Feasibility conditions and a table

- divisibility conditions
- integrality of eigenvalues
- integrality of multiplicities
- Krein conditions
- Absolute bounds

$$
n \leq \frac{1}{2} m_{\sigma}\left(m_{\sigma}+3\right),
$$

and if $q_{11}^{1} \neq 0$ even

$$
n \leq \frac{1}{2} m_{\sigma}\left(m_{\sigma}+1\right) .
$$

	$n \quad k \quad \lambda \mu$	σ	$m_{\sigma} m_{\tau}$	graph
!	$5 \begin{array}{cccc}5 & 2 & 0 & 1\end{array}$	$\frac{-1+\sqrt{5}}{2} \frac{-1-\sqrt{5}}{2}$	$2 \quad 2$	$C_{5}=P(5)-$ Seidel
!	$\begin{array}{lllll}9 & 4 & 1 & 2\end{array}$	-2	$4 \quad 4$	$C_{3} \times C_{3}=P(9)$
!	$\begin{array}{lllll}10 & 3 & 0 & 1\end{array}$	-2	54	Petersen=compl. $T(5)$
!	13623	$\frac{-1+\sqrt{13}}{2} \frac{-1-\sqrt{13}}{2}$		$P(13)$
!	1566113	-3	$9 \quad 5$	$\mathrm{GQ}(2,2)=$ compl. $T(6)$
!	$\begin{array}{lllll}16 & 5 & 0 & 2\end{array}$	-3		Clebsch
2 !	$16 \quad 6 \quad 22$	$2 \quad-2$	$6 \quad 9$	Shrikhande, $K_{4} \times K_{4}$
!	$\begin{array}{lllll}17 & 8 & 3 & 4\end{array}$	$\frac{-1+\sqrt{17}}{2} \frac{-1-\sqrt{17}}{2}$	88	$P(17)$
!	$21 \begin{array}{llll}21 & 3 & 6\end{array}$	$1 \quad-4$	$14 \quad 6$	compl. T(7)
0	$\begin{array}{lllll}21 & 10 & 4 & 5\end{array}$	$\frac{-1+\sqrt{21}}{2} \frac{-1-\sqrt{21}}{2}$	1010	conference
$!$	$\begin{array}{lllll}25 & 8 & 3 & 2\end{array}$	$3 \quad-2$	$8 \quad 16$	$K_{5} \times K_{5}$
15!	251256	$2-3$	$12 \quad 12$	$P(25)$ (Paulus)
10!	$\begin{array}{lllll}26 & 10 & 3 & 4\end{array}$	$2-3$	1213	(Paulus)
!	$\begin{array}{lllll}27 & 10 & 1 & 5\end{array}$	-5	206	$\mathrm{GQ}(2,4)=$ compl. Schlaefli
$4!$	281264	$4 \quad-2$	$7 \quad 20$	T (8) (Chang)
41!	291467	$\frac{-1+\sqrt{29}}{2} \frac{-1-\sqrt{29}}{2}$		$P(29)$, (Bussemaker \& Spence)

Paley graph $P(13)$

The Shrikhande graph and $P(13)$ are the only distance-regular graphs which are locally C_{6} (one has $\mu=2$ and the other $\mu=3$).

Tutte 8-cage

The Tutte's 8-cage is the GQ $(2,2)=W(2)$.
A cage is the smallest possible regular graph (here degree 3) that has a prescribed girth.

Clebsch graph

Two drawings of the complement of the Clebsch graph.

Shrikhande graph

The Shrikhande graph drawn on two ways: (a) on a torus, (b) with imbedded four-cube.

The Shrikhande graph is not distance transitive, since some μ-graphs, i.e., the graphs induced by common neighbours of two vertices at distance two, are K_{2} and some are $2 \cdot K_{1}$.

Schläfly graph

How to construct the Schläfli graph:
make a cyclic 3-cover corresponding to arrows, and then join vertices in every antipodal class.

Let Γ be a graph of diameter \boldsymbol{d}.
Then Γ has girth at most $2 d+1$, while in the bipartite case the girth is at most $2 d$.

Graphs with diameter d and girth $2 d+1$ are called Moore graphs (Hoffman and Singleton).

Bipartite graphs with diameter d and girth $2 d$ are known as generalized polygons (Tits).

A Moore graph of diameter two is a regular graph with girth five and diameter two.

The only Moore graphs are

- the pentagon,
- the Petersen graph,
- the Hoffman-Singleton graph, and
- possibly a strongly regular graph on 3250 vertices.

