Algebraic Combinatorics, 2007

Graphs

A graph I' is a pair (VT', ET), where VT is a finite
set of vertices and ET' is a set of unordered pairs zy
of vertices called edges (no loops or multiple edges).

Let VI'={1,...,n}. Then a (n x n)-dim. matrix A
is the adjacency matrix of [, when

A — { 1, if{i,j} € F,

0, otherwise

Lemma. (A");; = # walks from i to j of length h.
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Eigenvalues

The number € € R is an eigenvalue of I', when for
a vector x € R™\{0} we have

Azx = (955’, i.e., (A$)Z = Z Lj = 9.73@'.
{yitel

e There are cospectral graphs

e A triangle inequality implies that the maximum
degree of a graph I', denoted by A(T), is greater or
equal to |4], i.e.,

A() = 16].
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A graph with precisely one eigenvalue is a graph
with one vertex, i.e., a graph with diameter O.

A graph with two eigenvalues is the complete graph
K,,n > 2, ie. the graph with diameter 1.

Theorem. A connected graph of diameter d has
at least d + 1 distinct eigenvalues.
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Review of basic matrix theory

Lemma. Let A be a real symetric matrix. Then
e its eigenvalues are real numbers, and

e the eigenvectors corresponding to distinct
eigenvalues, then they are orthogonal.

e [fU is an A-invariant subspace of R",
then U~ is also A-invariant.

e R" has an orthonormal basis consisting of
eigenvectors of A.

e There are matrices L and D, such that
L'L=LL" =1 and LAL' =D,

where D is a diagonal matrix of eigenvalues of A.
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Lemma. The eigenvalues of a disconnected graph
are just the eigenvalues of its components and
their multiplicities are sums of the corresponding
multiplicities in each component.
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Regularity

A graph is regular, if each vertex has the same
number of neighbours.

Set 7 to the be all-one vector in R".

Lemma. A graph is regular iff j is its eigenvector.

Lemma. If I is a regular graph of valency k, then
the multiplicity of k is equal to the number of
connected components of I,

and the multiplicity of —k is equal to the number
of bipartite components of I".
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Lemma. Let I' be a k-regular graph on n vertices
with eigenvalues k,0s,...,0,. Then I and I' have

the same eigenvectors, and the eigenvalues of I’
aren—k—1,—-1—0,,...,—1—10,.

Calculate the eigenvalues of many simple graphs:

m * K,, and their complements,
circulant graphs

Ch,

K, x K,,

Hamming graphs,...
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Line graphs and their eigenvalues

Let ¢(T', ) be the characteristics polynomial
of a graph I

Lemma. Let B be the incidence matrix of the
graph I, L its line graph and A(T") the diagonal
matrix of valencies. Then

B'B=2I+A(L) and BB'" = A(l')+ A(l).
Furthermore, if I' is k-regular, then

d(L,x)=(x+2) "o(I'x — k +2).
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Semidefinitness

A real symmetric matrix A is positive semidefinite

if

w'Au>0  for all vectors wu.

[t is positive definite if it is positive semidefinite
and
wWAu=0 < u=0.

Characterizations.

e A positive semidefinite matrix is positive definite
iff invertible

e A matrix is positive semidefinite matrix iff all its
eigenvalues are nonnegative.

o If A = B' B for some matrix, then A is positive
semidefinite.
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The Gram matrix of vectors uy,...,u, € R™ is

n X n matrix G s.t. G;; = ulu;.

Note that BY B is the Gram matrix of the columns of
B, and that any Gram matrix is positive semidefinite.
The converse is also true.

Corollary. The least eigenvalue of a line graph is
at least —2. If A is an induced subgraph of I, then

9min<F> S 9m1n<A> S HmaX<A> S 9max<r>-
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Peron-Frobenious Theorem. Suppose A is a real
nonnegative n X n matrix, whose underlying directed
graph X is strongly connected. Then

(a) p(A) is a simple eigenvalue of A. If x an
eigenvector for p, then no entries of x are zero, and
all have the same sign.

(b) Suppose A; is a real nonnegative n X n matrix
such that A— Ay is nonnegative. Then p(A;) < p(A),
with equality iff A1 = A.

(c) If 0 is an eigenvalue of A and |0| = p(A), then

0/p(A) is an mth root of unity and e>™"/™p(A) is an
eigenvalue of A for all r. Further, all cycles in X
have length divisible by m.

Aleksandar Jurisié 38




Algebraic Combinatorics, 2007

Theorem [Haemers|. Let A be a complete

hermitian n X n matrix, partitioned into m? block
matrices, such that all diagonal matrices are square.
Let B be the m X m matrix, whose i, j-th entry
equals the average row sum of the 1, j-th block
matrix of A fori,7 = 1,...,m. Then the eigenvalues
o> - >a,and By > - > (3, of A and B resp.
satisfy

Qi > Bi > Qinom, for i=1,...,m.
Moreover, if for some k € Ny, k < m, o; = 3; for
v=1,...,kand B, = ajyp_y forio =k+1,....m,

then all the block matrices of A have constant
row and column sums.
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