IV. Geometry

- partial geometries
- classfication
- pseudogeometric
- quadratic forms

- isotropic spaces
- classical generalized quadrangles

A unique spread in $\mathrm{GQ}(3,3)=\mathrm{W}(3)$

- small examples

A triple (P, L, I), i.e., (points,lines,incidence), is called a partial geometry $\operatorname{pg}(R, K, T)$, when $\forall \ell, \ell^{\prime} \in L, \forall p, p^{\prime} \in P$:

- $|\ell|=K,\left|\ell \cap \ell^{\prime}\right| \leq 1$,
- $|p|=R$, at most one line on p and p^{\prime},
- if $p \notin \ell$, then there are exactly T points on ℓ that are collinear with p.

The dual $\left(L, P, I^{t}\right)$ of a $p g(R, K, T)$ is again a partial geometry, with parameters (K, R, T).

Classification

We divide partial geometries into four classes:

1. $T=K: 2-(v, K, 1)$ design,
2. $T=R-1$: net,
$T=K-1$: transversal design,
3. $T=1$: a generalized quadrangle $\mathrm{GQ}(K-1, R-1)$,
4. For $1<T<\min \{K-1, R-1\}$ we say we have a proper partial geometry.

A $p g(t+1, s+1,1)$ is a generalized quadrangle $G Q(s, t)$.

An example

L (Peterson) is the point graph of the $\mathrm{GQ}(2,2)$ minus a spread (where spread consists of antipodal classes).

What about trivial examples?

Pseudo-geometric

The point graph of a $\operatorname{pg}(P, L, I)$ is the graph with vertex set $X=P$ whose edges are the pairs of collinear points (also known as the collinearity graph).

The point graph of a $p g(R, K, T)$ is SRG: $k=R(K-1), \lambda=(R-1)(T-1)+K-2, \mu=R T$, and eigenvalues $r=K-1-T$ and $s=-R$.

A SRG is called pseudo-geometric (R, K, T) if its parameters are as above.

Quadratic forms

A quadratic form $Q\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ over $\mathrm{GF}(q)$ is a homogeneous polynomial of degree 2 ,
i.e., for $\boldsymbol{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ and
an $(n+1)$-dim square matrix C over $\mathrm{GF}(q)$:

$$
Q(\boldsymbol{x})=\sum_{i, j=0}^{n} c_{i j} x_{i} x_{j}=\boldsymbol{x} C \boldsymbol{x}^{T} .
$$

A quadric in $\operatorname{PG}(n, q)$ is the set of isotropic points:

$$
Q=\{\langle\boldsymbol{x}\rangle \mid Q(\boldsymbol{x})=0\},
$$

where $\langle\boldsymbol{x}\rangle$ is the 1 -dim. subspace of $G F(q)^{n+1}$ generated by $\boldsymbol{x} \in(\mathrm{GF}(q))^{n+1}$.

Two quadratic forms $Q_{1}(\boldsymbol{x})$ and $Q_{2}(\boldsymbol{x})$ are projectively equivalent if there is an invertible matrix A and $\boldsymbol{\lambda} \neq 0$ such that

$$
Q_{2}(\boldsymbol{x})=\boldsymbol{\lambda} Q_{1}(\boldsymbol{x} A) .
$$

The rank of a quadratic form is the smallest number of indeterminates that occur in a projectively equivalent quadratic form.

A quadratic form $Q\left(x_{0}, \ldots, x_{n}\right)$ (or the quadric Q in $\mathrm{PG}(n, q)$ determined by it) is nondegenerate if its rank is $n+1$. (i.e., $Q \cap Q^{\perp}=0$ and also to $Q^{\perp}=0$).

For q odd a subspace U is degenerate whenever

$$
U \cap U^{\perp} \neq \emptyset
$$

i.e., whenever its orthogonal complement U^{\perp} is degenerate, where \perp denotes the inner product on the vector space $V(n+1, q)$ defined by

$$
(x, y):=Q(x+y)-Q(x)-Q(y) .
$$

Isotropic spaces

A flat of projective space $\mathrm{PG}(n, q)$ (defined over $(n+1)$-dim. space V) consists of 1-dim. subspaces of V that are contained in some subspace of V.

A flat is said to be isotropic when all its points are isotropic.

The dimension of maximal isotropic flats will be determined soon.

Theorem. A nondegenerate quadric $Q(\boldsymbol{x})$ in $\mathrm{PG}(n, q), q$ odd, has the following canonical form
(i) for n even: $Q(\boldsymbol{x})=\sum_{i=0}^{n} x_{i}^{2}$,
(ii) for n odd:
(a) $Q(\boldsymbol{x})=\sum_{i=0}^{n} x_{i}^{2}$,
(b) $Q(\boldsymbol{x})=\eta x_{0}^{2}+\sum_{i=1}^{n} x_{i}^{2}$, where η is not a square.

Theorem. Any nondegenerate quadratic form $Q(\boldsymbol{x})$ over $\mathrm{GF}(q)$ is projectively equivalent to
(i) for $n=2 s: \mathcal{P}_{2 s}=x_{0}^{2}+\sum_{i=1}^{s} x_{2 i} x_{2 i-1}$ (parabolic),
(ii) for $n=2 s-1$
(a) $\mathcal{H}_{2 s-1}=\sum_{i=0}^{s-1} x_{2 i} x_{2 i+1} \quad$ (hyperbolic),
(b) $\mathcal{H}_{2 s-1}=\sum_{i=1}^{s-1} x_{2 i} x_{2 i+1}+f\left(x_{0}, x_{1}\right)$, (elliptic) where f is an irreducible quadratic form.

The dimension of maximal isotropic flats:

Theorem. A nondegenerate quadric Q in $\operatorname{PG}(n, q)$ has the following number of points and maximal projective dim. of a flat $F, F \subseteq Q$:
(i) $\quad \frac{q^{n}-1}{q-1}, \quad \frac{n-2}{2}, \quad$ parabolic
(ii) $\frac{\left(q^{(n+1) / 2}-1\right)\left(q^{(n+1) / 2}+1\right)}{q-1}, \frac{n-1}{2}$ hyperbolic,
(iii) $\frac{\left(q^{(n+1) / 2}-1\right)\left(q^{(n+1) / 2}+1\right)}{q-1}, \frac{n-3}{2}$ elliptic.

