

- partial geometries
- classification

Algebraic Combinatorics, 2007

- pseudogeometric
- quadratic forms
- isotropic spaces
- classical generalized quadrangles
- small examples

A unique spread

in GQ(3,3) = W(3)

A triple (P, L, I), i.e., (points, lines, incidence), is called a **partial geometry** pg(R, K, T), when $\forall \ell, \ell' \in L, \forall p, p' \in P$:

 $\bullet \ |\ell| = K, \ |\ell \cap \ell'| \le 1,$

- |p| = R, at most one line on p and p',
- if $p \notin \ell$, then there are exactly T points on ℓ that are collinear with p.

The **dual** (L, P, I^t) of a pg(R, K, T) is again a partial geometry, with parameters (K, R, T).

Algebraic Combinatorics, 2007

Classification

We divide partial geometries into four classes:

1.
$$T = K$$
: 2- $(v, K, 1)$ design,

2. T = R - 1: net,

T = K - 1: transversal design,

3. T = 1: a generalized quadrangle GQ(K-1, R-1),

4. For $1 < T < \min\{K - 1, R - 1\}$ we say we have a **proper partial geometry**.

A pg(t+1, s+1, 1) is a generalized quadrangle GQ(s, t).

Pseudo-geometric

The **point graph** of a pg(P, L, I) is the graph with vertex set X = P whose edges are the pairs of collinear points (also known as the *collinearity graph*).

The point graph of a pg(R, K, T) is SRG: $k = R(K-1), \lambda = (R-1)(T-1)+K-2, \mu = RT,$ and eigenvalues r = K - 1 - T and s = -R.

A SRG is called **pseudo-geometric** (R, K, T) if its parameters are as above.

Quadratic forms

A quadratic form $Q(x_0, x_1, \ldots, x_n)$ over GF(q) is a homogeneous polynomial of degree 2,

i.e., for $\boldsymbol{x} = (x_0, x_1, \dots, x_n)$ and an (n+1)-dim square matrix C over GF(q):

$$Q(\boldsymbol{x}) = \sum_{i,j=0}^{n} c_{ij} x_i x_j = \boldsymbol{x} C \boldsymbol{x}^T.$$

A quadric in PG(n, q) is the set of **isotropic** points:

$$Q = \{ \langle \boldsymbol{x} \rangle \, | \, Q(\boldsymbol{x}) = 0 \},\$$

where $\langle \boldsymbol{x} \rangle$ is the 1-dim. subspace of $GF(q)^{n+1}$ generated by $\boldsymbol{x} \in (\mathrm{GF}(q))^{n+1}$.

Two quadratic forms $Q_1(\boldsymbol{x})$ and $Q_2(\boldsymbol{x})$ are **projectively equivalent** if there is an invertible matrix A and $\boldsymbol{\lambda} \neq 0$ such that

$$Q_2(\boldsymbol{x}) = \boldsymbol{\lambda} Q_1(\boldsymbol{x} A).$$

The **rank** of a quadratic form is the smallest number of indeterminates that occur in a projectively equivalent quadratic form.

A quadratic form $Q(x_0, \ldots, x_n)$ (or the quadric Q in PG(n, q) determined by it) is **nondegenerate** if its rank is n + 1. (i.e., $Q \cap Q^{\perp} = 0$ and also to $Q^{\perp} = 0$).

$$U \cap U^{\perp} \neq \emptyset,$$

i.e., whenever its orthogonal complement U^{\perp} is degenerate, where \perp denotes the inner product on the vector space V(n+1,q) defined by

$$(x,y) := Q(x+y) - Q(x) - Q(y).$$

Algebraic Combinatorics, 2007	
Isotropic spaces	
A flat of projective space $PG(n, q)$ (defined over $(n + 1)$ -dim. space V) consists of 1-dim. subspaces of V that are contained in some subspace of V .	
A flat is said to be isotropic when all its points a isotropic.	are
The dimension of maximal isotropic flats will determined soon.	be
Aleksandar Jurišić	95

Algebraic Combinatorics, 2007 Theorem. A nondegenerate quadric $Q(\boldsymbol{x})$ in $\mathrm{PG}(n,q), q$ odd, has the following canonical form (i) for *n* even: $Q(x) = \sum_{i=0}^{n} x_i^2$, (ii) for n odd: (a) $Q(\mathbf{x}) = \sum_{i=0}^{n} x_i^2$, (b) $Q(\boldsymbol{x}) = \eta x_0^2 + \sum_{i=1}^n x_i^2$, where η is not a square. Aleksandar Jurišić 96 Algebraic Combinatorics, 2007 **Theorem.** Any nondegenerate quadratic form $Q(\boldsymbol{x})$ over GF(q) is projectively equivalent to (i) for n=2s: $\mathcal{P}_{2s}=x_0^2+\sum_{i=1}^s x_{2i}x_{2i-1}$ (parabolic), (ii) for n = 2s - 1(a) $\mathcal{H}_{2s-1} = \sum_{i=0}^{s-1} x_{2i} x_{2i+1}$ (hyperbolic), (b) $\mathcal{H}_{2s-1} = \sum_{i=1}^{s-1} x_{2i} x_{2i+1} + f(x_0, x_1)$, (elliptic) where f is an irreducible quadratic form. Aleksandar Jurišić 97

Algebraic Combinatorics, 2007

The dimension of maximal isotropic flats:

Theorem. A nondegenerate quadric Q in PG(n,q)has the following number of points and maximal projective dim. of a flat $F, F \subseteq Q$: (i) $\frac{q^n - 1}{q - 1}, \qquad \frac{n - 2}{2}, \qquad \text{parabolic}$ (ii) $\frac{(q^{(n+1)/2} - 1)(q^{(n+1)/2} + 1)}{q - 1}, \qquad \frac{n - 1}{2}$ hyperbolic, (iii) $\frac{(q^{(n+1)/2} - 1)(q^{(n+1)/2} + 1)}{q - 1}, \qquad \frac{n - 3}{2}$ elliptic.

Aleksandar Jurišić

98