Let $\mathcal{O}$ be a subset of points of $\operatorname{PG}(2, n)$ such that no three are on the same line.

Then $|\mathcal{O}| \leq n+1$ if $n$ is odd and $|\mathcal{O}| \leq n+2$ if $n$ is even.

If equality is attained then $\mathcal{O}$ is called oval for $n$ even, and hyperoval for $n$ odd

## Examples:

- the vertices of a triangle and the center of the circle in Fano plane,
- the vertices of a square in $\operatorname{PG}(2,3)$ form oval,
- the set of vertices $\{0,1,2,3,5,14\}$ in the above $\mathrm{PG}(2,4)$ is a hyperoval.

The general linear group $\mathrm{GL}_{n}(q)$ consists of all invertible $n \times n$ matrices with entries in $\operatorname{GF}(q)$.
The special linear group $\mathrm{SL}_{n}(q)$ is the subgroup of all matrices with determinant 1 .

The projective general linear group $\mathrm{PGL}_{n}(q)$ and the projective special linear group $\mathrm{PSL}_{n}(q)$ are the groups obtained from $\mathrm{GL}_{n}(q)$ and $\mathrm{SL}_{n}(q)$ by taking the quotient over scalar matrices (i.e., scalar multiple of the identity matrix).

For $n \geq 2$ the group $\mathrm{PSL}_{n}(q)$ is simple (except for $\mathrm{PSL}_{2}(2)=S_{3}$ and $\left.\mathrm{PSL}_{2}(3)=A_{4}\right)$ and is by Artin's convention denoted by $L_{n}(q)$.

## Orthogonal Arrays

An orthogonal array, $\mathrm{OA}(v, s, \lambda)$, is such $\left(\lambda v^{2} \times s\right)$ dimensional matrix with $v$ symbols, that each two columns each of $v^{2}$ possible pairs of symbols appears in exactly $\lambda$ rows.

This and to them equivalent structures (e.g. transversal designs, pairwise orthogonal Latin squares, nets,...) are part of design theory.

If we use the first two columns of $\operatorname{OA}(v, s, 1)$ for coordinates, the third column gives us a Latin square, i.e., $(v \times v)$-dim. matrix in which all symbols $\{1, \ldots, v\}$ appear in each row and each column.

Example : OA $(3,3,1)$
$\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0\end{array}\right)$

$$
\left(\begin{array}{lll}
0 & 2 & 1 \\
2 & 1 & 0 \\
1 & 0 & 2
\end{array}\right)
$$



Three pairwise orthogonal Latin squares of order 4, i.e., each pair symbol-letter or letter-color or color-symbol appears exactly once.

Theorem. If $\mathrm{OA}(v, s, \lambda)$ exists, then we have in the case $\lambda=1$

$$
s \leq v+1,
$$

and in general

$$
\lambda \geq \frac{s(v-1)+1}{v^{2}} .
$$

Transversal design $\mathrm{TD}_{\lambda}(s, v)$ is an incidence structure of blocks of size $s$, in which points are partitioned into $s$ groups of size $v$ so that an arbitrary points lie in $\lambda$ blocks when they belong to distinct groups and there is no block containing them otherwise.

Proof: The number of all lines that intersect a chosen line of $\mathrm{TD}_{1}(s, v)$ is equal to $(v-1) s$ and is less or equal to the number of all lines without the chosen line, that is $v^{2}-1$.

In transversal design $\mathrm{TD}_{\lambda}(s, v), \lambda \neq 1$ we count in a similar way and then use the inequality between arithmetic and quadratic mean (that can be derived from Jensen inequality).

Theorem. For a prime $p$ there exists $\mathrm{OA}(p, p, 1)$, and there also exists
$\mathrm{OA}\left(p,\left(p^{d}-1\right) /(p-1), p^{d-2}\right)$ for $d \in \mathbb{N} \backslash\{1\}$

Proof: Set $\lambda=1$. For $i, j, s \in \mathbb{Z}_{p}$ we define

$$
e_{i j}(s)=i s+j \bmod p
$$

For $\lambda \neq 1$ we can derive the existence from the construction of projective geometry $\mathrm{PG}(n, d)$.

For homework convince yourself that each $\mathrm{OA}(n, n, 1)$, $n \in \mathbb{N}$, can be extended for one more column, i.e., to $\mathrm{OA}(n, n+1,1)$.

