Algebraic Combinatorics, 2007

Hadamard matrices

Let A be $n \times n$ matrix with $|a_{ij}| \leq 1$.

How large can $\det A$ be?

Since each column of A is a vector of length at most \sqrt{n} , we have

$$\det A \le n^{n/2}.$$

Can equality hold? In this case all entries must be ± 1 and any two distinct columns must me orthogonal.

Aleksandar Jurišić 25

Algebraic Combinatorics, 2007

 $(n \times n)$ -dim. matrix H with elements ± 1 , for which $HH^T = nI_n$

holds is called a **Hadamard matrix** of order n.

Such a matrix exists only if n = 1, n = 2 or $4 \mid n$.

A famous **Hadamard matrix conjecture** (1893): a Hadamard matrix of order 4s exists $\forall s \in \mathbb{N}$.

In 2004 Iranian mathematicians H. Kharaghani and B. Tayfeh-Rezaie constructed a Hadamard matrix of order 428. The smallest open case is now 668.

Aleksandar Jurišić 26

Algebraic Combinatorics, 2007

Hadamard matrix of order 4s is equivalent to 2-(4s-1,2s-1,s-1) design.

Aleksandar Jurišić