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H Introduction H

We study an interplay between

algebra and combinatorics,

that is known under the name
algebraic combinatorics.

This is a discrete mathematics, where objects and
structures contain some degree of regularity or
symmetry.
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More important areas of application of algebraic
combinatorics are

e coding theory and error correction codes,
e statistical design of experiments, and

e (through finite geometries and finite fields) also
cryptography.

We investigate several interesting combinatorial
structures.  Our aim is a general introduction to
algebraic combinatorics and illumination of some the

important results in the past 10 years.
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We will study as many topics as time permits that
include:

e algebraic graph theory and eigenvalue
techniques (specter of a graph and characteristic polynomial; equitable partitions:
quotients and covers; strongly regular graphs and partial geometries, examples; distance-regular
graphs, primitivity and classification, classical families),

associative schemes (Bose-Mesner algebra, Krein conditions and absolute

bounds; eige

natrices and orthogonal relations, duality and formal duality, P-polynomial schemes,

Q-polynomial schemes),

finite geometries and designs (i and agine plone
duality; projective geometrics: spaces PG(d — 1,q). generalized quadrangles: quadratic forms and a

classification of isotropic spaces, classical constructions, small examples, spreads and regular points).
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I. Constructions of some
famous combinatorial objects

e Incidence structures

e Orthogonal Arrays (OA)

e Latin Squares (LS), MOLS
e Transversal Designs (TD)
e Hadamard matrices

Heawood’s graph

the point/block incidence graph

of the unique 2-(11,5,2) design.
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[Incidence structures]

t-(v, s, A¢) design is

e a collection of s-subsets (blocks)
e of a set with v elements (points),

e where each ¢-subset of points is contained in exactly
¢ blocks.

If Ay = 1, then the t-design is called Steiner System
and is denoted by S(t, s, v).

-
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Let i € Ny, @ <t and let \;(S) denotes the number of
blocks containing a given i-set S. Then

(1) S'is contained in A;(S) blocks and each of them
contains () distinct ¢-sets with S as subset;
(2) the set S can be enlarged to ¢-set in (’t’:[‘) ways

and each of these t-set is contained in A\; blocks:

s—1i v—1
Therefore, A;(S) is independent of S (so we can denote

it simply by ;) and hence a ¢-design is also i-design,
for 0 <<t
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For \g = b and A\ = r, when ¢ > 2, we have

bs=rv and r(s—1)=X(v—1)
or . (0 1)
v— v(v —
=\ and b= ——=
r 2 T A 25(571)
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[Bruck-Ryser-Chowla Theorem|

If v is even, then k — \ is a square.
If v is odd, then the Diophantine equation

22 = (k= Ny? + (=122

has nonzero solution in xz, y and z.

BRC Theorem (1963). Suppose 3SBIBD(v, k, \).

H.J. Ryser M. Hall Street\&Wallis H.J. Ryser
Combin. math. Combin. Th. Combinatorics paper
1963 1967 1982 (Witt cancellation law)

All use Lagrange theorem: m = a® + b + ¢ + d°.
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By the first part of BRC theorem there exists PG(2, n)
for all n € {2,...,9}, except possibly for n = 6.

The second part of BRC rules out this case, since there

is no nontrivial solution of 2% = 6z® — y2.

For n = 10 the same approach fails for the first time,
since the equation 22 = 10z% — y? has a solution
(z,y,2) =(1,1,3).

Several hounderd hours on Cray 1 eventually ruled out
this case.
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A partial linear space is an incidence structure in
which any two points are incident with at most one
line. This implies that any two lines are incident with
at most one point.

A projective plane is a partial linear space

satisfying the following three conditions:

(1) Any two lines meet in a unique point.

(2) Any two points lie in a unique line.

(3) There are three pairvise noncolinear points
(a triangle).
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The projective space PG(d, n) (of dimension d and
order q) is obtained from [GF(q)]4*! by taking the
quotient over linear spaces.

In particular, the projective space PG(2,n) is the
incidence structure with 1- and 2-dim. subspaces of
[GF(q)]? as points and lines (blocks), and

“being a subspace” as an incidence relation.
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PG(2,n) is a 2-(¢> + ¢+ 1,q + 1, 1)-design, i.c.,
o v = ¢*>+ ¢+ 1 is the number of points (and lines b),
e cach line contains k = ¢ + 1 points

(on each point we have r = ¢ + 1 lines),
e each pair of points is on A = 1 lines

(each two lines intersect in a precisely one point)

which is in turn a projective plane (see Assignment 1).
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Examples:

1. The projective plane PG(2,2) is also called the
Fano plane (7 points and 7 lines).

O
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can be obtained from 3 x 3 grid

2. PG(2,3)
(2,3)).

(or A
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3. PG(2,4) is obtained from Zs;:

points = Zsy; and

lines = {S+x | x € Zy},

where S is a b-element set {3,6,7, 12, 14}, i.e.,

{0,3,4,9,11} {1,4,5,10,12} {2,5,6,11, 13}
{3,6,7,12,14} {4,7,8,13,15} {5,8,9,14, 16}
{6,9,10,15,17} {7,10,11, 16, 18} {8,11,12,17,19}
{9,12,13,18,20} {10,13,14,19,0} {11,14,15,20, 1}
{12,15,16,0,2} {13,16,17,1,3} {14,17,18,2,4}
{15,18,19,3,5} {16,19,20,4,6} {17,20,0,5,7}
{18,0,1,6,8} {19,1,2,7,9} {20,2,3,8,10}

Note: Similarly the Fano plane can be obtained from
{0,1,3} in Z7.
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Let O be a subset of points of PG(2,7n) such that no
three are on the same line.

Then |O] < n+1ifnis odd
and |O] < n+2if nis even.

If equality is attained then O is called
oval for n even, and hyperoval for n odd
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Examples:

e the vertices of a triangle and the center of the circle
in Fano plane,

o the vertices of a square in PG(2, 3) form oval,

o the set of vertices {0,1,2,3,5,14} in the above
PG(2,4) is a hyperoval.
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The general linear group GL,(q) consists of all
invertible n X n matrices with entries in GF(q).

The special linear group SL,(g) is the subgroup
of all matrices with determinant 1.

The projective general linear group PGL,(q)
and the projective special linear group PSL,(q)
are the groups obtained from GL,(¢q) and SL,(q) by
taking the quotient over scalar matrices (i.e., scalar
multiple of the identity matrix).

For n > 2 the group PSL,(q) is simple
(except for PSLy(2) = S5 and PSLy(3) = Ay)
and is by Artin’s convention denoted by Ly(q).

Aleksandar Jurisi¢
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]Orthogonal Arrays|

An orthogonal array, OA(v, s, \), is such (Av?x s)-
dimensional matrix with v symbols, that each two
columns each of v? possible pairs of symbols appears
in exactly A rows.

This and to them equivalent structures (e.g.
transversal designs, pairwise orthogonal Latin squares,
nets,...) are part of design theory.
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If we use the first two columns of OA(v,s,1) for
coordinates, the third column gives us a Latin
square, i.e., (v X v)-dim. matrix in which all symbols

{1,...,v} appear in each row and each column.

000
111
222
012 021
Example : OA(3,3,1) 120 210
201 102
021
102
210
Aleksandar Jurisic¢
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@ < PdD
P oQ
DPL
QLo P

Three pairwise orthogonal Latin squares of order 4,
i.e., each pair symbol-letter or letter-color or
color-symbol appears exactly once.
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Theorem. If OA(v,s,\) exists, then we have
in the case A =1

s<wv+1,
and in general
sfv—1)+1
NSRS
02

Transversal design TD,(s,v) is an incidence
structure of blocks of size s, in which points are
partitioned into s groups of size v so that an
arbitrary points lie in A blocks when they belong to
distinct groups and there is no block containing them
otherwise.
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Theorem. For a prime p there exists
OA(p, p, 1), and there also exists

OA(p, (p" = 1)/(p — 1),p*?) for d € N\{1} HHT = nl,

[Hadamard matrices] (n x n)-dim. matrix H with elements %1, for which

Proof: The number of all lines that intersect a chosen
line of TD4 (s, v) is equal to (v—1)s and is less or equal
to the number of all lines without the chosen line, that

Let A be n x n matrix with |a;| < 1. holds is called a Hadamard matrix of order n.

.}
isv°— 1. oof- — i g :

Proof: Set A = 1. For i, j, s € Z,, we define How large can det A be? Such a matrix exists only if n =1, n =2 or 4| n.
In transversal design TDy(s,v), A # 1 we count in ¢ij(s) = is + j mod p. Since each column of A is a vector of length at most A famous Hadamard matrix conjecture (1893):
a similar way and then use the inequality between For A # 1 we can derive the existence from the /n, we have a Hadamard matrix of order 4s exists Vs € N.
arithmetic and quadratic mean (that can be derived construction of projective geometry PG(n, d). ] det A < ™2,
from Jensen inequality). | In 2004 Iranian mathematicians H. Kharaghani and

Can equality hold? In this case all entries must be 41 B. Tavfeh-Rezai tructed 2 Had 1 matric of
rince vourself the o . Tayfeh-Rezaie constructed a Hadamard matrix
For homework convince yourself that each OA(n, n, 1), and any two distinct columns must me orthogonal. pyleli-iezaie constructed a Hadama ! o

n € N, can be extended for one more column, i.e., to order 428. The smallest open case is now 668.
OA(n,n+1,1).
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II. Graphs, eigenvalues

1 1 1 1 A recursive construction of a Hadamard matrix H,,,
11 1 1 -1 —1 using H,, H, and Kronecker product (hint: use and regularity ] ) ) o
n=2: (1 _1> n=4: 121 1 -1 (A® B)(C ® D) = (AB) ® (BD) and (A ® B) = A graph T is a pair (VT, ET'), where VT is a finite
1.1 -1 1 At ® BY). set of vertices and ET is a set of unordered pairs xy

o adjacency matrix and walks, of vertices called edges (no loops or multiple edges).

L+ N

o+t +
Lot We could also use conference matrices (Belevitch o cigenvalues, Let VI' = {1,...,n}. Then a (n x n)-dim. matrix A
T R 1950, use for teleconferencing) with 0 on the diagonal is the adjacency matrix of I', when
R X . : . arity
Foob -t - - and CC" = (n — 1)I. in order to obtain two simple o regularity, P
- -+ =+ - . . . . . . _ 171f{l,]}€E,
- -+ -+ + constructions: if C' is antisymmetric (H = I + C) e cigenvalue multiplicities, Aij= 0. otherwise
or symmetric (Hy, consists of four blocks of the form . ’ ) )
e Peron-Frobenious Theorem,
Had d tri f order 4s i ivalent t =+ C) the four-cube
adamard matrix of order 4s is equivalent to e interlacing. X
. Lemma. (A");; = # walks from i to j of length h.
2-(4s — 1,25 — 1,5 — 1) design. ‘ (A% =# J g
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The number 0 € R is an eigenvalue of I', when for
a vector z € R"\{0} we have

Ax =0z, e, (Ax);= Z x; = fz;.
{jiteE

e There are cospectral graphs, e.g. K4 and K, U CYy.

e A ftriangle inequality implies that the maximum
degree of a graph T', denoted by A(T), is greater or
equal to |6], i.e.,

A(T) = 6].
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A graph with precisely one cigenvalue is a graph
with one vertex, i.e., a graph with diameter 0.

A graph with two eigenvalues is the complete graph
K,, n > 2, ie., the graph with diameter 1.

Theorem. A connected graph of diameter d has
at least d + 1 distinct eigenvalues.

Aleksandar Jurisi¢ 34
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|[Review of basic matrix theory|

Lemma. Let A be a real symetric matrix. Then
e its eigenvalues are real numbers, and

e the eigenvectors corresponding to distinct
eigenvalues, then they are orthogonal.

e IfU is an A-invariant subspace of R",
then U™ is also A-invariant.

e R" has an orthonormal basis consisting of
eigenvectors of A.

e There are matrices L and D, such that
L'L=LL" =1 and LAL'T =D,

where D is a diagonal matrix of eigenvalues of A.
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Lemma. The eigenvalues of a disconnected graph
are just the eigenvalues of its components and
their multiplicities are sums of the corresponding
multiplicities in each component.
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Regularity

A graph is regular, if each vertex has the same
number of neighbours.

Set 7 to the be all-one vector in R".

Lemma. A graph is regular iff j is its eigenvector.

Lemma. If T is a regular graph of valency k, then
the multiplicity of k is equal to the number of
connected components of I',

and the multiplicity of —k is equal to the number
of bipartite components of T'.

Aleksandar Jurisi¢ 37
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Lemma. Let I' be a k-regular graph on n vertices
.,0,. Then I" and I have

the same eigenvectors, and the eigenvalues of T’
aren—k—1,—1—05...,—1—0,.

with eigenvalues k, 05, . .

Calculate the eigenvalues of many simple graphs:

m x I, and their complements,
circulant graphs

Cnv

Kn X Km

Hamming graphs,...
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[Line graphs and their eigenvalues|

We call ¢(T, z) = det(zI — A(T))
the characteristics polynomial of a graph I'.

Lemma. Let B be the incidence matrix of the
graph T, L its line graph and A(T') the diagonal
matrix of valencies. Then

B'B=2I+A(L) and BB" = A()+ A(I).
Furthermore, if I" is k-regular, then

O(L,x) = (x+2) "o, 0 —k+2).
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[Semidefinitness|

A real symmetric matrix A is positive semidefinite
if

uAu >0

It is positive definite if it is positive semidefinite
and

for all vectors u.

wWAu=0 < u=0.

Characterizations.

e A positive semidefinite matrix is positive definite
iff invertible

e A matrix is positive semidefinite matrix iff all its
eigenvalues are nonnegative.

o If A = B"B for some matrix, then A is positive
semidefinite.
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The Gram matrix of vectors uy, ...
n x nmatrix G s.t. Gjj = ulu;.

Ju, € R™ s

Note that BT B is the Gram matrix of the columns of
B, and that any Gram matrix is positive semidefinite.
The converse is also true.

Corollary. The least eigenvalue of a line graph is
at least —2. If A is an induced subgraph of ', then

emin(r) S Hlllill(A) S emax(A) g HIIIBX(F)'

Let p(A) be the spectral radious of a matrix A.

Aleksandar Jurisi¢ 4
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Peron-Frobenious Theorem. Suppose A is a
nonnegative n Xn matrix, whose underlying directed
graph X is strongly connected. Then

(a) p(A) is a simple eigenvalue of A. If z an
eigenvector for p, then no entries of x are zero,
and all have the same sign.

(b) Suppose A is a real nonnegative n x n matrix
such that A — A; is nonnegative.
Then p(A1) < p(A), with equality iff A| = A.
(c) If 6 is an eigenvalue of A and |0 = p(A), then
0/p(A) is an mth root of unity and ¢*™"/™ p(A)
is an eigenvalue of A for all r. Furthermore,
all cycles in X have length divisible by m.

Aleksandar Jurisi¢ 42
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Let A be a symmetric n X n matrix and let us define
a real-valued function f on R" by

_ (w, Az)
@) =)
Let & and u be orthogonal unit vectors in R" and set
x(c) = @ + cu. Then (w(c),z(e)) = 1+ €%

fale)) = (x, Azx) + 26(;1,;14:2) +&¥(u, Au)

and
=2(u, Az).
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So f has a local extreme iff (u, Az) =0 Vu L @ and
[lul]|] = 1iff for every w L @ we have u L Az iff
Az = Oz for some § € R. More precisely:

Theorem [Courant-Fischer].
Let A be a symmetric n X n matrix with eigenvalues
0y > --->0,. Then

(x, Ax)

. (x, Ax) .
max min min  max

0, = )
k dim(U)=k 2€U  (x, ) dim(U)=n—k+1 2€U (2, )

Using this result, it is not difficult to prove the
following (generalized) interlacing result.
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Theorem [Haemers]. Let A be a complete
hermitian n x n matrix, partitioned into m? block
matrices, such that all diagonal matrices are square.
Let B be the m x m matrix, whose i, j-th entry
equals the average row sum of the i, j-th block
matrix of A fori,j = 1,...,m. Then the eigenvalues
oy > >y and By > - > 0, of A and B resp.
satisfy

a; > B; 2 Qitn—m, for i=1,...,m.
Moreover, if for some k € Ny, k < m, a; = 3; for
i=1,...,kand B = qjrp_p fori=k+1,...,m,
then all the block matrices of A have constant
row and column sums.

Aleksandar Jurisi¢ A
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III. Strongly regular graphs

e definition of strongly regular graphs

o characterization with adjacency matrix
o classification (type [ in II)

e Paley graphs

e Krein condition and Smith graphs

e more examples (Steiner and LS graphs)

o feasibility conditions and a table

T 4y Lo
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Two similar regularity conditions are:

(a) any two adjacent vertices have exactly A common
neighbours,

(b) any two nonadjacent vertices have exactly 2 common
neighbours.

A regular graph is called strongly regular when it
satisfies (a) and (b).  Notation SRG(n, k, A, n),
where k is the valency of I" and n = |VT|.

Strongly regular graphs can also be treated as extremal
graphs and have been studied extensively.

Aleksandar Jurisié¢ a7
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5-cycle is SRG(5,2,0,1),
the Petersen graph is SRG(10,3,0,1).

What are the trivial examples?

Km m- Kn:

The Cocktail Party graph C(n), i.e., the graph
on 2n vertices of degree 2n —2, is also strongly regular.

Aleksandar Jurisi¢ 48
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Counting the edges between the neighbours and non- Let J be the all-one matrix of dim. (n x n). Theorem. A connected regular graph with
%;mingi- A strongly regular graph I' is disconnected|| neighbours of a vertex in a connected strongly regular A graph T on n vertices is strongly regular if and only precisely three eigenvalues is strongly regular.
= graph we obtain: if its adjacency matrix A satisfies
If = 0, then each component of I' is isomorphic to Proof. Consider the following matrix polynomial:
) n—1—k =kk-X—-1), 2 _ & POty
Ky and we have A = k — 1. 8 ) ( ) A= k4 A+ (] = 1= A), (A=o)(A—T)
Corollary. A complete multipartite graph i - Ly ME=2-1) forsome futegers £, A and g M= E o)
p n= _ . .
orotary-. Co_mf? ete multip art1tf9 grapi s m . . . If A= A(l), where I is a connected k-regular graph
strongly regular iff its complement is Therefore, the valency k is an eigenvalue with T . )
. . o L with eigenvalues k, o and 7, then all the eigenvalues of
a union of complete graphs of equal size. multiplicity 1 and the nontrivial eigenvalues, denoted ) o ) .
- M are 0 or 1. But all the eigenvectors corresponding
Lemma. The complement of SRG(n,k, A, p) is by o and 7, are the roots of L P
) ) . to o and 7 lie in Ker(A), so rankM=1 and Mj = 7,
Homework: Determine all SRG with p = k. again Sfjoilgly regular graph: = A—pr+(p—k)=0, 5 " 1J 42 [JA
SRG(m, k, A\, ) = —k—1,n—2k+p—2,n—2k+\). ence M = —J. an € span{/, J, A}. |
(m,k, A ) = (n,m ) 18 e +A) and hence \ —p=o+7, u—k=or7. n pan{ }
Aleksandar Jurisi¢ 49 Aleksandar Jurisi¢ 50 Aleksandar Jurisi¢ 51 Aleksandar Jurisi¢ 52
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Classification Paley graphs

We classify stronelv reeular eranhs i B q a prime power, ¢ = 1 (mod 4) and set F = GF(q).
e classily strongly regular graphs into two types: The Paley graph P(q)= (V, E) is defined by:

Multiplicities

For a connected graph, i.e., u # 0, we have

S o s R T =k+ Solve the system:
T hror g, =T olve the system: , _ V=F and E={(a,b) €FxF|(a—b) e (F)?).
L+m,+m, =n Type I (or conference) graphs: for these graphs ) ) ) ) o )
and the multiplicities of o and 7 are Lok+mg-c+m -7 = 0. (n—1)(p—A) = 2k, which implies A = p—1, k = 2p L€, TWO Vertices are ad.]ace‘nt if their T_hfference we 11()211_
(n—1)7+k (74 Dk(k—7) and n = 4y +1, i.e., the strongly regular graphs with ze10 square. P(g) is undirected, since —1 € (F*)*.
T u(r — o) to obtain the sam? p:/'lram(.eters as their complements. Consider the map * — x + a, where a € F, and the
and m, =n—1—my. . (h— 1) — \) — 2% They exist iff n is the sum of two squares. map x — b, ?‘rllere b € Fis a square or a nonsquare,
my and m, = 5(“ -1+ — ) Type IT graphs: for these graphs (1 — X2 +4(k—p)isa | 0 show P(q) is strongly regular with
(= A4k — 1) perfect square A%, where A divides (n—1)(u—\)—2k qg—1 q—>5 q—1
and the quotient is congruent to n — 1 (mod 2). valency k = T A= 4 and g = T4
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Seidel showed that these graphs are uniquely
determined with their parameters for ¢ < 17.

There are some results in the literature showing that
Paley graphs behave in many ways like random graphs

G(n,1/2).

Bollobés and Thomason proved that the Paley graphs
contain all small graphs as induced subgraphs.

I
3
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[Krein conditions]

Of the other conditions satisfied by the parameteres of
SRG, the most important are the Krein conditions,
first proved by Scott using a result of Krein from
harmonic analysis:

(0+1)(k+0+207) < (k+0)(T+1)
and

(r+D)(k+714207) < (k+7)(0+1)%

Some parameter sets satisfy all known necessary
conditions. We will mention some of these.

Aleksandar Jurisi¢ 58

Algebraic Combinatorics, 2007

If K > s > t eigenvalues of a strongly regular graph,
then the first inequality translates to

2t+1)(t—s)—tt+1)

kz—s (t—s)+tt+1)

(t—s)—tt+3)
Az =Dt ey
N Gt i)

(t—s)+t{t+1)

A strongly regular graph with parameters (k, A, i)
given by taking equalities above, where ¢ and s are
integers such that t — s > (¢t 4+ 3) (i.e., A > 0) and
k>t > sis called a Smith graph.

Aleksandar Jurisic¢
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A strongly regular graph with eigenvalues k > o > 7is
said to be of (negative) Latin square type when
p="7(T+1) (resp. p=o(o+1)).

The complement of a graph of (negative) Latin square
type is again of (negative) Latin square type.

A graph of Latin square type is denoted by L, (v),
where w = —o, v = 7 — ¢ and it has the same
parameters as the line graph of a TD,(v).

Graphs of negative Latin square type ware introduced
by Mesner, and are denoted by NL.(f), where e = 7,
f =7 — o and its parameters can be obtained from
L, (v) by replacing u by —e and v by —f.
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More examples of strongly regular graphs:

L(K,) is strongly regular with parameters

n:(;), k=2v—-1), A=v—-2, p=4

For v # 8 this is the unique srg with these parameters.

Similarly, L(K, ) = K, x K, is strongly regular, with
parameters

n=v% k=20w-2), A\=v—2, p=2.

. P n_1)2
and cigenvalues  2(v—1), v —220-D (=17,
For v # 4 this is the unique srg with these parameters.
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Steiner graph is the block (line) graph of a 2-(v, s, 1)
design with v —1 > s(s—1), and it is strongly regular
with parameters

v—1
A=—— =2+ (s— 17 =%
S 2 (s -1 s

and eigenvalues

Aleksandar Jurisi¢ 62

Aleksandar Jurisié¢

Algebraic Combinatorics, 2007

When in a design D the block size is two, the number of
edges of the point graph equals the number of blocks
of the design D. In this case the line graph of the
design D is the line graph of the point graph of D.
This justifies the name: the line graph of a graph.

A point graph of a Steiner system is a complete graph,
thus a line graph of a Steiner system S(2,v) is the
line graph of a complete graph K, also called the
triangular graph.

(If D is a square design, i.e., v — 1 = s(s — 1), then its
line graph is the complete graph K,.)

63
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The fact that Steiner triple system with v points
exists for all v = 1 or 3 (mod 6) goes back to
Kirkman in 1847. More recently Wilson showed that
the number n(v) of Steiner triple systems on an
andmissible number v of points satisfies

n(v) > exp(v’logv/6 — cv?).

A Steiner triple system of order v > 15 can be
recovered uniquely from its line graph, hence there
are super-exponentially many SRG(n, 3s, s + 3, 9), for
n=(s+1)(2s+3)/3 and s =0 or 2 (mod 3).
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Tutte 8-cage :
|Paley graph P(13) | Clebsch graph] |[Shrikhande graph|
7[ J X/
) X
The Shrikhande graph drawn on two ways:
(a) on a torus, (b) with imbedded four-cube.
The Shrikhand ; | P13) " | The Shrikhande graph is not distance transitive, since
1e Shrikhande graph anc are the only : - ;
. ; ) e Qe _ . ) some p-graphs, i.e., the graphs induced by common
distance-regular graphs which are locally Cg (one has The Tutte’s 8-cage is the GQ(2,2) = W(2). Two drawings of the complement of the Clebsch graph. . . . .
J . . neighbours of two vertices at distance two, are Ky and
=2 and the other p = 3). A cage is the smallest possible regular graph some are 2K
. . s 1
(here degree 3) that has a prescribed girth.
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|Schléfly graph]

How to construct the Schlifli graph:
make a cyclic 3-cover corresponding to arrows,
and then join vertices in every antipodal class.

Aleksandar Jurisi¢ 73

Algebraic Combinatorics, 2007

Let I" be a graph of diameter d.

Then I" has girth at most 2d + 1,
while in the bipartite case the girth is at most 2d.

Graphs with diameter d and girth 2d + 1 are called
Moore graphs (Hoffman and Singleton).

Bipartite graphs with diameter d and girth 2d are
known as generalized polygons (Tits).
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A Moore graph of diameter two is a regular
graph with girth five and diameter two.

The only Moore graphs are

e the pentagon,
e the Petersen graph,
e the Hoffman-Singleton graph, and

e possibly a strongly regular graph on 3250 vertices.
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H IV. Geometry H

e partial geometries

e classfication — ;7
) il

e pseudogeometric 7

e quadratic forms &<

e isotropic spaces
A unique spread
e classical generalized quadrangles
in GQ(3,3)=W(3)
e small examples
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A triple (P, L, I), i.e., (points,lines,incidence),
is called a partial geometry pg(R, K,T),
when V¢, 0" € L, Vp,p' € P:

ol =K, |[(nl| <1,

*pl =R,

o if p & ¢, then there are exactly T points on £ that are
collinear with p.

at most one line on p and p/,

The dual (L, P, I') of a pg(R, K, T) is again a partial
geometry, with parameters (K, R, T).
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Classification

We divide partial geometries into four classes:
1. T=K: 2(v,K,1) design,
2. T =R —1: net,
T = K — 1: transversal design,
3. T = 1: a generalized quadrangle GQ(K —1, R—1),
4. For1 <T < min{K — 1, R — 1} we say we have a

proper partial geometry.

Apglt+1,s+1,1)isa
generalized quadrangle GQ(s, t).
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An example

L(Petersen) is the point graph of the GQ(2,2) minus
a spread (where spread consists of antipodal classes).

What about trivial examples?
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[Pseudo-geometric|

The point graph of a pg(P, L, I) is the graph with
vertex set X = P whose edges are the pairs of collinear
points (also known as the collinearity graph).

The point graph of a pg(R, K, T) is SRG:
k=R(K-1),\=(R-1)(T-1)+K—-2, u=RT,
and eigenvalues r = K — 1 —T and s = —R.

A SRG is called pseudo-geometric (R, K, T) if its
parameters are as above.
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|Quadratic forms|

A quadratic form Q(xo, 1, ..., xy) over GF(q)
is a homogeneous polynomial of degree 2,

Le., for @ = (xg, 21, ..., 2,) and
an (n + 1)-dim square matrix C' over GF(g):

n

Q(m) = Z CijTiTj = CEC(I:T.

i,j=0
A quadric in PG(n, ¢) is the set of isotropic points:
Q= {(z)|Q(x) =0},

where (z) is the I-dim.  subspace of GF(q)"'!

generated by @ € (GF(g))"*.

Aleksandar Jurisi¢ 8

Algebraic Combinatorics, 2007

Two quadratic forms Q1 (x) and Qo(x) are
projectively equivalent if there is an
invertible matrix A and A # 0 such that

Qa(x) = AQ:1(zA).

The rank of a quadratic form is the smallest number of
indeterminates that occur in a projectively equivalent
quadratic form.

A quadratic form Q(zo, ..., x,) (or the quadric @ in

PG(n, q) determined by it) is nondegenerate if its
rank is n + 1. (i.e., QN Q* = 0 and also to Q*+ = 0).
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For ¢ odd a subspace U is degenerate whenever
Unut 0,

i.e., whenever its orthogonal complement U+ is
degenerate, where L denotes the inner product on the
vector space V(n + 1, ¢) defined by

(x,y) = Qx +y) — Qz) — Qy).

Aleksandar Jurisi¢ 83

Algebraic Combinatorics, 2007

[Isotropic spaces|

A flat of projective space PG(n, q)
(defined over (n + 1)-dim. space V)
consists of 1-dim. subspaces of V'

that are contained in some subspace of V.

A flat is said to be isotropic when all its points are
isotropic.

The dimension of maximal isotropic flats will be
determined soon.
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Theorem. A nondegenerate quadric Q(x) in
PG(n, q), q odd, has the following canonical form

(i) for n even: Q(z) = Y"1 ja?,
(ii) for n odd:
(a) Q) = 32127,

(b) Q(x) = nad+>_", a2, wheren is not a square.
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Theorem. Any nondegenerate quadratic form
Q(x) over GF(q) is projectively equivalent to

(i) for n=2s: Pog = 23+> ;_; 2991 (parabolic),
(ii) forn =2s —1
(a) Has1 = Z;;ol Toilois1 (hyperbolic),
(b) Hos1 = Z,:ll Zoi%ir1 + fl@o, 1), (elliptic)

where f is an irreducible quadratic form.
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The dimension of maximal isotropic flats:

Theorem. A nondegenerate quadric @ in PG(n, q)
has the following number of points and maximal
projective dim. of a flat F', F' C Q:

" —1 -2
(i) qq, T n 7 parabolic
(n+1)/2 _ 1 (n+1)/2 1 1
(it (g )(ql +1) , n 5 hyperbolic,
q—

(n+1)/2 _ 1 (n+1)/2 1 P
(g g * ), n 5 3 elliptic.

(iii)

q—1
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[Classical generalized quadrangles |

due to J. Tits (all associated with classical groups)

An orthogonal generalized quadrangle Q(d,q)
is determined by isotropic points and lines of a
nondegenerate quadratic form in

PG(d,q), ford € {3,4,5}.

Aleksandar Jurisi¢ 88




Algebraic Combinatorics, 2007

For d = 3 we have ¢t = 1. An orthogonal generalized
quadrangle Q(4, ¢) has parameters (g, q).

Its dual is called symplectic (or null)
generalized quadrangle W (q)

(since it can be defined on points of PG(3, ),
together with the self-polar lines of a null polarity),

and it is for even ¢ isomorphic to Q(4, q).
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Let H be a nondegenerate hermitian variety
(e, V(™ + - +2%) in PG(d, ¢?).

Then its points and lines form a generalized quadrangle
called a unitary (or Hermitean)
generalized quadrangle U (d, g?).

A unitary generalized quadrangle U(3,¢%) has
parameters (g2, q) and is isomorphic to a dual of
orthogonal generalized quadrangle Q(5, ).
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Finally, we describe one more construction
(Ahrens, Szekeres and independently M. Hall)

Let O be a hyperoval of PG(2,q), ¢ = 2", i.e.,
(i.e., aset of ¢+2 points meeting V line in 0 or 2 points)

and imbed PG(2, ¢)=H as a plane in PG(3,¢)=P.

Define a generalized quadrangle T (O) with
parameters
(q - 15 q + 1)

)

by taking for points just the points of P\H, and for
lines just the lines of P which are not contained in H

and meet O (necessarily in a unique point).
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For a systematic combinatorial treatment
of generalized quadrangles we recommend
the book by Payne and Thas.

The order of each known generalized quadrangle or its
dual is one of the following: (s, 1) for s > 1;

(¢:9),

(4,4,

(¢*, 4",
(g—1,q+1),

where ¢ is a prime power.
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Small examples

s=2:1(2,2),1(24)

s=3:(3,3) =W(3) or Q(4,3),
(3,5) = 13(0),
(3,9) =Q(5,3)

s=4: (4,4) = W(4),
one known example for each (4,6), (4.8), (4,16)
existence open for (4,11), (4,12).
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The flag geometry of a generalized polygon G has as
pts the vertices of G (of both types), and as lines the
flags of G, with the obvious incidence.

It is easily checked to be a generalised 2n-gon in which
every line has two points; and any generalised 2n-
gon with two points per line is the flag geometry of
a generalised n-gon.

Theorem (Feit and Higman). A thick
generalised n-gon can 3 only for n =2,3,4,6 or 8.

Additional information:
eifn=4o0rn=_8, thent < s> and s < t%
e if n =6, then st is a square and t < s°, s < t°.

e if n =8, then 2st is a square.
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V. Association schemes

e definition

Pyl vertices give this
. type of atriangle
o Bose-Mesner algebra £ (lahp )
e cxamples color i} . color j
e symmetry : .
/ color h
e duality a B
e Krein conditions colored triangles

over a fixed base

Aleksandar Jurisié¢

e

Algebraic Combinatorics, 2007

For a pair of given d-tuples a in b over an alphabet
with n > 2 symbols, there are d + 1 possible relations:

they can be equal, they can coincide on d — 1 places,

d — 2 places, ..., or they can be distinct on all the
places.

For a pair of given d-subsets A and B of the set
with n elements, where n > 2d, we have d+ 1 possible
relations:

they can be equal, they can intersectin d—1 elements,
d — 2 elements, ..., or they can be disjoint.
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The above examples, together with the list of relations
are examples of association schemes that we will
introduce shortly.

In 1938 Bose and Nair introduced association

schemes for applications in statistics.
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However, it was Philippe Delsarte who showed
in his thesis that association schemes can serve as a
common framework for problems ranging from error-
correcting codes, to combinatorial designs. Further
connections include
— group theory (primitivity and imprimitivity),

linear algebra (spectral theory),
— metric spaces,
— study of duality
— character theory,
representation and orthogonal polynomials.
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Bannai and Ito:
We can describe algebraic combinatorics as

“a study of combinatorial objects
with theory of characters”
or as

“a study of groups without a group”

Even more connections:

~ knot theory (spin modules),
linear programming bound,
— finite geometries.
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A (symmetric) d-class association scheme on n
n X n)-matrices

vertices is a set of binary symmetric

1= A[],A],...,Ad s.t.

(a) Zf:(] A; = J, where J is the all-one matrix,

(b) for all 4,7 € {0,1,...,d} the product A;A;
is a linear combination of the matrices Ao, . ..

,Ag.

It is essentially a colouring of the edges of the complete
graph K, with d colours, such that the number
of triangles with a given colouring on a given edge
depends only on the colouring and not on the edge.
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|Bose-Mesner algebral

Subspace of n x n dim. matrices over R generated by
Ay, ..., Agis, by (b), a commutative algebra, known
as the Bose-Mesner algebra of A and denoted by

M.

Since A; is a symmetric binary matrix, it is the
adjacency matrix of an (undirected) graph T'; on n
vertices.

If the vertices & and y are connected in I';, we will
write x I'; y and say that they are in ¢-th relation.
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The condition (a) implies that for every vertices = and
y there exists a unique 4, such that xI';y, and that
[y, @ # 0, has no loops.

The condition (b) implies that there exist such
constants pi‘i , i,J,h €40,...,d}, that

d
AA; = pl A

h=0

1

They are called intersection numbers of the

association scheme A. Since matrices A; are
symmetric, they commute. Thus also pf] = p}ﬁ
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By (1), the combinatorial meaning of intersection
numbers pi‘j, implies that they are integral and
nonnegative.

Suppose 'y, y. Then
p?j =H{z; 2Tz in 2T;y}

Therefore, I'; is regular graph of valency k; :=
we have p?j =0;jk;.

By counting in two different ways all triples (z, vy, z),
such that

zlyy, zTliz and 2Ty

we obtain also &y, pf’j =k; pf -

Aleksandar Jurisié¢ 103

Algebraic Combinatorics, 2007

Let us now consider some examples of associative
schemes.

A scheme with one class consists of the identity matrix
and the adjacency matrix of a graph, in which every
two vertices are adjacent, i.e.; a graph of diameter 1,
i.e., the completer graph K,.

We will call this scheme trivial.
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Hamming scheme H (d,n)

Let d,n € Nand ¥ ={0,1,...,n — 1}.

The vertex set of the association scheme H(d,n) are
all d-tuples of elements on ¥. Assume 0 < i < d.

‘ertices « and y are in i-th relation iff they differ in ¢
places.

We obtain a d-class association scheme on n? vertices.
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Bilinear Forms Scheme M y,(q)
(a variation from linear algebra) Let d,m € N and ¢
a power of some prime.

All (d x m)-dim. matrices over GF(g) are the vertices
of the scheme,

two being in ¢-th relation, 0 <7 < d,
when the rank of their difference is 1.

Aleksandar Jurisic¢ 106

Algebraic Combinatorics, 2007

Johnson Scheme J(n,d)
Let d,n € N, d < nand X a set with n elements.

The vertex set of the association scheme J(n,d) are
all d-subsets of X.

Vertices  and y are in i-th 0 < ¢ < min{d, n — d},
relation iff their intersection has d — ¢ elements.

We obtain an association scheme with min{d,n — d}
classes and on (7}) vertices.
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g-analog of Johnson scheme J,(n, d)
(Grassman scheme)

The vertex set consists of all d-dim.
subspaces of n-dim. vector space V over GF(g).

Two subspaces A and B of dim. d are in i-th relation,
0<i<d, when dim(ANB)=d—i.
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Cyclomatic scheme

Let ¢ be a prime power and d a divisor of ¢ — 1.

Let Cy be a subgroup of the multiplicative group of
the finite field GF(g) with index d, and let C4, ..., Cy
be the cosets of the subgroup C.

The vertex set of the scheme are all elements of GF(g),
2 and y being in é-th relation when z —y € C;
(and in 0 relation when x = y).

Weneed —1 € C in order to have symmetric relations,

s0 2] d, if ¢ is odd.
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How can we verify if some set of matrices
represents an association scheme?

The condition (b) does not need to be verified directly.
It suffices to check that the RHS of (2) is independent
of the vertices (without computing pglj)

We can use symmetry.

Let X be the vertex set and I'y,..., T’y the set of
graphs with V(I';) = X and whose adjacency matrices
together with the identity matrix satisfies the condition

(a).
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An automorphism of this set of graphs is a
permutation of vertices, that preserves adjacency.

Adjacency matrices of the graphs I'y, ... 'y, together
with the identity matrix is an association scheme if

Vi the automorphism group acts transitively
on pairs of vertices that are adjacent in I;

(this is a sufficient condition).
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[Primitivity and imprimitivity]

A d-class association scheme is primitive, if all
its graphs I';, 1 < ¢ < d, are connected, and
imprimitive othervise.

The trivial scheme is primitive.

Johnson scheme J(n, d) is primitive iff n # 2d.

In the case n = 2d the graph I'; is disconnected.

Hamming scheme H(d,n) is primitive iff n # 2.
In the case n = 2 the graphs I';, 1 <1 < [d/2],
and the graph 'y are disconnected.
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Let {Ao, ..., Aq} be a d-class associative scheme A
and let m be a partition of {1,...,d} on m € N

nonempty cells. Let Af,..., Al be the matrices of
the form

Z Ai’

ieC

where C' runs over all cells of partition 7, and set
Al = I. These binary matrices are the elements of
the Bose-Mesner algebra M, they commute, and their
sum is J.

Very often the form an associative scheme, denoted by
A’ in which case we say that A’ was obtained from .4
by merging of classes (also by fusion).
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For m = 1 we obtain the trivial associative scheme.

Brouwer and Van Lint used merging to construct some
new 2-class associative schemes (i.e., m = 2).

For example, in the Johnson scheme J(7,3) we merge
Aj and Aj to obtain a strongly regular graph, which
is the line graph of PG(3, 2).
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|TWO bases and duality‘

Theorem. Let A= {A,..., A} be an associative
scheme on n vertices. Then there exists orthogonal
idempotent matrices Fy, . .., Eq and p;(j), such that

d
ZEJ =1,
j=0

: d
AiE; = pi(j)E), e, A= Zpi(j>Ej7

=0

(a)

(b)
(©) - %J,

(d) matrices Ey, ..., Eq are a basis of a (d + 1)-dim.
vector space, generated by Ay, ..., Ag.
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PrROOF. Let i € {1,2,...,d}. From the spectral
analysis of normal matrices we know that VA; there
exist pairwise orthogonal idempotent matrices Y;; and
real numbers 6,5, such that A;Y;; = 6,;Y;; and

ZY}J':L (3)

Furthermore, each matrix Yj; can be expressed as a
polynomial of the matrix A;.

Since M is a commutative algebra, the matrices Yj;
commute and also commute with matrices Ay, ..., Ag.

Therefore, each product of this matrices is an
idempotent matrix (that can be also 0).
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We multiply equations (3) for i = 1,...,d. to obtain
an equation of the following form

1=>E, (4)

where each E; is an idempotent that is equal to
a product of d idempotents Yj,, where Yj, is an
idempotent from the spectral decompozition of A;.

Hence, the idempotents E; are pairwise orthogonal,
and for each matrix A; there exists p;(j) € R, such
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Therefore,
Ai = Az] = Az‘ E E]' = E pz(j)E]
,- J

j
This tells us that each matrix A; is a linear
combination of the matrices F}.

Since the nonzero matrices E; are pairwise othogonal,
they are also linearly independent.

Thus they form a basis of the BM-algebra M, and
there is exactly d + 1 nonzero matrices among Ej's.

The proof of (c) is left for homework. ]
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The matrices Ey,...,Eg are called minimal
idempotents of the associative scheme A. Schur
(or Hadamard) product of matrices is an entry-wise
product. denoted by “o”. Since A; 0 A; = 0;;4;, the
BM-algebra is closed for Schur product.

The matrices A; are pairwise othogonal idempotents
for Schure multiplication, so they are also called
Schur idempotents of A.

Since the matrices Ey,..., Fy are a basis of the
vector space spanned by Ay, ..., Ay, also the following
statement follows.
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Corollary. Let A= {A,...,As} be an associative
scheme and Ey, . .., E,; its minimal idempotents.
Then 3 qzhj € R and g;(h) € R (i,5,h € {0,...,d}),
such that

d
1
(a) EioFE;= ” § 4\ En,
h=0

d
. . 1
(b) EioA;= g(]i(])Aj; Le, B=_ }2% qi(h)Ap,
=
(¢)  matrices A; have at most d + 1 distinct
eigenvalues. |
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There exists a basis of d + 1 (orthogonal) minimal
idempotents E; of the BM-algebra M such that
d

1
Ey=—J and Y Ei=1I,
0 n an

=0

d d
1
EoE; = EE AEn A=Y pih)Ey
h=0 h=0

d
1
and E; = — E gi(h)An (0<1i,j <d),
n
h=0

The parameters qf; are called Krein parameters,
pi(0), ..
q?([))7 e

., pi(d) are eigenvalues of matrix A;, and

,qi(d) are the dualne eigenvalues of E;.
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The eigenmatrices of the associative scheme A are
(d + 1)-dimensional square matrices P and @ defined
by

and

(P)ij = Pj(i) (Q)ij = QJ(i>'

By setting 7 = 0 in the left identity of Corollary (b)
and taking traces, we see that the eigenvalue p;(1) of
the matrix A; has multiplicity m; = ¢;(0) = rank(E}).

By Theorem (b) and Corollary (b), we obtain
PQ = nl = QP.

There is another relation between P and Q.
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Take the trace of the identity in Theorem (b):
AQ =P TAm7
where Ay and A, are the diagonal matrices with

entries (Ag)ii = ki and (Ay,)i = m;.

nA~l

m

This relation implies PA;_lPT =
comparing the diagonal entries also

and by
d

th(vl)Q/kh =n/m;.

h=0

which gives us an expression for the multiplicity m; in
terms of eigenvalues.
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Using the eigenvalues we can express all intersection
numbers and Krein parameters.

For example, if we multiply the equality in Corollary
(a) by E},, we obtain

) By = nEy(E; o E)),

Le.,
n
qf; = m—htrace(Eh(Ez‘OEj>) (5)
n
= —38 Epo E;joE; ’ 6
o sum(f2, o E; o [7) (6)

where the sum of a matrix is equal to the sum of all of
its elements.
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By Corollary (b), it follows also
1 d
EioEjoE), = pocs Z 4i(€) g;(0) qn(0) Ay,
=0

therefore, by ArQ = (AmP)T, we obtain

1 d
h .
Q;',j - nm, ; Qz(é) qj (é) Qh(‘@ ké
d . .
_ mim; Z]N@Pi(])pé(}l)
n =0 k€24
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Krein parameters satisfy the so-called
Krein conditions:

Theorem [Scott].

Let A be an associative scheme with n vertices
and ey, ..., e, the standard basis in R". Then

gl = 0.

n
Moreover, for v = g e, ®e; ®e;, we have

i=1

h __ n . 2
qz'l; = — (B ® E;® By)vl?,
h

and q; =10 iff (E; ® E; ® Ej)v = 0.
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PROOF (Godsil’s sketch). Since the matrices E;
are pairwise orthogonal idempotents, we derive from
Corollary (b) (by multiplying by Ej)

1
(EL o Ei)EfL = E q?]'Eh‘

Thus qth /n is an eigenvalue of the matrix E; o Ej;
on a subspace of vectors that are determined by the
columns of Ej,.

The matrices E; are positive semidefinite (since they
are symmetric, and all their eigenvalues are 0 or 1).

On the other hand, the Schur product of semidefinite
matrices is again semidefinite, so the matrix Fj o Ej
has nonnegative eigenvalues. Hence, ql’; > 0.
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By (5) and the well known tensor product identity
(A& B)(z®y) - Az ® By
for A, B € R™" and z,y € R", we obtain

qf; rrﬂ sum(E; o Ej o Ey)

p

nor

— v (Ez ® Ej ® E}J’lk
mp

Now the statement follows from the fact that
E,®@FE;®E),

is a symmetric idempotent. |
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Another strong criterion for an existence of associative
schemes is an absolute bound, that bounds the rank
of the matrix I o I;.

Theorem. Let A be a d-class associative scheme.
Then its multiplicities m;, 1 < i < d, satisfy
inequalities

mim, if i# 7,
§ my < 1 0 if g .
—m; (m; + i 1 =).
qlhj %0 2 1 ( 1 ) ]
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PROOF (sketch). The LHS is equal to the
rank(E; o E;) and is greater or equal to the

rank(E; ® E;) = mym;.

Suppose now ¢ = j. Among the rows of the matrix E;
we can choose m; rows that generate all the rows.

Then the rows of the matrix E; o E;, whose elements
are the squares of the elements of the matrix E;, are

generated by
m;
m; + ( 9 ) TOWS,

that are the Schur products of all the pairs of rows
among all the m; rows. ]
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An association scheme A is P-polynomial (called
also metric) when there there exists a permutation
of indices of A;’s, s.t.
3 polynomials p; of degree i s.t. A; = p;(4y),
i.e., the intersection numbers satisfy the A-condition
(that is, V 4,4, h € {0,...,d}

° pf‘J # 0 implies h < i+ j and

oy’ #0).
An associative scheme A is Q-polynomial (called
also cometric) when there exists a permutation of

indices of Ej’s, s.t. the Krein parameters qZ satisfy
the A-condition.
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Theorem. [Cameron, Goethals and Seidel]

In a strongly regular graph vanishing of either of
Krein parameters ¢}, and ¢3, implies that first and
second subconstituent graphs are strongly regular.
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SRG(162, 56, 10, 24), denoted by T,
is unique by Cameron, Goethals and Seidel.
vertices: special vertex oo,
56 hyperovals in PG(2,4) in a Lg(4)-orbit,
105 flags of PG(2,4)
adjacency: oo is adjacent to the hyperovals

hyperovals O ~ 0 <= ONO =0
(p,L) ~ 0O = |ONL\{p}| =2
(p, L)~ (¢, M) <= p#gq, L#M and
(peMorqgelL).

The hyperovals induce the Gewirtz graph,
i.e., the unique SRG(56,10,0,2))
and the flags induce a SRG(105,32,4,12).
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VI. Equitable partitions

e definition Labecde
) al ab cd
e (uotients balaldb c
e cigenvectors cbalad
e (antipodal) covers docboala
e dcbal
l+a a+bb+c||l—aa—-bb—c
=la+bl+ca+d||a—bl—ca—d
b+ca+dl+e||b—ca—dl—e
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An equitable partition of a graph I' is a partition
of the vertex set V/(T') into parts Cy, Cs, ..., Cj s.t.

(a) vertices of each part C; induce a regular graph,

(b) edges between Cj and C; induce a half-reqular

@. graph.
Vo

Numbers ¢;; are the parameters of the partition.

Example: the dodecahedron

o =
e e

VAN -

X
b—a
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Orbits of a group acting on I' form an equitable
partition.

But not all equitable partitions come from groups:

{{1,2,4,5,7,8},{3,6}}.
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Equitable partitions give rise to quotient graphs
G /7, which are directed multigraphs with cells as
vertices and ¢;; arcs going from Cj to Cj.

L2

2 > 3545

3 2 1 2 1

cigenvalues: 3!, VB 1, 0t —24 V5

v
®-
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Set X := VI and n := |X|. Let V. = R" be the
vector space over R consisting of all column vectors
whose coordinates are indexed by X.

For a subset S C X let its characteristic vector
be an element of V', whose coordinates are equal 1 if
they correspond to the elements of S and 0 otherwise.

Let m = {C4,...,Cs} be a partition of X.

The characteristic matrix P of 7 is (n x s) matrix,
whose column vectors are the characteristic vectors of
the parts of 7 (i.c., P; = 1if i € C; and 0 otherwise).

Algebraic Combinatorics, 2007

Let Matx (R) be the R-algebra consisting of all real
matrices, whose rows and columns are indexed by X.
Let A € Matx(R) be the adjacency matrix of I'.

Matx(R) acts on V by left multiplication.

Algebraic Combinatorics, 2007

Theorem. Assume AP = PB.
(a) If Bx = Oz, then APx = 0Px.

(b) If Ay = Oy, then y" PB = 0y P.

(¢) The characteristic polynomial of matrix B
divides the characteristic polynomial of matrix A.

Theorem. Let m be a partition of VI with the
characteristic matrix P. TFAE

(i) 7 equitable,

(ii) 3 a s x s matrix B s.t. A(I')P = PB

(iii) the span(col(P)) is A(T)-invariant.

If 7 is equitable then B = A(T'/).

7 € ev(I)\ev(I'/m)
corresponding to 7 sums to zero on each part.

An eigenvector x of T'/7 corresponding to 6 extends
to an eigenvector of I, which is constant on parts, so

me(T/m) < my(T).

= ecach eigenvector of I’
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Distance-regularity:
H graph, D diameter .
o VII. Distance-regular graphs ‘ [ graph, - diameter d, ¥ @ € V(I)
. & grap the distance partition {I'y(z),i(z),..., Tq(z)}
H If being at distance 0 or D is an equivalence relation corresponding to x
on V(H), we say that H is antipodal. ) )
. o distance-regularity
D . .
N . e intersection numbers
G VN °
o cigenvalues and cosine sequences
° o, genve 4 TR
is an r- if t is a partiti int o classification . . . .
H is an r-cover if there is a partition of V/(H) 1ntAo a is equitable and the intersection array
ll}d}fpondollt f?tbv C‘dHth‘ﬁbTeS, such that t‘};icblc 18 If an antipodal graph H covers H/7r and 7 consists of e classical infinite families COXETER GRAPH {b[), bi,...,bg_1;c1,09, ... ,Cd} is independent of x.
either a matching or nothing between any two fibres. antinedal clac i :
] ‘ antipodal classes, then H is called antipodal cover. e antipodal distance-regular graphs unique, cubic, DT K¢ : P 4<: >L’* oo —{ :)
I'=H / 7 ... quotient (correspondlng to 77) 28 vertices, diameter 4, girth 7 1 a G 2 G ay
Aut=PGL(2,7), pt stab. D1z
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A small example of a distance-regular graph:
(antipodal, i.c., being at distance diam. is a transitive relation)

od gl ol
et

o~

=
o
=S
N
w

The above parameters are the same for each vertex u:

{bm bl)bZ;ChCchii} 4 2 1

= {4,2,1:1,1,4}. &
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[Intersection numbers]

Set plt:= |Ti(u) N Tj(v)|, where d(u, v)=h. Then

o ) ol .0
ai=py, b= Piv11, G =DPio11s ki = py;,

ki = pf“o 4. +p£’d and in particular a; + b; + ¢; = k.
A connected graph is distance-transitive when
any pair of its vertices can be mapped (by a graph

authomorphism, i.e., an adjacency preserving map) to
any other pair of its vertices at the same distance.

distance-transitivity = distance-regularity
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All the intersection numbers are determined by the

numbers in the intersection array

{b07 bi,...,ba_15¢c1,C05 -0, Cd}

of I". This can be proved by induction on 4, using the

following recurrence relation:

) h h ok . o . h
Cj1Pi TP +biap; 1 = cinpiy jraiptbioapig

obtained by a 2-way counting for vertices u and v at
distance h of edges with one end in I';(u) and another
in I';(v) (see the next slide). Therefore,

the intersection numbers do not depend on
the choice of vertices u and v at distance r.
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rw+xc+rp=a; and zy+xc+T5= 05

Aleksandar Jurisi¢ 148

Algebraic Combinatorics, 2007

An arbitrary list of numbers b; and ¢; does no
determine a distance-regular graph.

It has to satisfy numerous feasiblity conditions
(e.g. all intersection numbers have to be integral).

t

One of the main questions of the theory of distance-

regular graphs is for a given intersection array

e to construct a distance-regular graph,
e to prove its uniqueness,

e to prove its nonexistence.

Some basic properties of the intersection numbers will

be collected in the following result.
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Lemma. [' distance-regular, diameter d and
intersection array {bo, by, ...,bs_1;¢1,¢2, ..., ¢Cq}.
Then

(i) bo>b1>by>->bg1>1,

(i) 1=c; < ey < < ey,

(iii) bi—1ki—y = ¢;ik; for 1 < i < d,

(iv) ifi+j <d, then ¢; < bj,

(v) the sequence ko, ki, ..., kq is unimodal, (i.e.,
there exists such indices h, 0 (1 < h < <d),
that ko < --- < kp=---=kr>---> ky.
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PROOF. (i) Obviously by > by. Set 2 < i < d. Let
v,u € VI be at distance d and v = vy, vy, ...,05 =u
be a path. The vertex v; has b; neighbours, that are
at distance 7 + 1 from v. All these b; vertices are at
distance 4 from vy, so b;_1 > b;.

(iii) The number of edges from T;_1(v) to Ty(v) is
bi—1ki—1, while from T';(v) to T';_1(v) is ¢;k;.

(iv) The vertex v; has ¢; neighbours, that are at
distance ¢ — 1 from v. All these vertices are at distance
J + 1 from vy ;. Hence ¢; < b;.

The statement (ii) can be proven the same way as (i),
and (v) follows directly from (i), (ii) and (iii). [ |
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Lemma. A connected graph G of diameter d is
distance-regular iff 3 a;, b; and ¢; such that

AA; =b; 1A 1+ aiAi+ A for 0<i<d.
If G is a distance-regular graph, then A; = v;,(A) for
some polynomial v;(x) of degree i, for 0 < i < d+1.

The sequence {v; ()} is determined with v_y(z) = 0,
vo(z) =1, vi(x) = x and for ¢ € {0,1,...,d} with

Cir1Vi () = (z — a;)vi(x) — biqviq ().

In this sense distance-regular graphs are combinatorial
representation of orthogonal polynomials.
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The intersection array of a distance-regular graph I"

{k,bi, ... ba—2,ba—1;1,¢o, ..., ca_1, cat,

i.e., the quotient graph I' /7 with the adjacency matrix
ag by

Cc1 a b] 0

Arm=| Y@

, determines
0 .o ba
Ci aq

all the eigenvalues of I" and their multiplicities.
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The vector v = (vg(6), .. ., vd(ﬁ))T is a left eigenvector
of this matrix corresponding to the eigenvalue 6.

Similarly a vector w = (wy(8), ..., wa(0))" defined
by w_i(z) = 0, wo(z) = 1, wi(z) = x/k and for
i€{0,1,....d} by

rwi(x) = ciwi1(x) + agw;(x) + biw; 1 (x)

is a right eigenvector of this matrix, corresponding to
the eigenvalue 6.

There is the following relation between coordinates of
vectors w and v: w;(x)k; = vi(z).
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For 6 € ev(I") and associated primitive idempotent E:

d
my .
E=—— A <i<d
i & 0= )

wp, - - - ,wq 1s the cosine sequence of E (or ).
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0 P —af—k
DT T
and
oy — (k—0)(a1+1) = (k—a)(9+b1+1).

kb ’ kb

Lemma. I' distance-regular, diam. d > 2, E is a
primitive idempotent of I corresponding to 6,
wo, - - - ;wyq 1Is the cosine sequence of 6.

For x,y € VI, i = d(z,y) we have

(i) (Ex, Fy) = zy-entry of E = w; Wﬂlﬁ'
(ii) wop=1and cw;—1+ aw;+ bwi1 = Ow;

for 0 <1 <d.

Using the Sturm'’s theorem for the sequence
b() N bi w,(:v)

we obtain

Theorem. Let 6y > --- > 0, be the eigenvalues of
a distance regular graph. The sequence of cosines

corresponding to the i-th eigenvalue 6; has precisely
i sign changes.
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Classification < : < oA A distance-regular graph with diameter d is called
[Classical infinite families| . o ‘
The G bi 1 Fcient m . | (j) classical, if its intersection parametres can be
‘stance-reoular. dis o aav T St e Gauss binomal coefficient |?| is equal (’ . . .
I' distance-regular, diam. d. We say I' is primitive, for b — 1 and i L i parametrized with four parameters (diameter d and
. ; . . or b =1 anc . . .
when all the distance graphs I'y, ..., T'y are connected Y numbers b, a and ) in the following way:
(and imprimitive otherwise). H —
bi — bk i 7
- i . k=0 b = — —a 0<i<d-1
Theorem (Smith). graph diameter [ b [ a 8 therwi ' 1 1 p 1) ==
. P . Johnson graph J(n,d) |min(d,n—d)| 1 1 n—d otherwise.
An imprimitive distance-regular - T
X A ) ) 3 Grassmann graph min (k,v—k) | ¢ q [ | } —1 . . . .. . . . .
graph is either antipodal or bipartite. Hammin graph H(d,n) d 1 o o1 If V' is an n-dim. vector space over a finite field with b i i—1 iy
_ _ o ) Bilinear forms graph k q [ gq-1 ¢"—1 elements, then L’;] is the number of m-dim. subspaces G = 1 I+a 1 ; 1<i<d,
The big project of classifying distance-regular graphs: Dual polar graph 777 ¢ | O 4 of V '
sl . Alternating forms graph n/2] clFé—-1 =1 .
(a) find all primitive distance-regular graphs, Hormitean forms graph " ey e e e where i
(b) given a distance-regular graph I', find all Quadratic forms graph | [(n+1)/2] [ @ [ @ —1] ¢"—1 { } =14 b+bi L
imprimitive graphs, which give rise to I'. 1
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|Antipodal distane-regular graphs|

Theorem (Van Bon and Brouwer, 1987).
Most classical distance-regular graphs have no
antipodal covers.

Theorem (Terwilliger, 1993).
P- and Q-poly. association scheme with d > 3

(not Cy, Qu, 2Q, or 1J(s,2s)) is not the quotient
of an antipodal P-polynomial scheme with d > 7.
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cover with D odd

iff
H=K,® (H/r), (ie, bipartite double),
and H/7 is a generalized Odd graph.

Theorem (A.J. 1991). H is a bipartite antipodal

(cf. Biggs and Gardiner, also [BCN])
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A generalized Odd graph of diameter d is a drg,
st.ap=--=ag-1=0, ag#0)

Known examples for D =5 (and d = 2):
— Desargues graph (i.c., the Double Petersen)
— five-cube
the Double of Hoffman-Singleton
— the Double Gewirtz
the Double 77-graph
— the Double Higman-Sims
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Theorem (Gardiner, 1974). If H is antipodal
r-cover of G, then «(H) is (almost) determined by
«(G) and r,

Dy € {2dr72dr + 1} and 2<r <k,

and b
bi=cpi for i=0,....,D, i#d, r=1+—1.
CD—d

Lemma. A distance-regular antipodal graph I" of
diameter d is a cover of its antipodal quotient with
components of 'y as its fibres unless d = 2.
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Lemma. [' antipodal distance-regular, diameter d.
Then a vertex x of I', which is at distance i < |[d/2]
from one vertex in an antipodal class, is at distance
d — i from all other vertices in this antipodal class.
Hence

Dy—i(z) =U{Tu(y) |y € Ti(x)} for 0 <i < [d/2].

For each vertex u of a cover H we denote the fibre
which contains u by F'(u).

A geodesic in a graph G is a path gy, ..., g;, where
dist(go, g¢) = t.
Aleksandar Jurisi¢ 165

Theorem. G distance-regular, diameter d and
parameters b;, ¢;; H its r-cover of diameter D > 2.
Then the following statements are equivalent:

(i) The graph H is antipodal with its fibres as the
antipodal classes (hence an antipodal cover of G)
and each geodesic of length at least | (D + 1)/2] in
H can be extended to a geodesic of length D.

(ii) For any u € V(H) and 0 <i < |D/2]}
we have

Sp—i(u) = U{F(u)\{v} : ve Si(u)}.
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(iii) The graph H is distance-regular with
D € {2d,2d + 1} and intersection array

(r—1)cq
{bo, ..., b1, 3 Cd—1y + - C1;
Cd
Cly.vyCaot, o ba—1y. .-, bo} for D even,
and
{bo, .. bar, (r=1)t,ca, .. e

Clw"7cd7t7bd—17~~~7b0}
for D odd and some integer t.
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The distance distribution corresponding to the

antipodal class {y1, ...,y } in the case when

d is even (left) and the case when d is odd (right).
Inside this partition there is a partition of the
neighbourhood of the vertex x.
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Theorem. Let I' be a distance regular graph

Algebraic Combinatorics, 2007
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All the eigenvalues: A(I"/m), Ny or A(I'/m), Ni:
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Theorem. H distance-regular antipodal r-cover,

; o i JR— a1 Take 6 to be an eigenvalue of H, which is also an
C,Ed Ha d15tér?ce rigulgr ?1;@ O(id] r-cover of I eigenvalue of I 7 0 bo b 0 bo b diameter D, of the distance-regular graph I',
hen every eigenvalue 0 of I'is also crar by 0 €1 ar O 0 diameter d and parameters a;, b;, c;.
an eigenvalue of H with the same multiplicity. An eigenvector of I' corresponding to 8 can be extended 0 ¢ co as by ) ) o
to an of o L ’ e . The D — d eigenvalues of H which are not in ev(I')
genvector of H which is constant on fibres. o,
PROOF. Let H has diameter D, and I' has n vertices, ) 0 B 0 Cd—2 -2 ba—2 (the ‘new’ ones) are for D = 2d (resp. D =2d +1),
so Hp =n - K, (K,’s corresp. to the fibres of H). We know that the eigenvectors of H are also the €4 Qg Ci-1 Gd-1 the eigenvalues of the matrix Ny (resp. Ni).
eigenvectors of Hp, therefore, we have vp(f) =r — 1. . )
Therefore, Hp has for eigenvalues r — 1 0 by 0 bo If6y > 6, > --- > 0p are m_e eigenvalues of H and
with multiplicity n and —1 with multiplicity nr — n. So we conclude that all the eigenvectors of H ctap by 0 o ar by 0 €= & 2+ 2 & are the eigenvalues of T, then
) ) . . ; i are consts ¥ c co as b = =0, .- =0,
The eigenvectors corresponding to eigenvalue r — 1 (,(')I”ret‘tpOIl(illllg to 6 are constant o‘n ﬁbreb'and therefore 0 c ) 2 "2 .'2 & =100, & =0y , &a =0,
are constant on fibres and those corresponding to —1 give rise to eigenvectors of I' corresponding to 6. W R ’ ie., the ev(T") interlace the ‘new’ eigenvalues of H.
A A 3 ) 0 .. bd—l 0 Cg—1 Qq—1 bd—l
sum to zero on fibres.
Ccq a4 cqg ag—rt
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Connections Tools: Goals: |Antipodal covers of diameter 3|
- projective and affine planes, i — structure of antipodal covers,
for D =3, 0or D =4andr =k (covers of K, or K. — graph theory, counting, ~ new infinite families, I an antipodal distance-regular with diameter 3.
—Two graphs (Q-polynomial), for D = 3and r = 2, — matrix theory (rank mod p), — nonexistence and uniqueness, ;I;h?ntlt 15 ?n T’COVGIAOf the clomplefe gra;pil K. |
~ Moore graphs, for D = 3 and r = k,  cigenvalue techniques, _ characterization, s intersection array is {n—1, (r—1)ca, 1; 1, co, n—1}.
Hadamard matrices, D =4 and r = 2 representation theory of graphs, new techniques
(covers of K ), ~ geometry (Euclidean and finite), (which can be applied to drg or even more general)
- group divisible resolvable designs, — algebra and association schemes o
D =4 (cover of K,.,.), = SEOCIALION SELELIES, Difficult problems:
— topology (covers and universal objects). T I
coding theory (perfect codes), ?n({ a 71_(/0[\1& of Kla‘f Hie S ont
— group theory (class. of finite simple groups), ({H;; ‘;1( Tl 6) }e;:o"el Of Higman-suns graph
— orthogonal polynomials. b L 01 . - .
s POy The distance partition corresp. to an antipodal class.
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Examples: 3-cube, the icosahedron.

A graph is locally C if the neighbours of each vertex
induce € (or a member of C).

Lemma (A.J. 1994). T distance-regular, k < 10
and locally Cy. Then T' is
— one of the Platonic solids with /\’s as faces,
— Paley graph P(13), Shrikhande graph,
Klein graph (i.e., the 3-cover of Kg).
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Platonic solids with A’s as faces

The 1-skeletons of

Problem. Find a locally (5 distance-regular graph.
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(a) the tetrahedron= K,

Aleksandar Jurisi¢

(b) the octahedron= Ky,

(c) the icosahedron.
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There is only one feasible intersection array of distance-
regular covers of Ks: {7,4,1;1,2, 7} - the Klein graph,
i.e., the dual of the famous Klein map on a surface of
genus 3. It must be the one coming from Mathon'’s
construction.
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Mathon’s construction of an r-cover of K,

A version due to Neumaier: using a subgroup K of
the GF(q)* of index r. For, let ¢ = r¢+ 1 be a prime
power and either ¢ is even or ¢ — 1 is a power of 2.

We use an equivalence relation R for GF(q)*\{0}:
(1, v2)R (w1, uz) iff 3h € K s.t. (v1h, vah) = (ug, us).

vertices: equiv. classes v, v € GF(¢)?\{0} of R,
and (v, v2) K~ (uy, ug) K iff viug — vouy € K,

It is an antipodal distance-regular graph of diam. 3,
with r(q + 1) = (¢* — 1)/c vertices, index 7, ¢; = ¢
(vertex transitive, and also distance-transitive when r
is prime and the char. of GF(q) is primitive mod r).
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Theorem (Brouwer, 1983).
GQ(s,t) minus a spread, t > 1

= (s+ 1)-cover of K1 with ¢y =1 — 1.

- good construction: ¢ a prime power:

(¢.9).
(¢—Lag+1),
s, t L.
(5:1) (¢+1q-1), if 2[q
(4:4°)-
- good characterization (geometric graphs),
- nonexistence
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|[Antipodal covers of diameter 4]

‘ n Toa; cy a cover I' of K, #of T
- - 119 11 does not exist (PG(2,10)) 0
‘ norac a cover I of K” #Of r |12 5 2 2 Mathon’s construction >1 Let T 1 p anti lal distance-reguls orapl £
3 1011 open (PC(2.12)) S et e an antipodal distance-regular graph o
5 3 11 L(Petersen) 1 Hj § g 3‘ equivalilllttﬁo Paley grtapht_{6v3;1~3} >11 diameter 4, with v vertices, and let r be the size of
< Y 4 E dathon’s construction = . .
6 222 Icosahedron 1 14 6 2 2 Mathon’s construction >1 its antipodal classes (we also use A == a; and p1 == ¢3).
7T 6 01 So(Hoffman-Singleton) 1 16 2 6 8 [dCMM], [So] and [Thl] 1
I8 322 Klein graph 1 Hg Z 2 2 unique gé(irjf\hs;;a 5H 6.2 215 The intersection array {bg, by, ba, bg; ¢1, Ca, C3, Ca} 18
} 9 3 13 GQ(2,4)\ spread 2 16 6 4 2 GQ(sé:s)\ spread 21 determined by (k, ay, ¢o, ), and has the following form
. . 6 7 22 PEN ?
9 7 1 1 |equivalent to the unique PG(2,8)| 1 6 8 0 2 >
‘ - [17 3 55 Mathon’s construction >1 {k k— ay — 17 (T - 1)027 1 17 C2, k — ap — 17 k}v
102 44 Johnson graph J(6 3) 1 17 5 3 3 GQ(4,4)\ unique spread >2
‘]0 4 2 2 GQ(& 3)\ unique Sprcad > 1 [17 15 1 1 |equivalent to PG(2,16), Mathon’s construction | > 1
— 18 2 8 8 Iﬁat,}lon’s construction 1
18 4 4 4 athon’s construction >1 Y 1 g .
|18 8 2 2 Mathon’s construction >1 A )stcmamc &pplO&Ch.
Hg : é 5 [[Iéa(fﬁ] (%g((g*?f (ﬁ:’:jrﬁt:;‘g 8 — make a list of all small feasible parameters
o 17 11 open (PG(2.18)) ! ~ check also the Krein conditions and absolute bounds
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Let k =6y > 60y > 0y > 03 > 0, be ev(I"). The
antipodal quotient is SRG(v/7, k, a1, 7¢2),
the old eigenvalues; i.e., 0y = k, 65, 04, are the roots of
22— (a; —reg)r — (k—rey) =0
and the new eigenvalues, i.e., 61, 03, are the roots of
22 —ax—k=0.
The following relations hold for the eigenvalues:

Oy = —9193, and (91 + 1)(94 + 1) = (91 + 1)(03 + 1)
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The multiplicities are my = 1, my = (v/r) —mg — 1,
O+ Dk(k — 6y) (r—1p
7‘02(94 — (92) 7‘(2 + aleltg/k/‘).

Parameters of the antipodal quotient can be expressed
in terms of eigenvalues and r:  k = 6y,

my = and my 3 =

0 + 00
a1 =0+ B, b= —(02+ )01+ 1), e =

The eigenvalues 6o, 0, are integral, 0y < —2, 0 < 6y,
with 5 = 0 iff " is bipartite.

Furthermore, 03 < —1, and the eigenvalues 60y, 03 are
integral when a; # 0.
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We define for s € {0,1,2,3,4} the symmetric 4 x 4
matrix P(s) with its ij-entry being equal to pj;(s).
Forby =k —1—\ ky=r1kbi/p,

as =k — pand by = (r — 1)pu/r we have

k0 0 0
_ ko 0 0
PO)= (r—Dk 0
r—1
A b 0 0
kQ — b17‘ b](T — 1) 0
P(1)= ANr—1) r—1]"
0
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w/r ap by 0
B ko—r(ag+1) (r=)k—p) r—1
PE) = bhir—1) 0 |
0
0 b A 1
k‘g — 7'1)1 bl(’I" — 1) 0
P3) = Ar—=2) r—21"
0
00 k 0
ko0 0
P = kr—2) 0
r—2
Aleksandar Jurisi¢ 188

Algebraic Combinatorics, 2007

The matrix of eigenvalues P(I") (with w;(6;) being its
ji-entry) has the following form:

1 90 6061/62 90(7’ — 1) r—1
16 0 -6 -1
P(T) = |16 —r(6+1) Os(r—1) r—1
165 0 —03 -1
160y —r(0s+1) O4(r—1) r—1
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Theorem. (JK 1995).
I' antipodal distance-regular graph, diam 4,
and eigenvalues k = 0y > 0y > 05 > 03 > 0.
Then qfy, aiy dis, @3 G @30 Gas s > 0,
r=2iffgl, =0iff ¢}, =0 if ¢}, = 0 iff g3y = 0,
@y = qly = @iy = G3 = 433 = ¢34 = 0 and
(i) (Os+1)*(K* +63) > (0> + 1)(k + 0204),
with equality iff g3, = 0,

(04 + 1)(k + 020,),
with equality iff ¢}, = 0,

(i) (0o + 1)2(K*+6%) >

(iii) 02 > —04, with equality iff q; = 0.
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Let E be a primitive idempotent of a distance-regular
graph of diameter d. The representation diagram
Apg is the undirected graph with vertices 0,1,...d,
where we join two distinct vertices ¢ and j whenever
4G =45 # 0.

Recall Terwilliger’s characterization of Q-polynomial
association schemes that a d-class association scheme is
@-polynomial iff the representation diagram a minimal
idempotent, is a path. For s = 1 and r = 2 we get the
following graph:
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Based on the above information we have:

Corollary. I' antipodal, distance-regular graph
with diam. 4. TFAE

(i) T is Q-polynomial.
(i) r =2 and qf; = 0.
Suppose (i)-(ii) hold, then 6y, 0y, 05, 05, 0,
is a unique Q-polynomial ordering, and
q]h] =0 when i+ j+ h is odd, i.e.,
the QQ-polynomial structure is dual bipartite.
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An antipodal distance-regular graph of diameter 4

(the distance partition corresponding to an antipodal class).
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r n k

# Ao |H roorn
1 |! Folded 5-cube 165 0 2 |! Wells graph 2 32
2 |1 T(6) 15 6 1 3 [!3Sym(6).2 3 45
31 T(7) 21 10 3 6 |!3.Sym(7) 3 63
4 |folded J(8,4) 35 16 6 8 |! Johnson graph J(84) |2 70
5 |1 truncated 3-Golay code 81 20 1 6 |shortened 3-Golay code|3 243
6 [! folded halved 8-cube 64 28 12 12 ! halved 8-cube 2 128
7 | Sa(Sa(MeL.)) 105 32 4 12 | Sy(Soicherl graph) 3 315
8 | Zara graph (126,6,2) 126 45 12 18 [3.05(3) 3 378
9 |! Sy(McLaughlin graph) [Br3]| 162 56 10 24 |! Soicherl graph 3 486
10| hyperbolic pts. of PG(6,3) | 378 117 36 36 |3.07(3) 3 1134
11| Suzuki graph 1781 416 100 96 |Soicher2 [Soi] 3 5346
12 ‘300936 31671 3510 3240| 3.Fiy, 3

Non-bipartite antipodal distance-regular graphs of diameter 4.
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s o)
()
S s
u@%{ A e
S(W) S(u)
0 ¢
S sw
# | nok Aop |H vt o
1! Petersen graph 10 3 0 1 |! Dodecahedron 2 120
2|3-Golay code 24322 1 2 [short. ext. 3-Golay code|3 9 720
3| folded Johnson graph J(10,5) [126 25 8 8 |! Johnson graph J(10,5)[ 2 9 252
4|folded halved 10-cube 256 45 16 6 |! halved 10-cube 215 512

Non-bipartite antipodal distance-regular graphs of diameter 5.
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VIII. 1-homogeneous graphs

e a homogemeous property

examples

a local approach and the CAB property

recursive relations on parameters

algorithm

a classification of Terwilliger graphs

e modules
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|[Homogeneous property|
(in the sense of Nomura)

I' graph, diameter d, z,y € V(I), s.t. d(z,y) = h,
i,j€40,...,d}. Set Df Df(w, y) =0y(x)N;(y)
and note |DJ| = pll.

The graph I' is h-homogeneous when the partition
{D!0<i,j<d, D] +0}

is equitable for every z,y € V(I'), O(z,y) = h, and
the parameters corresponding to equitable partitions
are independent of x and y.

0-homogeneous <= distance-regular
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Tsw +Ts +Tsp = ¢, Tw +To+TE = i, Tnw + TN +INE =,

TNw FTW +Tsw = ¢, TN +To+Ts = aj, TNp+Tp+Tse = b;.
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Ld}
DL = 1D} =

and therefore Di™! #

biby ..

Cc1C2...Ci1

bi—y

04D,

A distance-regular graph I" is 1-homogeneous when
the distance distribution corresponding to an edge is

equitable.
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Some examples of 1-homogeneous graphs

distance-regular graphs with at most one 7, s.t. a; # 0:

— bipartite graphs,
generalized Odd graphs;

the Wells graph
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A 1-homogeneous graph I' of diameter d > 2 and
ap # 0 is locally disconnected iff it is a regular near
2d-gon (i.e., a distance-regular graph with a; = c;aq
and no induced Kj21).

If T is locally disconnected, then fori=1,...,d — 1.
Ci1Gi
7, ="0b; and 0 = ——.

Ai+1
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Some examples of 1-homo. graphs, cont.

e the Taylor graphs,

e the Johnson graph J(2d, d),

o the folded Johnson graph J(4d, 2d),
e the halved n-cube H(n,?2),

o the folded halved (2n)-cube,

e cubic distance-regular graphs.

0

2 01 111 2
N
(D —@
P |
O O O

the dodecahedron

@;—@r—®,

0 0 1
the Coxeter graph

! Y
\
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the Biggs-Smith graph
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The local graph A(x) is the subgraph of T' induced
by the neighbours of x. It has k vertices & valency a;.
All local graphs of a 1-homogeneous graph are

(i) connected strongly regular graphs
with the same parameters, or

(ii) disjoint unions of (a;+1)-cliques.
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|A local approach|

For z,y € V(I'), s.t. O(z,y) =1, let CAB;(x, y) be

the partition {C;(z,y), Ai(z,y), Bi(z,y)}  of ['(y).
Vi a0 -9 Yd a0y

I' has the CAB; property, if Vi < j the partition
CAB;(z,y) is equitable Vo, y € V/(T), s.t. 9(x,y) = i.

the CABy property <= I is locally strongly regular
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Theorem [JK’00]. I' drg, diam. d, a; # 0. Then
[ is 1-homogeneous <= I" has the CAB property.

A two way counting gives us for i = 2,...,d:
QiCi—1 = 0 Qj—1,
/- —
Bi—1bi = 7i-1 53;,

%(0171 - Uz'fl) = Pi Q1.
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The quotient matrices

partitions are, for 1 <7 < j, i #d,
Vi1 =7 0

a; ar— B — Bi
0 0

Q=

Yd a1 — Vd

and when j=d also Q4 = (
Qg a1 — Qg

ifag#0, and Qq = (74), if ag =0

Aleksandar Jurisi¢

corresponding  to

CAB;

a; —6;

)
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Let I' be a 1-homogeneous graph with diameter d that
is locally connected and let dg := 0.

Then a; # 0, a; — 7; # 0, and we have the following
recursion: y; =0;_1,
a1 —0;-1)¢; a;p
ai:< 1 i 1) z’ 67‘,: il
a; ay—di-1

. Bi=bidi/a;,

forie{1,2,...,d -1}, and when i=d
Y4 = 04-1, g = (a1 — dq-1)cq/aq, if ag # 0,
and v = aq, if ag = 0.
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An bf algorithm to calculate all possible intersection
arrays of 1-homogeneous graphs for which we know
that local graphs are connected SRGs with given
parameters,

Given the parameters (K, N, 1/) of a connected SRG,
calculate its eigenvalues &' = a; > p > ¢ and
(a1—p)(a1—q)
a1 + pq
bi=a-N—-1, m=0, &=y
and initialize the sets F' := ) (final), N := 0 (new) and
S = {{k,b1,01}} (current).

k:U/: 5 blik‘*alfl, 041:1,
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fori>2 and S#0do
for {ca, i 1,01k, bi, - b} €S do
%= 0iens
if 7 = a1 then a; = 0;¢; = ki Fi= FU{{k,b1,..,bi 13 1,c,¢s,.. i)} 6
if 7 < a1 then
assume diameter = i and caleulate a;, a7, c;
if (k, €N and a;, a;, €N and a(ar —0)/2, cif2 € Ng)
then Fi= FU{{k,by,....bi 131,02, ..,ci}} s
assume diameter > i;
for ¢; = max(c; 1,7%) + 1,...,by do
calculate az, B;, 8, bi, a;
if (k, €N and a;, B, 6, by a; €N and 6 >
iy (a1 — sit —u,)u,) th(u]; 8i) c No)

and S
then N := N U {{ca,...,ci, 653k, b1, bi}} Bis
od;
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Locally Moore graphs

Theorem [JK’00]. A graph whose local graphs
are Moore graphs is 1-homogeneous iff it is one
of the following graphs:
e the icosahedron ({5,2,1;1,2,5}),
e the Doro graph ({10,6,4;1,2,5}),
e the Conway-Smith graph ({10,6,4,1;1,2,6,10}),
e the compl. of T(7) ({10,6;1,6}).
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Terwilliger graphs

A connected graph with diameter at least two is called
a Terwilliger graph when every p-graph has the
same number of vertices and is complete.

A distance-regular graph with diameter d > 2 is a
Terwilliger graph iff it contains no induced C.

Corollary [JK’00]. A Terwilliger graph with ¢, >2
is 1-homogeneous iff it is one of the following graphs:
(i)  the icosahedron,
(ii) the Doro graph,
(iii) the Conway-Smith graph.
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I' distance-regular, diam. d > 2. Let x and y be
adjacent vertices and D! = D}(z,y).
Suppose a; # 0. Then for i # d, a; # 0, ie,
D! # ). Moreover, D = 0 iff ag = 0.

Let w;; be a characteristic vector of the set D{ and

W =W (xz,y):= Span{w; [4,j =0,...,d}. Then
o f8dif ag#0,
dim W= { 3d—1if a;=0.
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For Vzy € ET, we define the scalar f = f(z,y):

1
f=
1

a

[ is the average degree of the complement of the

{(z,w) € X? | z,w € I(z,y), d(z,w) = 2}‘

A-graph. Then 0 < f < a; — 1,0 and for 0 € ev(T),

E = E(0) the Gram matrix of EZ, By, wyy is
Wy w1 a1w
w1 Wy a1wq

1wy ajwi c

3
m
— det

where ¢ = al(wo +(a;— f—Dw + fan).
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So
(w=—w)(l+w)f <(l-w)(aw+1+w),

ie.

3

(k+0)(1+0) f < bi(k+0(ar+1)). |

We now consider which of 6y, 6s, . .., 0, gives the best
bounds for f. Let 8 denote one of 01,65, ...,0,, and
assume @ # —1. If § > —1 (resp. 6 < —1), the
obtained inequality gives an upper (resp. lower) bound

for f.
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Consider the partial fraction decompostion

b k+9(a1+1) _ b1 (kcq 4 b] )
"k+0)(1+6) k—1\k+6 1+6)
Since the map F : R\ {—k, —1} — R, defined by
ka1 b1
T —
k+x 14z

is strictly decreasing on the intervals (—k, —1) and
(—1,00), we find that the least upper bound for f is
obtained at § = 6;, and and the greatest lower bound
is obtained at 6 = 0

k+04(a1+1)
H(k+04)(1+6,)

k+ 91(0,1+1)

<SS aTay

o
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Set H = H(z,y) := Span{z, §, wi }

Suppose I' is 1-homogeneous. So AW = W. The
Bose-Mesner algebra M is generated by A, so also

MW =W =MH (:=Span{mh|m e M,h e H}).
Ey. Ey, ..., Eyis abasis for M, so E,E; = 6;;E; and

(direct sum),

Note dim(EyH) = 1 and 3 > dim(E;H) > 2, and
dim(E;H) = 2 implies ¢ € {1, d}.

If ¢ == |{¢]| dim(E;H) = 2}, then t € {0,1,2} and
dim(MH)=3d+1—t. Hencet =2 when ag = 0.
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IX. Tight distance-regular graphs

e alternative proof of the fundamental bound
e definition

e characterizations

e examples

e parametrization

o AT4 family

e complete multipartite p-graphs

e classifications of AT4(gs, ¢, ¢) family

e uniqueness of the Patterson graph

e locally GQ
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Lemma. Let ' = be a k-regular, connected graph
on n vertices, e edges and t triangles, with
eigenvalues

E=m<m< <
Then
(i) Xm=0,
(i) YU n?=nk=2e,
(iii) Yy m} = nkA = 6t,
if A is the number of triangles on every edge.
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Now suppose that r and s are resp. an upper and
lower bounds on the nontrivial eigenvalues.
Hence (n; — 7)(n; — s) < 0 fori # 1, and so

k

2(771: —s)(m —1r) <0,

=2
which is equivalent to
n(k+rs) < (k—s)(k—r).
Equality holds if and only if
n € {r,s}fori=2,...,n,

ie., I' is strongly regular with eigenvalues k, r and s.
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Let us rewrite this for a local graph of a vertex of a
distance-regular graph:
(a1 — b’)(al — b+>

ap +b7bt '

where b~ and b" are the lower and the upper bound

k<

for the nontrivial eigenvalues of the local graph.

We define for a distance-regular graph with diam. d
and eigenvalues y > 61 > --- > 0,
by

b
L and bt =—-1— ,
0+ 1

0+ 1
and note b~ < 0 and b* > 0.

b= —1-
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Theorem [Terwilliger|. Let x be a vertex of
a distance-regular graph I with diameter d > 3,
ay # 0 and let

ar=mzm2z... 210
be the eigenvalues of the local graph A(x). Then,

V"> > >b.

Proof. Let us define Ny to be the adjacency matrix
of the local graph A = A(z) for the vertex = and

let N to be the Gram matrix of the normalized
representations of all the vertices in A.
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Since I' is not complete multipartite, we have wo # 1
and

N = I+ Nyw; + (Jk — I, — Nl)ojz

(1—w2)(1k+N1w1_w2+J w2 )
—

1 kl_WQ

The matrix N/(1 — wy) is positive semi-definite,
so its eigenvalues are nonegative and we have
fori=2,...,k:

Wy — Wy 140 >0

14+ ——n
+0+b1+177 -

1+ le.,

i>07
1—(4.}277'
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Since k is the spectral radious, by the expression for
1 — ws, we have # > —b; — 1 and thus also

I+ = —(0+b+1).
If @ > —1, then
9+b1+17 b
6+1 0+1

The expression on the RHS is an increasing function,
so it is uper-bounded by b~.

n >

Similarly if # < —1, then 7; is lower-bounded by b.
u

o
M
P
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Fundamental bound (FB) [JKT’00]

I distance-regular, diam. d > 2,
and eigenvalues 0y > 6y > --- > ;.

k k
—_ —_ >
(91+a1+1) (9d+a1+1) -

If equality holds in the FB and I' is nonbipartite,

*kalbl
(al -+ 1)2

then I" is called a tight graph.
For d=2 we have by = —(1+6;)(146,), b =60, b~ =6,
and thus T is tight (i.c., 6, = 0) iff T' = K;x, with
t>2(ie,a; #0and p=k).
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Characterizations of tight graphs

Theorem [JKT’00]. A nonbipartite

distance-regular graph I' with diam. d > 3

and eigenvalues 6y > 0, > --- > 0,;. TFAE

(i) T is tight.

(ii) T is 1-homogeneous and a; = 0.

(iii) the local graphs of I are connected strongly
regular graphs with eigenvalues a1,b", b, where

=1 : Ny
b and b i1

1
0,+1

Aleksandar Jurisi¢ 22°

Algebraic Combinatorics, 2007

Examples of tight graphs
e the Johnson graph J(2d, d),
e the halved cube H(2d,2),
e the Taylor graphs,

o the AT4 family
(antipodal tight DRG with diam. 4),

e the Patterson graph {280,243, 144, 10; 1, 8,90, 280}
(related to the sporadic simple group of Su7uk1)A
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(i) The Johnson graph J(2d,d) has diameter d
and intersection numbers
a;=2i(d—1), bj=(d—i)? ¢ =14 (i=
It is distance-transitive, antipodal double-cover and
@-polynomial with respect to ;.

Each local graph is a lattice graph K4 X K,
with parameters (d?,2(d — 1),d — 2,2) and
nontrivial eigenvalues r =d —2, s = —2.

IR
Patiahd
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(ii) The halved cube H(2d, 2) has diameter d and

intersection numbers (i =0, ... d)
a; = 4i(d—1), b; = (d—1)(2d—2i—1), ¢; = i(2i—1).

It is distance-transitive, antipodal double-cover and
@-polynomial with respect to ;.

Each local graph is a Johnson graph J(2d,2),
with parameters (d(2d — 1),4(d —1),2(d — 1),4) and
nontrivial oigcnvalucs r=2d—4, s=-2.
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(iii) The Taylor graphs are the double-covers of
complete graphs, i.e., distance-regular graphs with
intersection arrays {k,co,1;1,¢9,k}.  They have
diameter 3, and are Q-polynomial with respect to both
01, 6,4, given by 0 = «, 8, = 3, where

a+0=k—2c0—1, af=—k, and a> (.

Each local graph is strongly-regular with parameters
(kyar, A, p), where a1 =k —co — 1,

3a, —k—1 — g1
)\:dalf, ,u:%, r:a2 and s = - 5
We note both ay, ¢y are even and k is odd.

For example, the local graphs of the double-cover of
K5 with ¢ = 8 are the Paley graphs P(17).
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(iv) The Conway-Smith graph, 3.Sym(7) has
intersection array {10,6,4,1;1,2,6,10} and can be
obtained from a sporadic Fisher group.

It is distance-transitive, an antipodal 3-fold cover, and
is not Q-polynomial.

Each local graph is a Petersen graph, with
parameters (10, 3,0, 1) and nontrivial eigenvalues
r=1 s=-2
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(v) The 3.0g (3)-graph has intersection array
{45,32,12,1;1,6,32,45} and can be obtained from
a sporadic Fisher group. It is distance-transitive, an
antipodal 3-fold cover, and is not Q-polynomial.

Each local graph is a generalized quadrangle

GQ(4,2), with parameters (45,12,3,3) and
nontrivial eigenvalues r =3, s = —3.
9 9 0
32 12 61
B ) &
ETANTANT
FEA
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(vi) The 3.07(3)-graph has intersection array
{117,80,24,1;1,12,80, 117} and can be obtained from
a sporadic Fisher group. It is distance-transitive, an
antipodal 3-fold cover, and is not @-polynomial.

Each local graph is strongly-regular with parameters
(117,36, 15,9), and nontrivial eigenvalues r = 9,
5= —3.

27 0

i@

f‘“‘i
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(vii) The 3.Fi5,-graph has intersection array
{31671, 28160, 2160, 1: 1, 1080, 28160, 31671} and can
be obtained from Fisher groups.

It is distance-transitive, antipodal 3-cover and is not
@-polynomial.

Each local graph is SRG(31671,3510,693,351)
and r = 351, s = —9. They are related to Fias.
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(viii) The Soicherl graph has intersection array
{56,45,16,1;1,8,45,56}. It is antipodal 3-cover and
is not Q-polynomial.

Each local graph is the Gewirtz graph with
parameters (56,10,0,2) and r =2, s = —4.
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(ix) The Soicher2 graph has intersection
array {416, 315,64, 1; 1,32, 315,416}. Tt is
antipodal 3-cover and is not Q-polynomial.

Each local graph is SRG(416,100,36,20)
and r =20, s = —4.
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(x) The Meixnerl graph has intersection
array {176, 135,24, 1;1,24,135,176}. Tt is
antipodal 2-cover and is @-polynomial.

Each local graph is SRG(176,40,12,8)
and 7 =8, s = —4.

Aleksandar Jurisi¢ 236

Algebraic Combinatorics, 2007

(xi) The Meixner2 graph has intersection
array {176, 135,36, 1;1,12,135,176}. It is
antipodal 4-cover and is distance-transitive.

Each local graph is SRG(176,40,12,8)
and r =8, s = —4.

P
&‘&e
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Theorem [JKT’00]. I dr, diam. d > 3.

cosine sequences o, 0y,...,04 and po, p1, ..., Pd-

Then for1 <i<d-—1

p o (0=0)0=p)~(p=pm1-0)

(p=p)(l=0)o— (0 —02)(1 = p)p’

(o =0)(1=p)pi = (pea = p) (1=0)o
(pi—pin)(oi1—0i) — (0i—01)(pi1—pi)

_ k(”'_”'ﬁl)(l_p)/’i (pi = pia)(1—0)o;

(pi—pint)(oin—0i) = (0i—=0i1) pia—pi)
p—1
“pi1— pd
and the denominators are never zero.

bi =

G

1
cq = kog—2 —k

Let 0, 0" be a permutation of 01, 0, with respective
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Let I" be a distance-regular graph with diameter d > 3.
Then for any complex numbers 0, oy, ..., 04, TFAE.

(i) @ is an eigenvalue of T', and o9, 01, ..., 0q I8

the associated cosine sequence.
(ii) op=1,and for 0 <1i <d,

Cioi—1 + a;0; + bigi+1 = 90'1'

where o_1 and 0441 are indeterminates.
(iii) op=1, ko =0,and for 1 <i <d,

>_b( O',;+1>:k’(0'—1)0','

where 04,1 is an indeterminate.

07(07 1
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Characterization of tight graphs

Theorem [JKT’00]. T" nonbipartite dr, diam.
d > 3, and eigenvalues 6y > 01 > --- > 0,.
Let 6 = 6, and 0" = 0, with respective

cosine sequences oy, 0y, . ..,04 and po, p1, ..., Pd-

Lete = (op—1)/(p—0) > 1. TFAE
(i) T is tight.
00i-1 PPi-1 — Pi

(11) (1 + Uj(gi—l — O',’) - (1 + /’)(/)i—l - /01)

(1 <i < d) and the denominators are nonzero.

(iii) oipi—0i-1pi1 = €(oim1pi—pic10s) (1<i<d).
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Parametrization

Theorem [JKT’00]. T nonbip., dr, diam. d > 3,
and let 0y, 01, ...04,6,h € C be scalars. TFAE

(i) T is tight, 09,01, ..
corresponding to 6y, associated parameter
e=(k>—0,00) / (k(6; —0,)) and

h = (1-0)1-0)/ ((0" =)l ~e0)).

(ii) op=1, og-1=004, ¢ > =1, k=h(oc—¢)/(c—1),
cg=k,for1 <i<d-—1

(szl - 0107')(0&1 - 501‘,)

(0iz1 — 03x1)(0iz1 — 07)

and denominators are all nonzero.

.04 Is the cosine sequence

b'nci ==h
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(iii) I is nonbipartite and Ego Ey is a scalar multiple
of a primitive idempotent E..

(iv) T is nonbipartite and for a vertex x the
irreducible T'(x)-module with endpoint 1 is
short.

Moreover, if I is tight, then the above conditions

are satisfied for all edges and vertices of I,

{0,0'} = {61,604}

and 7 =60,_1.

Algebraic Combinatorics, 2007

Theorem. I' antipodal distance-regular, diam. 4,
eigenvalues k =6y > --- > 64, p,g e N. TFAE

(i) T is tight,

(ii) the antipodal quotient is
SRG(k=q(pg+p+a), A=p(g+1), n=a(p+q)),

(iii) Go=qb:, O1=pg+ptq, bo=p, O3=—q, O1=—¢",

(iv) for each v € V(') the local graph of v is
SRG(K'=p(g+1), N'=2p—q, /' =p) (ev. p,—q).

If " satisfies (i)-(iv) and 7 is its antipodal class
size, then we call it an antipodal tight graph
AT4(p, q,r).

Algebraic Combinatorics, 2007

pa
INGRE )

ae+ayr

1, D} (= Dae+ar

pq
2\1
3

>
x - 1aprarr
Pq
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Ruled out cases Open cases Known examples of AT4 family
Theorem. T' antipodal tight graph AT4(p,q,r). 2 IR S (U T 5 Tl ren - . —
Then R st 6 55 o] 7ty uR 7t |grap p qr| p [ pgraph
5 P P 356 2 4 4 * 3lo6 4 4 4 . . P
(i) pa(p+q)/r is even, ST o AR M g 1|l Conway-Smith 10 1 23] 2 K,
58 6 3 9 * 7175 5 5 5 by [J
(ﬁ) T(p+ 1) < q(p+q), L R . 9 (180 15 3 3 |18] Zby JK] 2|! J(874) 16 2 22 4 Kz_yz
with equality iff u-graphs are complete, S5 358 |e 21964426 2 K 3| halved Qs 28 42216 K32
9115 3 5 10 * 4 (115 3 5 2 |20|2- Petersen 5 3 O,(g) 45 3 3 3 6 K
see 10 (117 9 3 4 o 5 5 3 5 4 Poterse: < . 5 3.4
(111) r |[) + q, T e 3 6 . 5 115 3 ‘, 1 1(7 I(,I(r:l’n | _() 3.3
2117 9 3 9 ok 6117 9 3 2 |18| Koo??? 4/! Soicherl 56 2 43 8 Q'Kz?z
(iv) p > q — 2, with equality iff ¢}, = 0. Whio s 06| B ORI i iy 6/ 3.07(3) 117 9 33|12 Kixs
15189 15 3 6 |* * - SOp 9 fax .
2002 _ 1 w6l 15 5 2 |+ w24 4 65 12| 2Ky 7 Meixnerl 176 8 42|24 2-K3y4
(V) p+q | q (q )7 17204 4 6 3 * 12 {261 21 3 2 |36 noidea??? H
18204 4 6 4 * ) AR ot Ry 8| Meixner2 176 8 44|12 K. x
21 2/ 9 2 13[288 6 6 2 [36] 3-K 3x4
i 19 (261 21 3 4 * 3|2 Koo N JE—
(VI) p + q ‘ q (q - 1)((] =+ q— 1)((] - 2) 20 (414 9 6 2 | * * 14 (288 6 6 3 [24| 2-Kep 9| Soicher2 416 20 4 3| 32 Kz—ext, of Q5
1132005 T2\ T K 10| 3.Fiy, 31671 351 9 3 |1080 0O{(3)
16 (336 16 4 2 (40| 2. Kspy
17 [416 20 4 2 |48] 2 Keuy
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I' graph, diam.d > 2, u,v € V(T), dist(u,v) = 2.
The p-graph of u and v is the graph induced by

Di(u,v) =T(u) NT(v). @

Lemma [JK’03]. T distance-regular, local graphs
are strongly regular (v', k', N, i'). Then

1. p-graphs of T' are p/-regular,

2. cop is even, and

3. ¢y > (' +1, (equality <= p-graphs are K,,),

For the AT4 family we know also r [p+q, p > ¢—2.

249
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a(p+aly
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The case p = q — 2

Theorem [J’°02]. Let T' be AT4(p,q, 7).
Then Yv € V()
['y(v) induces an antipodal drg with diam. 4.

Let p=q—2,ie., qy=0.

If r = 2 then I' is 2-homogeneous.

Aleksandar Jurisic
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Example: The Soicherl graph (¢ = 4 and r = 3).
[y(v) induces {32,27,8,1;1,4,27,32}

(Soicher has found this with the aid of a computer).
The antipodal quotient of this graph is the strongly
regular graph,
graph of the second subconstituent graph of the
McLaughlin graph.

and it is the second subconstituent

All local graphs are the incidence graphs of
AG(2,4)\ a parallel class ({4,3,3,1;1,1,3,4}), i.c
the antipodal 4-covers of Ky 4.
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o s
Cie=3
J
2 Y s
(@ z><a2 20+2)
wien | waen
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Proof. Cauchy-Schwartz inequality

[|wi|*|| Bé + Eo||* — wii(EBa + Ed) > 0,

w1 = Z Ew

'wED%(u,’u)

where

for O(u,v) = 2, simplifies to

(rz+ V5 — 2/1)

‘1—72-*' T C (= 72) =20 ‘

where {7;} is the cosine seq. corr. to E, and g is the
valency of Di(u,v).
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Equality:

wii(u,v) = ¢(Ela+ ED),
where ¢ is a constant, for any u, v, d(u,v) = 2 <
Ecorr. tofyand p=q—2 (c=—2(¢q—1)/4), or
E corr. to @y andr =2 (c= (p+q)/2).

The case ¢ |p

is pseudogeometric (p+ 1+ p/q,q,p/q) iff q|p.

Lemma [JK’02]. Let I' be a AT4(p, q,r). Then T

Algebraic Combinatorics, 2007

Conjecture [J’03].
AT4(p, q,r) family is finite and either

1' (p7q7,r) € {(172’3)’(2()7473)7(35179’3)}7

2. qlpand r=gq or r=2, Iie,
AT4(qs,q,q) or AT4(gs,q,2)
(a local graph is pseudogeometric),

3. =qg—2and r=q or r=2, ie,
AT4(q 23‘17‘1) or AT4(q 25Q72)

(F o(x) Is strongly regular),

Aleksandar Jurisié¢
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Complete multipartite graphs:

Kyyp, and examples Koy = K33 and K.

Algebraic Combinatorics, 2007

CAB, property and parameter «
Idrg, d>2, as#0, Oz, z)=2=0(y, z), O(z,y)=1:
a:=T(z)NT(y)NT(z).

We say 3 a when o = a(z,y, 2)
st. Oz, 2)=2=0(y, 2), d(z,y)=1.

Algebraic Combinatorics, 2007

Kip=t-K, (=K!), forexample Kyy3 = K33.

I' k-regular, v vertices and let any two vertices at
distance 2 have o = p(I") common neighbours. Then it
is called co-edge-regular with parameters (v, k, u1).

Lemma [JK’03]. T distance-regular, diam. d>2,
Kiwn as p-graphs, as # 0 and 3 o« # 1. Then

(i) co = nt, each local graph of T is co-edge-regular
with parameters (v =k, k' = ay, p/ =n(t — 1))
and aay = co(ay — '),

(i) o=t or a=t—1

Algebraic Combinatorics, 2007

‘When do we know the p-graphs?

Theorem [JK]. I' distance-regular, diam. d > 2,
as # 0, locally SRG(v', k', N, 1i/), and 3 o > 1. Then
(i) If ¢ > (/' + 1 and 2¢5 < 3/ + 6 — «, then
the p-graphs are Kiyn, n=co— i/, t = co/n.
(ii) If « = 1 and p’ # 0, then co =2/, N =0 and
the p-graphs are K, .,
(iii) If « = 2, 2 < ¢/ and ¢y < 2/, then ¢y = 244/
and the p-graphs are K, v or Kgy .
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Let 7,y € I, s.t. O(x,y) = 2 and let M = D}(z,y). Theorem [JK]. I' drg, Ky, as pi-graphs and a=2. Lemma. Let T’ have a CAB, property with
Then M induces the graph of valency p' on ¢y vertices. Then the local graphs of T' are GQ(x, i/ — 1) with p-graphs Kiyp,, n > 2,t > 3 and let a > 3.
Let u,v € M, s.t. d(u,v) =2 Corollary [JK]. The u-graphs of AT4(gs, q,q) are regular points. A line size ¢ satisfiesv' = c¢(k'—c+2). Let zyz be a triangle of I' and L be a
Suppose D} (u,v) N M K(si1)xq and a=s+1. If the local graphs of I are SRG(v', k', X', i/'), then lower bound on the valency of A(x,y, z). Then
= they are GQ(N' 4+ 1, — 1). 1=K <E'(K"—1- L),
vh{thZz, s 2} The p-graphs of the Patterson graph (and of any ey are GQA"+ 1, p ) (v <k )
where ¢ < p. other graph P with the same intersection array) In particular, a local graph of P is the point graph with equality iff V edges xy A(x,y) is
Then D! (u, v)NDi(z, y) are K, 4 and oo = 2. of the unique generalized quadrangle GQ(3,9) with SRG(" K", X\, "), where \" = L.
={y1, Y2, .-, Ys} all points regular.
and D%(% v) N D%(x7 Y) We derive the following lower bound:
={z1,29,...,25} We will use uniqueness of small -
, generalized quadrangles with all points regular Li=a=2+n-1) <(t =3 —(a— 3)>
where p' = s +1. to prove uniqueness of much larger object.
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Classification of the AT4(qgs, q, q) family

Theorem [JK]. The p-graphs of T' = AT4(p, q,r)
are complete multipartite graphs Ky, iff I' is

1. the Conway-Smith graph (locally Petersen graph),
. the Johnson graph J(8,4) (locally GQ(3,1)),
. the halved 8-cube (locally T'(8)),
. the 3.0y (3) graph (locally GQ)(4,2)
. the Meixner2 graph (locally locally GQ(3,3))
. the 3.07(3) graph (locally locally locally GQ(2, 2))

)

)

DTk W
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The 3.04 (3) graph

is a 3-cover of the graph I,

defined on 126 points of one kind in PG(5, 3),
provided with a quadratic form

of a non-maximal Witt index

and two points adjacent when they are orthogonal.

It can be described with Hermitean form in PG(3,4).
It has 378 vertices and valency 45.

Then the local graphs of I' and its covers are
GQ(4,2).
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The 3.07(3) graph

is a 3-cover of the graph T",

defined on the hyperbolic points in PG(6, 3),
provided with a nondegenerate quadric,

and points adjacent when they are orthogonal.

It can be described in terms of a system of complex
vectors found in ATLAS (p.108).
It has 1134 vertices and valency 117.

Then (the local graphs of)? I' and its covers are

GQ(2,2).
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The Meixner2 graph

The graph U, has for its vertices the nonisotropic
points of the n-dim. vector space over GF(4) with a
nondegenerate Hermitean form,

and two points adjacent if they are orthogonal.

Uy is GQ(3,3) (W3), and U1 is locally U,.

The Meixner2 graph is U, so it has 2688 vertices,
valency 176 and (the local graphs of)? it are
GQ(3,3).
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The 3.04 (3) graph

{45,32,12,1;1,6, 32,45}, distance-transitive,
3-cover of SRG(126, 45,12, 18), not Q-poly.,
locally generalized quadrangle GQ(4,2).
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The 3.0; (3) graph

We obtained that the antipodal quotient of I'

has parameters {117, 80; 1, 36},

with A = 36 and p-graphs 3 Ky.3,

whose local graphs have parameters {36, 20; 1,9},
with A = 15 and p-graphs K33,

whose local graphs have parameters {15, 8; 1,6},
with M = 6 and p-graphs Koys,

whose local graphs have parameters {6, 4; 1,3},
with M =1 and p-graphs 3' K.
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Meixner2

We obtained that the antipodal quotient of Meixner2
has parameters {176, 135; 1, 48},

with A = 40 and p-graphs 4 K34,

whose local graphs have parameters {40, 27; 1,8},
with X' = 12 and p-graphs Ky 4,

whose local graphs have parameters {12,9; 1,4},
with \ = 2 and p-graphs 4 K.

o
=

Aleksandar Jurisié¢

Algebraic Combinatorics, 2007

The Patterson graph
is defined as the graph I' with:

22.880 centers (of order 3) of the Sylow 3-groups of
the sporadic simple group of Suzuki (Suz, sce ATLAS)
of order 2'%.37.52.7.11-13 as the vertices,

two adjacent iff they generate an abelian subgroup
of order 32.

Problem ([BCN,p.410]): Is this graph unique?

(uniquely determined by its regularity properties)
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The Suzuki tower

Suz
416 1 315 ge v =1782
100

320

G4 =
A o 1 63 20 V=48
36 80
J v =100
2 %% 1 21 12
14 24
U =
53 o 19 6 a V=3
2 8
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The derived design of the Steiner system S(4, 7, 23)
defines the McLaughlin graph, i.e.,
the unique SRG(275, 112, 30, 56).

This graph is locally GQ(3, 9) and the second
subconstituent graph is a unique SRG(162, 56, 10, 24).

We can find it in the Suz as an induced subgraph.

756 1 5 24 v=162
10 32

An alternative definition of the Patterson graph:
Induced ¥’s in Suz, adjacent when disjoint

I'y(McLaughlin) =

11-cliques: partitions of Suz in 11 ¥’s

2
5
=
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The Patterson graph is distance-regular
with intersection array

{280, 243, 144, 10; 1, 8,90, 280}
and eigenvalues 2801, 80304, 205940 815795 98780,

180 0

36 128
o 1 8| %€, 280)
280 243 144 0

Suz.2  (distance-transitive)
3-Us(3).(2%)133
GQ(9,3)  (group Uy(3).Ds).

group
point stabilizer

locally
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Theorem [BJK]. A distance-regular graph P
with intersection array

{280, 243,144, 10; 1, 8,90, 280}

is unique.

(22.880 vertices)

For example, the icosahedron is a unique graph,
that is locally pentagon.

The Petersen graph is a unique strongly-regular
graph (10,3,0,1), i.e, {3,2;1,1}.
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The distance-partitions of I' corresp. to an edge

(i.c., the collection of nonempty sets Dz, )) are also
equitable (Yxy € ET):

So the Patterson graph is 1-homogeneous.
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36 128 180
%80 = 243 EIAA {13608 0 &
The 1-homogeneous property and the CAB property.

8 1 a4 CAB1 partition

15 CAB2 partition
20

36 2 18
4 16
20 10 2 36 CAB3 partition
16 24
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Corollary. If an AT4(p, q,r) has a p-graph that is
not complete multipartite, then either

P+a2g+1)
3(p+2)
2. r=q-—1lifandonlyifp=q—2

3. r<qg-—2.

zrzq+1,

o
=
S
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I" tight, diam. 4, a = 2, K141 as p-graphs.

Example 1: If local graphs are GQ(2,t), then
{E+D)(E+1), 2, 2+ 1) (1), (t—1)(2—t—1);
1,2(t4+1), 263(t+2), (P4-1)(34+1) 1.
For t = 2 we get the 3.04 (3) graph and

for t = 3 the Patterson graph,
for t = 4 the existence is OPEN|
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In Ex.1, the case t = 4 we have the following feasible
intersection array

{1105, 1024, 720, 33; 1,10, 192, 1105},

and eigenvalues:

110517 2551911755116688’ _15424320’ —658330.

If it exist, then it has 551,250 vertices
(ky = 113,152, kg = 424,320, ky = 12,672) and its
local graphs are GQ(16, 4) with all points being regular

this is most probably the hermitian generalized
quadrangle H(3,16)).
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