quad \text{i.e.,} \quad E_i = \frac{1}{n} \sum_{k=0}^{d} q_{ij}(h) A_k,
\]

\[
(c) \quad \text{matrices } A_i \text{ have at most } d+1 \text{ distinct eigenvalues}.
\]
There exists a basis of \(d + 1 \) (orthogonal) minimal idempotents \(E_i \) of the BM-algebra \(\mathcal{M} \) such that

\[
E_0 = \frac{1}{n} I \quad \text{and} \quad \sum_{i=1}^d E_i = I,
\]

\[
E_i \circ E_j = \frac{1}{n} \sum_{h=0}^d q_{ij} h A_h, \quad A_i = \sum_{h=0}^d p_i(h) E_h
\]

and \(E_i = \frac{1}{n} \sum_{h=0}^d q_i(h) A_h \quad (0 \leq i, j \leq d) \).

The parameters \(q_{ij} \) are called Krein parameters, \(p_i(0), \ldots, p_i(d) \) are eigenvalues of matrix \(A_i \), and \(q_i(0), \ldots, q_i(d) \) are the dual eigenvalues of \(E_i \).

The eigenmatrices of the associative scheme \(A \) are \((d + 1)\)-dimensional square matrices \(P \) and \(Q \) defined by

\[
(P)_{ij} = p_i(i) \quad \text{and} \quad (Q)_{ij} = q_i(i).
\]

By setting \(j = 0 \) in the left identity of Corollary (b) and taking traces, we see that the eigenvalue \(p_i(1) \) of the matrix \(A_i \) has multiplicity \(m_i = q_i(0) = \text{rank}(E_i) \).

By Theorem (b) and Corollary (b), we obtain

\[
PQ = nI = QP.
\]

There is another relation between \(P \) and \(Q \).

Take the trace of the identity in Theorem (b):

\[
\Delta_n Q = P^T \Delta_n,
\]

where \(\Delta_n \) and \(\Delta_m \) are the diagonal matrices with entries \((\Delta_n)_{ii} = k_i \) and \((\Delta_m)_{ii} = m_i \).

This relation implies \(P \Delta_n^{-1} P^T = n \Delta_m^{-1} \), and by comparing the diagonal entries also

\[
\sum_{h=0}^d p_i(h)^2/k_h = n/m_i.
\]

which gives us an expression for the multiplicity \(m_i \) in terms of eigenvalues.

Using the eigenvalues we can express all intersection numbers and Krein parameters.

For example, if we multiply the equality in Corollary (a) by \(E_h \), we obtain

\[
q_{ij} h E_h = n E_h (E_i \circ E_j),
\]

i.e.,

\[
q_{ij} = \frac{n}{m_h} \text{trace}(E_h (E_i \circ E_j))\quad (5)
\]

\[
= \frac{n}{m_h} \text{sum}(E_h \circ E_i \circ E_j),\quad (6)
\]

where the sum of a matrix is equal to the sum of all of its elements.

By Corollary (b), it follows also

\[
E_i \circ E_j \circ E_h = \frac{1}{n^2} \sum_{i=0}^d q_i E_h A_i
\]

therefore, by \(\Delta_n Q = (\Delta_n P)^T \), we obtain

\[
q_{ij} h = \frac{1}{nm_h} \sum_{i=0}^d q_i E_h A_i
\]

\[
= m_i m_j \frac{p_i(h)}{n} \sum_{i=0}^d \sum_{k=0}^d p_i(i) p_j(k) h k
\]

\[
q_{ij} h = \frac{n}{m_h} \| E_i \circ E_j \circ E_h \| v \|^2,
\]

where \(q_{ij} h = 0 \) iff \((E_i \circ E_j \circ E_h) v = 0 \).

Krein parameters satisfy the so-called Krein conditions.

Theorem [Scott]. Let \(A \) be an associative scheme with \(n \) vertices and \(e_1, \ldots, e_n \) the standard basis in \(\mathbb{R}^n \). Then

\[
q_{ij} h \geq 0.
\]

Moreover, for \(v = \sum_{i=1}^n e_i \otimes e_i \otimes e_i \), we have

\[
q_{ij} h = \frac{n}{m_h} \| (E_i \circ E_j \circ E_h) v \|^2,
\]

and \(q_{ij} h = 0 \) iff \((E_i \circ E_j \circ E_h) v = 0 \).

Proof (Godsil’s sketch). Since the matrices \(E_i \) are pairwise orthogonal idempotents, we derive from Corollary (b) (by multiplying by \(E_h \))

\[
(E_i \circ E_j) E_h = \frac{1}{n} q_{ij} h E_h.
\]

Thus \(q_{ij} h / n \) is an eigenvalue of the matrix \(E_i \circ E_j \), on a subspace of vectors that are determined by the columns of \(E_h \).

The matrices \(E_i \) are positive semidefinite (since they are symmetric, and all their eigenvalues are 0 or 1).

On the other hand, the Schur product of semidefinite matrices is again semidefinite, so the matrix \(E_i \circ E_j \circ E_h \) has nonnegative eigenvalues. Hence, \(q_{ij} h \geq 0 \).
Another strong criterion for an existence of associative schemes is an **absolute bound**, that bounds the rank of the matrix $E_i \circ E_j$.

Theorem. Let \mathcal{A} be a d-class associative scheme. Then its multiplicities m_i, $1 \leq i \leq d$, satisfy inequalities

$$\sum_{i \neq j} m_i \leq m_i m_j$$

if $i \neq j$,

$$\frac{1}{2} m_i (m_i + 1)$$

if $i = j$.

Proof (sketch). The LHS is equal to the rank($E_i \circ E_j$) and is greater or equal to the rank($E_i \otimes E_j$) = $m_i m_j$.

Suppose now $i = j$. Among the rows of the matrix E_i, we can choose m_i rows that generate all the rows. Then the rows of the matrix $E_i \circ E_i$, whose elements are the squares of the elements of the matrix E_i, are generated by

$$m_i + \left(\frac{m_i}{2}\right)^2$$

that are the Schur products of all the pairs of rows among all the m_i rows.

An association scheme \mathcal{A} is **P-polynomial** (called also **metric**). when there exists a permutation of indices of A_i, s.t.

$$\exists \text{ polynomials } p_i \text{ of degree } i \text{ s.t. } A_i = p_i(A_1)$$

i.e., the intersection numbers satisfy the **Δ-condition** (that is, $\forall i, j, h \in \{0, \ldots, d\}$

- $p_i^j \neq 0$ implies $h \leq i + j$ and
- $p_i^{i+1} \neq 0$).

An association scheme \mathcal{A} is **Q-polynomial** (called also **cometric**), when there exists a permutation of indices of E_i, s.t. the Krein parameters μ_j satisfy the **Δ-condition**.

VI. Equitable partitions

- **Definition**: equitable partition of a graph Γ is a partition of the vertex set $V(\Gamma)$ into parts C_1, C_2, \ldots, C_s s.t. (a) vertices of each part C_i induce a regular graph, (b) edges between C_i and C_j induce a half-regular graph.

Theorem. [Cameron, Goethals and Seidel]

In a strongly regular graph vanishing of either of Krein parameters μ_1 and μ_2 implies that first and second subconstituent graphs are strongly regular.
Equitable partitions give rise to quotient graphs G/π, which are directed multigraphs with cells as vertices and c_{ij} arcs going from C_i to C_j.

Set $X := V\Gamma$ and $n := |X|$. Let $V = \mathbb{R}^n$ be the vector space over \mathbb{R} consisting of all column vectors whose coordinates are indexed by X.

For a subset $S \subseteq X$ let its characteristic vector χ_S be an element of V whose coordinates are equal 1 if they correspond to the elements of S and 0 otherwise.

Let $\pi = \{C_1, \ldots, C_k\}$ be a partition of X.

The characteristic matrix P of π is $(n \times s)$ matrix, whose column vectors are the characteristic vectors of the parts of π (i.e., $P_{ij} = 1$ if $i \in C_j$ and 0 otherwise).

If an antipodal graph H covers H/π and π consists of antipodal classes, then H is called antipodal cover.

Set $X := V\Gamma$ and $n := |X|$. Let $V = \mathbb{R}^n$ be the vector space over \mathbb{R} consisting of all column vectors whose coordinates are indexed by X.

For a subset $S \subseteq X$ let its characteristic vector χ_S be an element of V whose coordinates are equal 1 if they correspond to the elements of S and 0 otherwise.

Let $\pi = \{C_1, \ldots, C_k\}$ be a partition of X.

The characteristic matrix P of π is $(n \times s)$ matrix, whose column vectors are the characteristic vectors of the parts of π (i.e., $P_{ij} = 1$ if $i \in C_j$ and 0 otherwise).

Let π be a partition of $V\Gamma$ with the characteristic matrix P. TFAE:

(i) π equitable,
(ii) \exists a $s \times s$ matrix B s.t. $A(\Gamma)P = PB$
(iii) the span(col(P)) is $A(\Gamma)$-invariant.

If π is equitable then $B = A(\Gamma/\pi)$.

Theorem. Assume $AP = PB$.

(a) If $Bx = 0x$, then $APx = \theta Px$.
(b) If $Ay = \theta y$, then $y^T PB = \theta y^T P$.
(c) The characteristic polynomial of matrix B divides the characteristic polynomial of matrix A.

An eigenvector x of Γ/π corresponding to θ extends to an eigenvector of Γ, which is constant on parts, so $m_\theta(\Gamma/\pi) \leq m_\theta(\Gamma)$.

$\tau \in ev(\Gamma)/ev(\Gamma/\pi) \implies$ each eigenvector of Γ corresponding to τ sums to zero on each part.

H graph, D diameter

If being at distance 0 or D is an equivalence relation on $V(H)$, we say that H is antipodal.

If an antipodal graph H covers H/π and π consists of antipodal classes, then H is called antipodal cover.

VII. Distance-regular graphs

- distance-regularity
- intersection numbers
- eigenvalues and cosine sequences
- classification
- classical infinite families
- antipodal distance-regular graphs

Distance-regularity:

Γ graph, diameter d. $\forall x \in V(\Gamma)$ the distance partition $\{\Gamma_0(x), \Gamma_1(x), \ldots, \Gamma_d(x)\}$ corresponding to x is equitable and the intersection array $\{b_0, b_1, \ldots, b_{d-1}, c_1, c_2, \ldots, c_2\}$ is independent of x.

Aleksandar Jurić

137

Aleksandar Jurić

138

Aleksandar Jurić

139

Aleksandar Jurić

140

Aleksandar Jurić

141

Aleksandar Jurić

142

Aleksandar Jurić

143

Aleksandar Jurić

144
A small example of a distance-regular graph:

Intersection numbers

Set $p_{ij}^h = |\Gamma_i(u) \cap \Gamma_j(v)|$, where $\partial(u,v) = h$. Then $a_i = p_{i1}^1$, $b_i = p_{i+1,1}^1$, $c_i = p_{i-1,1}^1$, $k_i = p_{i0}^i$, $k_i = p_{i0}^i + \cdots + p_{i0}^0$ and in particular $a_i + b_i + c_i = k_i$.

A connected graph is distance-transitive when any pair of its vertices can be mapped (by a graph automorphism, i.e., an adjacency preserving map) to any other pair of its vertices at the same distance.

distance-transitivity \Rightarrow distance-regularity

An arbitrary list of numbers b_i and c_i does not determine a distance-regular graph.

It has to satisfy numerous feasibility conditions (e.g., all intersection numbers have to be integral).

One of the main questions of the theory of distance-regular graphs is for a given intersection array

- to construct a distance-regular graph,
- to prove its uniqueness,
- to prove its nonexistence.

Some basic properties of the intersection numbers will be collected in the following result.

Lemma. A distance-regular, diameter d and intersection array \(\{b_0, b_1, \ldots, b_d, c_0, c_1, \ldots, c_d\} \) Then

\(\text{(i)} \ \) \(b_0 > b_1 \geq b_2 \geq \cdots \geq b_{d-1} \geq 1 \),

\(\text{(ii)} \ \) \(1 = c_1 \leq c_2 \leq \cdots \leq c_d \),

\(\text{(iii)} \ \) \(b_{i-1} - b_{i-1} - c_i = c_i k_i \) for \(1 \leq i \leq d \),

\(\text{(iv)} \ \) if \(i + j \leq d \), then \(c_i \leq b_j \),

\(\text{(v)} \ \) the sequence \(b_0, k_1, \ldots, k_d \) is mimimal, i.e., there exists such indices \(h, \ell \) ($1 \leq h \leq \ell \leq d$), that \(k_0 < \cdots < k_h = \cdots = k_s > \cdots > k_\ell \).

Proof. (i) Obviously $b_0 > b_1$. Set $2 \leq i \leq d$. Let $v, u \in V^+$ be at distance d and $\ell = v_0, v_1, \ldots, v_d = u$ be a path. The vertex v_i has b_i neighbours, that are at distance $i + 1$ from v. All these b_i vertices are at distance i from v_i, so $b_i - 1 \geq b_i$.

(iii) The number of edges from $\Gamma_{i-1}(v)$ to $\Gamma_i(v)$ is $b_{i-1} - k_{i-1}$, while from $\Gamma_i(v)$ to $\Gamma_{i-1}(v)$ is $c_i k_i$.

The statement (ii) can be proven the same way as (i) and (v) follows directly from (i), (ii) and (iii).

Lemma. A connected graph G of diameter d is distance-regular iff \(\exists a_i, b_i, c_i \) such that

\[|A_i| = b_i + c_i + 1 + a_i A_i + c_i A_{i+1} \quad \text{for} \quad 0 \leq i \leq d \]

If G is a distance-regular graph, then $A_i = v_i(A)$ for some polynomial $v_i(x)$ of degree i, for $0 \leq i \leq d + 1$.

The sequence \(\{v_i(x)\} \) is determined with $v_0(x) = 0$, $v_1(x) = 1$, $v_2(x) = x$ and for $i \in \{0, 1, \ldots, d\}$ with

\[c_{i+1} v_{i+1}(x) = (x - a_i) v_i(x) - b_i v_{i-1}(x). \]

In this sense distance-regular graphs are combinatorial representation of orthogonal polynomials.
Eigenvalues

The intersection array of a distance-regular graph Γ

$$ \{k, b_1, \ldots, b_{d-1}, b_d; 1, c_2, \ldots, c_{\beta}, c_1\} $$

i.e., the quotient graph Γ/π with the adjacency matrix

$$ A(\Gamma/\pi) = \begin{pmatrix} a_0 & b_0 \\ c_1 & a_1 & b_1 & 0 \\ 0 & c_2 & \cdots & 0 \\ 0 & 0 & \cdots & c_d & a_d \end{pmatrix}, $$

determines all the eigenvalues of Γ and their multiplicities.

The vector $v = (v_0(\theta), \ldots, v_d(\theta))^T$ is a left eigenvector of this matrix corresponding to the eigenvalue θ.

Similarly a vector $w = (w_0(\theta), \ldots, w_d(\theta))^T$ defined by $w_i(x) = 0$, $w_0(x) = 1$, $w_1(x) = x/k$ and for $i \in \{0, 1, \ldots, d\}$ by

$$ xw_i(x) = c_i w_{i-1}(x) + a_i w_i(x) + b_i w_{i+1}(x), $$

is a right eigenvector of this matrix, corresponding to the eigenvalue θ.

There is the following relation between coordinates of vectors w and v: $v_i(x) = v_i(x/k)$.

For $\theta \in \ev(\Gamma)$ and associated primitive idempotent E:

$$ E = \frac{m_{\theta}}{|V|} \sum_{k=0}^d \omega_k A_k \quad (0 \leq i \leq d), $$

$\omega_0, \ldots, \omega_d$ is the cosine sequence of E (or θ).

Lemma. A distance-regular, diam. $d \geq 2$. E is a primitive idempotent of Γ corresponding to θ, $\omega_0, \ldots, \omega_d$ is the cosine sequence of θ.

For $x, y \in V$, $i = \delta(x, y)$ we have

1. $\langle Ex, Ey \rangle = x y$-entry of $E = \omega_i m_{\theta}/|V|$.
2. $\omega_0 = 1$ and $c_i \omega_{i-1} + a_i \omega_i + b_i \omega_{i+1} = \theta \omega_i$ for $0 \leq i \leq d$.

Using the Sturm's theorem for the sequence $b_0 \ldots b_i \omega_i(x)$ we obtain

Theorem. Let $\theta_0 \geq \cdots \geq \theta_d$ be the eigenvalues of Γ. The sequence of cosines corresponding to the i-th eigenvalue θ_i has precisely 1 sign changes.

Classification

A distance-regular graph with diameter d is called classical. If its intersection parameters can be parametrized with four parameters (diameter d and numbers b, a, α and β) in the following way:

$$ b_i = \frac{\beta^{i+1}}{\alpha^{i+1}} - \frac{\beta^i}{\alpha^i}, \quad 0 \leq i \leq d - 1 $$

otherwise.

If V is an n-dim. vector space over a finite field with b elements, then $\binom{n}{d}$ is the number of m-dim. subspaces of V.

The Gauss binominal coefficient $\binom{i}{j}$ is equal $\binom{d}{j}$ for $b = 1$ and

$$ \sum_{i=0}^{d-1} \binom{d}{i} \binom{i}{j} b^i $$

otherwise.

Classical infinite families

$$\begin{array}{llll}
\text{graph} & \text{diameter} & \alpha & \beta \\
\text{Fano plane} & 3 & 1 & 1 \\
\text{Graeco-Latin square} & 3 & 1 & 1 \\
\text{Grassmann graph} & n \times (n-1) & 0 & n-1 \\
\text{Turan graph} & n(n+1)/2 & 0 & 0 \\
\text{Hadamard matrix} & n \times n & 0 & n \\
\text{Quadratic forms graph} & n \times n & 0 & n \\
\text{Fano plane} & 3 & 1 & 1 \\
\text{Graeco-Latin square} & 3 & 1 & 1 \\
\text{Grassmann graph} & n \times (n-1) & 0 & n-1 \\
\text{Turan graph} & n(n+1)/2 & 0 & n \\
\text{Hadamard matrix} & n \times n & 0 & n \\
\end{array}$$
Antipodal distance-regular graphs

Theorem (Van Bon and Brouwer, 1987). Most classical distance-regular graphs have no antipodal covers.

Theorem (Terwilliger, 1993). \(P^* \) and \(Q^* \)-poly. association scheme with \(d \geq 3 \) (not \(C_5 \), \(Q_5 \), \(H_3 \), or \(J(s, 2s) \)) is not the quotient of an antipodal \(P \)-polynomial scheme with \(d \geq 7 \).

Theorem (A.J., 1991). \(H \) is a bipartite antipodal cover with \(D \) odd iff \(H \cong K_2 \odot (H/\pi) \), (i.e., bipartite double), and \(H/\pi \) is a generalized Odd graph.

(cf. Biggs and Gardiner, also \([BCN]\))

A generalized Odd graph of diameter \(d \) is a drg, s.t. \(a_1 = \cdots = a_{d-1} = 0 \), \(a_d \neq 0 \).

Known examples for \(D = 5 \) (and \(D = 2 \)):
- Desargues graph (i.e., the Double Petersen)
- - free-cube
- - the Double of Hoffman-Singleton
- - the Double Gewirtz
- - the Double 77-graph
- - the Double Higman-Sims

Theorem (Gardiner, 1974). If \(H \) is antipodal \(r \)-cover of \(G \), then \(\iota(H) \) is (almost) determined by \(\iota(G) \) and \(r \).

\[D_H \in \{2r, 2r + 1\} \quad \text{and} \quad 2 \leq r \leq k, \]

\[b_i = c_{D-i}, \quad \text{for} \quad i = 0, \ldots, D, \quad i \neq d, \quad r = 1 + \frac{b_d}{c_{D-d}}. \]

Lemma. A distance-regular antipodal graph \(\Gamma \) of diameter \(d \) is a cover of its antipodal quotient with components of \(\Gamma_d \) as its fibres unless \(d = 2 \).

Lemma. \(\Gamma \) antipodal distance-regular, diameter \(d \).

Then a vertex \(x \) of \(\Gamma \), which is at distance \(i \leq \lfloor d/2 \rfloor \) from one vertex in an antipodal class, is at distance \(d - i \) from all other vertices in this antipodal class.

Hence

\[\Gamma_{d-i}(x) = \cup \{ \Gamma(x) \mid y \in \Gamma_i(x) \} \quad \text{for} \quad 0 \leq i \leq \lfloor d/2 \rfloor. \]

For each vertex \(a \) of a cover \(H \) we denote the fibre which contains \(a \) by \(F(a) \).

A geodesic in a graph \(G \) is a path \(g_0, \ldots, g_t \) where \(\text{dist}(g_0, g_t) = t \).

Theorem. \(G \) distance-regular, diameter \(d \) and parameters \(b_i, c_i \); \(H \) its \(r \)-cover of diameter \(D > 2 \). Then the following statements are equivalent:

(i) The graph \(H \) is antipodal with its fibres as the antipodal classes (hence an antipodal cover of \(G \)) and each geodesic of length at least \(\lfloor (d+1)/2 \rfloor \) in \(H \) can be extended to a geodesic of length \(D \).

(ii) For any \(u \in V(H) \) and \(0 \leq i \leq \lfloor D/2 \rfloor \) we have

\[S_{D-i}(u) = \cup \{ F(v) \mid v \in S_i(u) \}. \]

(iii) The graph \(H \) is distance-regular with \(D \in \{2d, 2d + 1\} \) and intersection array

\[\{b_0, \ldots, b_{d-1}, \frac{(r-1)c_d}{r}, c_{d-1}, \ldots, c_1; \]

\[c_1, \ldots, c_{d-1}, \frac{c_d}{r}, b_{d-1}, \ldots, b_0 \} \quad \text{for} \quad D \text{ even}, \]

and

\[\{b_0, \ldots, b_{d-1}, (r-1)c_d, c_{d-1}, \ldots, c_1; \]

\[c_1, \ldots, c_{d-1}, b_{d-1}, b_0 \} \quad \text{for} \quad D \text{ odd and some integer } t. \]

The distance distribution corresponding to the antipodal class \(\{y_1, \ldots, y_t\} \) in the case when \(d \) is even (left) and the case when \(d \) is odd (right).

Inside this partition there is a partition of the neighbourhood of the vertex \(x \).
Theorem. Let Γ be a distance regular graph and H a distance regular antipodal r-cover of Γ. Then every eigenvalue θ of Γ is also an eigenvalue of H with the same multiplicity.

Proof. Let H has diameter D, and Γ has n vertices, so $H_D = n - K_n$ (K_n’s correspond to the fibres of H).

Therefore, H_D has for eigenvalues $r - 1$ with multiplicity n and -1 with multiplicity $nr - n$.

The eigenvectors corresponding to eigenvalue $r - 1$ are constant on fibres and those corresponding to -1 sum to zero on fibres.

Take θ to be an eigenvalue of H, which is also an eigenvalue of Γ.

An eigenvector of Γ corresponding to θ can be extended to an eigenvector of H which is constant on fibres.

We know that the eigenvectors of H are also the eigenvectors of H_D, therefore, we have $\nu_D(\theta) = r - 1$.

So we conclude that all the eigenvectors of H corresponding to θ are constant on fibres and therefore give rise to eigenvectors of Γ corresponding to θ. \hfill \blacksquare

All the eigenvalues: $\lambda(\Gamma/\pi)$, N_0 or $\lambda(\Gamma/\pi)$, N_1:

$$
\begin{pmatrix}
0 & b_0 \\
c_1 & a_1 & b_1 & 0 \\
0 & c_2 & \ldots & b_{d-1}
\end{pmatrix}
\begin{pmatrix}
0 & b_0 \\
c_1 & a_1 & b_1 & 0 \\
0 & c_2 & \ldots & b_{d-1}
\end{pmatrix}
\begin{pmatrix}
0 & b_0 \\
c_1 & a_1 & b_1 & 0 \\
0 & c_2 & \ldots & b_{d-1}
\end{pmatrix}
$$

\begin{thebibliography}{1}

- projective and affine planes,
- Two graphs (Q-polynomial), for $D = 3$ and $r = 2$,
- Moore graphs, for $D = 3$ and $r = k$,
- Hadamard matrices, $D = 4$ and $r = 2$
- group divisible resolvable designs, $D = 4$ (cover of $K_{4,k}$),
- coding theory (perfect codes),
- group theory (class. of finite simple groups),
- orthogonal polynomials.

- graph theory, counting,
- matrix theory (rank mod p),
- eigenvalue techniques,
- representation theory of graphs,
- geometry (Euclidean and finite),
- algebra and association schemes,
- topology (covers and universal objects).

- structure of antipodal covers,
- new infinite families,
- nonexistence and uniqueness,
- characterization,
- new techniques
which can be applied to drg or even more general

Difficult problems:
Find a 7-cover of K_{15}.
Find a double-cover of Higman-Sims graph $(\{22, 21, 1, 6\})$.

Tools:

Goals:

Antipodal covers of diameter 3

Γ an antipodal distance-regular with diameter 3. Then it is an r-cover of the complete graph K_n.
Its intersection array is $\{n - 1, (r - 1)c_2, 1, 1, c_2, n - 1\}$.

The distance partition correspond to an antipodal class.
Examples: 3-cube, the icosahedron.
A graph is locally C if the neighbours of each vertex induce C (or a member of C).

Lemma (A.J. 1994). $Γ$ distance-regular, $k \leq 10$ and locally C_3. Then $Γ$ is one of the Platonic solids with Δ’s as faces, the Paley graph $P(13)$, Shrikhande graph, the Klein graph, i.e., the 3-cover of K_5.

Problem. Find a locally C_3 distance-regular graph.

There is only one feasible intersection array of distance-regular covers of K_5: $\{7, 4, 1, 1, 2, 7\}$ - the Klein graph, i.e., the dual of the famous Klein map on a surface of genus 3. It must be the one coming from Mathon’s construction.

It is an antipodal distance-regular graph of diam. 3, with $r(q + 1) = (q^2 - 1)/c$ vertices, index r, $c_2 = c$ (vertex transitive, and also distance-transitive when r is prime and the char. of $GF(q)$ is primitive mod r).

Mathon’s construction of an r-cover of K_{q+1}
A version due to Neumaier: using a subgroup K of the $GF(q^k)^*$ index r. For, let $q = xc + 1$ be a prime power and either c is even or $q - 1$ is a power of 2.

We use an equivalence relation R for $GF(q^k)^*$: $vK_1, v \in GF(q^k)^\ast \{0\}$ of R, and $(v_1, v_2)K \sim (u_1, u_2)K$ if $v_1u_2 - v_2u_1 \in K$.

It is an antipodal distance-regular graph of diam. 3, with $r(q + 1) = (q^2 - 1)/c$ vertices, index r, $c_2 = c$ (vertex transitive, and also distance-transitive when r is prime and the char. of $GF(q)$ is primitive mod r).

Antipodal covers of diameter 4

Let $Γ$ be an antipodal distance-regular graph of diameter 4, with v vertices, and let r be the size of its antipodal classes (we also use $λ := a_1$ and $μ := c_2$).

The intersection array $\{b_1, b_2, b_3, b_1, c_1, c_2, c_3, c_4\}$ is determined by $\{k, a_1, c_2\}$, and has the following form

$$\{k, k - a_1 - 1, (r - 1)c_2, 1, 1, c_2, k - a_1 - 1, k\}.$$
Let $k = \theta_0 > \theta_1 > \theta_2 > \theta_3 > \theta_4$ be $ev(\Gamma)$. The antipodal quotient is $SRG(v/r, k, a_1, r_2)$. The old eigenvalues, i.e., $\theta_0 = k, \theta_2, \theta_4$ are the roots of
\[x^2 - (a_1 - r_2)x - (k - r_2) = 0 \]
and the new eigenvalues, i.e., θ_1, θ_3, are the roots of
\[x^2 - a_1x - k = 0. \]
The following relations hold for the eigenvalues:
\[\theta_0 = -\theta_2\theta_4, \quad (\theta_2 + 1)(\theta_4 + 1) = (\theta_1 + 1)(\theta_3 + 1). \]

The multiplicities are $m_0 = 1$, $m_1 = (r/v) - m_2 - 1$, $m_2 = (\theta_4 + 1)k(k - \theta_4)$ and $m_{1,3} = \frac{(r - 1)v}{r(2 + a_1\theta_3/k)}$. Parameters of the antipodal quotient can be expressed in terms of eigenvalues and r: $k = \theta_0$, $a_1 = \theta_1 + \theta_2$, $b_1 = -(\theta_2 + 1)(\theta_4 + 1)$, $c_2 = \theta_0 + \theta_2\theta_4$.

The eigenvalues θ_2, θ_3 are integral, $\theta_4 \leq -2, 0 \leq \theta_2$, with $\theta_2 = 0$ iff Γ is bipartite.

Furthermore, $\theta_3 < -1$, and the eigenvalues θ_1, θ_4 are integral when $a_1 \neq 0$.

We define for $s \in \{0, 1, 2, 3, 4\}$ the symmetric 4×4 matrix $P(s)$ with its ij-entry being equal to $p_{ij}(s)$.

For $b_1 = k - 1 - \lambda, b_2 = \lambda b_2 / \mu, a_2 = k - \mu$ and $b_2 = (r - 1)\mu/r$ we have
\[P(0) = \begin{pmatrix} k & 0 & 0 & 0 \\ 0 & k & 0 & 0 \\ (r - 1)k & 0 & r - 1 \\ 0 & r - 1 & 0 & 0 \end{pmatrix}, \]
\[P(1) = \begin{pmatrix} \lambda & b_1 & 0 & 0 \\ 0 & k_2 - b_2 & b_1 & 0 \\ 0 & \lambda & r - 1 & 0 \\ 0 & 0 & 0 & r - 1 \end{pmatrix}. \]

We have
\[P(2) = \begin{pmatrix} \mu/r & a_2 & b_2 & 0 \\ k_2 - r(a_2 + 1)(r - 1)(k - \mu) & r - 1 & 0 & 0 \\ 0 & b_2(r - 1) & 0 & 0 \end{pmatrix}, \]
\[P(3) = \begin{pmatrix} 0 & b_1 & \lambda & 1 \\ k_2 - rb_2 & b_1(r - 1) & 0 & 0 \\ \lambda(r - 2) & r - 2 & 0 \end{pmatrix}, \]
\[P(4) = \begin{pmatrix} 0 & 0 & k & 0 \\ 0 & k_2 & 0 & 0 \\ 0 & 0 & k(r - 2) & 0 \end{pmatrix}. \]

The matrix of eigenvalues $P(\Gamma)$ (with $\omega(i)$ being its ij-entry) has the following form:

\[P(\Gamma) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & \theta_0 & 0 & -\theta_1 \\ 1 & \theta_1 & 0 & -\theta_2 \\ 1 & \theta_2 & 0 & -\theta_3 \\ 1 & \theta_3 & 0 & -\theta_4 \\ 1 & \theta_4 & 0 & -\theta_5 \\ 1 & \theta_5 & 0 & 0 \end{pmatrix}. \]

Theorem (JK 1995).

\[\Gamma \] antipodal distance-regular graph, diam 4, and eigenvalues $k = \theta_0 > \theta_1 > \theta_2 > \theta_3 > \theta_4$.

Then $q_{11}, q_{12}, q_{13}, q_{14}, q_{22}, q_{23}, q_{24}, q_{33} > 0, r = 2$ iff $q_{11} = 0$ iff $q_{12} = 0$ iff $q_{13} = 0$ iff $q_{14} = 0 = q_{22} = q_{23} = q_{24} = q_{33}$.

(i) $(\theta_0 + 1)(k^2 + \theta_0^2) \geq (\theta_2 + 1)(k + \theta_2\theta_4)$, with equality iff $q_{22} = 0$.

(ii) $(\theta_2 + 1)(k^2 + \theta_2^2) \geq (\theta_4 + 1)(k + \theta_2\theta_4)$, with equality iff $q_{33} = 0$.

(iii) $\theta_2^2 \geq -\theta_4$, with equality iff $q_{11} = 0$.

Let E be a primitive idempotent of a distance-regular graph Δ_E of diameter d. The representation diagram Δ_E is the undirected graph with vertices $0, 1, \ldots, d$, where we join two distinct vertices i and j whenever $q_{ij} = q_{ji} \neq 0$.

Recall Terwilliger’s characterization of Q-polynomial association schemes that a d-class association scheme is Q-polynomial iff the representation diagram a minimal idempotent, is a path. For $s = 1$ and $r = 2$ we get the following graph:

Corollary. Γ antipodal, distance-regular graph with diam 4. $TFAE$

(i) Γ is Q-polynomial.

(ii) $r = 2$ and $q_{11} = 0$.

Suppose (i)-(ii) hold, then $\theta_0, \theta_1, \theta_2, \theta_3, \theta_4$ is a unique Q-polynomial ordering, and $q_{ij} = 0$ when i, j, h is odd, i.e., the Q-polynomial structure is dual bipartite.
Some examples of 1-homogeneous graphs

- a homogeneous property
- examples
- a local approach and the CAB property
- recursive relations on parameters
- algorithm
- a classification of Terwilliger graphs
- modules

<table>
<thead>
<tr>
<th>n</th>
<th>k</th>
<th>λ</th>
<th>µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

An antipodal distance-regular graph of diameter 4

The parameters corresponding to equitable partitions are independent of x and y.

0-homogeneous \iff distance-regular

VIII. 1-homogeneous graphs

- a homogeneous property
- examples
- a local approach and the CAB property
- recursive relations on parameters
- algorithm
- a classification of Terwilliger graphs
- modules
A 1-homogeneous graph \(\Gamma \) of diameter \(d \geq 2 \) and \(a_1 \neq 0 \) is locally disconnected iff it is a regular near \(2d \)-gon (i.e., a distance-regular graph with \(a_i = c_i a_1 \) and no induced \(K_{1,1} \)).

If \(\Gamma \) is locally disconnected, then for \(i = 1, \ldots, d - 1 \),

\[
\tau_i = b_i \quad \text{and} \quad \sigma_{i+1} = \frac{c_{i+1}a_1}{a_{i+1}}.
\]

Some examples of 1-homo. graphs, cont.

- the Taylor graphs,
- the Johnson graph \(J(2d, d) \),
- the folded Johnson graph \(J(4d, 2d) \),
- the halved \(n \)-cube \(H(n, 2) \),
- the folded halved \((2n) \)-cube,
- cubic distance-regular graphs.

If \(\Gamma \) is locally disconnected, then for \(i = 1, \ldots, d - 1 \), \(\tau_i = b_i \) and \(\sigma_{i+1} = \frac{c_{i+1}a_1}{a_{i+1}} \).

The local graph \(\Delta(x) \) is the subgraph of \(\Gamma \) induced by the neighbors of \(x \). It has \(k \) vertices \(k \) valency \(a_1 \).

All local graphs of a 1-homogeneous graph are

1. connected strongly regular graphs with the same parameters, or
2. disjoint unions of \((a_1+1)\)-cliques.

\[
\begin{align*}
\text{Theorem [JK'00].} \quad & \text{If } \Gamma \text{ is locally strongly regular, then } \exists \ \text{a finite set } S \subseteq \{1, 2, \ldots, d\} \text{ of parameters,} \\
& \text{such that } a_{i+1} = c_{i+1}a_1, \quad a_1 = c_1a_1, \\
& \text{and } \Gamma \text{ has the CAB property.}
\end{align*}
\]

A local approach

For \(x, y \in V(\Gamma) \), s.t. \(\partial(x, y) = i \), let \(\text{CAB}_i(x, y) \) be the partition \(\{C_i(x, y), A_i(x, y), B_i(x, y)\} \) of \(\Gamma(y) \).

\[
\begin{align*}
\text{If } \Gamma \text{ has the CAB}_j \text{ property, if } \forall i \leq j \text{ the partition } \\
\text{CAB}_i(x, y) \text{ is equitable for } x, y \in V(\Gamma), \text{s.t. } \partial(x, y) = i,
\end{align*}
\]

the CAB property \(\iff \) \(\Gamma \) is locally strongly regular.
Locally Moore graphs

Theorem [JK’00]. A graph whose local graphs are Moore graphs is 1-homogeneous iff it is one of the following graphs:

- the icosahedron ($\{4,2,1,1,2,5\}$),
- the Doro graph ($\{10, 6, 4, 1, 2, 5\}$),
- the Conway-Smith graph ($\{10, 6, 4, 1, 1, 2, 6, 10\}$),
- the compl. of $T(7)$ ($\{10, 6, 1, 6\}$).

Terwilliger graphs

A connected graph with diameter at least two is called a **Terwilliger graph** when every μ-graph has the same number of vertices and is complete.

A distance-regular graph with diameter $d \geq 2$ is a **Terwilliger graph** if it contains no induced C_d.

Corollary [JK’00]. A Terwilliger graph with $c_i \geq 2$ is 1-homogeneous iff it is one of the following graphs:

(i) the icosahedron,
(ii) the Doro graph,
(iii) the Conway-Smith graph.

Modules

If Γ distance-regular, diam. $d \geq 2$. Let x and y be adjacent vertices and $D_j = D_j(x, y)$.

Suppose $a_1 \neq 0$. Then for $i \neq d$, $b_i \neq 0$, i.e., $D_i \neq \emptyset$. Moreover, $D_d = \emptyset$ if $a_d = 0$.

Let w_{ij} be a characteristic vector of the set D_i and $W = W(x, y) = \text{Span}\{w_{ij} | i, j = 0, \ldots, d\}$. Then

$$\dim W = \begin{cases} 3d & \text{if } a_d \neq 0, \\ 3d - 1 & \text{if } a_d = 0. \end{cases}$$
IX. Tight distance-regular graphs

- alternative proof of the fundamental bound
- definition
- characterizations
- examples
- parametrization
- AT4 family
- complete multipartite \(\mu \)-graphs
- classifications of AT4(\(q, q, q \)) family
- uniqueness of the Patterson graph
- locally GQ

Lemma. Let \(\Gamma \) be a \(k \)-regular, connected graph on \(n \) vertices, \(e \) edges and \(t \) triangles, with eigenvalues

\[
k = \eta_1 \leq \eta_2 \leq \cdots \leq \eta_n.
\]

Then

\[i \] \(\sum_{i=1}^{n} \eta_i = 0 \),
\[ii \] \(\sum_{i=1}^{n} \eta_i^2 = nk = 2e \),
\[iii \] \(\sum_{i=1}^{n} \eta_i^3 = nk\lambda = 6t \),

if \(\lambda \) is the number of triangles on every edge.

Now suppose that \(r \) and \(s \) are resp. an upper and lower bounds on the nontrivial eigenvalues. Hence

\[
(\eta_i - r)(\eta_i - s) \leq 0 \quad \text{for } i \neq 1, \text{ and so }
\]

\[
\sum_{i=2}^{n} (\eta_i - s)(\eta_i - r) \leq 0,
\]

which is equivalent to

\[
n(k+rs) \leq (k-s)(k-r).
\]

Equality holds if and only if \(\eta_i \in \{r, s\} \) for \(i = 2, \ldots, n \);

\(\Leftrightarrow \Gamma \) is strongly regular with eigenvalues \(k, r \) and \(s \).

\[\textbf{Theorem [Terwilliger].} \]

Let \(x \) be a vertex of a distance-regular graph \(\Gamma \) with diameter \(d \geq 3 \), and let

\[
a_0 \neq 0 \text{ and let } a_1 = \eta_1 \geq \eta_2 \geq \cdots \geq \eta_n,
\]

be the eigenvalues of the local graph \(\Delta(x) \). Then, \(b^+ \geq \eta_2 \geq \cdots \geq \eta_n \).

Proof. Let us define \(N_1 \) to be the adjacency matrix of the local graph \(\Delta = \Delta(x) \) for the vertex \(x \) and let \(N \) be the Gram matrix of the normalized representations of all the vertices in \(\Delta \).

Since \(\Gamma \) is not complete multipartite, we have \(\omega_2 \neq 1 \) and

\[
N = I_N + N\omega_1 + (J_N - I_N - N)\omega_2
\]

\[
= (1 - \omega_2)\left(I_N + N\omega_1 - \omega_2 + J_N\omega_2 \right).
\]

The matrix \(N/(1 - \omega_2) \) is positive semi-definite, so its eigenvalues are nonegative and we have for \(i = 2, \ldots, k \):

\[
1 + \frac{\omega_1 - \omega_2}{1 - \omega_2} \eta_i \geq 0, \quad \text{i.e., } 1 + \frac{1 + \theta}{\theta + b_1 + 1} \eta_i \geq 0.
\]

Since \(k \) is the spectral radius, by the expression for \(1 - \omega_2 \), we have \(\theta > -b_1 - 1 \) and thus also

\[
(1 + \theta)\eta_k \geq -(\theta + b_1 + 1).
\]

If \(\theta > -1 \), then

\[
\eta_i \geq -\frac{\theta + b_1 + 1}{\theta + 1} = -1 - \frac{b_1}{\theta + 1}.
\]

The expression on the RHS is an increasing function, so it is upper-bounded by \(b^- \).

Similarly if \(\theta < -1 \), then \(\eta_i \) is lower-bounded by \(b^- \).

Fundamental bound (FB) [JKT’00]

\[
\Gamma \text{ distance-regular, diam. } d \geq 2,\text{ and eigenvalues } \theta_0 > \theta_1 > \cdots > \theta_d.
\]

If equality holds in the FB and \(\Gamma \) is nonbipartite, then \(\Gamma \) is called a tight graph.

For \(d = 2 \) we have \(b_1 = -(1 + \theta_1)(1 + \theta_2), b^- = \theta_1, b^+ = \theta_2, \) and thus \(\Gamma \) is tight (i.e. \(\theta_1 = 0 \)) iff \(\Gamma = K_{t \times n} \) with \(t > 2 \) (i.e. \(a_1 \neq 0 \) and \(\mu = k \)).
Characterizations of tight graphs

Theorem [JK’T’00]. A nonbipartite distance-regular graph \(\Gamma \) with diam. \(d \geq 3 \) and eigenvalues \(\theta_0 > \theta_1 \geq \cdots > \theta_d \) TFAE

(i) \(\Gamma \) is tight.
(ii) \(\Gamma \) is 1-homogeneous and \(\alpha_0 = 0 \).
(iii) the local graphs of \(\Gamma \) are connected strongly regular graphs with eigenvalues \(\alpha_1, \beta^+ \), \(\beta^- \), where
\[b^- = -1 - \frac{b_1}{\theta_1 + 1} \quad \text{and} \quad b^+ = -1 - \frac{b_1}{\theta_d + 1} \]

Examples of tight graphs

- the Johnson graph \(J(2d, d) \),
- the halved cube \(H(2d, 2) \),
- the Taylor graphs,
- the AT4 family (antiportal double-cover with diam. 4),
- the Patterson graph \{280, 243, 144, 10, 1, 8, 90, 280\} (related to the sporadic simple group of Suzuki).

(i) The Johnson graph \(J(2d, d) \) has diameter \(d \) and intersection numbers
\[a_i = 2i(d-i), \quad b_i = (d-i)^2, \quad c_i = i^2 \quad (i = 0, \ldots, d) \]
It is distance-transitive, antiportal double-cover and \(Q \)-polynomial. Each local graph is a lattice graph \(K_d \times K_d \) with parameters \((d^2, 2(d-1), d-2, 2)\) and nontrivial eigenvalues \(r = d - 2, s = -2 \)

(ii) The halved cube \(H(2d, 2) \) has diameter \(d \) and intersection numbers \(i = 0, \ldots, d \)
\[a_i = 4i(d-i), \quad b_i = (d-i)(2d-2i-1), \quad c_i = i(2i-1) \]
It is distance-transitive, antiportal double-cover and \(Q \)-polynomial. Each local graph is a Johnson graph \(J(2d, 2) \) with parameters \((d^2, 2(d-1), 2(d-1), 4)\) and nontrivial eigenvalues \(r = 2d - 4, s = -2 \)
(vii) The \(3F_{122} \)-graph has intersection array \(\{31671, 28160, 2160, 1, 1, 1080, 28160, 31671 \} \) and can be obtained from Fisher groups. It is distance-transitive, antipodal 3-cover and is not \(Q \)-polynomial.

Each local graph is \(\text{SRG}(31671, 3510, 693, 351) \) and \(r = 351, s = -9 \). They are related to \(F_{122} \).

(viii) The Soicher1 graph has intersection array \(\{56, 45, 16, 1, 1, 8, 45, 56 \} \). It is antipodal 3-cover and is not \(Q \)-polynomial.

Each local graph is the Gewirtz graph with parameters \((56, 10, 0, 2) \) and \(r = 2, s = -4 \).

(ix) The Soicher2 graph has intersection array \(\{416, 315, 64, 1, 1, 32, 315, 416 \} \). It is antipodal 3-cover and is not \(Q \)-polynomial.

Each local graph is \(\text{SRG}(416, 100, 36, 20) \) and \(r = 20, s = -4 \).

(x) The Meixner1 graph has intersection array \(\{176, 135, 24, 1, 1, 24, 135, 176 \} \). It is antipodal 2-cover and is \(Q \)-polynomial.

Each local graph is \(\text{SRG}(176, 40, 12, 8) \) and \(r = 8, s = -4 \).

(xi) The Meixner2 graph has intersection array \(\{176, 135, 36, 1, 1, 12, 135, 176 \} \). It is antipodal 4-cover and is distance-transitive.

Each local graph is \(\text{SRG}(176, 40, 12, 8) \) and \(r = 8, s = -4 \).

\[\text{Theorem [JKT’00].} \quad \Gamma \text{ is distance-regular with diameter } d \geq 3. \]

Let \(\theta, \theta’ \) be a permutation of \(\theta_0, \theta_1, \ldots, \theta_d \) with respective cosine sequences \(a_0, a_1, \ldots, a_d \) and \(b_0, b_1, \ldots, b_d \). Then for \(1 \leq i \leq d - 1 \)

\[k = \frac{(\sigma - \sigma_2)(1 - \rho) - (\rho - \rho_2)(1 - \sigma)}{(\rho - \rho_2)(1 - \sigma) - (\sigma - \sigma_2)(1 - \rho)} \]

\[b_i = k(\sigma_i - \sigma_{i+1})(1 - \rho) - (\rho - \rho_i)(1 - \sigma) \]

\[c_i = k(\sigma_i - \sigma_{i+1})(1 - \rho) - (\rho - \rho_i)(1 - \sigma) \]

\[c_{i+1} = k\sigma’_i - \sigma_{i+1} = \frac{\rho - 1}{\rho_i - \rho_i} \]

The denominators are never zero.

Let \(\Gamma \) be a distance-regular graph with diameter \(d \geq 3 \). Then for any complex numbers \(\theta, a_0, \ldots, a_d \), TFAE

(i) \(\theta \) is an eigenvalue of \(\Gamma \), and \(a_0, a_1, \ldots, a_d \) is the associated cosine sequence.

(ii) \(a_0 = 1 \), and for \(0 \leq i \leq d \)

\[c_i a_{i+1} + k a_i = 0 \]

where \(a_{-1} \) and \(a_{d+1} \) are indeterminates.

(iii) \(a_0 = 1, k = \theta \), and for \(1 \leq i \leq d \)

\[c_i a_{i-1} = k a_{i-1} - b_i (a_i - a_{i+1}) = k(\sigma - 1) a_i \]

where \(a_{d+1} \) is an indeterminate.

\[\text{Characterization of tight graphs} \]

\[\text{Theorem [JKT’00].} \quad \Gamma \text{ is distance-regular with diameter } d \geq 3, \text{ and eigenvalues } \theta_0 > \theta_1 > \cdots > \theta_d. \]

Let \(\theta = \theta_0, \theta’ = \theta_0, \ldots, \theta_d \) with respective cosine sequences \(a_0, a_1, \ldots, a_d \) and \(b_0, b_1, \ldots, b_d \).

Let \(\varepsilon = (\sigma - 1)/(\rho - \sigma) > 1 \). TFAE

(i) \(\Gamma \) is tight.

(ii) \(\frac{\sigma a_{i+1} - a_i}{1 + \varepsilon (\sigma - 1)} = \frac{\rho b_i - 1 - \rho_i}{1 + \varepsilon} \) \((1 \leq i \leq d) \) and the denominators are nonzero.

(iii) \(\sigma_i b_{i+1} - \rho_i b_i - \rho_i = \varepsilon (\sigma_{i+1} b_i - \rho_i) \) \((1 \leq i \leq d) \).
Parametrization

Theorem ([JKT’00]). \(\Gamma \) nonbip., diam. \(d \geq 3 \), and let \(\sigma_0, \sigma_1, \ldots, \sigma_k \in \mathbb{C} \) be scalars. TFAE

(i) \(\Gamma \) is tight, \(\sigma_0, \sigma_1, \ldots, \sigma_k \) is the cosine sequence corresponding to \(\theta_1 \), associated parameter
\[
epsilon = (k^2 - \theta_1 \theta_2) / (k(\theta_1 - \theta_2))\]

and
\[
h = (1 - \sigma)(1 - \sigma_2) / ((\sigma^2 - \sigma_2)(1 - \sigma_1)).\]

(ii) \(\sigma_0 = 0, \sigma_1 = \sigma_2, \varepsilon > -1, k = h(\sigma - \varepsilon) / (\sigma - 1) \),
\[
epsilon = k, \text{ for } 1 \leq i \leq d - 1\]

\[
b_i, c_i = \frac{1}{k}(\sigma_{i+1} - \sigma_{i})(\sigma_{i+1} - \sigma_{i}),\]

and denominators are all nonzero.

(iii) \(\Gamma \) is nonbipartite and \(E_p \circ E_p \) is a scalar multiple of a primitive idempotent \(E_p \).

(iv) \(\Gamma \) is nonbipartite and for a vertex \(x \) the irreducible \(T(x) \)-module with endpoint 1 is short.

Moreover, if \(\Gamma \) is tight, then the above conditions are satisfied for all edges and vertices of \(\Gamma \),
\[
(\theta, \theta') = \{\theta_1, \theta_2\}\]

and \(\tau = \theta_{d-1} \).

Theorem. \(\Gamma \) antipodal distance-regular, diam. \(4 \), eigenvalues \(k = \theta_0 > \cdots > \theta_k, p, q \in \mathbb{N} \). TFAE

(i) \(\Gamma \) is tight,

(ii) the antipodal quotient is
\[
\text{SRG}(k = q(p + q + 1), \lambda = p(q + 1), \mu = q(p + q)).\]

(iii) \(\theta_0 = \theta_1 = \theta_2 = p, \theta_3 = q, \theta_4 = q^2 \),
\[
\text{for each } x \in V(\Gamma) \text{ the local graph of } x\text{ is tight, then the above conditions are satisfied for all edges and vertices of } \Gamma,\]

\[
\{\theta, \theta'\} = \{\theta_1, \theta_2\}\]

and \(\tau = \theta_{d-1} \).

If \(\Gamma \) satisfies (i)-(iv) and \(r \) is its antipodal class size, then we call it an \textit{antipodal tight graph} \(\text{AT4}(p, q, r) \).

Theorem. \(\Gamma \) antipodal tight graph \(\text{AT4}(p, q, r) \). Then

(i) \(pq(p + q)/r \) is even,

(ii) \(r | (p + 1) \leq q(p + q) \),

with equality iff \(p/q \)-graphs are complete,

(iii) \(r | p + q \),

(iv) \(p \geq q - 2 \), with equality iff \(q_{14}^4 \) is 0.

(v) \(p + q \) is odd,

(vi) \(p + q^2 \) is even,

\((q^2 + q - 1)(q^2 + q - 1) \).

Ruled out cases

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(p/q)-graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Open cases

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(\mu)-graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Known examples of AT4 family

<table>
<thead>
<tr>
<th>Graph</th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(\mu)-graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conway-Smith</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2 (J(8, 4))</td>
<td>16</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Halved (Q_8)</td>
<td>28</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3 (O_7(3))</td>
<td>45</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Soicher1</td>
<td>56</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3 (O_7(3))</td>
<td>117</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Meixner1</td>
<td>176</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Meixner2</td>
<td>176</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Soicher2</td>
<td>110</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3 (F_{4,4})</td>
<td>31671</td>
<td>351</td>
<td>9</td>
</tr>
</tbody>
</table>
The case $p = q - 2$

Theorem [J’02]. Let Γ be $\text{AT}^4(p, q, r)$.

Let $p = q - 2$, i.e., $q_4 = 0$. Then $\forall v \in V(\Gamma)$ $\Gamma_2(v)$ induces an antipodal drg with diam. 4. If $r = 2$ then Γ is 2-homogeneous.

Example

The Soicher1 graph $(q = 4$ and $r = 3)$. $\Gamma_2(v)$ induces $(32, 27, 8, 1, 4, 27, 32)$ (Soicher has found this with the aid of a computer). The antipodal quotient of this graph is the strongly regular graph, and it is the second subconstituent graph of the second subconstituent graph of the McLaughlin graph.

All local graphs are the incidence graphs of $\text{AG}(2, 4)$, a parallel class ($\{(4, 3, 3, 1, 1, 1, 3, 4)\}$, i.e., the antipodal 4-covers of K_{14}.

Conjecture [J’03].

$\text{AT}^4(p, q, r)$ family is finite and either

1. $(p, q, r) \in \{(1, 2, 3), (20, 4, 3), (351, 9, 3)\}$,
2. $q \mid p$ and $r = q$ or $r = 2$, i.e., $\text{AT}^4(qs, q, q)$ or $\text{AT}^4(qs, q, 2)$ (a local graph is pseudogeometric),
3. $p = q - 2$ and $r = q$ or $r = 2$, i.e., $\text{AT}^4(q - 2, q, q)$ or $\text{AT}^4(q - 2, q, 2)$, $(\Gamma_2(x)$ is strongly regular).
Complete multipartite graphs:

\[K_{3,3,3} \text{ and examples } K_{2,3} = K_{3,3} \text{ and } K_{3,3} \]

\[\Gamma \text{ is } k\text{-regular, } v \text{ vertices and let any two vertices at distance } 2 \text{ have } \mu = \mu(\Gamma) \text{ common neighbours. Then it is called co-edge-regular with parameters } (v, k, \mu) \]

\[K_{\alpha n} = \Gamma - K_n \text{, for example } K_{2,3} = K_{3,3} \]

CAB_2 property and parameter \(\alpha\)

\[\Gamma \text{ dreg. } d \geq 2, a_2 \neq 0, \partial(x, z) = 2 = \partial(y, z), \partial(x, y) = 1 \]

\[\alpha := \Gamma(z) \cap \Gamma(y) \cap \Gamma(x) \]

We say \(3 \alpha \) when \(\alpha = \alpha(x, y, z) \) \(\forall (x, y, z) \in (VT)^3 \) s.t. \(\partial(x, z) = 2 = \partial(y, z), \partial(x, y) = 1 \).

\[K_{\alpha n} = \Gamma - K_n \text{, for example } K_{2,3} = K_{3,3} \]

Theorem [JK]. \(\Gamma \text{ distance-regular, diam. } d \geq 2, a_2 \neq 0 \text{, locally SRG}(v, k', \mu'), \text{ and } 3 \alpha \geq 1 \). Then

(i) If \(c_2 > \mu' + 1 \) and \(2c_2 < 3\mu' + 6 - \alpha \), then the \(\mu\)-graphs are \(K_{\alpha n} \), \(n = c_2 - \mu', t = c_2/n \).

(ii) If \(\alpha = 1 \) and \(\mu' \neq 0 \), then \(c_2 = 2\mu', \alpha = 0 \) and the \(\mu\)-graphs are \(K_{\mu' n} \).

(iii) If \(\alpha = 2 \), \(2 \leq \mu' \) and \(c_2 \leq 2\mu' \), then \(c_2 = 2\mu' \) and the \(\mu\)-graphs are \(K_{\mu' n} \text{ or } K_{3,3,3} \).

When do we know the \(\mu\)-graphs?

Theorem [JK]. \(\Gamma \text{ distance-regular, diam. } d \geq 2, a_2 \neq 0 \text{, locally SRG}(v, k', \mu'), \text{ and } 3 \alpha \geq 1 \). Then

(i) If \(c_2 > \mu' + 1 \) and \(2c_2 < 3\mu' + 6 - \alpha \), then the \(\mu\)-graphs are \(K_{\alpha n} \), \(n = c_2 - \mu', t = c_2/n \).

(ii) If \(\alpha = 1 \) and \(\mu' \neq 0 \), then \(c_2 = 2\mu', \alpha = 0 \) and the \(\mu\)-graphs are \(K_{\mu' n} \).

(iii) If \(\alpha = 2 \), \(2 \leq \mu' \) and \(c_2 \leq 2\mu' \), then \(c_2 = 2\mu' \) and the \(\mu\)-graphs are \(K_{\mu' n} \text{ or } K_{3,3,3} \).

Lemma. Let \(\Gamma \) have a CAB_ property with \(\mu\)-graphs \(K_{\alpha n} \), \(\alpha \geq 2 \), \(t \geq 3 \) and let \(\alpha \geq 3 \). Let xyz be a triangle of \(\Gamma \) and \(L \) be a lower bound on the valency of \(\Delta(x, y, z) \). Then

\[(\omega'' - 1 - k'')\mu'' \leq k''(k'' - 1 - L) \]

with equality iff all edges xyz \(\Delta(x, y, z) \) is \(\text{SRG}(v'', k'', \mu'') \), where \(\Delta'' = L \).

We derive the following lower bound:

\[L = \alpha - 2 + (\alpha - 1)(t - 3)n - (\alpha - 3) \]

Corollary [JK]. The \(\mu\)-graphs of \(AT(q, q, q) \) are \(K_{(s+1)q} \text{ and } \alpha = s+1 \).

The \(\mu\)-graphs of the Patterson graph (and of any other graph \(P \) with the same intersection array) are \(K_{4,4} \text{ and } \alpha = 2 \).

We will use uniqueness of small generalized quadrangles with all points regular to prove uniqueness of much larger object.
Classification of the $\mathsf{AT}_4(qs,q,q)$ family

Theorem [JK]. The μ-graphs of $\Gamma = \mathsf{AT}_4(p,q,r)$ are complete multipartite graphs $K_{s \times s}$, iff Γ is
1. the Conway-Smith graph (locally Petersen graph),
2. the Johnson graph $J(8,4)$ (locally $GQ(3,1)$),
3. the halved 8-cube (locally $T(8)$),
4. the $3.0^q_6(3)$ graph (locally $GQ(4,2)$),
5. the Meixner graph (locally $GQ(5,3)$),
6. the $3.0^q_7(3)$ graph (locally locally $GQ(2,2)$).

The $3.0^q_6(3)$ graph

A 3-cover of the graph Γ, defined on 126 points of one kind in $PG(5,3)$, provided with a quadratic form of a non-maximal Witt index and two points adjacent when they are orthogonal.

It can be described with Hermitian form in $PG(3,4)$. It has 378 vertices and valency 45.

Then the local graphs of Γ and its covers are $GQ(4,2)$.

The $3.0^q_7(3)$ graph

A 3-cover of the graph Γ, defined on the hyperbolic points in $PG(6,3)$, provided with a nondegenerate Hermitian form, and points adjacent when they are orthogonal.

It can be described with a system of complex vectors found in ATLAS (p. 108).

Then (the local graphs of) Γ and its covers are $GQ(2,2)$.

Meixner2

We obtained that the antipodal quotient of Meixner2 has parameters $\{176, 135, 1, 48\}$, with $\lambda = 40$ and μ-graphs $4 K_{3 \times 4}$, whose local graphs have parameters $\{40, 27, 1, 8\}$, with $\lambda = 12$ and μ-graphs $K_{4 \times 4}$, whose local graphs have parameters $\{12, 9, 1, 4\}$, with $\lambda = 2$ and μ-graphs $4 K_1$.

The Patterson graph

The graph \mathcal{U}_n has for its vertices the nonisotropic points of the n-dim. vector space over $GF(4)$ with a nondegenerate Hermitian form, and two points adjacent if they are orthogonal. \mathcal{U}_4 is $GQ(3,3)$ (W_3), and \mathcal{U}_{n+1} is locally \mathcal{U}_n.

The Meixner2 graph is \mathcal{U}_6, so it has 2688 vertices, valency 176 and (the local graphs of) it are $GQ(3,3)$.

Problem ([BCN, p. 410]) Is this graph unique? (uniquely determined by its regularity properties)
The derived design of the Steiner system $S(4, 7, 23)$ defines the *McLaughlin graph*, i.e., the unique SRG$(275, 112, 30, 56)$.

This graph is locally pentagon and the second subconstituent graph is a unique SRG$(162, 56, 10, 24)$.

We can find it in the Suz as an induced subgraph. The derived design of the Steiner system $S(7, 23)$, i.e., the McLaughlin graph, defines the Γ tight, diam. 4, $\alpha = 2$, $K_{1+1,1+1}$ as μ-graphs.

The distance-partitions of Γ correspond to an edge (i.e., the collection of nonempty sets $D^g(x, y)$) are also equitable (for $xy \in E\Gamma$):

The 1-homogeneous property and the CAB property.

<table>
<thead>
<tr>
<th>CAB partition</th>
<th>μ-graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAB partition</td>
<td>μ-graph</td>
</tr>
</tbody>
</table>

So the Patterson graph is 1-homogeneous.

The Patterson graph is distance-regular with intersection array

$$\{280, 243, 144, 10, 1, 8, 90, 280\}$$

and eigenvalues 280^1, 80^2, 4374, -81575, -28780.

The Patterson graph is 1-homogeneous and point stabilizer $3 \cdot U(3).(2^3).133$.

An alternative definition of the Patterson graph:
Induced Σ's in Suz, adjacent when disjoint

11-cliques: partitions of Suz in 11 Σ's

For example, the icosahedron is a unique graph, that is locally pentagon.

The Petersen graph is a unique strongly-regular graph $(10, 3, 0, 1)$, i.e., $\{3, 2, 1, 1\}$.

Theorem [BJK]. A distance-regular graph P with intersection array

$$\{280, 243, 144, 10, 1, 8, 90, 280\}$$

is unique.
In Ex.1, the case $t = 4$ we have the following feasible intersection array
\[
\{1105, 1024, 720, 33, 1, 10, 192, 1105\},
\]
and eigenvalues:
\[
1105^1, 255^{1911}, 55^{16688}, -15^{42420}, -65^{8330}.
\]
If it exist, then it has 551,250 vertices
\[
(k_2 = 113, 152, k_3 = 424, 320, k_4 = 12, 672)
\]
and its local graphs are $GQ(16, 4)$ with all points being regular this is most probably the hermitian generalized quadrangle $H(3, 16))$.

Bibliography

Textbooks

Reference books: