Graphs

A graph Γ is a pair $(V \Gamma, E \Gamma)$, where $V \Gamma$ is a finite set of vertices and $E \Gamma$ is a set of unordered pairs $x y$ of vertices called edges (no loops or multiple edges).

Let $V \Gamma=\{1, \ldots, n\}$. Then a $(n \times n)$-dim. matrix A is the adjacency matrix of Γ, when

$$
A_{i, j}=\left\{\begin{array}{l}
1, \text { if }\{i, j\} \in E, \\
0, \text { otherwise }
\end{array}\right.
$$

Lemma. $\left(A^{h}\right)_{i j}=\#$ walks from i to j of length h.

Eigenvalues

The number $\theta \in \mathbb{R}$ is an eigenvalue of Γ, when for a vector $x \in \mathbb{R}^{n} \backslash\{0\}$ we have

$$
A x=\theta x, \quad \text { i.e., } \quad(A x)_{i}=\sum_{\{j, i\} \in E} x_{j}=\theta x_{i} \text {. }
$$

- There are cospectral graphs
- A triangle inequality implies that the maximum degree of a graph Γ, denoted by $\Delta(\Gamma)$, is greater or equal to $|\theta|$, i.e.,

$$
\Delta(\Gamma) \geq|\theta| .
$$

A graph with precisely one eigenvalue is a graph with one vertex, i.e., a graph with diameter $\mathbf{0}$.

A graph with two eigenvalues is the complete graph $K_{n}, n \geq 2$, i.e., the graph with diameter 1 .

Theorem. A connected graph of diameter d has at least $d+1$ distinct eigenvalues.

Review of basic matrix theory

Lemma. Let A be a real symetric matrix. Then

- its eigenvalues are real numbers, and
- the eigenvectors corresponding to distinct eigenvalues, then they are orthogonal.
- If U is an A-invariant subspace of \mathbb{R}^{n}, then U^{\perp} is also A-invariant.
- \mathbb{R}^{n} has an orthonormal basis consisting of eigenvectors of A.
- There are matrices L and D, such that

$$
L^{T} L=L L^{T}=I \quad \text { and } \quad L A L^{T}=D,
$$

where D is a diagonal matrix of eigenvalues of A.

Lemma. The eigenvalues of a disconnected graph are just the eigenvalues of its components and their multiplicities are sums of the corresponding multiplicities in each component.

Regularity

A graph is regular, if each vertex has the same number of neighbours.

Set j to the be all-one vector in \mathbb{R}^{n}.

Lemma. A graph is regular iff \boldsymbol{j} is its eigenvector.

> Lemma. If Γ is a regular graph of valency k, then the multiplicity of k is equal to the number of connected components of Γ, and the multiplicity of $-k$ is equal to the number of bipartite components of Γ.

Lemma. Let Γ be a k-regular graph on n vertices with eigenvalues $k, \theta_{2}, \ldots, \theta_{n}$. Then Γ and $\bar{\Gamma}$ have the same eigenvectors, and the eigenvalues of $\bar{\Gamma}$ are $n-k-1,-1-\theta_{2}, \ldots,-1-\theta_{n}$.

Calculate the eigenvalues of many simple graphs:

- $m * K_{n}$ and their complements,
- circulant graphs
- C_{n},
- $K_{n} \times K_{n}$,
- Hamming graphs,...

Line graphs and their eigenvalues

Let $\phi(\Gamma, x)$ be the characteristics polynomial of a graph Γ.

Lemma. Let B be the incidence matrix of the graph Γ, L its line graph and $\Delta(\Gamma)$ the diagonal matrix of valencies. Then

$$
B^{T} B=2 I+A(L) \quad \text { and } \quad B B^{T}=\Delta(\Gamma)+A(\Gamma) .
$$

Furthermore, if Γ is k-regular, then

$$
\phi(L, x)=(x+2)^{e-n} \phi(\Gamma, x-k+2) .
$$

Semidefinitness

A real symmetric matrix A is positive semidefinite if

$$
u^{T} A u \geq 0 \quad \text { for all vectors } u \text {. }
$$

It is positive definite if it is positive semidefinite and

$$
u^{T} A u=0 \quad \Longleftrightarrow \quad u=0 .
$$

Characterizations.

- A positive semidefinite matrix is positive definite iff invertible
- A matrix is positive semidefinite matrix iff all its eigenvalues are nonnegative.
- If $A=B^{T} B$ for some matrix, then A is positive semidefinite.

The Gram matrix of vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{m}$ is $n \times n$ matrix G s.t. $G_{i j}=u_{i}^{t} u_{j}$.

Note that $B^{T} B$ is the Gram matrix of the columns of B, and that any Gram matrix is positive semidefinite. The converse is also true.

Corollary. The least eigenvalue of a line graph is at least -2 . If Δ is an induced subgraph of Γ, then

$$
\theta_{\min }(\Gamma) \leq \theta_{\min }(\Delta) \leq \theta_{\max }(\Delta) \leq \theta_{\max }(\Gamma)
$$

Peron-Frobenious Theorem. Suppose A is a real nonnegative $n \times n$ matrix, whose underlying directed graph X is strongly connected. Then
(a) $\rho(A)$ is a simple eigenvalue of A. If x an eigenvector for ρ, then no entries of x are zero, and all have the same sign.
(b) Suppose A_{1} is a real nonnegative $n \times n$ matrix such that $A-A_{1}$ is nonnegative. Then $\rho\left(A_{1}\right) \leq \rho(A)$, with equality iff $A_{1}=A$.
(c) If θ is an eigenvalue of A and $|\theta|=\rho(A)$, then $\theta / \rho(A)$ is an $m t h$ root of unity and $e^{2 \pi i r / m} \rho(A)$ is an eigenvalue of A for all r. Further, all cycles in X have length divisible by m.

Theorem [Haemers]. Let A be a complete hermitian $n \times n$ matrix, partitioned into m^{2} block matrices, such that all diagonal matrices are square. Let B be the $m \times m$ matrix, whose i, j-th entry equals the average row sum of the i, j-th block matrix of A for $i, j=1, \ldots, m$. Then the eigenvalues $\alpha_{1} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq \cdots \geq \beta_{m}$ of A and B resp. satisfy

$$
\alpha_{i} \geq \beta_{i} \geq \alpha_{i+n-m}, \quad \text { for } i=1, \ldots, m
$$

Moreover, if for some $k \in N_{0}, k \leq m, \alpha_{i}=\beta_{i}$ for $i=1, \ldots, k$ and $\beta_{i}=\alpha_{i+n-m}$ for $i=k+1, \ldots, m$, then all the block matrices of A have constant row and column sums.

