Feasibility conditions and a table

- divisibility conditions
- integrality of eigenvalues
- integrality of multiplicities
- Krein conditions
- Absolute bounds

$$n \le \frac{1}{2} m_{\sigma}(m_{\sigma} + 3),$$

and if
$$q_{11}^1 \neq 0$$
 even

$$n \le \frac{1}{2} m_{\sigma}(m_{\sigma} + 1).$$

Algebraic Combinatorics, 2007

	n	k	λ	μ	σ	au	m_{σ}	m_{τ}	graph
!	5	2	0	1	$\frac{-1+\sqrt{5}}{2}$	$\frac{-1-\sqrt{5}}{2}$	2	2	$C_5 = P(5)$ - Seidel
!	9	4	1	2	1	-2	4	4	$C_3 \times C_3 = P(9)$
!	10	3	0	1	1	-2	5	4	Petersen=compl. $T(5)$
!	13	6	2	3	$\frac{-1+\sqrt{13}}{2}$	$\frac{-1\!-\!\sqrt{13}}{2}$	6	6	P(13)
!	15	6	1	3	1	-3	9	5	GQ(2,2)=compl. $T(6)$
!	16	5	0	2	1	-3	10	5	Clebsch
2!	16	6	2	2	2	-2	6	9	Shrikhande, $K_4 \times K_4$
!	17	8	3	4	$\frac{-1+\sqrt{17}}{2}$	$\frac{-1 - \sqrt{17}}{2}$	8	8	<i>P</i> (17)
!	21	10	3	6	1	-4	14	6	compl. $T(7)$
0	21	10	4	5	$\frac{-1\!+\!\sqrt{21}}{2}$	$\frac{-1\!-\!\sqrt{21}}{2}$	10	10	conference
!	25	8	3	2	3	-2	8	16	$K_5 \times K_5$
15!	25	12	5	6	2	-3	12	12	P(25) (Paulus)
10!	26	10	3	4	2	-3	12	13	(Paulus)
!	27	10	1	5	1	-5	20	6	GQ(2,4)=compl. Schlaefli
4!	28	12	6	4	4	-2	7	20	T(8) (Chang)
41!	29	14	6	7	$\frac{-1+\sqrt{29}}{2}$	$\frac{-1\!-\!\sqrt{29}}{2}$	14	14	P(29), (Bussemaker & Spence)

The Shrikhande graph drawn on two ways: (a) on a torus, (b) with imbedded four-cube.

The Shrikhande graph is not distance transitive, since some μ -graphs, i.e., the graphs induced by common neighbours of two vertices at distance two, are K_2 and some are $2 K_1$.

Schläfly graph

How to construct the Schläfli graph: make a cyclic 3-cover corresponding to arrows, and then join vertices in every antipodal class.

Let Γ be a graph of diameter *d*.

Then Γ has girth at most 2d + 1,

while in the bipartite case the girth is at most 2d.

Graphs with diameter d and girth 2d + 1 are called Moore graphs (Hoffman and Singleton).

Bipartite graphs with diameter d and girth 2d are known as **generalized polygons** (**Tits**).

A **Moore graph of diameter two** is a regular graph with girth five and diameter two.

The only Moore graphs are

- the pentagon,
- the Petersen graph,
- the Hoffman-Singleton graph, and
- possibly a strongly regular graph on 3250 vertices.