Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
ALGEBRAIC COMBINATORICS Aleksandar Jurišić Laboratory for Cryptography and Computer Security Faculty of Computer and Information Science http://valjhun.fmf.uni-lj.si/~ajurisic	INTRODUCTION 3 1. Constructions of combinatorial objects 6 2. Graphs, eigenvalues and regularity 31 3. Strongly regular graphs 46 4. Geometry 76 5. Association schemes 95 6. Equitable partitions 134 7. Distance-regular graphs 143 8. 1-homogeneous graphs 196 9. Tight graphs 217 BIBLIOGRAPHY 282	Introduction We study an interplay between algebra and combinatorics, that is known under the name algebraic combinatorics. This is a discrete mathematics, where objects and structures contain some degree of regularity or symmetry.	More important areas of application of algebraic combinatorics are • coding theory and error correction codes, • statistical design of experiments, and • (through finite geometries and finite fields) also cryptography. We investigate several interesting combinatorial structures. Our aim is a general introduction to algebraic combinatorics and illumination of some the important results in the past 10 years.
Aleksandar Jurišić 1	Aleksandar Jurišić 2	Aleksandar Jurišić 3	Aleksandar Jurišić 4

We will study as many topics as time permits the include: • algebraic graph theory and eigenvalue to the grand advances topical work and the study of a work advance topical work and the study of a work advance topical work and the study of a work advance topical work advances topical	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Aleksandar Jurisic b Aleksandar Jurisic b Aleksandar Jurisic 7 Aleksandar Jurisic 8	 include: algebraic graph theory and eigenvalue techniques (specter of a graph and characteristic polynomial; equitable partitions: quotients and covers; strongly regular graphs and partial geometries, examples; distance-regular graphs, primitivity and classification, classical families), associative schemes (Bose-Mesner algebra, Krein conditions and absolute bounds; eigenmatrices and orthogonal relations, duality and formal duality, P-polynomial schemes, Q-polynomial schemes). finite geometries and designs (projective and affine plane: duality; projective geometries: spaces PG(d - 1, q). generalized quadrangles: quadratic forms and a 	 famous combinatorial objects Incidence structures Orthogonal Arrays (OA) Latin Squares (LS), MOLS Transversal Designs (TD) Hadamard matrices 	 t-(v, s, λ_t) design is a collection of s-subsets (blocks) of a set with v elements (points), where each t-subset of points is contained in exactly λ_t blocks. If λ_t = 1, then the t-design is called Steiner System 	 blocks containing a given <i>i</i>-set S. Then (1) S is contained in λ_i(S) blocks and each of them contains (^{s-i}_{t-i}) distinct t-sets with S as subset; (2) the set S can be enlarged to t-set in (^{v-i}_{t-i}) ways and each of these t-set is contained in λ_t blocks: λ_i(S) (^{s-i}_{t-i}) = λ_t (^{v-i}_{t-i}) Therefore, λ_i(S) is independent of S (so we can denote it simply by λ_i) and hence a t-design is also i-design,

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
The projective space $PG(d, n)$ (of dimension d and order q) is obtained from $[GF(q)]^{d+1}$ by taking the quotient over linear spaces. In particular, the projective space $PG(2, n)$ is the incidence structure with 1- and 2-dim. subspaces of $[GF(q)]^3$ as points and lines (blocks), and "being a subspace" as an incidence relation.	 PG(2, n) is a 2-(q² + q + 1, q + 1, 1)-design, i.e., v = q² + q + 1 is the number of points (and lines b), each line contains k = q + 1 points (on each point we have r = q + 1 lines), each pair of points is on λ = 1 lines (each two lines intersect in a precisely one point), which is in turn a projective plane (see Assignment 1). 	Examples: 1. The projective plane PG(2, 2) is also called the Fano plane (7 points and 7 lines).	2. PG(2, 3) can be obtained from 3 × 3 grid (or AG(2, 3)).
Aleksandar Jurišić 13	Aleksandar Jurišić 14	Aleksandar Jurišić 15	Aleksandar Jurišić 16

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
3. PG(2, 4) is obtained from \mathbb{Z}_{21} : points = \mathbb{Z}_{21} and lines = { $S + x \mid x \in \mathbb{Z}_{21}$ }, where S is a 5-element set {3, 6, 7, 12, 14}, i.e., {0, 3, 4, 9, 11} {1, 4, 5, 10, 12} {2, 5, 6, 11, 13} {3, 6, 7, 12, 14} {4, 7, 8, 13, 15} {5, 8, 9, 14, 16} {6, 9, 10, 15, 17} {7, 10, 11, 16, 18} {8, 11, 12, 17, 19} {9, 12, 13, 18, 20} {10, 13, 14, 19, 0} {11, 14, 15, 20, 1} {12, 15, 16, 0, 2} {13, 16, 17, 1, 3} {14, 17, 18, 2, 4} {15, 18, 19, 3, 5} {16, 19, 20, 4, 6} {17, 20, 0, 5, 7} {18, 0, 1, 6, 8} {19, 1, 2, 7, 9} {20, 2, 3, 8, 10} Note: Similarly the Fano plane can be obtained from {0, 1, 3} in \mathbb{Z}_7 .	Let \mathcal{O} be a subset of points of PG(2, n) such that no three are on the same line. Then $ \mathcal{O} \leq n + 1$ if n is odd and $ \mathcal{O} \leq n + 2$ if n is even. If equality is attained then \mathcal{O} is called oval for n even, and hyperoval for n odd	 Examples: the vertices of a triangle and the center of the circle in Fano plane, the vertices of a square in PG(2, 3) form oval, the set of vertices {0, 1, 2, 3, 5, 14} in the above PG(2, 4) is a hyperoval. 	The general linear group $\operatorname{GL}_n(q)$ consists of all invertible $n \times n$ matrices with entries in $\operatorname{GF}(q)$. The special linear group $\operatorname{SL}_n(q)$ is the subgroup of all matrices with determinant 1. The projective general linear group $\operatorname{PGL}_n(q)$ and the projective special linear group $\operatorname{PSL}_n(q)$ are the groups obtained from $\operatorname{GL}_n(q)$ and $\operatorname{SL}_n(q)$ by taking the quotient over scalar matrices (i.e., scalar multiple of the identity matrix). For $n \ge 2$ the group $\operatorname{PSL}_n(q)$ is simple (except for $\operatorname{PSL}_2(2) = S_3$ and $\operatorname{PSL}_2(3) = A_4$) and is by Artin's convention denoted by $L_n(q)$.
Aleksandar Jurišić 17	Aleksandar Jurišić 18	Aleksandar Jurišić 19	Aleksandar Jurišić 20

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Orthogonal Arrays An orthogonal array, $OA(v, s, \lambda)$, is such $(\lambda v^2 \times s)$ -dimensional matrix with v symbols, that each two columns each of v^2 possible pairs of symbols appears in exactly λ rows. This and to them equivalent structures (e.g. transversal designs, pairwise orthogonal Latin squares, nets,) are part of design theory.	If we use the first two columns of $OA(v, s, 1)$ for coordinates, the third column gives us a Latin square, i.e., $(v \times v)$ -dim. matrix in which all symbols $\{1, \ldots, v\}$ appear in each row and each column. $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ Example : $OA(3, 3, 1)$ $\begin{pmatrix} 0 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix}$	Image: constraint of the symbol symbol appearsImage: constraint of the symbol symb	Theorem. If $OA(v, s, \lambda)$ exists, then we have in the case $\lambda = 1$ $s \leq v + 1$, and in general $\lambda \geq \frac{s(v-1)+1}{v^2}$. Transversal design $TD_{\lambda}(s, v)$ is an incidence structure of blocks of size s , in which points are partitioned into s groups of size v so that an arbitrary points lie in λ blocks when they belong to distinct groups and there is no block containing them otherwise.
Aleksandar Jurišić 21	Aleksandar Jurišić 22	Aleksandar Jurišić 23	Aleksandar Jurišić 24

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Proof: The number of all lines that intersect a chosen line of $\text{TD}_1(s, v)$ is equal to $(v-1)s$ and is less or equal to the number of all lines without the chosen line, that is $v^2 - 1$. In transversal design $\text{TD}_{\lambda}(s, v)$, $\lambda \neq 1$ we count in a similar way and then use the inequality between arithmetic and quadratic mean (that can be derived from Jensen inequality).	Theorem. For a prime p there exists OA(p, p, 1), and there also exists $OA(p, (p^d - 1)/(p - 1), p^{d-2})$ for $d \in \mathbb{N} \setminus \{1\}$ Proof: Set $\lambda = 1$. For $i, j, s \in \mathbb{Z}_p$ we define $e_{ij}(s) = is + j \mod p$. For $\lambda \neq 1$ we can derive the existence from the construction of projective geometry $PG(n, d)$. For homework convince yourself that each $OA(n, n, 1)$, $n \in \mathbb{N}$, can be extended for one more column, i.e., to OA(n, n + 1, 1).	Hadamard matrices Let A be $n \times n$ matrix with $ a_{ij} \leq 1$. How large can det A be? Since each column of A is a vector of length at most \sqrt{n} , we have $det A \leq n^{n/2}$. Can equality hold? In this case all entries must be ± 1 and any two distinct columns must me orthogonal.	$(n \times n)$ -dim. matrix H with elements ± 1 , for which $HH^T = nI_n$ holds is called a Hadamard matrix of order n . Such a matrix exists only if $n = 1, n = 2$ or $4 \mid n$. A famous Hadamard matrix conjecture (1893): a Hadamard matrix of order $4s$ exists $\forall s \in \mathbb{N}$. In 2004 Iranian mathematicians H. Kharaghani and B. Tayfeh-Rezaie constructed a Hadamard matrix of order 428. The smallest open case is now 668.
Aleksandar Jurišić 25	Aleksandar Jurišić 26	Aleksandar Jurišić 27	Aleksandar Jurišić 28

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
$n = 2: \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad n = 4: \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -$	We could also use <i>conference matrices</i> (Belevitch 1950, use for teleconferencing) with 0 on the diagonal and $CC^t = (n-1)I$. in order to obtain two simple constructions: if C is antisymmetric $(H = I + C)$ or symmetric $(H_{2n} \text{ consists of four blocks of the form } \pm I \pm C)$.	 adjacency matrix and walks, eigenvalues, regularity, eigenvalue multiplicities, Peron-Frobenious Theorem, interlacing. 	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Aleksandar Jurišić 29	Aleksandar Jurišić 30	Aleksandar Jurišić 31	Aleksandar Jurišić 32

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
 Eigenvalues The number θ ∈ ℝ is an eigenvalue of Γ, when for a vector x ∈ ℝⁿ\{0} we have Ax = θx, i.e., (Ax)_i = ∑_{{j,i}} = θx_i. There are cospectral graphs, e.g. K_{1,4} and K₁ ∪ C₄. A triangle inequality implies that the maximum degree of a graph Γ, denoted by Δ(Γ), is greater or equal to θ , i.e., Δ(Γ) ≥ θ . 	A graph with precisely one eigenvalue is a graph with one vertex, i.e., a graph with diameter 0 . A graph with two eigenvalues is the complete graph $K_n, n \ge 2$, i.e., the graph with diameter 1 . Theorem. A connected graph of diameter d has at least $d + 1$ distinct eigenvalues.	 Review of basic matrix theory Lemma. Let A be a real symetric matrix. Then its eigenvalues are real numbers, and the eigenvectors corresponding to distinct eigenvalues, then they are orthogonal. If U is an A-invariant subspace of ℝⁿ, then U[⊥] is also A-invariant. ℝⁿ has an orthonormal basis consisting of eigenvectors of A. There are matrices L and D, such that L^TL = LL^T = I and LAL^T = D, where D is a diagonal matrix of eigenvalues of A. 	Lemma. The eigenvalues of a disconnected graph are just the eigenvalues of its components and their multiplicities are sums of the corresponding multiplicities in each component.
Aleksandar Jurišić 33	Aleksandar Jurišić 34	Aleksandar Jurišić 35	Aleksandar Jurišić 36

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Regularity A graph is regular, if each vertex has the same number of neighbours. Set j to the be all-one vector in R ⁿ . Lemma. A graph is regular iff j is its eigenvector. Lemma. If Γ is a regular graph of valency k, then the multiplicity of k is equal to the number of connected components of Γ, and the multiplicity of -k is equal to the number of bipartite components of Γ.	Lemma. Let Γ be a k-regular graph on n vertices with eigenvalues $k, \theta_2, \ldots, \theta_n$. Then Γ and $\overline{\Gamma}$ have the same eigenvectors, and the eigenvalues of $\overline{\Gamma}$ are $n - k - 1, -1 - \theta_2, \ldots, -1 - \theta_n$. Calculate the eigenvalues of many simple graphs: • $m * K_n$ and their complements, • circulant graphs • C_n , • $K_n \times K_n$, • Hamming graphs,	Line graphs and their eigenvalues We call $\phi(\Gamma, x) = \det(xI - A(\Gamma))$ the characteristics polynomial of a graph Γ . Lemma. Let <i>B</i> be the incidence matrix of the graph Γ , <i>L</i> its line graph and $\Delta(\Gamma)$ the diagonal matrix of valencies. Then $B^TB = 2I + A(L)$ and $BB^T = \Delta(\Gamma) + A(\Gamma)$. Furthermore, if Γ is k-regular, then $\phi(L, x) = (x + 2)^{e-n}\phi(\Gamma, x - k + 2)$.	Semidefinitness A real symmetric matrix A is positive semidefinite if $u^T A u \ge 0$ for all vectors u . It is positive definite if it is positive semidefinite and $u^T A u = 0 \iff u = 0$. Characterizations. • A positive semidefinite matrix is positive definite iff invertible • A matrix is positive semidefinite matrix iff all its eigenvalues are nonnegative. • If $A = B^T B$ for some matrix, then A is positive semidefinite.
Themandan yuran 01			Heining Guine 40

Algebraic Combinatories, 2007	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
The Gram matrix of vectors $u_1, \ldots, u_n \in \mathbb{R}^m$ is $n \times n$ matrix G s.t. $G_{ij} = u_i^t u_j$. Note that $B^T B$ is the Gram matrix of the columns of B , and that any Gram matrix is positive semidefinite. The converse is also true. Corollary. The least eigenvalue of a line graph is at least -2 . If Δ is an induced subgraph of Γ , then $\theta_{\min}(\Gamma) \leq \theta_{\min}(\Delta) \leq \theta_{\max}(\Delta) \leq \theta_{\max}(\Gamma)$. Let $\rho(A)$ be the spectral radious of a matrix A .	 Peron-Frobenious Theorem. Suppose A is a nonnegative n×n matrix, whose underlying directed graph X is strongly connected. Then (a) ρ(A) is a simple eigenvalue of A. If x an eigenvector for ρ, then no entries of x are zero, and all have the same sign. (b) Suppose A₁ is a real nonnegative n × n matrix such that A − A₁ is nonnegative. Then ρ(A₁) ≤ ρ(A), with equality iff A₁ = A. (c) If θ is an eigenvalue of A and θ = ρ(A), then θ/ρ(A) is an mth root of unity and e^{2πir/m}ρ(A) is an eigenvalue of A for all r. Furthermore, all cycles in X have length divisible by m. 	Let A be a symmetric $n \times n$ matrix and let us define a real-valued function f on \mathbb{R}^n by $f(\boldsymbol{x}) := \frac{(\boldsymbol{x}, A\boldsymbol{x})}{(\boldsymbol{x}, \boldsymbol{x})}.$ Let \boldsymbol{x} and \boldsymbol{u} be orthogonal unit vectors in \mathbb{R}^n and set $\boldsymbol{x}(\varepsilon) := \boldsymbol{x} + \varepsilon \boldsymbol{u}.$ Then $(\boldsymbol{x}(\varepsilon), \boldsymbol{x}(\varepsilon)) = 1 + \varepsilon^2,$ $f(\boldsymbol{x}(\varepsilon)) = \frac{(\boldsymbol{x}, A\boldsymbol{x}) + 2\varepsilon(\boldsymbol{u}, A\boldsymbol{x}) + \varepsilon^2(\boldsymbol{u}, A\boldsymbol{u})}{1 + \varepsilon^2}$ and $\lim_{\varepsilon \to 0} \frac{f(\boldsymbol{x}(\varepsilon)) - f(\boldsymbol{x})}{\varepsilon} = 2(\boldsymbol{u}, A\boldsymbol{x}).$	So f has a local extreme iff $(\boldsymbol{u}, A\boldsymbol{x}) = 0 \forall \boldsymbol{u} \perp \boldsymbol{x}$ and $ \boldsymbol{u} = 1$ iff for every $\boldsymbol{u} \perp \boldsymbol{x}$ we have $\boldsymbol{u} \perp A\boldsymbol{x}$ iff $A\boldsymbol{x} = \theta\boldsymbol{x}$ for some $\theta \in \mathbb{R}$. More precisely: Theorem [Courant-Fischer]. Let A be a symmetric $n \times n$ matrix with eigenvalues $\theta_1 \geq \cdots \geq \theta_n$. Then $\theta_k = \max_{\dim(U)=k} \min_{x \in U} \frac{(\boldsymbol{x}, A\boldsymbol{x})}{(\boldsymbol{x}, \boldsymbol{x})} = \min_{\dim(U)=n-k+1} \max_{x \in U} \frac{(\boldsymbol{x}, A\boldsymbol{x})}{(\boldsymbol{x}, \boldsymbol{x})}$. Using this result, it is not difficult to prove the following (generalized) interlacing result.
Aleksandar Jurišić 41	Aleksandar Jurišić 42	Aleksandar Jurišić 43	Aleksandar Jurišić 44
Algebraic Combinatories, 2007	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007

Theorem [Haemers]. Let A be a complete
hermitian $n \times n$ matrix, partitioned into m^2 block
matrices, such that all diagonal matrices are square.
Let B be the $m \times m$ matrix, whose i, j -th entry
equals the average row sum of the i, j -th block
matrix of A for $i, j = 1,, m$. Then the eigenvalues
$\alpha_1 \geq \cdots \geq \alpha_n$ and $\beta_1 \geq \cdots \geq \beta_m$ of A and B resp.
satisfy

$\alpha_i \geq \beta_i \geq \alpha_{i+n-m}, \ for \ i=1,\ldots,m.$

Moreover, if for some $k \in N_0$, $k \leq m$, $\alpha_i = \beta_i$ for i = 1, ..., k and $\beta_i = \alpha_{i+n-m}$ for i = k + 1, ..., m, then all the block matrices of A have constant row and column sums.

Aleksandar Jurišić

III. Strongly regular graphs

- definition of strongly regular graphs
- characterization with adjacency matrix
- classification (type I in II)
- Paley graphs

Aleksandar Jurišić

45

- Krein condition and Smith graphs
 - more examples (Steiner and LS graphs)
- feasibility conditions and a table

Definition **Examples** Two similar regularity conditions are: 5-cycle is SRG(5, 2, 0, 1), (a) any two adjacent vertices have exactly λ common the Petersen graph is SRG(10, 3, 0, 1). (b) any two nonadjacent vertices have exactly μ common What are the trivial examples? $K_n, \quad m \cdot K_n,$ A regular graph is called **strongly regular** when it satisfies (a) and (b). Notation $SRG(n, k, \lambda, \mu)$,

where k is the valency of Γ and $n = |V\Gamma|$. The Cocktail Party graph C(n), i.e., the graph Strongly regular graphs can also be treated as extremal on 2n vertices of degree 2n-2, is also strongly regular.

graphs and have been studied extensively.

neighbours,

neighbours.

Aleksandar Jurišić

46

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Lemma. A strongly regular graph Γ is disconnected iff $\mu = 0$. If $\mu = 0$, then each component of Γ is isomorphic to K_{k+1} and we have $\lambda = k - 1$. Corollary. A complete multipartite graph is strongly regular iff its complement is a union of complete graphs of equal size. Homework: Determine all SRG with $\mu = k$.	graph we obtain:	Let J be the all-one matrix of dim. $(n \times n)$. A graph Γ on n vertices is strongly regular if and only if its adjacency matrix A satisfies $A^2 = kI + \lambda A + \mu(J - I - A)$, for some integers k , λ and μ . Therefore, the valency k is an eigenvalue with multiplicity 1 and the nontrivial eigenvalues, denoted by σ and τ , are the roots of $x^2 - (\lambda - \mu)x + (\mu - k) = 0$, and hence $\lambda - \mu = \sigma + \tau$, $\mu - k = \sigma \tau$.	Theorem. A connected regular graph with precisely three eigenvalues is strongly regular. Proof. Consider the following matrix polynomial: $M := \frac{(A - \sigma)(A - \tau)}{(k - \sigma)(k - \tau)}$ If $A = A(\Gamma)$, where Γ is a connected k-regular graph with eigenvalues k, σ and τ , then all the eigenvalues of M are 0 or 1. But all the eigenvectors corresponding to σ and τ lie in Ker (A) , so rank M =1 and $Mj = j$, hence $M = \frac{1}{n}J$. and $A^2 \in \text{span}\{I, J, A\}$.
Aleksandar Jurišić 49	Aleksandar Jurišić 50	Aleksandar Jurišić 51	Aleksandar Jurišić 52

Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
For a connected graph, i.e., $\mu \neq 0$, we have $n = \frac{(k-\sigma)(k-\tau)}{k+\sigma\tau}, \lambda = k+\sigma+\tau+\sigma\tau, \mu = k+\sigma\tau$ and the multiplicities of σ and τ are $m_{\sigma} = \frac{(n-1)\tau+k}{\tau-\sigma} = \frac{(\tau+1)k(k-\tau)}{\mu(\tau-\sigma)}$ and $m_{\tau} = n-1-m_{\sigma}$.	Multiplicities Solve the system: $1 + m_{\sigma} + m_{\tau} = n$ $1 \cdot k + m_{\sigma} \cdot \sigma + m_{\tau} \cdot \tau = 0.$ to obtain $m_{\sigma} \text{ and } m_{\tau} = \frac{1}{2} \Big(n - 1 \pm \frac{(n-1)(\mu - \lambda) - 2k}{\sqrt{(\mu - \lambda)^2 + 4(k - \mu)}} \Big).$	$\hline \textbf{Classification}$ We classify strongly regular graphs into two types: $\hline \textbf{Type I (or conference) graphs:} \text{ for these graphs} \\ (n-1)(\mu-\lambda) = 2k, \text{ which implies } \lambda = \mu - 1, k = 2\mu \\ \text{and } n = 4\mu + 1, \text{ i.e., the strongly regular graphs with } \\ \text{the same parameters as their complements.} \\ \text{They exist if } n \text{ is the sum of two squares.} \\ \hline \textbf{Type II graphs:} \text{ for these graphs } (\mu - \lambda)^2 + 4(k - \mu) \text{ is a } \\ \text{perfect square } \Delta^2, \text{ where } \Delta \text{ divides } (n-1)(\mu-\lambda) - 2k \\ \text{ and the quotient is congruent to } n - 1 \pmod{2}. \\ \hline \end{aligned}$	Paley graphs q a prime power, $q \equiv 1 \pmod{4}$ and set $\mathbb{F} = \operatorname{GF}(q)$.The Paley graph $P(q) = (V, E)$ is defined by: $V = \mathbb{F}$ and $E = \{(a, b) \in \mathbb{F} \times \mathbb{F} \mid (a - b) \in (\mathbb{F}^*)^2\}$.i.e., two vertices are adjacent if their difference is a non-zero square. $P(q)$ is undirected, since $-1 \in (\mathbb{F}^*)^2$.Consider the map $x \to x + a$, where $a \in \mathbb{F}$, and the map $x \to xb$, where $b \in \mathbb{F}$ is a square or a nonsquare, to show $P(q)$ is strongly regular withvalency $k = \frac{q-1}{2}, \ \lambda = \frac{q-5}{4}$ and $\mu = \frac{q-1}{4}$.
Aleksandar Jurišić 53	Aleksandar Jurišić 54	Aleksandar Jurišić 55	Aleksandar Jurišić 56

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Seidel showed that these graphs are uniquely determined with their parameters for $q \leq 17$. There are some results in the literature showing that Paley graphs behave in many ways like random graphs G(n, 1/2). Bollobás and Thomason proved that the Paley graphs contain all small graphs as induced subgraphs.	Krein conditions Of the other conditions satisfied by the parameteres of SRG, the most important are the Krein conditions , first proved by Scott using a result of Krein from harmonic analysis: $(\sigma + 1)(k + \sigma + 2\sigma\tau) \le (k + \sigma)(\tau + 1)^2$ and $(\tau + 1)(k + \tau + 2\sigma\tau) \le (k + \tau)(\sigma + 1)^2.$ Some parameter sets satisfy all known necessary conditions. We will mention some of these.	If $k > s > t$ eigenvalues of a strongly regular graph, then the first inequality translates to $k \ge -s \frac{(2t+1)(t-s) - t(t+1)}{(t-s) + t(t+1)},$ $\lambda \ge -(s+1)t \frac{(t-s) - t(t+3)}{(t-s) + t(t+1)},$ $\mu \ge -s(t+1) \frac{(t-s) - t(t+1)}{(t-s) + t(t+1)},$ A strongly regular graph with parameters (k, λ, μ) given by taking equalities above, where t and s are integers such that $t - s \ge t(t+3)$ (i.e., $\lambda \ge 0$) and $k > t > s$ is called a Smith graph.	A strongly regular graph with eigenvalues $k > \sigma > \tau$ is said to be of (negative) Latin square type when $\mu = \tau(\tau + 1)$ (resp. $\mu = \sigma(\sigma + 1)$). The complement of a graph of (negative) Latin square type is again of (negative) Latin square type. A graph of Latin square type is denoted by $L_u(v)$, where $u = -\sigma$, $v = \tau - \sigma$ and it has the same parameters as the line graph of a $TD_u(v)$. Graphs of negative Latin square type ware introduced by Mesner, and are denoted by $NL_e(f)$, where $e = \tau$, $f = \tau - \sigma$ and its parameters can be obtained from $L_u(v)$ by replacing u by $-e$ and v by $-f$.
Aleksandar Jurišić 57	Aleksandar Jurišić 58	Aleksandar Jurišić 59	Aleksandar Jurišić 60

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
More examples of strongly regular graphs: $L(K_v)$ is strongly regular with parameters $n = \binom{v}{2}, k = 2(v-1), \lambda = v-2, \mu = 4.$ For $v \neq 8$ this is the unique srg with these parameters. Similarly, $L(K_{v,v}) = K_v \times K_v$ is strongly regular, with parameters $n = v^2, k = 2(v-2), \lambda = v-2, \mu = 2.$ and eigenvalues $2(v-1)^1, v - 2^{2(v-1)}, -2^{(v-1)^2}.$ For $v \neq 4$ this is the unique srg with these parameters.	Steiner graph is the block (line) graph of a 2- $(v, s, 1)$ design with $v - 1 > s(s - 1)$, and it is strongly regular with parameters $n = \frac{\binom{v}{2}}{\binom{s}{2}}, k = s\left(\frac{v-1}{s-1} - 1\right),$ $\lambda = \frac{v-1}{s-1} - 2 + (s-1)^2, \mu = s^2.$ and eigenvalues $k^1, \left(\frac{v-s^2}{s-1}\right)^{v-1}, -s^{n-v}.$	When in a design \mathcal{D} the block size is two, the number of edges of the point graph equals the number of blocks of the design \mathcal{D} . In this case the line graph of the design \mathcal{D} is the line graph of the point graph of \mathcal{D} . This justifies the name: the line graph of a graph. A point graph of a Steiner system is a complete graph, thus a line graph of a Steiner system $S(2, v)$ is the line graph of a complete graph K_v , also called the triangular graph . (If \mathcal{D} is a square design, i.e., $v - 1 = s(s - 1)$, then its line graph is the complete graph K_v .)	The fact that Steiner triple system with v points exists for all $v \equiv 1$ or 3 (mod 6) goes back to Kirkman in 1847. More recently Wilson showed that the number $n(v)$ of Steiner triple systems on an andmissible number v of points satisfies $n(v) \ge \exp(v^2 \log v/6 - cv^2)$. A Steiner triple system of order $v > 15$ can be recovered uniquely from its line graph, hence there are super-exponentially many SRG $(n, 3s, s + 3, 9)$, for $n = (s + 1)(2s + 3)/3$ and $s \equiv 0$ or 2 (mod 3).
Aleksandar Jurišić 61	Aleksandar Jurišić 62	Aleksandar Jurišić 63	Aleksandar Jurišić 64

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatories, 2007
For $2 \leq s \leq v$ the block graph of a transversal design TD(s, v) (two blocks being adjacent iff they intersect) is strongly regular with parameters $n = v^2$, $k = s(v-1), \ \lambda = (v-2)+(s-1)(s-2), \ \mu = s(s-1).$ and eigenvalues $s(v-1)^1, \ v - s^{s(v-1)}, \ -s^{(v-1)(v-s+1)}.$ Note that a line graph of TD(s, v) is a conference graph when $v = 2s-1$. For $s = 2$ we get the lattice graph $K_v \times K_v$.	The number of Latin squares of order k is asymptotically equal to $\exp(k^2 \log k - 2k^2)$ Theorem (Neumaier). The strongly regular graph with the smallest eigenvalue $-m, m \ge 2$ integral, is with finitely many exceptions, either a complete multipartite graph, a Steiner graph, or the line graph of a transversal design.	Feasibility conditions and a table - divisibility conditions - integrality of eigenvalues - integrality of multiplicities - Krein conditions - Absolute bounds $n \leq \frac{1}{2}m_{\sigma}(m_{\sigma}+3),$ and if $q_{11}^1 \neq 0$ even $n \leq \frac{1}{2}m_{\sigma}(m_{\sigma}+1).$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Aleksandar Jurišić 65	Aleksandar Jurišić 66	Aleksandar Jurišić 67	Aleksandar Jurišić 68

	Algebraic Combinatories, 2007 Schläfly graph Interpret of the schläfli graph: make a cyclic 3-cover corresponding to arrows, and then join vertices in every antipodal class.	Algebraic Combinatories, 2007 Let Γ be a graph of diameter d . Then Γ has girth at most $2d + 1$, while in the bipartite case the girth is at most $2d$. Graphs with diameter d and girth $2d + 1$ are called Moore graphs (Hoffman and Singleton). Bipartite graphs with diameter d and girth $2d$ are known as generalized polygons (Tits).	Algebraic Combinatories, 2007 A Moore graph of diameter two is a regular graph with girth five and diameter two. The only Moore graphs are • the pentagon, • the Petersen graph, • the Hoffman-Singleton graph, and • possibly a strongly regular graph on 3250 vertices.	Algebraic Combinatorics, 2007 IV. Geometry • partial geometries • classification • pseudogeometric • quadratic forms • isotropic spaces • classical generalized quadrangles • small examples
Aleksandar Jurišić 74 Aleksandar Jurišić 75 Aleksandar Jurišić Aleksandar Jurišić Ombinatorics, 2007 Aleebraic Combinatorics, 2007 Aleebraic Combinatorics, 2007 Aleebraic Combinatorics, 2007				

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
A triple (P, L, I) , i.e., (points,lines,incidence), is called a partial geometry $pg(R, K, T)$, when $\forall \ell, \ell' \in L, \forall p, p' \in P$: • $ \ell = K, \ \ell \cap \ell' \leq 1$, • $ p = R$, at most one line on p and p' , • if $p \notin \ell$, then there are exactly T points on ℓ that are collinear with p . The dual (L, P, I') of a $pg(R, K, T)$ is again a partial geometry, with parameters (K, R, T) .	ClassificationWe divide partial geometries into four classes:1. $T = K$: 2- $(v, K, 1)$ design,2. $T = R - 1$: net, $T = K - 1$: transversal design,3. $T = 1$: a generalized quadrangle GQ $(K-1, R-1)$,4. For $1 < T < \min\{K - 1, R - 1\}$ we say we have a proper partial geometry.A $pg(t+1, s+1, 1)$ is a generalized quadrangle GQ (s, t) .	$\begin{array}{c} \textbf{An example} \\ \hline \qquad \qquad$	Pseudo-geometric The point graph of a $pg(P, L, I)$ is the graph with vertex set $X = P$ whose edges are the pairs of collinear points (also known as the <i>collinearity graph</i>). The point graph of a $pg(R, K, T)$ is SRG: $k = R(K-1), \lambda = (R-1)(T-1)+K-2, \mu = RT$, and eigenvalues $r = K - 1 - T$ and $s = -R$. A SRG is called pseudo-geometric (R, K, T) if its parameters are as above.
Aleksandar Jurišić 77	Aleksandar Jurišić 78	Aleksandar Jurišić 79	Aleksandar Jurišić 80

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Quadratic forms A quadratic form $Q(x_0, x_1, \dots, x_n)$ over $GF(q)$ is a homogeneous polynomial of degree 2, i.e., for $\boldsymbol{x} = (x_0, x_1, \dots, x_n)$ and an $(n + 1)$ -dim square matrix C over $GF(q)$: $Q(\boldsymbol{x}) = \sum_{i,j=0}^{n} c_{ij}x_ix_j = \boldsymbol{x}C\boldsymbol{x}^T$. A quadric in $PG(n, q)$ is the set of isotropic points: $Q = \{\langle \boldsymbol{x} \rangle Q(\boldsymbol{x}) = 0\},$ where $\langle \boldsymbol{x} \rangle$ is the 1-dim. subspace of $GF(q)^{n+1}$ generated by $\boldsymbol{x} \in (GF(q))^{n+1}$.	Two quadratic forms $Q_1(\mathbf{x})$ and $Q_2(\mathbf{x})$ are projectively equivalent if there is an invertible matrix A and $\lambda \neq 0$ such that $Q_2(\mathbf{x}) = \lambda Q_1(\mathbf{x}A)$. The rank of a quadratic form is the smallest number of indeterminates that occur in a projectively equivalent quadratic form. A quadratic form $Q(x_0, \ldots, x_n)$ (or the quadric Q in PG(n, q) determined by it) is nondegenerate if its rank is $n + 1$. (i.e., $Q \cap Q^{\perp} = 0$ and also to $Q^{\perp} = 0$).	For q odd a subspace U is degenerate whenever $U \cap U^{\perp} \neq \emptyset$, i.e., whenever its orthogonal complement U^{\perp} is degenerate, where \perp denotes the inner product on the vector space $V(n + 1, q)$ defined by (x, y) := Q(x + y) - Q(x) - Q(y).	Isotropic spaces A flat of projective space $PG(n, q)$ (defined over $(n + 1)$ -dim. space V) consists of 1-dim. subspaces of V that are contained in some subspace of V . A flat is said to be isotropic when all its points are isotropic. The dimension of maximal isotropic flats will be determined soon.
Aleksandar Jurišić 81	Aleksandar Jurišić 82	Aleksandar Jurišić 83	Aleksandar Jurišić 84

Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Theorem. A nondegenerate quadric $Q(\boldsymbol{x})$ in PG $(n, q), q$ odd, has the following canonical form (i) for n even: $Q(\boldsymbol{x}) = \sum_{i=0}^{n} x_i^2$, (ii) for n odd: (a) $Q(\boldsymbol{x}) = \sum_{i=0}^{n} x_i^2$, (b) $Q(\boldsymbol{x}) = \eta x_0^2 + \sum_{i=1}^{n} x_i^2$, where η is not a square.	Theorem. Any nondegenerate quadratic form $Q(\mathbf{x})$ over GF(q) is projectively equivalent to (i) for $n=2s$: $\mathcal{P}_{2s} = x_0^2 + \sum_{i=1}^{s} x_{2i}x_{2i-1}$ (parabolic), (ii) for $n=2s-1$ (a) $\mathcal{H}_{2s-1} = \sum_{i=0}^{s-1} x_{2i}x_{2i+1}$ (hyperbolic), (b) $\mathcal{H}_{2s-1} = \sum_{i=1}^{s-1} x_{2i}x_{2i+1} + f(x_0, x_1)$, (elliptic) where f is an irreducible quadratic form.	The dimension of maximal isotropic flats: Theorem. A nondegenerate quadric Q in PG(n, q) has the following number of points and maximal projective dim. of a flat F, $F \subseteq Q$: (i) $\frac{q^n-1}{q-1}$, $\frac{n-2}{2}$, parabolic (ii) $\frac{(q^{(n+1)/2}-1)(q^{(n+1)/2}+1)}{q-1}$, $\frac{n-1}{2}$ hyperbolic, (iii) $\frac{(q^{(n+1)/2}-1)(q^{(n+1)/2}+1)}{q-1}$, $\frac{n-3}{2}$ elliptic.	Classical generalized quadrangles due to J. Tits (all associated with classical groups) An orthogonal generalized quadrangle $Q(d, q)$ is determined by isotropic points and lines of a nondegenerate quadratic form in $PG(d, q)$, for $d \in \{3, 4, 5\}$.
Aleksandar Jurišić 85	Aleksandar Jurišić 86	Aleksandar Jurišić 87	Aleksandar Jurišić 88

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
For $d = 3$ we have $t = 1$. An orthogonal generalized quadrangle $Q(4, q)$ has parameters (q, q) . Its dual is called symplectic (or null) generalized quadrangle $W(q)$ (since it can be defined on points of PG(3, q), together with the self-polar lines of a null polarity), and it is for even q isomorphic to $Q(4, q)$.	Let H be a nondegenerate hermitian variety (e.g., $V(x_0^{q+1} + \dots + x_d^{q+1}))$ in $PG(d, q^2)$. Then its points and lines form a generalized quadrangle called a unitary (or Hermitean) generalized quadrangle $\mathcal{U}(d, q^2)$. A unitary generalized quadrangle $\mathcal{U}(3, q^2)$ has parameters (q^2, q) and is isomorphic to a dual of orthogonal generalized quadrangle $Q(5, q)$.	Finally, we describe one more construction (Ahrens, Szekeres and independently M. Hall) Let \mathcal{O} be a hyperoval of PG(2, q), $q = 2^h$, i.e., (i.e., a set of q+2 points meeting \forall line in 0 or 2 points), and imbed PG(2, q) = H as a plane in PG(3, q) = P. Define a generalized quadrangle $T_2^*(\mathcal{O})$ with parameters (q - 1, q + 1) by taking for points just the points of $P \setminus H$, and for lines just the lines of P which are not contained in H and meet \mathcal{O} (necessarily in a unique point).	For a systematic combinatorial treatment of generalized quadrangles we recommend the book by Payne and Thas . The order of each known generalized quadrangle or its dual is one of the following: $(s, 1)$ for $s \ge 1$; (q, q), (q, q^2) , (q^2, q^3) , (q - 1, q + 1), where q is a prime power.
Aleksandar Jurišić 89	Aleksandar Jurišić 90	Aleksandar Jurišić 91	Aleksandar Jurišić 92

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
$\begin{aligned} \textbf{Small examples} \\ s &= 2: \ !(2,2), \ !(2,4) \\ s &= 3: \ (3,3) = W(3) \text{ or } Q(4,3), \\ (3,5) &= T_2^*(\mathcal{O}), \\ (3,9) &= Q(5,3) \\ s &= 4: \ (4,4) = W(4), \\ & \text{ one known example for each } (4,6), \ (4,8), \ (4,16) \\ & \text{ existence open for } (4,11), \ (4,12). \end{aligned}$	The flag geometry of a generalized polygon \mathcal{G} has as pts the vertices of \mathcal{G} (of both types), and as lines the flags of \mathcal{G} , with the obvious incidence. It is easily checked to be a generalised $2n$ -gon in which every line has two points; and any generalised $2n$ - gon with two points per line is the flag geometry of a generalised <i>n</i> -gon. Theorem (Feit and Higman). A thick generalised <i>n</i> -gon can \exists only for $n = 2, 3, 4, 6$ or 8. Additional information: • if $n = 4$ or $n = 8$, then $t \le s^2$ and $s \le t^2$; • if $n = 6$, then st is a square and $t \le s^3$, $s \le t^3$. • if $n = 8$, then $2st$ is a square.	 V. Association schemes definition Bose-Mesner algebra examples symmetry duality Krein conditions 	For a pair of given <i>d</i>-tuples a in b over an alphabet with $n \ge 2$ symbols, there are $d+1$ possible relations: they can be <i>equal</i> , they can <i>coincide</i> on $d-1$ places, d-2 places,, or they can be <i>distinct</i> on all the places. For a pair of given <i>d</i>-subsets A and B of the set with n elements, where $n \ge 2d$, we have $d+1$ possible relations: they can be <i>equal</i> , they can <i>intersect</i> in $d-1$ elements, d-2 elements,, or they can be <i>disjoint</i> .
Aleksandar Jurišić 93	Aleksandar Jurišić 94	Aleksandar Jurišić 95	Aleksandar Jurišić 96

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007
The above examples, together with the list of relations are examples of association schemes that we will introduce shortly. In 1938 Bose and Nair introduced association schemes for applications in statistics.	However, it was Philippe Delsarte who showed in his thesis that association schemes can serve as a common framework for problems ranging from error- correcting codes, to combinatorial designs. Further connections include – group theory (primitivity and imprimitivity), – linear algebra (spectral theory), – metric spaces, – study of duality – character theory, – representation and orthogonal polynomials.	Bannai and Ito: We can describe algebraic combinatorics as "a study of combinatorial objects with theory of characters" or as "a study of groups without a group" Even more connections: – knot theory (spin modules), – linear programming bound, – finite geometries.	 A (symmetric) <i>d</i>-class association scheme on <i>n</i> vertices is a set of binary symmetric (<i>n</i> × <i>n</i>)-matrices <i>I</i> = <i>A</i>₀, <i>A</i>₁,, <i>A_d</i> s.t. (a) ∑_{i=0}^d <i>A_i</i> = <i>J</i>, where <i>J</i> is the all-one matrix, (b) for all <i>i</i>, <i>j</i> ∈ {0, 1,, <i>d</i>} the product <i>A_iA_j</i> is a linear combination of the matrices <i>A</i>₀,, <i>A_d</i>. It is essentially a colouring of the edges of the complete graph <i>K_n</i> with <i>d</i> colours, such that the number of triangles with a given colouring on a given edge depends only on the colouring and not on the edge.
Aleksandar Jurišić 97	Aleksandar Jurišić 98	Aleksandar Jurišić 99	Aleksandar Jurišić 100

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Bose-Mesner algebra Subspace of $n \times n$ dim. matrices over \mathbb{R} generated by A_0, \ldots, A_d is, by (b), a <i>commutative algebra</i> , known as the Bose-Mesner algebra of \mathcal{A} and denoted by \mathcal{M} . Since A_i is a symmetric binary matrix, it is the adjacency matrix of an (undirected) graph Γ_i on n vertices. If the vertices x and y are connected in Γ_i , we will write $x \Gamma_i y$ and say that they are in <i>i</i> -th relation.	The condition (a) implies that for every vertices x and y there exists a unique i , such that $x \Gamma_i y$, and that $\Gamma_i, i \neq 0$, has no loops. The condition (b) implies that there exist such constants $p_{ij}^h, i, j, h \in \{0, \dots, d\}$, that $A_i A_j = \sum_{h=0}^d p_{ij}^h A_h. \qquad (1)$ They are called intersection numbers of the association scheme \mathcal{A} . Since matrices A_i are symmetric, they commute. Thus also $p_{ij}^h = p_{ji}^h$.	By (1), the combinatorial meaning of intersection numbers p_{ij}^h , implies that they are integral and nonnegative. Suppose $x \Gamma_h y$. Then $p_{ij}^h = \{z; z \Gamma_i x \text{ in } z \Gamma_j y\} .$ (2) Therefore, Γ_i is regular graph of valency $k_i := p_{ii}^0$ and we have $p_{ij}^0 = \delta_{ij} k_i$. By counting in two different ways all triples (x, y, z) , such that $x \Gamma_h y, z \Gamma_i x \text{ and } z \Gamma_j y$ we obtain also $k_h p_{ij}^h = k_j p_{ih}^j$.	Examples Let us now consider some examples of associative schemes. A scheme with one class consists of the identity matrix and the adjacency matrix of a graph, in which every two vertices are adjacent, i.e., a graph of diameter 1, i.e., the completer graph K_n . We will call this scheme trivial .
Aleksandar Jurišić 101	Aleksandar Jurišić 102	Aleksandar Jurišić 103	Aleksandar Jurišić 104

Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007
Hamming scheme $H(d, n)$	Bilinear Forms Scheme $\mathcal{M}_{d \times m}(q)$	Johnson Scheme $J(n, d)$	q -analog of Johnson scheme $J_q(n, d)$
Let $d, n \in \mathbb{N}$ and $\Sigma = \{0, 1, \dots, n-1\}$.	(a variation from linear algebra) Let $d, m \in \mathbb{N}$ and q	Let $d, n \in \mathbb{N}, d \leq n$ and X a set with n elements.	(Grassman scheme)
The vertex set of the association scheme $H(d, n)$ are	a power of some prime.	The vertex set of the association scheme $J(n, d)$ are	The vertex set consists of all d-dim.
all d-tuples of elements on Σ . Assume $0 \leq i \leq d$.	All $(d \times m)$ -dim. matrices over $GF(q)$ are the vertices	all d -subsets of X .	subspaces of n-dim. vector space V over GF(q).
Vertices x and y are in <i>i</i> -th relation iff they differ in i	of the scheme,	Vertices x and y are in i -th $0 \leq i \leq \min\{d, n - d\}$,	Two subspaces A and B of dim. d are in i-th relation,
places.	two being in <i>i</i> -th relation, $0 \leq i \leq d$,	relation iff their intersection has $d - i$ elements.	$0 \le i \le d$, when dim $(A \cap B) = d - i$.
Aleksandar Jurišić 105	Aleksandar Jurišić 106	classes and on $\binom{n}{d}$ vertices. Aleksandar Jurišić 107	Aleksandar Jurišić 108

Algebraic Combinatorics, 2007 Cyclomatic scheme Let q be a prime power and d a divisor of $q - 1$. Let C_1 be a subgroup of the multiplicative group of the finite field $GF(q)$ with index d , and let C_1, \ldots, C_d	Algebraic Combinatories, 2007 How can we verify if some set of matrices represents an association scheme? The condition (b) does not need to be verified directly. It suffices to check that the RHS of (2) is independent	Algebraic Combinatories, 2007 Symmetry An automorphism of this set of graphs is a permutation of vertices, that preserves adjacency.	Algebraic Combinatorics, 2007 Primitivity and imprimitivity A <i>d</i> -class association scheme is primitive , if all its graphs Γ_i , $1 \leq i \leq d$, are connected, and imprimitive otherwise.
the finite field $GF(q)$ with index d , and let C_1, \ldots, C_d be the cosets of the subgroup C_1 . The vertex set of the scheme are all elements of $GF(q)$, x and y being in <i>i</i> -th relation when $x - y \in C_i$ (and in 0 relation when $x = y$). We need $-1 \in C_1$ in order to have symmetric relations, so $2 \mid d$, if q is odd.	It suffices to check that the KHS of (2) is independent of the vertices (without computing p_{ij}^h). We can use <i>symmetry</i> . Let X be the vertex set and $\Gamma_1, \ldots, \Gamma_d$ the set of graphs with $V(\Gamma_i) = X$ and whose adjacency matrices together with the identity matrix satisfies the condition (a).	permutation of vertices, that preserves adjacency. Adjacency matrices of the graphs $\Gamma_1, \ldots, \Gamma_d$, together with the identity matrix is an association scheme if $\forall i$ the automorphism group acts transitively on pairs of vertices that are adjacent in Γ_i (this is a sufficient condition).	The trivial scheme is primitive. Johnson scheme $J(n, d)$ is primitive iff $n \neq 2d$. In the case $n = 2d$ the graph Γ_d is disconnected. Hamming scheme $H(d, n)$ is primitive iff $n \neq 2$. In the case $n = 2$ the graphs Γ_i , $1 \leq i \leq \lfloor d/2 \rfloor$, and the graph Γ_d are disconnected.
Aleksandar Jurišić 109	Aleksandar Jurišić 110	Aleksandar Jurišić 111	Aleksandar Jurišić 11:

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Let $\{A_0, \ldots, A_d\}$ be a <i>d</i> -class associative scheme \mathcal{A} and let π be a partition of $\{1, \ldots, d\}$ on $m \in \mathbb{N}$ nonempty cells. Let A'_1, \ldots, A'_m be the matrices of the form $\sum_{i \in C} A_i$, where C runs over all cells of partition π , and set $A'_0 = I$. These binary matrices are the elements of the Bose-Mesner algebra \mathcal{M} , they commute, and their sum is J . Very often the form an associative scheme, denoted by \mathcal{A}' , in which case we say that \mathcal{A}' was obtained from \mathcal{A} by merging of classes (also by fusion).	For $m = 1$ we obtain the trivial associative scheme. Brouwer and Van Lint used merging to construct some new 2-class associative schemes (i.e., $m = 2$). For example, in the Johnson scheme $J(7, 3)$ we merge A_1 and A_3 to obtain a strongly regular graph, which is the line graph of PG(3, 2).	Two bases and duality Theorem. Let $\mathcal{A} = \{A_0, \dots, A_d\}$ be an associative scheme on n vertices. Then there exists orthogonal idempotent matrices E_0, \dots, E_d and $p_i(j)$, such that (a) $\sum_{j=0}^d E_j = I$, (b) $A_i E_j = p_i(j) E_j$, i.e., $A_i = \sum_{j=0}^d p_i(j) E_j$, (c) $E_0 = \frac{1}{n} J$, (d) matrices E_0, \dots, E_d are a basis of a $(d + 1)$ -dim. vector space, generated by A_0, \dots, A_d .	$\sum_{j} Y_{ij} = I.$ (3) Furthermore, each matrix Y_{ij} can be expressed as a polynomial of the matrix A_i . Since \mathcal{M} is a commutative algebra, the matrices Y_{ij} commute and also commute with matrices A_0, \ldots, A_d . Therefore, each product of this matrices is an idempotent matrix (that can be also 0).
Aleksandar Jurišić 113	Aleksandar Jurišić 114	Aleksandar Jurišić 115	Aleksandar Jurišić 116

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
We multiply equations (3) for $i = 1,, d$. to obtain an equation of the following form $I = \sum_{j} E_{j}, \qquad (4)$ where each E_{j} is an idempotent that is equal to a product of d idempotents $Y_{ik_{i}}$, where $Y_{ik_{i}}$ is an idempotent from the spectral decompozition of A_{i} . Hence, the idempotents E_{j} are pairwise orthogonal, and for each matrix A_{i} there exists $p_{i}(j) \in \mathbb{R}$, such that $A_{i}E_{j} = p_{i}(j)E_{j}$.	Therefore, $A_i = A_i I = A_i \sum_j E_j = \sum_j p_i(j)E_j.$ This tells us that each matrix A_i is a linear combination of the matrices E_j . Since the nonzero matrices E_j are pairwise othogonal, they are also linearly independent. Thus they form a basis of the BM-algebra \mathcal{M} , and there is exactly $d + 1$ nonzero matrices among E_j 's. The proof of (c) is left for homework.	The matrices E_0, \ldots, E_d are called minimal idempotents of the associative scheme \mathcal{A} . Schur (or Hadamard) product of matrices is an entry-wise product. denoted by "o". Since $A_i \circ A_j = \delta_{ij}A_i$, the BM-algebra is closed for Schur product. The matrices A_i are pairwise othogonal idempotents for Schure multiplication, so they are also called Schur idempotents of \mathcal{A} . Since the matrices E_0, \ldots, E_d are a basis of the vector space spanned by A_0, \ldots, A_d , also the following statement follows.	Corollary. Let $\mathcal{A} = \{A_0, \dots, A_d\}$ be an associative scheme and E_0, \dots, E_d its minimal idempotents. Then $\exists q_{ij}^h \in \mathbb{R}$ and $q_i(h) \in \mathbb{R}$ $(i, j, h \in \{0, \dots, d\})$, such that (a) $E_i \circ E_j = \frac{1}{n} \sum_{h=0}^d q_{ij}^h E_h$, (b) $E_i \circ A_j = \frac{1}{n} q_i(j) A_j$, i.e., $E_i = \frac{1}{n} \sum_{h=0}^d q_i(h) A_h$, (c) matrices A_i have at most $d + 1$ distinct eigenvalues.
Aleksandar Jurišić 117	Aleksandar Jurišić 118	Aleksandar Jurišić 119	Aleksandar Jurišić 120

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
There exists a basis of $d + 1$ (orthogonal) minimal idempotents E_i of the BM-algebra \mathcal{M} such that $E_0 = \frac{1}{n}J$ and $\sum_{i=0}^{d} E_i = I$, $E_i \circ E_j = \frac{1}{n}\sum_{h=0}^{d} q_{ij}^h E_h$, $A_i = \sum_{h=0}^{d} p_i(h)E_h$ and $E_i = \frac{1}{n}\sum_{h=0}^{d} q_i(h)A_h$ ($0 \le i, j \le d$), The parameters q_{ij}^h are called Krein parameters , $p_i(0), \ldots, p_i(d)$ are eigenvalues of matrix A_i , and $q_i(0), \ldots, q_i(d)$ are the dualne eigenvalues of E_i .	The eigenmatrices of the associative scheme \mathcal{A} are $(d+1)$ -dimensional square matrices \mathcal{P} and \mathcal{Q} defined by $(P)_{ij} = p_j(i)$ and $(Q)_{ij} = q_j(i)$. By setting $j = 0$ in the left identity of Corollary (b) and taking traces, we see that the eigenvalue $p_i(1)$ of the matrix A_1 has multiplicity $m_i = q_i(0) = \operatorname{rank}(E_i)$. By Theorem (b) and Corollary (b), we obtain $\mathcal{P}\mathcal{Q} = n\mathcal{I} = \mathcal{Q}\mathcal{P}$. There is another relation between P and Q .	Take the trace of the identity in Theorem (b): $\Delta_k Q = P^T \Delta_m,$ where Δ_k and Δ_m are the diagonal matrices with entries $(\Delta_k)_{ii} = k_i$ and $(\Delta_m)_{ii} = m_i$. This relation implies $P\Delta_k^{-1}P^T = n\Delta_m^{-1}$, and by comparing the diagonal entries also $\sum_{h=0}^d p_h(i)^2/k_h = n/m_i.$ which gives us an expression for the multiplicity m_i in terms of eigenvalues.	Using the eigenvalues we can express all intersection numbers and Krein parameters. For example, if we multiply the equality in Corollary (a) by E_h , we obtain $q_{ij}^h E_h = nE_h(E_i \circ E_j)$, i.e., $q_{ij}^h = \frac{n}{m_h} \operatorname{trace}(E_h(E_i \circ E_j))$ (5) $= \frac{n}{m_h} \operatorname{sum}(E_h \circ E_i \circ E_j)$, (6) where the sum of a matrix is equal to the sum of all of its elements.
Aleksandar Jurišić 121	Aleksandar Jurišić 122	Aleksandar Jurišić 123	Aleksandar Jurišić 124

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
By Corollary (b), it follows also $E_i \circ E_j \circ E_h = \frac{1}{n^3} \sum_{\ell=0}^d q_i(\ell) q_j(\ell) q_h(\ell) A_\ell,$ therefore, by $\Delta_k Q = (\Delta_m P)^T$, we obtain $q_{ij}^h = \frac{1}{nm_h} \sum_{\ell=0}^d q_i(\ell) q_j(\ell) q_h(\ell) k_\ell$ $= \frac{m_i m_j}{n} \sum_{\ell=0}^d \frac{p_\ell(i) p_\ell(j) p_\ell(h)}{k_{\ell^2}}$	Krein parameters satisfy the so-called Krein conditions: Theorem [Scott]. Let \mathcal{A} be an associative scheme with n vertices and $\mathbf{e}_1, \ldots, \mathbf{e}_n$ the standard basis in \mathbb{R}^n . Then $\boxed{q_{ij}^h \ge 0.}$ Moreover, for $\mathbf{v} = \sum_{i=1}^n \mathbf{e}_i \otimes \mathbf{e}_i \otimes \mathbf{e}_i$, we have $q_{ij}^h = \frac{n}{m_h} (E_i \otimes E_j \otimes E_h)\mathbf{v} ^2$, and $q_{ij}^h = 0$ iff $(E_i \otimes E_j \otimes E_h)\mathbf{v} = 0$.	PROOF (Godsil's sketch). Since the matrices E_i are pairwise orthogonal idempotents, we derive from Corollary (b) (by multiplying by E_h) $(E_i \circ E_j)E_h = \frac{1}{n} q_{ij}^h E_h$. Thus q_{ij}^h/n is an eigenvalue of the matrix $E_i \circ E_j$ on a subspace of vectors that are determined by the columns of E_h . The matrices E_i are positive semidefinite (since they are symmetric, and all their eigenvalues are 0 or 1). On the other hand, the Schur product of semidefinite matrices is again semidefinite, so the matrix $E_i \circ E_j$ has nonnegative eigenvalues. Hence, $q_{ij}^h \ge 0$.	By (5) and the well known tensor product identity $(A \otimes B)(x \otimes y) = Ax \otimes By$ for $A, B \in \mathbb{R}^{n \times n}$ and $x, y \in \mathbb{R}^n$, we obtain $q_{ij}^h = \frac{n}{m_h} \operatorname{sum}(E_i \circ E_j \circ E_h)$ $= \frac{n}{m_h} \boldsymbol{v}^T(E_i \otimes E_j \otimes E_h) \boldsymbol{v}.$ Now the statement follows from the fact that $E_i \otimes E_j \otimes E_h$ is a symmetric idempotent.
Aleksandar Jurišić 125	Aleksandar Jurišić 126	Aleksandar Jurišić 127	Aleksandar Jurišić 128

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Another strong criterion for an existence of associative schemes is an absolute bound , that bounds the rank of the matrix $E_i \circ E_j$. Theorem. Let \mathcal{A} be a <i>d</i> -class associative scheme. Then its multiplicities m_i , $1 \le i \le d$, satisfy inequalities $\sum_{\substack{q_{ij}^h \neq 0}} m_h \le \begin{cases} m_i m_j & \text{if } i \ne j, \\ \frac{1}{2} m_i (m_i + 1) & \text{if } i = j. \end{cases}$	PROOF (sketch). The LHS is equal to the rank $(E_i \circ E_j)$ and is greater or equal to the rank $(E_i \otimes E_j) = m_i m_j$. Suppose now $i = j$. Among the rows of the matrix E_i we can choose m_i rows that generate all the rows. Then the rows of the matrix $E_i \circ E_i$, whose elements are the squares of the elements of the matrix E_i , are generated by $m_i + {m_i \choose 2}$ rows, that are the Schur products of all the pairs of rows among all the m_i rows.	An association scheme \mathcal{A} is P -polynomial (called also metric) when there there exists a permutation of indices of A_i 's, s.t. \exists polynomials p_i of degree i s.t. $A_i = p_i(A_1)$, i.e., the intersection numbers satisfy the Δ -condition (that is, $\forall i, j, h \in \{0, \dots, d\}$ $\bullet p_{ij}^h \neq 0$ implies $h \leq i + j$ and $\bullet p_{ij}^{i+j} \neq 0$). An associative scheme \mathcal{A} is Q -polynomial (called also cometric) when there exists a permutation of indices of E_i 's, s.t. the Krein parameters q_{ij}^h satisfy the Δ -condition.	Theorem. [Cameron, Goethals and Seidel] In a strongly regular graph vanishing of either of Krein parameters q_{11}^1 and q_{22}^2 implies that first and second subconstituent graphs are strongly regular.
Aleksandar Jurišić 129	Aleksandar Jurišić 130	Aleksandar Jurišić 131	Aleksandar Jurišić 132

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007
SRG(162, 56, 10, 24), denoted by Γ , is unique by Cameron, Goethals and Seidel. vertices: special vertex ∞ , 56 hyperovals in PG(2, 4) in a $L_3(4)$ -orbit, 105 flags of PG(2, 4) adjacency: ∞ is adjacent to the hyperovals hyperovals $\mathcal{O} \sim \mathcal{O}' \iff \mathcal{O} \cap \mathcal{O}' = \emptyset$ $(p, L) \sim \mathcal{O} \iff \mathcal{O} \cap L \setminus \{p\} = 2$ $(p, L) \sim (q, M) \iff p \neq q, L \neq M$ and $(p \in M \text{ or } q \in L).$ The hyperovals induce the Gewirtz graph, i.e., the unique SRG(56,10,0,2)) and the flags induce a SRG(105,32,4,12).	VI. Equitable partitions• definition• quotients• eigenvectors• (antipodal) covers $1 a b c d e$ $a 1 a b c d$ $b a 1 a b c$ $b a 1 a b c$ $b a 1 a b c$ $c b a 1 a b$ $d c b a 1 a$ $e d c b a 1$ $b + c a + d 1 + e$ $b - c a - d 1 - e$	An equitable partition of a graph Γ is a partition of the vertex set $V(\Gamma)$ into parts C_1, C_2, \ldots, C_s s.t. (a) vertices of each part C_i induce a <i>regular</i> graph, (b) edges between C_i and C_j induce a <i>half-regular</i> graph. C_1 C_1 C_2 C_1 C_2 C_1 C_2 C_3 C_4 C_5 C_1 C_5 C_1 C_5 C_1 C_5 C_1 C_2 C_5 C_1 C_5 C_5 C_1 C_5 $C_$	Orbits of a group acting on Γ form an equitable partition. But not all equitable partitions come from groups: $\{\{1, 2, 4, 5, 7, 8\}, \{3, 6\}\}.$
Aleksandar Jurišić 133	Aleksandar Jurišić 134	Aleksandar Jurišić 135	Aleksandar Jurišić 136

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Equitable partitions give rise to quotient graphs G/π , which are directed multigraphs with cells as vertices and c_{ij} arcs going from C_i to C_j . $ \begin{array}{c} $	Set $X := V\Gamma$ and $n := X $. Let $V = \mathbb{R}^n$ be the vector space over \mathbb{R} consisting of all column vectors whose coordinates are indexed by X . For a subset $S \subseteq X$ let its characteristic vector be an element of V , whose coordinates are equal 1 if they correspond to the elements of S and 0 otherwise. Let $\pi = \{C_1, \ldots, C_s\}$ be a partition of X . The characteristic matrix P of π is $(n \times s)$ matrix, whose column vectors are the characteristic vectors of the parts of π (i.e., $P_{ij} = 1$ if $i \in C_j$ and 0 otherwise).	Let $\operatorname{Mat}_{X}(\mathbb{R})$ be the \mathbb{R} -algebra consisting of all real matrices, whose rows and columns are indexed by X . Let $A \in \operatorname{Mat}_{X}(\mathbb{R})$ be the adjacency matrix of Γ . $\operatorname{Mat}_{X}(\mathbb{R})$ acts on V by left multiplication. Theorem. Let π be a partition of $V\Gamma$ with the characteristic matrix P . TFAE (i) π equitable, (ii) $\exists a \ s \times s \ matrix B \ s.t. \ A(\Gamma)P = PB$ (iii) the span(col(P)) is $A(\Gamma)$ -invariant. If π is equitable then $B = A(\Gamma/\pi)$.	Theorem. Assume $AP = PB$. (a) If $B\mathbf{x} = \theta \mathbf{x}$, then $AP\mathbf{x} = \theta P\mathbf{x}$. (b) If $A\mathbf{y} = \theta \mathbf{y}$, then $\mathbf{y}^T PB = \theta \mathbf{y}^T P$. (c) The characteristic polynomial of matrix B divides the characteristic polynomial of matrix A . An eigenvector x of Γ/π corresponding to θ extends to an eigenvector of Γ , which is constant on parts, so $m_{\theta}(\Gamma/\pi) \leq m_{\theta}(\Gamma)$. $\tau \in \text{ev}(\Gamma) \setminus \text{ev}(\Gamma/\pi) \implies \text{each eigenvector of } \Gamma$ corresponding to τ sums to zero on each part.
Aleksandar Jurišić 137	Aleksandar Jurišić 138	Aleksandar Jurišić 139	Aleksandar Jurišić 140

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
$H = \frac{1}{2} $	H graph, D diameter If being at distance 0 or D is an equivalence relation on $V(H)$, we say that H is antipodal . $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	 VII. Distance-regular graphs distance-regularity intersection numbers eigenvalues and cosine sequences classification classical infinite families antipodal distance-regular graphs mique, cubic, DT 28 vertices, diameter 4, girth 7 Aut=PGL(2,7), pt stab. D₁₂ 	Distance-regularity: $\Gamma \text{ graph, diameter } d, \forall x \in V(\Gamma) \text{ the distance partition } \{\Gamma_0(x), \Gamma_1(x), \dots, \Gamma_d(x)\} \text{ corresponding to } x \text{ orresponding to } x \text{ or }$

A small example of a distance-regular graph: (attpodd, i.e., being at distance diam. is a transitive relation) $t \stackrel{e}{\rightarrow} t \stackrel{e}{\rightarrow} t \stackrel{h}{\rightarrow} t$	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatories, 2007
Aldered as 10° Aldered as 10° Aldered as 10°	(antipodal, i.e., being at distance diam. is a transitive relation) $ \begin{array}{c} \bullet 4 & \bullet 1 & \bullet 2 \\ \bullet & \bullet 1 & \bullet 2 \\ \bullet & \bullet 1 & \bullet 1 \\$	Set $p_{ij}^h := \Gamma_i(u) \cap \Gamma_j(v) $, where $\partial(u, v) = h$. Then $a_i = p_{i1}^i$, $b_i = p_{i+1,1}^i$, $c_i = p_{i-1,1}^i$, $k_i = p_{ii}^0$, $k_i = p_{i0}^h + \dots + p_{id}^h$ and in particular $a_i + b_i + c_i = k$. A connected graph is distance-transitive when any pair of its vertices can be mapped (by a graph authomorphism, i.e., an adjacency preserving map) to any other pair of its vertices at the same distance.	numbers in the intersection array $\{b_0, b_1, \dots, b_{d-1}; c_1, c_2, \dots, c_d\}$ of Γ . This can be proved by induction on i , using the following recurrence relation: $c_{j+1}p_{i,j+1}^h + a_j p_{ij}^h + b_{j-1}p_{i,j-1}^h = c_{i+1}p_{i+1,j}^h + a_i p_{ij}^h + b_{i-1}p_{i-1,j}^h$ obtained by a 2-way counting for vertices u and v at distance h of edges with one end in $\Gamma_i(u)$ and another in $\Gamma_j(v)$ (see the next slide). Therefore, the intersection numbers do not depend on	$\begin{array}{c} c_{i,1} \\ x_N \\ p_{i,j+1}^h \\ b_{j-1} \\ p_{i+1,j+1}^h \\$
Areksandar jurisic 140 Areksandar jurisic 140 Areksandar jurisic 141 Areksandar jurisic 147 Areksandar jurisic	Aleksandar Jurišić 145	Aleksandar Jurišić 146	Aleksandar Jurišić 147	Aleksandar Jurišić 148

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007
 An arbitrary list of numbers b_i and c_i does not determine a distance-regular graph. It has to satisfy numerous feasibility conditions (e.g. all intersection numbers have to be integral). One of the main questions of the theory of distance-regular graphs is for a given intersection array to construct a distance-regular graph, to prove its uniqueness, to prove its nonexistence. Some basic properties of the intersection numbers will be collected in the following result. 	Lemma. Γ distance-regular, diameter d and intersection array $\{b_0, b_1, \dots, b_{d-1}; c_1, c_2, \dots, c_d\}$. Then (i) $b_0 > b_1 \ge b_2 \ge \dots \ge b_{d-1} \ge 1$, (ii) $1 = c_1 \le c_2 \le \dots \le c_d$, (iii) $b_{i-1}k_{i-1} = c_ik_i$ for $1 \le i \le d$, (iv) if $i + j \le d$, then $c_i \le b_j$, (v) the sequence k_0, k_1, \dots, k_d is unimodal, (i.e., there exists such indices h, ℓ ($1 \le h \le \ell \le d$), that $k_0 < \dots < k_h = \dots = k_\ell > \dots > k_d$.	PROOF. (i) Obviously $b_0 > b_1$. Set $2 \le i \le d$. Let $v, u \in V\Gamma$ be at distance d and $v = v_0, v_1, \ldots, v_d = u$ be a path. The vertex v_i has b_i neighbours, that are at distance $i + 1$ from v . All these b_i vertices are at distance i from v_1 , so $b_{i-1} \ge b_i$. (iii) The number of edges from $\Gamma_{i-1}(v)$ to $\Gamma_i(v)$ is $b_{i-1}k_{i-1}$, while from $\Gamma_i(v)$ to $\Gamma_{i-1}(v)$ is c_ik_i . (iv) The vertex v_i has c_i neighbours, that are at distance $i - 1$ from v . All these vertices are at distance $j + 1$ from v_{i+j} . Hence $c_i \le b_j$. The statement (ii) can be proven the same way as (i), and (v) follows directly from (i), (ii) and (iii).	Lemma. A connected graph G of diameter d is distance-regular iff $\exists a_i, b_i$ and c_i such that $AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1}$ for $0 \le i \le d$. If G is a distance-regular graph, then $A_i = v_i(A)$ for some polynomial $v_i(x)$ of degree i, for $0 \le i \le d+1$. The sequence $\{v_i(x)\}$ is determined with $v_{-1}(x) = 0$, $v_0(x) = 1, v_1(x) = x$ and for $i \in \{0, 1, \dots, d\}$ with $c_{i+1}v_{i+1}(x) = (x - a_i)v_i(x) - b_{i-1}v_{i-1}(x)$. In this sense distance-regular graphs are combinatorial representation of orthogonal polynomials.
Aleksandar Jurisic 149	Aleksandar Jurisic 150	Aleksandar Jurisic 151	Aleksandar Jurisic 152

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Eigenvalues The intersection array of a distance-regular graph Γ $\{k, b_1, \ldots, b_{d-2}, b_{d-1}; 1, c_2, \ldots, c_{d-1}, c_d\},$ i.e., the quotient graph Γ/π with the adjacency matrix $A(\Gamma/\pi) = \begin{pmatrix} a_0 & b_0 \\ c_1 & a_1 & b_1 & 0 \\ 0 & c_2 & \ddots & \\ 0 & \ddots & b_{d-1} \\ c_d & a_d \end{pmatrix}$, determines all the eigenvalues of Γ and their multiplicities.	The vector $v = (v_0(\theta), \dots, v_d(\theta))^T$ is a left eigenvector of this matrix corresponding to the eigenvalue θ . Similarly a vector $w = (w_0(\theta), \dots, w_d(\theta))^T$ defined by $w_{-1}(x) = 0$, $w_0(x) = 1$, $w_1(x) = x/k$ and for $i \in \{0, 1, \dots, d\}$ by $xw_i(x) = c_i w_{i-1}(x) + a_i w_i(x) + b_i w_{i+1}(x)$ is a right eigenvector of this matrix, corresponding to the eigenvalue θ . There is the following relation between coordinates of vectors w and v : $w_i(x)k_i = v_i(x)$.	For $\theta \in \text{ev}(\Gamma)$ and associated primitive idempotent E : $E = \frac{m_{\theta}}{ V\Gamma } \sum_{h=0}^{d} \omega_h A_h (0 \le i \le d),$ $\omega_0, \dots, \omega_d$ is the cosine sequence of E (or θ). Lemma. Γ distance-regular, diam. $d \ge 2, E$ is a primitive idempotent of Γ corresponding to θ , $\omega_0, \dots, \omega_d$ is the cosine sequence of θ . For $x, y \in V\Gamma$, $i = \partial(x, y)$ we have (i) $\langle Ex, Ey \rangle = xy$ -entry of $E = \omega_i \frac{m_{\theta}}{ V\Gamma }.$ (ii) $\omega_0 = 1$ and $c_i \omega_{i-1} + a_i \omega_i + b_i \omega_{i+1} = \theta \omega_i$ for $0 \le i \le d$.	$\omega_1 = \frac{\theta}{k}, \qquad \omega_2 = \frac{\theta^2 - a_1\theta - k}{kb_1}$ and $\omega_1 - \omega_2 = \frac{(k - \theta)(a_1 + 1)}{kb_1}, 1 - \omega_2 = \frac{(k - \theta)(\theta + b_1 + 1)}{kb_1}.$ Using the Sturm's theorem for the sequence $b_0 \dots b_i \omega_i(x)$ we obtain Theorem. Let $\theta_0 \ge \dots \ge \theta_d$ be the eigenvalues of a distance regular graph. The sequence of cosines corresponding to the <i>i</i> -th eigenvalue θ_i has precisely <i>i</i> sign changes.
Aleksandar Jurišić 153	Aleksandar Jurišić 154	Aleksandar Jurišić 155	Aleksandar Jurišić 156

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Classification Γ distance-regular, diam. d. We say Γ is primitive, when all the distance graphs Γ ₁ ,, Γ _d are connected (and imprimitive otherwise). Theorem (Smith). An imprimitive distance-regular graph is either antipodal or bipartite. The big project of classifying distance-regular graphs: (a) find all primitive distance-regular graphs, (b) given a distance-regular graph Γ, find all imprimitive graphs, which give rise to Γ.	graphdiameterb α β Johnson graph $J(n,d)$ min $(d, n-d)$ 11 $n-d$ Grassmann graphmin $(k, v-k)$ q $\binom{n-d+1}{-1}$ Hammin graph $H(d, n)$ d10 $n-1$ Bilinear forms graphk q $q-1$ q^n-1 Dual polar graph??? q 0 q^e Alternating forms graph $(n/2)$ q^2 q^2-1 q^m-1 Hermitean forms graph n $-r$ $-r-1$ $-(-r)^d-1$ Quadratic forms graph $\lfloor (n+1)/2 \rfloor$ q^2 q^2-1 q^m-1	The Gauss binomal coefficient $\begin{bmatrix} j \\ i \end{bmatrix}$ is equal $\binom{j}{i}$ for $b = 1$ and $\prod_{k=0}^{i-1} \frac{b^{j} - b^{k}}{b^{i} - b^{k}}$ otherwise. If V is an <i>n</i> -dim. vector space over a finite field with b elements, then $\begin{bmatrix} n \\ m \end{bmatrix}$ is the number of <i>m</i> -dim. subspaces of V .	A distance-regular graph with diameter d is called classical , if its intersection parameters can be parametrized with four parameters (diameter d and numbers b, α and β) in the following way: $b_i = \left(\begin{bmatrix} d \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix} \right), 0 \le i \le d - 1$ $c_i = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix} \right), 1 \le i \le d,$ where $\begin{bmatrix} j \\ 1 \end{bmatrix} := 1 + b + b^2 + \dots + b^{j-1}.$
Aleksandar Jurišić 157	Aleksandar Jurišić 158	Aleksandar Jurišić 159	Aleksandar Jurišić 160

Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Antipodal distane-regular graphs Theorem (Van Bon and Brouwer, 1987). Most classical distance-regular graphs have no antipodal covers. Theorem (Terwilliger, 1993). P- and Q-poly. association scheme with $d \ge 3$ (not $C_n, \overline{Q_n}, \overline{\frac{1}{2}Q_n}$ or $\overline{\frac{1}{2}J(s, 2s)}$) is not the quotient of an antipodal P-polynomial scheme with $d \ge 7$.	Theorem (A.J. 1991). <i>H</i> is a bipartite antipodal cover with <i>D</i> odd iff $H \cong K_2 \otimes (H/\pi)$, (i.e., bipartite double), and H/π is a generalized Odd graph. (cf. Biggs and Gardiner, also [BCN])	A generalized Odd graph of diameter d is a drg, s.t. $a_1 = \cdots = a_{d-1} = 0$, $a_d \neq 0$) Known examples for $D = 5$ (and $d = 2$): – Desargues graph (i.e., the Double Petersen) – five-cube – the Double of Hoffman-Singleton – the Double Gewirtz – the Double 77-graph – the Double Higman-Sims	Theorem (Gardiner, 1974). If H is antipodal r -cover of G , then $\iota(H)$ is (almost) determined by $\iota(G)$ and r , $D_H \in \{2d_{\Gamma}, 2d_{\Gamma} + 1\}$ and $2 \le r \le k$, and $b_i = c_{D-i}$ for $i = 0, \dots, D$, $i \ne d$, $r = 1 + \frac{b_d}{c_{D-d}}$. Lemma. A distance-regular antipodal graph Γ of diameter d is a cover of its antipodal quotient with components of Γ_d as its fibres unless $d = 2$.
Aleksandar Jurišić 161	Aleksandar Jurišić 162	Aleksandar Jurišić 163	Aleksandar Jurišić 164

Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Lemma. Γ antipodal distance-regular, diameter d . Then a vertex x of Γ , which is at distance $i \leq \lfloor d/2 \rfloor$ from one vertex in an antipodal class, is at distance d - i from all other vertices in this antipodal class. Hence $\Gamma_{d-i}(x) = \bigcup \{\Gamma_d(y) \mid y \in \Gamma_i(x)\}$ for $0 \leq i \leq \lfloor d/2 \rfloor$. For each vertex u of a cover H we denote the fibre which contains u by $F(u)$. A geodesic in a graph G is a path g_0, \ldots, g_t , where dist $(g_0, g_t) = t$.	Theorem. G distance-regular, diameter d and parameters b_i , c_i ; H its r-cover of diameter $D > 2$. Then the following statements are equivalent: (i) The graph H is antipodal with its fibres as the antipodal classes (hence an antipodal cover of G) and each geodesic of length at least $\lfloor (D+1)/2 \rfloor$ in H can be extended to a geodesic of length D. (ii) For any $u \in V(H)$ and $0 \le i \le \lfloor D/2 \rfloor$ } we have $S_{D-i}(u) = \cup \{F(v) \setminus \{v\} : v \in S_i(u)\}.$	$c_{1}, \dots, c_{d-1}, \frac{c_{d}}{r}, b_{d-1}, \dots, b_{0} \} \text{ for } D \text{ even},$ and $\{b_{0}, \dots, b_{d-1}, (r-1)t, c_{d}, \dots, c_{1}; c_{1}, \dots, c_{d}, t, b_{d-1}, \dots, b_{0}\}$ for $D \text{ odd}$ and some integer t .	The distance distribution corresponding to the antipodal class $\{y_1, \ldots, y_r\}$ in the case when d is even (left) and the case when d is odd (right). Inside this partition there is a partition of the neighbourhood of the vertex x .
Aleksandar Jurišić 165	Aleksandar Jurišić 166	Aleksandar Jurišić 167	Aleksandar Jurišić 168

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Theorem. Let Γ be a distance regular graph and H a distance regular antipodal r -cover of Γ . Then every eigenvalue θ of Γ is also an eigenvalue of H with the same multiplicity. PROOF. Let H has diameter D , and Γ has n vertices, so $H_D = n \cdot K_r$ (K_r 's corresp. to the fibres of H). Therefore, H_D has for eigenvalues $r - 1$ with multiplicity n and -1 with multiplicity $nr - n$. The eigenvectors corresponding to eigenvalue $r - 1$ are constant on fibres and those corresponding to -1 sum to zero on fibres.	Take θ to be an eigenvalue of H , which is also an eigenvalue of Γ . An eigenvector of Γ corresponding to θ can be extended to an eigenvector of H which is constant on fibres. We know that the eigenvectors of H are also the eigenvectors of H_D , therefore, we have $v_D(\theta) = r - 1$. So we conclude that all the eigenvectors of H corresponding to θ are constant on fibres and therefore give rise to eigenvectors of Γ corresponding to θ .	All the eigenvalues: $A(\Gamma/\pi), N_0 \text{ or } A(\Gamma/\pi), N_1$: $\begin{pmatrix} 0 & b_0 & & \\ c_1 & a_1 & b_1 & 0 & \\ 0 & c_2 & . & . & \\ & & \ddots & \ddots & \\ 0 & & . & b_{d-1} \\ & & c_d & a_d \end{pmatrix}, \begin{pmatrix} 0 & b_0 & & \\ c_1 & a_1 & b_1 & 0 & \\ 0 & c_{d-2} & a_{d-2} & b_{d-2} \\ & & & c_{d-1} & a_{d-1} \end{pmatrix}$ $\begin{pmatrix} 0 & b_0 & & \\ c_1 & a_1 & b_1 & 0 & \\ 0 & c_2 & . & . & \\ 0 & & . & b_{d-1} \\ & & & c_d & a_d \end{pmatrix}, \begin{pmatrix} 0 & b_0 & & \\ c_1 & a_1 & b_1 & 0 & \\ c_2 & a_2 & b_2 & & \\ & \ddots & \ddots & \ddots & \\ 0 & & c_{d-1} & a_{d-1} & b_{d-1} \\ & & & c_d & a_d - rt \end{pmatrix}$	Theorem. H distance-regular antipodal r-cover, diameter D, of the distance-regular graph Γ , diameter d and parameters a_i, b_i, c_i . The $D - d$ eigenvalues of H which are not in $ev(\Gamma)$ (the 'new' ones) are for $D = 2d$ (resp. $D = 2d + 1$), the eigenvalues of the matrix N_0 (resp. N_1). If $\theta_0 \ge \theta_1 \ge \cdots \ge \theta_D$ are the eigenvalues of H and $\xi_0 \ge \xi_1 \ge \cdots \ge \xi_d$ are the eigenvalues of Γ , then $\xi_0 = \theta_0, \ \xi_1 = \theta_2, \ \cdots, \ \xi_d = \theta_{2d},$ i.e., the $ev(\Gamma)$ interlace the 'new' eigenvalues of H.
Aleksandar Jurišić 16	9 Aleksandar Jurišić 170	Aleksandar Jurišić 171	Aleksandar Jurišić 172

Algebraic Combinatories, 2007 Connections - projective and affine planes, for $D = 3$, or $D = 4$ and $r = k$ (covers of K_n or $K_{n,n}$), - Two graphs (Q -polynomial), for $D = 3$ and $r = 2$, - Moore graphs, for $D = 3$ and $r = k$, - Hadamard matrices, $D = 4$ and $r = 2$ (covers of $K_{n,n}$), - group divisible resolvable designs, $D = 4$ (cover of $K_{n,n}$), - coding theory (perfect codes), - group theory (class. of finite simple groups), - orthogonal polynomials.	Tools: - graph theory, counting, - matrix theory (rank mod p), - eigenvalue techniques, - representation theory of graphs, - geometry (Euclidean and finite), - algebra and association schemes, - topology (covers and universal objects).	Goals: - structure of antipodal covers, - new infinite families, - nonexistence and uniqueness, - characterization, - new techniques (which can be applied to drg or even more general) Difficult problems: Find a 7-cover of K_{15} . Find a double-cover of Higman-Sims graph ($\{22, 21; 1, 6\}$).	Algebraic Combinatories, 2007 Antipodal covers of diameter 3 Γ an antipodal distance-regular with diameter 3. Then it is an <i>r</i> -cover of the complete graph K_n . Its intersection array is $\{n-1, (r-1)c_2, 1; 1, c_2, n-1\}$. The distance partition corresp. to an antipodal class.
– orthogonal polynomials. Aleksandar Jurišić 173	Aleksandar Jurišić 174	Aleksandar Jurišić 175	The distance partition corresp. to an antipodal class. Aleksandar Jurišić 176

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Examples: 3-cube, the icosahedron. A graph is locally C if the neighbours of each vertex induce C (or a member of C). Lemma (A.J. 1994). Γ distance-regular, $k \leq 10$ and locally C_k . Then Γ is – one of the Platonic solids with Δ 's as faces, – Paley graph $P(13)$, Shrikhande graph, – Klein graph (i.e., the 3-cover of K_8). Problem. Find a locally C_{15} distance-regular graph.	Platonic solids with \triangle 's as faces The 1-skeletons of (a) the tetrahedron= K_4 , (b) the octahedron= $K_{2,2,2}$, (c) the icosahedron.	There is only one feasible intersection array of distance- regular covers of K_8 : {7, 4, 1; 1, 2, 7} - the Klein graph, i.e., the dual of the famous Klein map on a surface of genus 3. It must be the one coming from Mathon's construction.	Mathon's construction of an <i>r</i> -cover of K_{q+1} A version due to Neumaier: using a subgroup K of the GF(q)* of index r . For, let $q = rc + 1$ be a prime power and either c is even or $q - 1$ is a power of 2. We use an equivalence relation \mathcal{R} for GF(q) ² \{0}: $(v_1, v_2)\mathcal{R}(u_1, u_2)$ iff $\exists h \in K$ s.t. $(v_1h, v_2h) = (u_1, u_2)$. vertices : equiv. classes $vK, v \in GF(q)^2$ \{0} of \mathcal{R} , and $(v_1, v_2)K \sim (u_1, u_2)K$ iff $v_1u_2 - v_2u_1 \in K$, It is an antipodal distance-regular graph of diam. 3, with $r(q + 1) = (q^2 - 1)/c$ vertices, index $r, c_2 = c$ (vertex transitive, and also distance-transitive when r is prime and the char. of GF(q) is primitive mod r).
Aleksandar Jurišić 177	Aleksandar Jurišić 178	Aleksandar Jurišić 179	Aleksandar Jurišić 180
Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
$\begin{aligned} & \textbf{Theorem (Brouwer, 1983).} \\ & \text{GQ}(s,t) \text{ minus a spread, } t > 1 \\ & \implies (s+1)\text{-cover of } K_{st+1} \text{ with } c_2 = t-1. \end{aligned}$ $\text{- good construction: } q \text{ a prime power:} \\ & (s,t) = \begin{cases} (q,q), \\ (q-1,q+1), \\ (q+1,q-1), \text{ if } 2 \mid q \\ (q,q^2). \end{cases}$ $\text{- good characterization (geometric graphs),} \\ \text{- nonexistence} \end{aligned}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Antipodal covers of diameter 4 Let Γ be an antipodal distance-regular graph of diameter 4, with v vertices, and let r be the size of its antipodal classes (we also use $\lambda := a_1$ and $\mu := c_2$). The intersection array $\{b_0, b_1, b_2, b_3; c_1, c_2, c_3, c_4\}$ is determined by (k, a_1, c_2, r) , and has the following form $\{k, k - a_1 - 1, (r - 1)c_2, 1; 1, c_2, k - a_1 - 1, k\}$, A systematic approach: – make a list of all small feasible parameters – check also the Krein conditions and absolute bounds

Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007
Let $k = \theta_0 > \theta_1 > \theta_2 > \theta_3 > \theta_4$ be ev(Γ). The antipodal quotient is SRG($v/r, k, a_1, rc_2$), the old eigenvalues, i.e., $\theta_0 = k, \theta_2, \theta_4$, are the roots of $x^2 - (a_1 - rc_2)x - (k - rc_2) = 0$ and the new eigenvalues, i.e., θ_1, θ_3 , are the roots of $x^2 - a_1x - k = 0$. The following relations hold for the eigenvalues: $\theta_0 = -\theta_1\theta_3$, and $(\theta_2 + 1)(\theta_4 + 1) = (\theta_1 + 1)(\theta_3 + 1)$.	The multiplicities are $m_0 = 1$, $m_4 = (v/r) - m_2 - 1$, $m_2 = \frac{(\theta_4 + 1)k(k - \theta_4)}{rc_2(\theta_4 - \theta_2)}$ and $m_{1,3} = \frac{(r - 1)v}{r(2 + a_1\theta_{1,3}/k)}$. Parameters of the antipodal quotient can be expressed in terms of eigenvalues and r : $k = \theta_0$, $a_1 = \theta_1 + \theta_3$, $b_1 = -(\theta_2 + 1)(\theta_4 + 1)$, $c_2 = \frac{\theta_0 + \theta_2 \theta_4}{r}$. The eigenvalues θ_2 , θ_4 are integral, $\theta_4 \leq -2$, $0 \leq \theta_2$, with $\theta_2 = 0$ iff Γ is bipartite. Furthermore, $\theta_3 < -1$, and the eigenvalues θ_1 , θ_3 are integral when $a_1 \neq 0$.	We define for $s \in \{0, 1, 2, 3, 4\}$ the symmetric 4×4 matrix $P(s)$ with its <i>ij</i> -entry being equal to $p_{ij}(s)$. For $b_1 = k - 1 - \lambda$, $k_2 = rkb_1/\mu$, $a_2 = k - \mu$ and $b_2 = (r - 1)\mu/r$ we have $P(0) = \begin{pmatrix} k & 0 & 0 & 0 \\ k_2 & 0 & 0 \\ (r - 1)k & 0 \\ r - 1 \end{pmatrix},$ $P(1) = \begin{pmatrix} \lambda & b_1 & 0 & 0 \\ k_2 - b_1r & b_1(r - 1) & 0 \\ \lambda(r - 1) & r - 1 \\ 0 \end{pmatrix},$	$P(2) = \begin{pmatrix} \mu/r & a_2 & b_2 & 0\\ k_2 - r(a_2 + 1) & (r - 1)(k - \mu) & r - 1\\ b_2(r - 1) & 0\\ \end{pmatrix},$ $P(3) = \begin{pmatrix} 0 & b_1 & \lambda & 1\\ k_2 - rb_1 & b_1(r - 1) & 0\\ \lambda(r - 2) & r - 2\\ 0 \end{pmatrix},$ $P(4) = \begin{pmatrix} 0 & 0 & k & 0\\ k_2 & 0 & 0\\ k(r - 2) & 0\\ r - 2 \end{pmatrix}.$
Aleksandar Jurišić 185	Aleksandar Jurišić 186	Aleksandar Jurišić 187	Aleksandar Jurišić 188

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
The matrix of eigenvalues $P(\Gamma)$ (with $\omega_j(\theta_i)$ being its ji -entry) has the following form: $P(\Gamma) = \begin{pmatrix} 1 & \theta_0 & \theta_0 b_1/c_2 & \theta_0(r-1) & r-1 \\ 1 & \theta_1 & 0 & -\theta_1 & -1 \\ 1 & \theta_2 & -r(\theta_2 + 1) & \theta_2(r-1) & r-1 \\ 1 & \theta_3 & 0 & -\theta_3 & -1 \\ 1 & \theta_4 & -r(\theta_4 + 1) & \theta_4(r-1) & r-1 \end{pmatrix}$	Theorem. (JK 1995). Γ antipodal distance-regular graph, diam 4, and eigenvalues $k = \theta_0 > \theta_1 > \theta_2 > \theta_3 > \theta_4$. Then q_{11}^2 , q_{12}^3 , q_{13}^4 , q_{22}^2 , q_{23}^4 , q_{23}^4 , q_{44}^4 , $q_{33}^4 > 0$, $r = 2$ iff $q_{11}^1 = 0$ iff $q_{11}^3 = 0$ iff $q_{13}^3 = 0$ iff $q_{33}^3 = 0$, $q_{12}^2 = q_{12}^4 = q_{14}^4 = q_{22}^3 = q_{23}^4 = q_{34}^4 = 0$ and (i) $(\theta_4 + 1)^2(k^2 + \theta_2^3) \ge (\theta_2 + 1)(k + \theta_2\theta_4)$, with equality iff $q_{22}^2 = 0$, (ii) $(\theta_2 + 1)^2(k^2 + \theta_4^3) \ge (\theta_4 + 1)(k + \theta_2\theta_4)$, with equality iff $q_{44}^4 = 0$, (iii) $\theta_3^2 \ge -\theta_4$, with equality iff $q_{11}^4 = 0$.	Let E be a primitive idempotent of a distance-regular graph of diameter d . The representation diagram Δ_E is the undirected graph with vertices $0, 1, \ldots d$, where we join two distinct vertices i and j whenever $q_{ij}^s = q_{ji}^s \neq 0$. Recall Terwilliger's characterization of Q -polynomial association schemes that a d -class association scheme is Q-polynomial iff the representation diagram a minimal idempotent, is a path. For $s = 1$ and $r = 2$ we get the following graph: $4 \underbrace{4 \underbrace{4}_{0} \underbrace{4}$	Based on the above information we have: Corollary. Γ antipodal, distance-regular graph with diam. 4. TFAE (i) Γ is Q-polynomial. (ii) $r = 2$ and $q_{11}^4 = 0$. Suppose (i)-(ii) hold, then θ_0 , θ_1 , θ_2 , θ_3 , θ_4 is a unique Q-polynomial ordering, and $q_{ij}^h = 0$ when $i + j + h$ is odd, i.e., the Q-polynomial structure is dual bipartite.
Aleksandar Jurišić 189	Aleksandar Jurišić 190	Aleksandar Jurišić 191	Aleksandar Jurišić 192

Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
$S_{4}^{(u)}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{S_{j(u)}}{S_{j(u)}} \underbrace{S_{j(u)}}_{S_{j(u)}} \underbrace{S_{j(u)}}_{S_{j(u)}$	VIII. 1-homogeneous graphs a homogemeous property examples a local approach and the CAB property recursive relations on parameters algorithm a classification of Terwilliger graphs modules
Aleksandar Jurišić 193 Algebraic Combinatorics, 2007	Aleksandar Jurišić 194 Algebraic Combinatories, 2007	Aleksandar Jurišić 195 Algebraic Combinatorics, 2007	Aleksandar Jurišić 196 Algebraic Combinatorics, 2007
$\begin{array}{l} \hline \textbf{Homogeneous property}\\ (\text{in the sense of Nomura}) \\ \Gamma \text{ graph, diameter } d, \ x, y \in V(\Gamma), \text{ s.t. } \partial(x, y) = h, \\ i, j \in \{0, \dots, d\}. \text{ Set } D_i^j = D_i^j(x, y) := \Gamma_i(x) \cap \Gamma_j(y) \\ \text{and note } D_i^j = p_{ij}^h. \\ \hline \text{The graph } \Gamma \text{ is } h\text{-homogeneous when the partition} \\ \{D_i^j \mid 0 \leq i, j \leq d, \ D_i^j \neq \emptyset\} \\ \text{is equitable for every } x, y \in V(\Gamma), \ \partial(x, y) = h, \text{ and the parameters corresponding to equitable partitions } \\ \text{are independent of } x \text{ and } y. \\ \hline \end{array}$	$\begin{array}{c} \begin{array}{c} p_{i+1,j}^{h} & p_{i+1,j}^{h} & p_{i+1,j}^{h} \\ \hline \\ p_{i,j}^{h} & x_{W} & p_{ij}^{h} & x_{NE} \\ \hline \\ p_{i,j+1}^{h} & x_{W} & p_{ij}^{h} & x_{E} \\ \hline \\ p_{i+1,j}^{h} & x_{SW} & x_{S} \\ \hline \\ \end{array} \\ x_{SW} + x_{S} + x_{SE} = c_{i}, \ x_{W} + x_{C} + x_{E} = a_{i}, \ x_{NW} + x_{N} + x_{NE} = b_{i}, \\ x_{NW} + x_{W} + x_{SW} = c_{j}, \ x_{N} + x_{C} + x_{S} = a_{j}, \ x_{NE} + x_{E} + x_{SE} = b_{j}. \end{array}$	$\begin{split} & \sum_{i=1}^{k} \frac{1}{p_i} \frac{1}{p_i$	Some examples of 1-homogeneous graphs distance-regular graphs with at most one <i>i</i> , s.t. <i>a_i</i> ≠ 0: – bipartite graphs, – generalized Odd graphs; **********************************
Aleksandar Jurišić 197	Aleksandar Jurišić 198	Aleksandar Jurišić 199	Aleksandar Jurišić 200

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
A 1-homogeneous graph Γ of diameter $d \geq 2$ and $a_1 \neq 0$ is locally disconnected iff it is a regular near $2d$ -gon (i.e., a distance-regular graph with $a_i = c_i a_1$ and no induced $K_{1,2,1}$). $k_{1,2} = b_i 0 0 0 0 0 0 0 0 0 $	Some examples of 1-homo. graphs, cont. • the Taylor graphs, • the Johnson graph $J(2d, d)$, • the folded Johnson graph $\overline{J}(4d, 2d)$, • the halved <i>n</i> -cube $H(n, 2)$, • the folded halved (2 <i>n</i>)-cube, • cubic distance-regular graphs. • the Coeter graph • the Biggs-Smith graph	 The local graph Δ(x) is the subgraph of Γ induced by the neighbours of x. It has k vertices & valency a₁. All local graphs of a 1-homogeneous graph are (i) connected strongly regular graphs with the same parameters, or (ii) disjoint unions of (a₁+1)-cliques. 	A local approachFor $x, y \in V(\Gamma)$, s.t. $\partial(x, y) = i$, let $\mathbf{CAB}_i(x, y)$ be the partition $\{C_i(x, y), A_i(x, y), B_i(x, y)\}$ of $\Gamma(y)$. $\underbrace{\mathfrak{S}_{a_1 - \overline{\alpha}_i}}_{\eta_i - \overline{\alpha}_i - \overline{\beta}_i} \underbrace{\mathfrak{S}_{a_1 - \overline{\delta}_i}}_{q_1 - \overline{\alpha}_i - \overline{\alpha}_i} \underbrace{\mathfrak{S}_{a_1 - \overline{\delta}_i}}_{\eta_d} \underbrace{\mathfrak{S}_{a_1 - \overline{\delta}_i}}_{q_1 - \overline{\alpha}_i - \overline{\alpha}_i} \underbrace{\mathfrak{S}_{a_1 - \overline{\delta}_i}}_{q_1 - \overline{\alpha}_i} \underbrace{\mathfrak{S}_{a_1 - \overline{\delta}_i}_{q_1 - \overline{\delta}_i}}_{q_1 - \delta$
Aleksandar Jurišić 201	Aleksandar Jurišić 202	Aleksandar Jurišić 203	Aleksandar Jurišić 204
Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Theorem [JK'00]. Γ drg, diam. $d, a_1 \neq 0$. Then Γ is 1-homogeneous $\iff \Gamma$ has the CAB property. A two way counting gives us for $i = 2,, d$: $\alpha_i c_{i-1} = \sigma_i \alpha_{i-1},$ $\beta_{i-1} b_i = \tau_{i-1} \beta_i,$ $\gamma_i (c_{i-1} - \sigma_{i-1}) = \rho_i \alpha_{i-1}.$	The quotient matrices corresponding to CAB_i partitions are, for $1 \le i \le j, i \ne d$, $Q_i = \begin{pmatrix} \gamma_i & a_1 - \gamma_i & 0\\ \alpha_i & a_1 - \beta_i - \alpha_i & \beta_i\\ 0 & \delta_i & a_1 - \delta_i \end{pmatrix},$ and when $j = d$ also $Q_d = \begin{pmatrix} \gamma_d & a_1 - \gamma_d\\ \alpha_d & a_1 - \alpha_d \end{pmatrix}$, if $a_d \ne 0$, and $Q_d = (\gamma_d)$, if $a_d = 0$	Let Γ be a 1-homogeneous graph with diameter d that is locally connected and let $\delta_0 := 0$. Then $a_i \neq 0$, $a_1 - \gamma_i \neq 0$, and we have the following recursion: $\gamma_i = \delta_{i-1}$, $\alpha_i = \frac{(a_1 - \delta_{i-1})c_i}{a_i}$, $\delta_i = \frac{a_i\mu'}{a_1 - \delta_{i-1}}$, $\beta_i = b_i\delta_i/a_i$, for $i \in \{1, 2, \dots, d-1\}$, and when $i = d$ $\gamma_d = \delta_{d-1}$, $\alpha_d = (a_1 - \delta_{d-1})c_d/a_d$, if $a_d \neq 0$, and $\gamma_d = a_1$, if $a_d = 0$.	An bf algorithm to calculate all possible intersection arrays of 1-homogeneous graphs for which we know that local graphs are connected SRGs with given parameters, Given the parameters (k', λ', μ') of a connected SRG, calculate its eigenvalues $k' = a_1 > p > q$ and $k = v' = \frac{(a_1 - p)(a_1 - q)}{a_1 + pq}, b_1 = k - a_1 - 1, \alpha_1 = 1,$ $\beta_1 = a_1 - \lambda' - 1, \gamma_1 = 0, \delta_1 = \mu'.$ and initialize the sets $F := \emptyset$ (final), $N := \emptyset$ (new) and $S := \{\{k, b_1, \delta_1\}\}$ (current).

Т

			() ()
Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
$ \begin{aligned} & \text{for } i \geq 2 \text{ and } S \neq \emptyset \text{ do} \\ & \text{for } \{c_2, \ldots, \alpha_{i-1}, \delta_{i-1}; k, b_1, \ldots, b_{i-1}\} \in S \text{ do} \\ & \gamma_i := \delta_{i-1}; \\ & \text{if } \gamma_i := a_i \text{ then } a_i = 0; c_i = k; F := F \cup \{\{k, b_1, \ldots, b_{i-1}; 1, c_2, c_3, \ldots, c_i\}\} \text{ fi}; \\ & \text{if } \gamma_i < a_i \text{ then } \\ & \text{assume diameter } = i \text{ and calculate } \alpha_i, a_i, c_i \\ & \text{ if } \left(k_i \in \mathbb{N} \text{ and } \alpha_i, a_i, c_i \in \mathbb{N} \text{ and } a_i(a_i - \alpha_i)/2, c_i \gamma_i/2 \in \mathbb{N}_0\right) \\ & \text{ then } F := F \cup \{\{k, 0, 1, \ldots, b_{i-1}; 1, c_2, \ldots, c_i\}\} \text{ fi}; \\ & \text{ assume diameter } > i; \\ & \text{ for } c_i = \max(c_{i-1}, \gamma_i) + 1, \ldots, b_i \text{ do} \\ & \text{ calculate } \alpha_i, \beta_i, \delta_i, b_i, a_i \in \mathbb{N} \text{ and } \delta_i \geq \gamma_i \\ & \text{ and } \frac{c_i \gamma_i}{2}, \frac{(a_1 - \beta_i - \alpha_i)a_i}{2}, \frac{b(a_1 - \delta_i)}{2} \in \mathbb{N}_0 \end{pmatrix} \\ & \text{ then } N := N \cup \{\{c_2, \ldots, c_i, \delta_i; k, b_1, \ldots, b_i\}\} \text{ fi}; \\ & \text{ od; } \\ & \text{ fi}; \\ & \text{ od; } \\ & S := N; \ N := \emptyset; \end{aligned} $	Locally Moore graphs Theorem [JK'00]. A graph whose local graphs are Moore graphs is 1-homogeneous iff it is one of the following graphs: • the icosahedron ($\{5, 2, 1; 1, 2, 5\}$), • the Doro graph ($\{10, 6, 4; 1, 2, 5\}$), • the Conway-Smith graph ($\{10, 6, 4, 1; 1, 2, 6, 10\}$), • the compl. of $T(7)$ ($\{10, 6; 1, 6\}$). $ \stackrel{\bullet}{\underset{i=1}{2}} \stackrel{\bullet}{\underset{i=2}{2}} \stackrel{\bullet}{\underset{i=1}{2}} $	Terwilliger graphs A connected graph with diameter at least two is called a Terwilliger graph when every μ -graph has the same number of vertices and is complete. A distance-regular graph with diameter $d \ge 2$ is a Terwilliger graph iff it contains no induced C_4 . Corollary [JK'00]. A Terwilliger graph with $c_2 \ge 2$ is 1-homogeneous iff it is one of the following graphs: (i) the icosahedron, (ii) the Doro graph, (iii) the Conway-Smith graph.	$\boxed{\textbf{Modules}}$ Γ distance-regular, diam. $d \ge 2$. Let x and y be adjacent vertices and $D_i^j = D_i^j(x, y)$. $\textbf{Suppose } a_1 \neq \textbf{0}$. Then for $i \neq d$, $a_i \neq 0$, i.e., $D_i^i \neq \emptyset$. Moreover, $D_d^d = \emptyset$ iff $a_d = 0$. Let w_{ij} be a characteristic vector of the set D_i^j and $W = W(x, y) \coloneqq \text{Span}\{w_{ij} \mid i, j = 0, \dots, d\}$. Then $\dim W = \begin{cases} 3d & \text{if } a_d \neq 0, \\ 3d - 1 & \text{if } a_d = 0. \end{cases}$
Aleksandar Jurišić 209	Aleksandar Jurišić 210	Aleksandar Jurišić 211	Aleksandar Juríšić 212
	<u></u>		<u> </u>
Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
For $\forall xy \in E\Gamma$, we define the scalar $f = f(x, y)$: $f = \frac{1}{a_1} \Big \{(z, w) \in X^2 \mid z, w \in \Gamma(x, y), \ \partial(z, w) = 2\} \Big .$ f is the average degree of the complement of the λ -graph. Then $0 \leq f \leq a_1 - 1, b_1$ and for $\theta \in \text{ev}(\Gamma),$ $E = E(\theta)$ the Gram matrix of $E\hat{x}, E\hat{y}, w_{11}$ is $\frac{m_{\theta}^3}{n} \det \begin{pmatrix} \omega_0 & \omega_1 & a_1\omega_1 \\ \omega_1 & \omega_0 & a_1\omega_1 \\ a_1\omega_1 & a_1\omega_1 & c \end{pmatrix}$ where $c = a_1(\omega_0 + (a_1 - f - 1)\omega_1 + f\omega_2).$	So $(\omega - \omega_2)(1 + \omega)f \leq (1 - \omega)(a_1\omega + 1 + \omega),$ i.e., $(k + \theta)(1 + \theta) f \leq b_1(k + \theta(a_1 + 1)).$ We now consider which of $\theta_1, \theta_2, \dots, \theta_d$ gives the best bounds for f . Let θ denote one of $\theta_1, \theta_2, \dots, \theta_d$, and assume $\theta \neq -1$. If $\theta > -1$ (resp. $\theta < -1$), the obtained inequality gives an upper (resp. lower) bound for f .	Consider the partial fraction decompostion $b_1 \frac{k + \theta(a_1 + 1)}{(k + \theta)(1 + \theta)} = \frac{b_1}{k - 1} \left(\frac{ka_1}{k + \theta} + \frac{b_1}{1 + \theta}\right).$ Since the map $F : \mathbb{R} \setminus \{-k, -1\} \longrightarrow \mathbb{R}$, defined by $x \mapsto \frac{ka_1}{k + x} + \frac{b_1}{1 + x}$ is strictly decreasing on the intervals $(-k, -1)$ and $(-1, \infty)$, we find that the least upper bound for f is obtained at $\theta = \theta_1$, and and the greatest lower bound is obtained at $\theta = \theta_d$: $\boxed{b_1 \frac{k + \theta_d(a_1 + 1)}{(k + \theta_d)(1 + \theta_d)}} \le f \le b_1 \frac{k + \theta_1(a_1 + 1)}{(k + \theta_1)(1 + \theta_1)}.$	Set $H = H(x, y) := \text{Span}\{\hat{x}, \hat{y}, w_{11}\}$ Suppose Γ is 1-homogeneous. So $AW = W$. The Bose-Mesner algebra \mathcal{M} is generated by A , so also $\mathcal{M}W = W = \mathcal{M}H$ (:= Span $\{mh \mid m \in \mathcal{M}, h \in H\}$). E_0, E_1, \ldots, E_d is a basis for \mathcal{M} , so $E_iE_j = \delta_{ij}E_i$ and $\mathcal{M}H = \sum_{i=0}^d E_iH$ (direct sum), Note dim $(E_0H) = 1$ and $3 \ge \dim(E_iH) \ge 2$, and dim $(E_iH) = 2$ implies $i \in \{1, d\}$. If $t := \{i \mid \dim(E_iH) = 2\} $, then $t \in \{0, 1, 2\}$ and

214 Aleksandar Jurišić

215 Aleksandar Jurišić

216

213 Aleksandar Jurišić

Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
 IX. Tight distance-regular graphs alternative proof of the fundamental bound definition characterizations examples parametrization AT4 family complete multipartite μ-graphs classifications of AT4(qs, q, q) family uniqueness of the Patterson graph locally GQ 	Lemma. Let $\Gamma = be \ a \ k$ -regular, connected graph on n vertices, e edges and t triangles, with eigenvalues $k = \eta_1 \le \eta_2 \le \cdots \le \eta_n$. Then (i) $\sum_{i=1}^n \eta_i = 0$, (ii) $\sum_{i=1}^n \eta_i^2 = nk = 2e$, (iii) $\sum_{i=1}^n \eta_i^3 = nk\lambda = 6t$, if λ is the number of triangles on every edge.	Now suppose that r and s are resp. an upper and lower bounds on the nontrivial eigenvalues. Hence $(\eta_i - r)(\eta_i - s) \leq 0$ for $i \neq 1$, and so $\sum_{i=2}^{k} (\eta_i - s)(\eta_i - r) \leq 0$, which is equivalent to $n(k + rs) \leq (k - s)(k - r)$. Equality holds if and only if $\eta_i \in \{r, s\}$ for $i = 2,, n$, i.e., Γ is strongly regular with eigenvalues k, r and s .	Let us rewrite this for a local graph of a vertex of a distance-regular graph: $k \leq \frac{(a_1 - b^-)(a_1 - b^+)}{a_1 + b^- b^+}.$ where b^- and b^+ are the lower and the upper bound for the nontrivial eigenvalues of the local graph. We define for a distance-regular graph with diam. We define for a distance-regular graph with diam. If $\theta_0 > \theta_1 > \cdots > \theta_d$ $b^- = -1 - \frac{b_1}{\theta_1 + 1}$ and $b^+ = -1 - \frac{b_1}{\theta_d + 1}$, and note $b^- < 0$ and $b^+ > 0$.
Aleksandar Juríšić 217	Aleksandar Jurišić 218	Aleksandar Jurišić 219	Aleksandar Jurišić
Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatories, 2007	Algebraic Combinatories, 2007
Theorem [Terwilliger]. Let x be a vertex of a distance-regular graph Γ with diameter $d \ge 3$, $a_1 \ne 0$ and let $a_1 = \eta_1 \ge \eta_2 \ge \ldots \ge \eta_k$ be the eigenvalues of the local graph $\Delta(x)$. Then, $b^+ \ge \eta_2 \ge \eta_k \ge b^-$.	Since Γ is not complete multipartite, we have $\omega_2 \neq 1$ and $N = I_k + N_1 \omega_1 + (J_k - I_k - N_1) \omega_2$ $= (1 - \omega_2) \left(I_k + N_1 \frac{\omega_1 - \omega_2}{1 - \omega_2} + J_k \frac{\omega_2}{1 - \omega_2} \right).$ The matrix $N/(1 - \omega_2)$ is positive semi-definite, so its eigenvalues are nonegative and we have	Since k is the spectral radious, by the expression for $1 - \omega_2$, we have $\theta > -b_1 - 1$ and thus also $(1 + \theta)\eta_i \ge -(\theta + b_1 + 1)$. If $\theta > -1$, then $\eta_i \ge -\frac{\theta + b_1 + 1}{\theta + 1} = -1 - \frac{b_1}{\theta + 1}$.	Fundamental bound (FB) [JKT'00] Γ distance-regular, diam. $d \ge 2$, and eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_d$. $\boxed{\left(\theta_1 + \frac{k}{a_1 + 1}\right) \left(\theta_d + \frac{k}{a_1 + 1}\right) \ge \frac{-ka_1b_1}{(a_1 + 1)^2}}$ If equality holds in the FB and Γ is nonbipartite,

The expression on the RHS is an increasing function,

Similarly if $\theta < -1$, then η_i is lower-bounded by b^+ .

so it is uper-bounded by b^- .

Aleksandar Jurišić

222

Proof. Let us define N_1 to be the adjacency matrix of the local graph $\Delta = \Delta(x)$ for the vertex x and let N to be the Gram matrix of the normalized representations of all the vertices in Δ .

Aleksandar Jurišić

for i = 2, ..., k:

221

Aleksandar Jurišić

 $1 + \frac{\omega_1 - \omega_2}{1 - \omega_2} \eta_i \ge 0$, i.e., $1 + \frac{1 + \theta}{\theta + b_1 + 1} \eta_i \ge 0$.

For d=2 we have $b_1 = -(1+\theta_1)(1+\theta_2)$, $b^+ = \theta_1$, $b^- = \theta_2$, and thus Γ is tight (i.e., $\theta_1 = 0$) iff $\Gamma = K_{t \times n}$ with t > 2 (i.e., $a_1 \neq 0$ and $\mu = k$).

224

then Γ is called a **tight graph**.

223

Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Characterizations of tight graphs Theorem [JKT'00]. A nonbipartite distance-regular graph Γ with diam. $d \ge 3$ and eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_d$. TFAE (i) Γ is tight. (ii) Γ is 1-homogeneous and $a_d = 0$. (iii) the local graphs of Γ are connected strongly regular graphs with eigenvalues a_1, b^+, b^- , where $b^- = -1 - \frac{b_1}{\theta_1 + 1}$ and $b^+ = -1 - \frac{b_1}{\theta_d + 1}$.	 Examples of tight graphs the Johnson graph J(2d, d), the halved cube H(2d, 2), the Taylor graphs, the AT4 family (antipodal tight DRG with diam. 4), the Patterson graph {280, 243, 144, 10; 1, 8, 90, 280} (related to the sporadic simple group of Suzuki). 	(i) The Johnson graph $J(2d, d)$ has diameter d and intersection numbers $a_i = 2i(d-i), \ b_i = (d-i)^2, \ c_i = i^2 \ (i = 0,, d).$ It is distance-transitive, antipodal double-cover and Q -polynomial with respect to θ_1 . Each local graph is a lattice graph $K_d \times K_d$, with parameters $(d^2, 2(d-1), d-2, 2)$ and nontrivial eigenvalues $r = d - 2, \ s = -2.$	(ii) The halved cube $H(2d, 2)$ has diameter d and intersection numbers $(i = 0,d)$ $a_i = 4i(d-i), b_i = (d-i)(2d-2i-1), c_i = i(2i-1).$ It is distance-transitive, antipodal double-cover and Q -polynomial with respect to θ_1 . Each local graph is a Johnson graph $J(2d, 2)$, with parameters $(d(2d-1), 4(d-1), 2(d-1), 4)$ and nontrivial eigenvalues $r = 2d - 4, s = -2.$
Aleksandar Jurišić 225	Aleksandar Jurišić 226	Aleksandar Jurišić 227	Aleksandar Juríšić 228

Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007	Algebraic Combinatorics, 2007
(iii) The Taylor graphs are the double-covers of complete graphs, i.e., distance-regular graphs with intersection arrays $\{k, c_2, 1; 1, c_2, k\}$. They have diameter 3, and are <i>Q</i> -polynomial with respect to both θ_1, θ_d , given by $\theta_1 = \alpha, \theta_d = \beta$, where $\alpha + \beta = k - 2c_2 - 1$, $\alpha\beta = -k$, and $\alpha > \beta$. Each local graph is strongly-regular with parameters (k, a_1, λ, μ) , where $a_1 = k - c_2 - 1$, $\lambda = \frac{3a_1 - k - 1}{2}, \ \mu = \frac{a_1}{2}, \ r = \frac{\alpha - 1}{2}$ and $s = \frac{\beta - 1}{2}$. We note both a_1, c_2 are even and k is odd. For example, the local graphs of the double-cover of K_{18} with $c_2 = 8$ are the Paley graphs $P(17)$.	(iv) The Conway-Smith graph, 3.Sym(7) has intersection array {10, 6, 4, 1; 1, 2, 6, 10} and can be obtained from a sporadic Fisher group. It is distance-transitive, an antipodal 3-fold cover, and is not <i>Q</i> -polynomial. Each local graph is a Petersen graph , with parameters (10, 3, 0, 1) and nontrivial eigenvalues r = 1, $s = -2$.	(v) The 3 . $O_6^-(3)$ -graph has intersection array {45, 32, 12, 1; 1, 6, 32, 45} and can be obtained from a sporadic Fisher group. It is distance-transitive, an antipodal 3-fold cover, and is not Q -polynomial. Each local graph is a generalized quadrangle $GQ(4, 2)$, with parameters (45, 12, 3, 3) and nontrivial eigenvalues $r = 3$, $s = -3$.	(vi) The 3. $O_7(3)$ -graph has intersection array {117, 80, 24, 1; 1, 12, 80, 117} and can be obtained from a sporadic Fisher group. It is distance-transitive, an antipodal 3-fold cover, and is not Q -polynomial. Each local graph is strongly-regular with parameters (117, 36, 15, 9), and nontrivial eigenvalues $r = 9$, $s = -3$.

[1	1	
Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
(vii) The 3. Fi_{24} -graph has intersection array {31671, 28160, 2160, 1; 1, 1080, 28160, 31671} and can be obtained from Fisher groups. It is distance-transitive, antipodal 3-cover and is not Q -polynomial. Each local graph is SRG(31671,3510,693,351) and $r = 351$, $s = -9$. They are related to Fi_{23} . $\underbrace{\frac{28160}{100} + \frac{3159}{210} + \frac{25272}{22272} + \frac{25272}{22272} + \frac{25160}{22344} + \frac{25344}{120} + \frac{25344}{220} + \frac{25344}{22344} + \frac{25272}{22272} + \frac{25272}{22272} + \frac{25272}{22272} + \frac{25272}{22160} + \frac{2531}{28160} + \frac{25351}{28160} + \frac{25351}{2$	(viii) The Soicher1 graph has intersection array {56, 45, 16, 1; 1, 8, 45, 56}. It is antipodal 3-cover and is not <i>Q</i> -polynomial. Each local graph is the Gewirtz graph with parameters (56, 10, 0, 2) and $r = 2, s = -4$. $\frac{45}{100} - \frac{45}{210} - \frac{45}{100} - \frac$	(ix) The Soicher2 graph has intersection array {416, 315, 64, 1; 1, 32, 315, 416}. It is antipodal 3-cover and is not <i>Q</i> -polynomial. Each local graph is SRG (416,100,36,20) and $r = 20$, $s = -4$.	(x) The Meixner1 graph has intersection array {176, 135, 24, 1; 1, 24, 135, 176}. It is antipodal 2-cover and is <i>Q</i> -polynomial. Each local graph is SRG (176,40,12,8) and $r = 8$, $s = -4$.
Aleksandar Jurišić 233	Aleksandar Jurišić 234	Aleksandar Jurišić 235	Aleksandar Jurišić 236
	1	1	
Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
(xi) The Meixner2 graph has intersection array {176, 135, 36, 1; 1, 12, 135, 176}. It is antipodal 4-cover and is distance-transitive.	Theorem [JKT'00]. Γ dr, diam. $d \ge 3$. Let θ , θ' be a permutation of θ_1 , θ_d , with respective cosine sequences $\sigma_0, \sigma_1, \ldots, \sigma_d$ and $\rho_0, \rho_1, \ldots, \rho_d$.	Let Γ be a distance-regular graph with diameter $d \geq 3$. Then for any complex numbers $\theta, \sigma_0, \ldots, \sigma_d$, TFAE.	Characterization of tight graphs
Each local graph is SRG (176,40,12,8) and $r = 8$, $s = -4$.	Then for $1 \le i \le d-1$ $k = \frac{(\sigma - \sigma_2)(1 - \rho) - (\rho - \rho_2)(1 - \sigma)}{(\rho - \rho_2)(1 - \sigma)\sigma - (\sigma - \sigma_2)(1 - \rho)\rho},$ $b_i = k \frac{(\sigma_{i-1} - \sigma_i)(1 - \rho)\rho_i - (\rho_{i-1} - \rho_i)(1 - \sigma)\sigma_i}{(\rho_i - \rho_{i+1})(\sigma_{i-1} - \sigma_i) - (\sigma_i - \sigma_{i+1})(\rho_{i-1} - \rho_i)},$ $c_i = k \frac{(\sigma_i - \sigma_{i+1})(1 - \rho)\rho_i - (\rho_i - \rho_{i+1})(1 - \sigma)\sigma_i}{(\rho_i - \rho_{i+1})(\sigma_{i-1} - \sigma_i) - (\sigma_i - \sigma_{i+1})\rho_{i-1} - \rho_i)},$ $c_d = k\sigma_d \frac{\sigma - 1}{\sigma_{d-1} - \sigma_d} = k\rho_d \frac{\rho - 1}{\rho_{d-1} - \rho_d},$ and the denominators are never zero.	 (i) θ is an eigenvalue of Γ, and σ₀, σ₁,, σ_d is the associated cosine sequence. (ii) σ₀ = 1, and for 0 ≤ i ≤ d, c_iσ_{i-1} + a_iσ_i + b_iσ_{i+1} = θσ_i where σ₋₁ and σ_{d+1} are indeterminates. (iii) σ₀ = 1, kσ = θ, and for 1 ≤ i ≤ d, c_i(σ_{i-1} - σ_i) - b_i(σ_i - σ_{i+1}) = k(σ - 1)σ_i where σ_{d+1} is an indeterminate. 	Theorem [JKT'00]. Γ nonbipartite dr , diam. $d \geq 3$, and eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_d$. Let $\theta = \theta_1$ and $\theta' = \theta_d$ with respective cosine sequences $\sigma_0, \sigma_1, \dots, \sigma_d$ and $\rho_0, \rho_1, \dots, \rho_d$. Let $\varepsilon = (\sigma \rho - 1)/(\rho - \sigma) > 1$. TFAE (i) Γ is tight. (ii) $\frac{\sigma \sigma_{i-1} - \sigma_i}{(1 + \sigma)(\sigma_{i-1} - \sigma_i)} = \frac{\rho \rho_{i-1} - \rho_i}{(1 + \rho)(\rho_{i-1} - \rho_i)}$ ($1 \leq i \leq d$) and the denominators are nonzero. (iii) $\sigma_i \rho_i - \sigma_{i-1} \rho_{i-1} = \varepsilon(\sigma_{i-1} \rho_i - \rho_{i-1} \sigma_i)$ ($1 \leq i \leq d$).

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
$\begin{array}{l} \textbf{Parametrization} \\ \hline \textbf{Theorem [JKT'00]. } \Gamma nonbip., dr, diam. d \geq 3, \\ and let \sigma_0, \sigma_1, \ldots \sigma_d, \varepsilon, h \in \mathbb{C} \ be \ scalars. \ TFAE \\ (i) \Gamma \ is \ tight, \sigma_0, \sigma_1, \ldots \sigma_d \ is \ the \ cosine \ sequence \\ corresponding \ to \ \theta_1, \ associated \ parameter \\ \varepsilon = (k^2 - \theta_1 \theta_d) \ / \ (k(\theta_1 - \theta_d)) \ \text{ and} \\ h = (1 - \sigma)(1 - \sigma_2) \ / \ ((\sigma^2 - \sigma_2)(1 - \varepsilon \sigma)). \\ (ii) \ \sigma_0 = 1, \ \sigma_{d-1} = \sigma \sigma_d, \ \varepsilon > -1, \ k = h(\sigma - \varepsilon) / (\sigma - 1), \\ c_d = k, \ for \ 1 \leq i \leq d - 1 \\ b_i, c_i = = h \frac{(\sigma_{i \mp 1} - \sigma_1 \sigma_i)(\sigma_{i \pm 1} - \varepsilon \sigma_i)}{(\sigma_{i \mp 1} - \sigma_{i \pm 1})(\sigma_{i \pm 1} - \sigma_i)} \\ \text{and denominators are all nonzero.} \end{array}$	 (iii) Γ is nonbipartite and E_θ◦ E_{θ'} is a scalar multiple of a primitive idempotent E_τ. (iv) Γ is nonbipartite and for a vertex x the irreducible T(x)-module with endpoint 1 is short. Moreover, if Γ is tight, then the above conditions are satisfied for all edges and vertices of Γ, {θ, θ'} = {θ₁, θ_d} and τ = θ_{d-1}. 	Theorem. Γ antipodal distance-regular, diam. 4, eigenvalues $k = \theta_0 > \cdots > \theta_4$, $p, q \in \mathbb{N}$. TFAE (i) Γ is tight, (ii) the antipodal quotient is $\operatorname{SRG}(k=q(pq+p+q), \lambda=p(q+1), \mu=q(p+q))$, (iii) $\theta_0=q\theta_1, \theta_1=pq+p+q, \theta_2=p, \theta_3=-q, \theta_4=-q^2$, (iv) for each $v \in V(\Gamma)$ the local graph of v is $\operatorname{SRG}(k'=p(q+1), \lambda'=2p-q, \mu'=p)$ (ev. $p, -q$). If Γ satisfies (i)-(iv) and \boldsymbol{r} is its antipodal class size, then we call it an antipodal tight graph $\operatorname{AT4}(p, q, r)$.	$y \underbrace{(p+1)(q^{2}-1)}_{(p+1)(q^{2}-1)} \underbrace{1}_{p} \underbrace{(p-1)q(p+q),r}_{(q-1)} \underbrace{q(p+q),r}_{(q-1)} \underbrace{q(p+q),r}_{pq(q-1)} \underbrace{q(p+q),r}_{pq(q-1)} \underbrace{(p+1)(q^{2}-1)}_{pq(q-1)} \underbrace{(p+1)(q^{2}-1)}_{qq(q-1)} \underbrace{(p+1)(q^{2}-1)}_{qq(q-1)} (p+$
Aleksandar Jurišić 241	Aleksandar Jurišić 242	Aleksandar Jurišić 243	Aleksandar Jurišić 244

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Theorem. Γ antipodal tight graph $AT4(p, q, r)$. Then (i) $pq(p+q)/r$ is even, (ii) $r(p+1) \leq q(p+q)$, with equality iff μ -graphs are complete, (iii) $r \mid p+q$, (iv) $p \geq q-2$, with equality iff $q_{44}^4 = 0$. (v) $p+q \mid q^2(q^2-1)$, (vi) $p+q^2 \mid q^2(q^2-1)(q^2+q-1)(q-2)$.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Known examples of AT4 family $\frac{\# \text{ graph}}{1 \text{ ! Conway-Smith } 10 1 2 3 2 K_2$ $2 \text{ ! } J(8, 4)$ $16 2 2 2 4 K_{2,2}$ $3 \text{ ! halved } Q_8$ $28 4 2 2 6 K_{3\times 2}$ $5 3.O_6^-(3)$ $45 3 3 3 3 6 K_{3,3}$ $4 \text{ ! Soicher1 } 56 2 4 3 8 2 \cdot K_{2,2}$ $6 3.O_7(3)$ $117 9 3 3 12 K_{4\times 3}$ $7 \text{ Meixner1 } 176 8 4 4 2 24 2 \cdot K_{3\times 4}$ $8 \text{ Meixner2 } 176 8 4 4 12 K_{3\times 4}$ $9 \text{ Soicher2 } 416 20 4 3 32 K_2 - \text{ext. of } Q_5$ $10 3.Fi_{24}^ 31671 351 9 3 1080 O_8^+(3)$
Aleksandar Jurišić 245	Aleksandar Jurišić 246	Aleksandar Jurišić 247	Aleksandar Jurišić 248

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Γ graph, diam. $d \ge 2$, $u, v \in V(Γ)$, dist $(u, v) = 2$. The μ-graph of u and v is the graph induced by $D_1^1(u, v) = Γ(u) ∩ Γ(v)$. u Lemma [JK'03]. Γ distance-regular, local graphs are strongly regular (v', k', λ', μ') . Then 1. μ-graphs of Γ are μ'-regular, 2. $c_2\mu'$ is even, and 3. $c_2 \ge \mu' + 1$, (equality $\iff \mu$ -graphs are K_{μ}), For the AT4 family we know also $r p+q, p \ge q-2$.	$D_{2}^{0} \stackrel{\mu}{\longrightarrow} \frac{b_{2} = (r-1)q(p+q)r}{(q-1)q+q)r} \underbrace{1}_{(p+q)r} \underbrace{p_{1}}_{(p+q)r} \underbrace{p_{2}}_{(p+q)r} \underbrace{p_{2}}_{(p+q$	The case $p = q - 2$ Theorem [J'02]. Let Γ be AT4 (p, q, r) . Let $p = q - 2$, i.e., $q_{44}^4 = 0$. Then $\forall v \in V(\Gamma)$ $\Gamma_2(v)$ induces an antipodal drg with diam. 4. If $r = 2$ then Γ is 2-homogeneous.	Example: The Soicher1 graph $(q = 4 \text{ and } r = 3)$. $\Gamma_2(v)$ induces $\{32, 27, 8, 1; 1, 4, 27, 32\}$ (Soicher has found this with the aid of a computer). The antipodal quotient of this graph is the strongly regular graph, and it is the second subconstituent graph of the second subconstituent graph of the McLaughlin graph. All local graphs are the incidence graphs of $AG(2, 4) \setminus$ a parallel class ($\{4, 3, 3, 1; 1, 1, 3, 4\}$), i.e., the antipodal 4-covers of $K_{4,4}$.
Aleksandar Jurišić 249	Aleksandar Jurišić 250	Aleksandar Jurišić 251	Aleksandar Jurišić 252
Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
$\begin{array}{c} u \\ u $	Proof. Cauchy-Schwartz inequality $\begin{aligned} w_{11} ^2 E\hat{u} + E\hat{v} ^2 - w_{11}(E\hat{u} + E\hat{v}) &\geq 0, \end{aligned}$ where $\begin{aligned} w_{11} &= \sum_{w \in D_1^1(u,v)} E\hat{w} \end{aligned}$ for $\partial(u,v) = 2$, simplifies to $\boxed{1 - \gamma_2 + \frac{c_2(\gamma_2 + \gamma_2^2 - 2\gamma_1^2)}{1 + \gamma_2} + \mu'(\gamma_1 - \gamma_2) \geq 0.}$ where $\{\gamma_i\}$ is the cosine seq. corr. to E , and μ' is the valency of $D_1^1(u,v)$.	Equality: $w_{11}(u, v) = c(E\hat{u} + E\hat{v}),$ where c is a constant, for any $u, v, \partial(u, v) = 2 \iff E$ corr. to θ_4 and $p = q - 2$ $(c = -2(q - 1)/4),$ or E corr. to θ_1 and $r = 2$ $(c = (p + q)/2).$ The case $q \mid p$ Lemma [JK'02]. Let Γ be a AT4 (p, q, r) . Then Γ is pseudogeometric $(p + 1 + p/q, q, p/q)$ iff $q \mid p$.	Conjecture [J'03]. AT4(p,q,r) family is finite and either 1. $(p,q,r) \in \{(1,2,3), (20,4,3), (351,9,3)\},$ 2. $q \mid p \text{ and } r = q \text{ or } r = 2, \text{ i.e.,}$ AT4(qs,q,q) or AT4(qs,q,2) (a local graph is pseudogeometric), 3. $p = q - 2$ and $r = q$ or $r = 2, \text{ i.e.,}$ AT4(q-2,q,q) or AT4(q-2,q,2). ($\Gamma_2(x)$ is strongly regular),

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Complete multipartite graphs: $ \begin{array}{c} \hline & & \\ \hline \\ \hline$	CAB ₂ property and parameter α Γ drg, $d \ge 2$, $a_2 \ne 0$, $\partial(x, z) = 2 = \partial(y, z)$, $\partial(x, y) = 1$: $\alpha := \Gamma(z) \cap \Gamma(y) \cap \Gamma(x)$. $\downarrow \qquad \qquad$	$K_{t \times n} := \overline{t \cdot K_n} (= K_n^t), \text{for example } K_{2 \times 3} = K_{3,3}.$ $\Gamma \ k\text{-regular, } v \text{ vertices and let any two vertices at}$ distance 2 have $\mu = \mu(\Gamma)$ common neighbours. Then it is called co-edge-regular with parameters (v, k, μ) . Lemma [JK'03]. Γ distance-regular, diam. $d \ge 2$, $K_{t \times n}$ as μ -graphs, $a_2 \neq 0$ and $\exists \alpha \neq 1$. Then (i) $c_2 = nt$, each local graph of Γ is co-edge-regular with parameters $(v' = k, k' = a_1, \mu' = n(t-1))$ and $\alpha a_2 = c_2(a_1 - \mu'),$ (ii) $\alpha = t$ or $\alpha = t - 1$.	When do we know the μ -graphs? Theorem [JK]. Γ distance-regular, diam. $d \ge 2$, $a_2 \ne 0$, locally SRG (v', k', λ', μ') , and $\exists \alpha \ge 1$. Then (i) If $c_2 > \mu' + 1$ and $2c_2 < 3\mu' + 6 - \alpha$, then the μ -graphs are $K_{t\times n}$, $n = c_2 - \mu'$, $t = c_2/n$. (ii) If $\alpha = 1$ and $\mu' \ne 0$, then $c_2 = 2\mu'$, $\lambda' = 0$ and the μ -graphs are $K_{\mu',\mu'}$, (iii) If $\alpha = 2$, $2 \le \mu'$ and $c_2 \le 2\mu'$, then $c_2 = 2\mu'$ and the μ -graphs are $K_{\mu',\mu'}$ or $K_{3\times\mu'}$.
Aleksandar Jurišić 257	Aleksandar Jurišić 258	Aleksandar Jurišić 259	Aleksandar Jurišić 260
Let $x, y \in \Gamma$, s.t. $\partial(x, y) = 2$ and let $M = D_1^1(x, y)$. Then M induces the graph of valency μ' on c_2 vertices. Let $u, v \in M$, s.t. $\partial(u, v) = 2$ Suppose $D_1^1(u, v) \cap M$ $= \{z_1, z_2, \dots, z_l\}$ where $t < p$. Then $D_1^1(u, v) \cap D_2^1(x, y)$ $= \{y_1, y_2, \dots, y_s\}$ and $D_1^1(u, v) \cap D_1^1(x, y)$ $= \{x_1, x_2, \dots, x_s\}$ where $\mu' = s + t$.	Corollary [JK]. The μ -graphs of AT4(qs, q, q) are $K_{(s+1)\times q}$ and $\alpha = s+1$. The μ -graphs of the Patterson graph (and of any other graph P with the same intersection array) are $K_{4,4}$ and $\alpha = 2$.	Theorem [JK]. Γ drg, $K_{\mu',\mu'}$ as μ -graphs and $\alpha = 2$. Then the local graphs of Γ are $\mathrm{GQ}(*,\mu'-1)$ with regular points. A line size c satisfies $v' = c(k'-c+2)$. If the local graphs of Γ are $\mathrm{SRG}(v',k',\lambda',\mu')$, then they are $\mathrm{GQ}(\lambda'+1,\mu'-1)$. In particular, a local graph of P is the point graph of the unique generalized quadrangle $\mathrm{GQ}(3,9)$ with all points regular. We will use uniqueness of small generalized quadrangles with all points regular to prove uniqueness of much larger object.	Lemma. Let Γ have a CAB_2 property with μ -graphs $K_{t \times n}$, $n \ge 2$, $t \ge 3$ and let $\alpha \ge 3$. Let xyz be a triangle of Γ and L be a lower bound on the valency of $\Delta(x, y, z)$. Then $(v'' - 1 - k'')\mu'' \le k''(k'' - 1 - L)$, with equality iff \forall edges $xy \ \Delta(x, y)$ is $SRG(v'', k'', \lambda'', \mu'')$, where $\lambda'' = L$. We derive the following lower bound: $L := \alpha - 2 + (n - 1)((t - 3)n - (\alpha - 3))$.
Aleksandar Jurišić 261	Ileksandar Jurišić 262	Aleksandar Jurišić 263	Aleksandar Jurišić 264

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
Classification of the AT4(qs , q , q) family Theorem [JK]. The μ -graphs of $\Gamma = AT4(p, q, r)$ are complete multipartite graphs $K_{t\times n}$ iff Γ is 1. the Conway-Smith graph (locally Petersen graph), 2. the Johnson graph $J(8, 4)$ (locally GQ(3, 1)), 3. the halved 8-cube (locally GQ(3, 2)), 4. the $3.O_6^-(3)$ graph (locally locally GQ(4, 2), 5. the Meixner2 graph (locally locally GQ(3, 3)), 6. the $3.O_7(3)$ graph (locally locally GQ(2, 2)).	The 3.O ₆ ⁻ (3) graph is a 3-cover of the graph Γ , defined on 126 points of one kind in $PG(5,3)$, provided with a quadratic form of a non-maximal Witt index and two points adjacent when they are orthogonal. It can be described with Hermitean form in PG(3,4). It has 378 vertices and valency 45 . Then the local graphs of Γ and its covers are GQ(4, 2) .	The 3.O ₇ (3) graph is a 3-cover of the graph Γ, defined on the hyperbolic points in $PG(6,3)$, provided with a nondegenerate quadric, and points adjacent when they are orthogonal. It can be described in terms of a system of complex vectors found in ATLAS (p.108). It has 1134 vertices and valency 117 . Then (the local graphs of) ³ Γ and its covers are GQ (2, 2).	The Meixner2 graph The graph \mathcal{U}_n has for its vertices the nonisotropic points of the <i>n</i> -dim. vector space over $GF(4)$ with a nondegenerate Hermitean form, and two points adjacent if they are orthogonal. \mathcal{U}_4 is GQ(3,3) (W_3), and \mathcal{U}_{n+1} is locally \mathcal{U}_n . The Meixner2 graph is \mathcal{U}_6 , so it has 2688 vertices, valency 176 and (the local graphs of) ² it are GQ(3,3).
Aleksandar Jurišić 265	Aleksandar Jurišić 266	Aleksandar Jurišić 267	Aleksandar Jurišić 268

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
The 3. $O_6^-(3)$ graph {45, 32, 12, 1; 1, 6, 32, 45}, distance-transitive, 3-cover of $SRG(126, 45, 12, 18)$, not Q -poly., locally generalized quadrangle $GQ(4, 2)$.	The 3. $O_7^-(3)$ graph We obtained that the antipodal quotient of Γ has parameters {117, 80; 1, 36}, with $\lambda = 36$ and μ -graphs $3 \cdot K_{4\times 3}$, whose local graphs have parameters {36, 20; 1, 9}, with $\lambda' = 15$ and μ -graphs $K_{3\times 3}$, whose local graphs have parameters {15, 8; 1, 6}, with $\lambda'' = 6$ and μ -graphs $K_{2\times 3}$, whose local graphs have parameters {6, 4; 1, 3}, with $\lambda''' = 1$ and μ -graphs $3 \cdot K_1$.	$\label{eq:metric} \begin{split} \textbf{Meixner2} \\ \text{We obtained that the antipodal quotient of Meixner2} \\ \text{has parameters } \{176, 135; 1, 48\}, \\ \text{with } \lambda = 40 \text{ and } \mu\text{-graphs } 4\cdot K_{3\times 4}, \\ \text{whose local graphs have parameters } \{40, 27; 1, 8\}, \\ \text{with } \lambda' = 12 \text{ and } \mu\text{-graphs } K_{4,4}, \\ \text{whose local graphs have parameters } \{12, 9; 1, 4\}, \\ \text{with } \lambda'' = 2 \text{ and } \mu\text{-graphs } 4\cdot K_1. \end{split}$	 The Patterson graph is defined as the graph Γ with: 22.880 centers (of order 3) of the Sylow 3-groups of the sporadic simple group of Suzuki (Suz, see ATLAS) of order 2¹³ · 3⁷ · 5² · 7 · 11 · 13 as the vertices, two adjacent iff they generate an abelian subgroup of order 3². Problem ([BCN,p.410]): Is this graph unique? (uniquely determined by its regularity properties)
Aleksandar Jurišić 269	Aleksandar Jurišić 270	Aleksandar Jurišić 271	Aleksandar Jurišić 272

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatories, 2007
The Suzuki tower Suz \circ_{416} $1 \underbrace{416}_{100} \underbrace{315}_{315} \underbrace{96}_{320} \underbrace{365}_{320}$ $\nu = 1782$ $G_2(4) \circ_{100}$ $1 \underbrace{100}_{36} \underbrace{63}_{20} \underbrace{315}_{80}$ $\nu = 416$ $J_2 \circ_{\overline{36}}$ $1 \underbrace{36}_{14} \underbrace{21}_{12} \underbrace{63}_{24}$ $\nu = 100$ $U_3(3) \circ_{\overline{14}}$ $1 \underbrace{44}_{4} \underbrace{9}_{6} \underbrace{21}_{8}$ $\nu = 36$	The derived design of the Steiner system $S(4, 7, 23)$ defines the <i>McLaughlin graph</i> , i.e., the <i>unique</i> SRG(275, 112, 30, 56). This graph is locally GQ(3, 9) and the second subconstituent graph is a unique SRG(162, 56, 10, 24). We can find it in the Suz as an induced subgraph. $\Gamma_2(McLaughlin) = \Sigma_{56} - 1 \underbrace{56}_{10} \underbrace{15}_{24} \underbrace{105}_{32} = 162$ An alternative definition of the Patterson graph: Induced Σ 's in Suz, adjacent when disjoint 11-cliques: partitions of Suz in 11 Σ 's	The Patterson graph is distance-regular with intersection array { $280, 243, 144, 10; 1, 8, 90, 280$ } and eigenvalues $280^1, 80^{364}, 20^{5940}, -8^{15795}, -28^{780}.$ $\circ_{280}^{-1} (280)_{243}^{-28} (140)_{144}^{-10} (100)_{10}^{-280} (100)$	Theorem [BJK]. A distance-regular graph P with intersection array {280, 243, 144, 10; 1, 8, 90, 280} (22.880 vertices) is unique. For example, the icosahedron is a unique graph, that is locally pentagon. The Petersen graph is a unique strongly-regular graph (10, 3, 0, 1), i.e., {3, 2; 1, 1}.
Aleksandar Jurišić 273	Aleksandar Jurišić 274	Aleksandar Jurišić 275	Aleksandar Jurišić 276

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
The distance-partitions of Γ corresp. to an edge (i.e., the collection of nonempty sets $D_j^h(x, y)$) are also equitable ($\forall xy \in E\Gamma$): $\underbrace{\overset{33}{1000}}_{\overset{33}{1000}} \underbrace{\overset{33}{1000}}_{\overset{33}{1000}} \underbrace{\overset{33}{1000}} \overset$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	Corollary. If an $AT4(p, q, r)$ has a μ -graph that is not complete multipartite, then either 1. $\frac{(p+q)(2q+1)}{3(p+2)} \ge r \ge q+1,$ 2. $r = q - 1$ if and only if $p = q - 2$ 3. $r \le q - 2.$	Γ tight, diam. 4, $α = 2$, $K_{t+1,t+1}$ as μ-graphs. Example 1: If local graphs are GQ (t^2, t), then { $(t^2+1)(t^3+1), t^5, t^2(t+1)(t-1)^2, (t-1)(t^2-t-1);$ 1, 2 $(t+1), 2t^2(t+2), (t^2+1)(t^3+1)$ }. For $t = 2$ we get the 3. O_6^- (3) graph and for $t = 3$ the Patterson graph, for $t = 4$ the existence is OPEN ,
Aleksandar Jurišić 277	Aleksandar Jurišić 278	Aleksandar Jurišić 279	Aleksandar Jurišić 280

Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007	Algebraic Combinatorics, 2007
In Ex.1, the case $t = 4$ we have the following feasible intersection array {1105, 1024, 720, 33; 1, 10, 192, 1105}, and eigenvalues: 1105^1 , 255^{1911} , 55^{116688} , -15^{424320} , -65^{8330} . If it exist, then it has $551,250$ vertices ($k_2 = 113, 152, k_3 = 424, 320, k_4 = 12, 672$) and its local graphs are $GQ(16, 4)$ with all points being regular this is most probably the hermitian generalized quadrangle $H(3, 16)$).	 Bibliography Extbooks L.M. Batten, Combinatorics of Finite Geometries, Cambridge University Press, 2nd Ed, 1997. P.J. Cameron and J.H. van Lint, Designs, Graphs, Codes and Their Links, London Math. Soc. Student Texts 22, Cambridge Univ. Press, Cambridge, 1991. C.D. Godsil, Algebraic Combinatorics. Chapman and Hall, New York, 1993. C.D. Godsil and G. Royle, Algebraic Graph Theory, Springer Verlag (New York), 2001. J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge Univ. Press, Cambridge, 1992. 	 Reference books: A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer, New York, 1989. C.J. Colbourn and J. Dinitz (Editors), CRC Handbook of Combinatorial Designs, CRC-Press, 1996. R.L. Graham, M. Groetschel, L. Lovász (Editors), Handbook of Combinatorics: 2-volume set, MIT Press, 1996. F. Buekenhout (Editor), Handbook of Incidence Geometry: Buildings and Foundations, North-Holland, 1995.
		200