ALGEBRAIC COMBINATORICS

Aleksandar Jurišíc
Laboratory for Cryptography and Computer Security Faculty of Computer and Information Science http://valjhun.fmf.uni-lj.si/~ajurisic

Introduction 3

1. Constructions of combinatorial objects 6
2. Graphs, eigenvalues and regularity 27
3. Strongly regular graphs 34
4. Geometry 62
5. Association schemes 81
6. Equitable partitions 103
7. Distance-regular graphs 113
8. 1-homogeneous graphs 155
9. Tight graphs 173
Bibliography 239

Introduction

We study an interplay between algebra and combinatorics, that is known under the name algebraic combinatorics.

This is a discrete mathematics, where objects and structures contain some degree of regularity or symmetry.

More important areas of application of algebraic combinatorics are

- coding theory and error correction codes, - statistical design of experiments, and
- (through finite geometries and finite fields) also cryptography.

We investigate several interesting combinatorial structures. Our aim is a general introduction to algebraic combinatorics and illumination of some the important results in the past 10 years.

We will study as many topics as time permits that include:

- algebraic graph theory and eigenvalue techniques (specter of a graph and characteristic polynomial; equitable partitions: quotients and covers; strongly regular graphs and partial geometries, examples; distance-regular graphs, primitivity and classification, classical families),
- associative schemes (Bose-Mesner algebra, Krein conditions and aboolute bounds; eigenmatrices and orthogonal relations, duality and formal duality, P-polynomial schemes, Q-polynomial schemes),
- finite geometries and designs (projective and affine plane: duality; projective geometries: spaces $\operatorname{PG}(d-1, q)$. generalized quadrangles: quadratic forms and a classification of isotropic spaces, classical constructions, small examples, spreads and regular points;

I. Constructions of some famous combinatorial objects

- Incidence structures
- Orthogonal Arrays (OA)
- Latin Squares (LS), MOLS
- Transversal Designs (TD)
- Hadamard matrices

Heawood's graph the point/block incidence graph of the unique 2- $(11,5,2)$ design.

Incidence structures

$t-\left(v, s, \lambda_{t}\right)$ design is

- a collection of s-subsets (blocks)
- of a set with v elements (points),
- where each t-subset of points is contained in exactly λ_{t} blocks.

If $\lambda_{t}=1$, then the t-design is called Steiner System and is denoted by $S(t, s, v)$.

Let $i \in \mathbb{N}_{0}, i \leq t$ and let $\lambda_{i}(S)$ denotes the number of blocks containing a given i-set S. Then
(1) S is contained in $\lambda_{i}(S)$ blocks and each of them contains $\binom{s-i}{t-i}$ distinct t-sets with S as subset;
(2) the set S can be enlarged to t-set in $\binom{v-i}{t-i}$ ways and each of these t-set is contained in λ_{t} blocks:

$$
\lambda_{i}(S)\binom{s-i}{t-i}=\lambda_{t}\binom{v-i}{t-i}
$$

Therefore, $\lambda_{i}(S)$ is independent of S (so we can denote it simply by λ_{i}) and hence a t-design is also i-design, for $0 \leq i \leq t$.

Algebraic Combinatorics, 2007

For $\lambda_{0}=b$ and $\lambda_{1}=r$, when $t \geq 2$, we have

$$
b s=r v \quad \text { and } \quad r(s-1)=\lambda_{2}(v-1)
$$

Or

$$
r=\lambda_{2} \frac{v-1}{s-1} \quad \text { and } \quad b=\lambda_{2} \frac{v(v-1)}{s(s-1)}
$$

A partial linear space is an incidence structure in which any two points are incident with at most one line. This implies that any two lines are incident with at most one point.

A projective plane is a partial linear space satisfying the following three conditions:
(1) Any two lines meet in a unique point.
(2) Any two points lie in a unique line.
(3) There are three pairvise noncolinear points (a triangle).

The projective space $\mathrm{PG}(d, n)$ (of dimension d and order q) is obtained from $[\mathrm{GF}(q)]^{d+1}$ by taking the quotient over linear spaces.

In particular, the projective space $\operatorname{PG}(2, n)$ is the incidence structure with 1- and 2-dim. subspaces of $[\operatorname{GF}(q)]^{3}$ as points and lines (blocks), and "being a subspace" as an incidence relation.
$\operatorname{PG}(2, n)$ is a $2-\left(q^{2}+q+1, q+1,1\right)$-design, i.e.,

- $v=q^{2}+q+1$ is the number of points (and lines b),
- each line contains $k=q+1$ points
(on each point we have $r=q+1$ lines),
- each pair of points is on $\lambda=1$ lines
(each two lines intersect in a precisely one point), which is in turn a projective plane (see Assignment 1).

Examples:

1. The projective plane $\operatorname{PG}(2,2)$ is also called the Fano plane (7 points and 7 lines).

2. $\mathrm{PG}(2,3)$ can be obtained from 3×3 grid (or $\mathrm{AG}(2,3)$).

3. $\mathrm{PG}(2,4)$ is obtained from \mathbb{Z}_{21} :
points $=\mathbb{Z}_{21}$ and
lines $=\left\{S+x \mid x \in \mathbb{Z}_{21}\right\}$,
where S is a 5 -element set $\{3,6,7,12,14\}$, i.e.,
$\{0,3,4,9,11\}\{1,4,5,10,12\}\{2,5,6,11,13\}$
$\{3,6,7,12,14\}\{4,7,8,13,15\}\{5,8,9,14,16\}$
$\{6,9,10,15,17\}\{7,10,11,16,18\}\{8,11,12,17,19\}$
$\{9,12,13,18,20\}\{10,13,14,19,0\}\{11,14,15,20,1\}$
$\{12,15,16,0,2\}\{13,16,17,1,3\}\{14,17,18,2,4\}$
$\{15,18,19,3,5\}\{16,19,20,4,6\}\{17,20,0,5,7\}$
$\{18,0,1,6,8\}\{19,1,2,7,9\}\{20,2,3,8,10\}$
Note: Similarly the Fano plane can be obtained from $\{0,1,3\}$ in \mathbb{Z}_{7}.

