

## Classification

We classify strongly regular graphs into two types:

Type I (or conference) graphs: for these graphs  $(n-1)(\mu - \lambda) = 2k$ , which implies  $\lambda = \mu - 1$ ,  $k = 2\mu$ and  $n = 4\mu + 1$ , i.e., the strongly regular graphs with the same parameters as their complements.

They exist iff n is the sum of two squares.

Type II graphs: for these graphs  $(\mu - \lambda)^2 + 4(k - \mu)$  is a perfect square  $\Delta^2$ , where  $\Delta$  divides  $(n-1)(\mu - \lambda) - 2k$  and the quotient is congruent to  $n - 1 \pmod{2}$ .

Algebraic Combinatorics, 2007

## Paley graphs

*q* a prime power,  $q \equiv 1 \pmod{4}$  and set  $\mathbb{F} = \operatorname{GF}(q)$ . The **Paley graph** P(q) = (V, E) is defined by:  $V = \mathbb{F}$  and  $E = \{(a, b) \in \mathbb{F} \times \mathbb{F} \mid (a - b) \in (\mathbb{F}^*)^2\}$ . i.e., two vertices are adjacent if their difference is a nonzero square. P(q) is **undirected**, since  $-1 \in (\mathbb{F}^*)^2$ . Consider the map  $x \to x + a$ , where  $a \in \mathbb{F}$ , and the map  $x \to xb$ , where  $b \in \mathbb{F}$  is a square or a nonsquare, to show P(q) is **strongly regular** with valency  $k = \frac{q-1}{2}$ ,  $\lambda = \frac{q-5}{4}$  and  $\mu = \frac{q-1}{4}$ .

Aleksandar Jurišić

67

Seidel showed that these graphs are uniquely determined with their parameters for  $q \leq 17$ .

There are some results in the literature showing that Paley graphs behave in many ways like random graphs G(n, 1/2).

Bollobás and Thomason proved that the Paley graphs contain all small graphs as induced subgraphs.

Algebraic Combinatorics, 2007

## **Krein conditions**

Of the other conditions satisfied by the parameteres of SRG, the most important are the **Krein conditions**, first proved by Scott using a result of Krein from harmonic analysis:

$$(\sigma+1)(k+\sigma+2\sigma\tau) \le (k+\sigma)(\tau+1)^2$$

and

$$(\tau+1)(k+\tau+2\sigma\tau) \le (k+\tau)(\sigma+1)^2.$$

Some parameter sets satisfy all known necessary conditions. We will mention some of these.

Algebraic Combinatorics, 2007

If k > s > t eigenvalues of a strongly regular graph, then the first inequality translates to

$$\begin{split} k &\geq -s \, \frac{(2t+1)(t-s) - t(t+1)}{(t-s) + t(t+1)}, \\ \lambda &\geq -(s+1)t \, \frac{(t-s) - t(t+3)}{(t-s) + t(t+1)}, \\ \mu &\geq -s(t+1) \, \frac{(t-s) - t(t+1)}{(t-s) + t(t+1)}, \end{split}$$

A strongly regular graph with parameters  $(k, \lambda, \mu)$ given by taking equalities above, where t and s are integers such that  $t - s \ge t(t + 3)$  (i.e.,  $\lambda \ge 0$ ) and k > t > s is called a **Smith graph**.

A strongly regular graph with eigenvalues  $k > \sigma > \tau$  is said to be of **(negative) Latin square type** when  $\mu = \tau(\tau + 1)$  (resp.  $\mu = \sigma(\sigma + 1)$ ).

The complement of a graph of (negative) Latin square type is again of (negative) Latin square type.

A graph of Latin square type is denoted by  $L_u(v)$ , where  $u = -\sigma$ ,  $v = \tau - \sigma$  and it has the same parameters as the line graph of a  $TD_u(v)$ .

Graphs of negative Latin square type ware introduced by Mesner, and are denoted by  $NL_e(f)$ , where  $e = \tau$ ,  $f = \tau - \sigma$  and its parameters can be obtained from  $L_u(v)$  by replacing u by -e and v by -f.

## More examples of strongly regular graphs:

 $L(K_v)$  is strongly regular with parameters

$$n = {\binom{v}{2}}, \quad k = 2(v-1), \quad \lambda = v-2, \quad \mu = 4.$$

For  $v \neq 8$  this is the unique srg with these parameters. Similarly,  $L(K_{v,v}) = K_v \times K_v$  is strongly regular, with parameters

$$n = v^2$$
,  $k = 2(v - 1)$ ,  $\lambda = v - 2$ ,  $\mu = 2$ .

and eigenvalues  $2(v-1)^1$ ,  $v-2^{2(v-1)}$ ,  $-2^{(v-1)^2}$ . For  $v \neq 4$  this is the unique srg with these parameters.

**Steiner graph** is the block (line) graph of a 2-(v, s, 1) design with v - 1 > s(s - 1), and it is strongly regular with parameters

$$n = \frac{\binom{v}{2}}{\binom{s}{2}}, \quad k = s\left(\frac{v-1}{s-1} - 1\right),$$

$$\lambda = \frac{v-1}{s-1} - 2 + (s-1)^2, \quad \mu = s^2.$$

and eigenvalues

$$k^{1}, \quad \left(\frac{v-s^{2}}{s-1}\right)^{v-1}, \quad -s^{n-v}.$$

Aleksandar Jurišić

73

When in a design  $\mathcal{D}$  the block size is two, the number of edges of the point graph equals the number of blocks of the design  $\mathcal{D}$ . In this case the line graph of the design  $\mathcal{D}$  is the line graph of the point graph of  $\mathcal{D}$ . This justifies the name: the line graph of a graph.

A point graph of a Steiner system is a complete graph, thus a line graph of a Steiner system S(2, v) is the line graph of a complete graph  $K_v$ , also called the **triangular graph**.

(If  $\mathcal{D}$  is a square design, i.e., v - 1 = s(s - 1), then its line graph is the complete graph  $K_v$ .)

The fact that Steiner triple system with v points exists for all  $v \equiv 1$  or 3 (mod 6) goes back to Kirkman in 1847. More recently Wilson showed that the number n(v) of Steiner triple systems on an andmissible number v of points satisfies

 $n(v) \ge \exp(v^2 \log v/6 - cv^2).$ 

A Steiner triple system of order v > 15 can be recovered uniquely from its line graph, hence there are super-exponentially many SRG(n, 3s, s+3, 9), for n = (s+1)(2s+3)/3 and  $s \equiv 0$  or 2 (mod 3).

For  $2 \leq s \leq v$  the **block graph** of a transversal design TD(s, v) (two blocks being adjacent iff they intersect) is strongly regular with parameters  $n = v^2$ ,  $k = s(v-1), \ \lambda = (v-2)+(s-1)(s-2), \ \mu = s(s-1).$ and eigenvalues  $s(v-1)^1, \ v - s^{s(v-1)}, \ -s^{(v-1)(v-s+1)}.$ Note that a line graph of TD(s, v) is a conference graph when v = 2s-1. For s = 2 we get **the lattice graph**  $K_v \times K_v$ .

The number of Latin squares of order k is asymptotically equal to

$$\exp(k^2 \log k - 2k^2)$$

**Theorem (Neumaier)**. The strongly regular graph with the smallest eigenvalue  $-m, m \ge 2$ integral, is with finitely many exceptions, either a complete multipartite graph, a Steiner graph, or the line graph of a transversal design.