## III. Strongly regular graphs

- definition of strongly regular graphs
- characterization with adjacency matrix
- classification (type I in II)
- Payley graphs
- Krein condition and Smith graphs
- more examples (Steiner and LS graphs)

- feasibility conditions and a table



## Definition

Two similar regularity conditions are:
(a) any two adjacent vertices have exactly $\lambda$ common neighbours,
(b) any two nonadjacent vertices have exactly $\mu$ common neighbours.

A regular graph is called strongly regular when it satisfies (a) and (b). Notation $\operatorname{SRG}(n, k, \lambda, \mu)$, where $k$ is the valency of $\Gamma$ and $n=|V \Gamma|$.
Strongly regular graphs can also be treated as extremal graphs and have been studied extensively.

## Examples

5 -cycle is $\operatorname{SRG}(5,2,0,1)$,
the Petersen graph is $\operatorname{SRG}(10,3,0,1)$.

What are the trivial examples?
$K_{n}, \quad m \cdot K_{n}$,

The Cocktail Party graph $C(n)$, i.e., the graph on $2 n$ vertices of degree $2 n-2$, is also strongly regular.

Lemma. A strongly regular graph $\Gamma$ is disconnected iff $\mu=0$.
If $\mu=0$, then each component of $\Gamma$ is isomorphic to $K_{k+1}$ and we have $\lambda=k-1$.

Corollary. A complete multipartite graph is strongly regular iff its complement is a union of complete graphs of equal size.

Homework: Determine all SRG with $\mu=k$.

Counting the edges between the neighbours and nonneighbours of a vertex in a connected strongly regular graph we obtain:

$$
\mu(n-1-k)=k(k-\lambda-1)
$$

i.e.,

$$
n=1+k+\frac{k(k-\lambda-1)}{\mu}
$$

Lemma. The complement of $\operatorname{SRG}(n, k, \lambda, \mu)$ is again strongly regular graph: $\operatorname{SRG}(\bar{n}, \bar{k}, \bar{\lambda}, \bar{\mu})=(n, n-k-1, n-2 k+\mu-2, n-2 k+\lambda)$.

Let $J$ be the all-one matrix of $\operatorname{dim} .(n \times n)$.
A graph $\Gamma$ on $n$ vertices is strongly regular if and only if its adjacency matrix $A$ satisfies

$$
A^{2}=k I+\lambda A+\mu(J-I-A)
$$

for some integers $k, \lambda$ and $\mu$.

Therefore, the valency $k$ is an eigenvalue with multiplicity 1 and the nontrivial eigenvalues, denoted by $\sigma$ and $\tau$, are the roots of

$$
x^{2}-(\lambda-\mu) x+(\mu-k)=0
$$

and hence $\lambda-\mu=\sigma+\tau, \mu-k=\sigma \tau$.

Theorem. A connected regular graph with precisely three eigenvalues is strongly regular.

Proof. Consider the following matrix polynomial:

$$
M:=\frac{(A-\sigma)(A-\tau)}{(k-\sigma)(k-\tau)}
$$

If $A=A(\Gamma)$, where $\Gamma$ is a connected $k$-regular graph with eigenvalues $k, \sigma$ and $\tau$, then all the eigenvalues of $M$ are 0 or 1 . But all the eigenvectors corresponding to $\sigma$ and $\tau$ lie in $\operatorname{Ker}(A)$, so $\operatorname{rank} M=1$ and $M \boldsymbol{j}=\boldsymbol{j}$,
hence $M=\frac{1}{n} J$. and $A^{2} \in \operatorname{span}\{I, J, A\}$.

For a connected graph, i.e., $\mu \neq 0$, we have
$n=\frac{(k-\sigma)(k-\tau)}{k+\sigma \tau}, \lambda=k+\sigma+\tau+\sigma \tau, \quad \mu=k+\sigma \tau$
and the multiplicities of $\sigma$ and $\tau$ are

$$
m_{\sigma}=\frac{(n-1) \tau+k}{\tau-\sigma}=\frac{(\tau+1) k(k-\tau)}{\mu(\tau-\sigma)}
$$

and $m_{\tau}=n-1-m_{\sigma}$.

## Multiplicities

Solve the system:

$$
\begin{aligned}
1+m_{\sigma}+m_{\tau} & =n \\
1 \cdot k+m_{\sigma} \cdot \sigma+m_{\tau} \cdot \tau & =0
\end{aligned}
$$

to obtain

$$
m_{\sigma} \text { and } m_{\tau}=\frac{1}{2}\left(n-1 \pm \frac{(n-1)(\mu-\lambda)-2 k}{\sqrt{(\mu-\lambda)^{2}+4(k-\mu)}}\right)
$$

