

Algebraic	Combinatorics,	2007
-----------	----------------	------

INTRODUCTION	
5. Association schemes $\dots \dots \dots$	
b. Equitable partitions	
(. Distance-regular graphs	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
BIBLIOGRAPHY	
Aleksandar Jurišić	2

Algebraic Combinatorics, 2007
Introduction
We study an interplay between
algebra and combinatorics,
that is known under the name
algebraic combinatorics.
This is a discrete mathematics, where objects and structures contain some degree of regularity or symmetry.
Aleksandar Jurišić

More important areas of application of algebraic combinatorics are

- coding theory and error correction codes,
- statistical design of experiments, and
- (through finite geometries and finite fields) also **cryptography**.

We investigate several interesting combinatorial structures. Our aim is a general introduction to algebraic combinatorics and illumination of some the important results in the past 10 years.

We will study as many topics as time permits that include:

- algebraic graph theory and eigenvalue techniques (specter of a graph and characteristic polynomial; equitable partitions: quotients and covers; strongly regular graphs and partial geometries, examples; distance-regular graphs, primitivity and classification, classical families),
- associative schemes (Bose-Mesner algebra, Krein conditions and absolute bounds; eigenmatrices and orthogonal relations, duality and formal duality, P-polynomial schemes, Q-polynomial schemes),
- finite geometries and designs (projective and affine plane: duality; projective geometries: spaces PG(d-1,q). generalized quadrangles: quadratic forms and a classification of isotropic spaces, classical constructions, small examples, spreads and regular points;

Let $i \in \mathbb{N}_0$, $i \leq t$ and let $\lambda_i(S)$ denotes the number of blocks containing a given *i*-set *S*. Then

- (1) S is contained in $\lambda_i(S)$ blocks and each of them contains $\binom{s-i}{t-i}$ distinct t-sets with S as subset;
- (2) the set S can be enlarged to t-set in $\binom{v-i}{t-i}$ ways and each of these t-set is contained in λ_t blocks:

$$\lambda_i(S)\binom{s-i}{t-i} = \lambda_t\binom{v-i}{t-i}$$

Therefore, $\lambda_i(S)$ is independent of S (so we can denote it simply by λ_i) and hence a *t*-design is also *i*-design, for $0 \le i \le t$.

Algebraic Combinatorics, 2007

For $\lambda_0 = b$ and $\lambda_1 = r$, when $t \ge 2$, we have bs = rv and $r(s-1) = \lambda_2(v-1)$ or

$$r = \lambda_2 \frac{v-1}{s-1}$$
 and $b = \lambda_2 \frac{v(v-1)}{s(s-1)}$

A **partial linear space** is an incidence structure in which any two points are incident with at most one line. This implies that any two lines are incident with at most one point.

A **projective plane** is a partial linear space satisfying the following three conditions:

(1) Any two lines meet in a unique point.

(2) Any two points lie in a unique line.

(3) There are three pairvise noncolinear points (a *triangle*).

```
Algebraic Combinatorics, 2007
 The projective space PG(d, n) (of dimension d and
 order q) is obtained from [GF(q)]^{d+1} by taking the
 quotient over linear spaces.
 In particular, the projective space PG(2, n) is the
 incidence structure with 1- and 2-dim. subspaces of
 [GF(q)]^3 as points and lines (blocks), and
 "being a subspace" as an incidence relation.
Aleksandar Jurišić
                                                        11
```


 $\mathrm{PG}(2,n)$ is a 2-($q^2+q+1,q+1,1)$ -design, i.e.,

- $v = q^2 + q + 1$ is the number of points (and lines b),
- each line contains k = q + 1 points (on each point we have r = q + 1 lines),
- each pair of points is on λ = 1 lines
 (each two lines intersect in a precisely one point),

which is in turn a projective plane (see Assignment 1).

3. PG(2, 4) is obtained from \mathbb{Z}_{21} : points = \mathbb{Z}_{21} and lines = { $S + x \mid x \in \mathbb{Z}_{21}$ }, where S is a 5-element set $\{3, 6, 7, 12, 14\}$, i.e., $\{0, 3, 4, 9, 11\} \{1, 4, 5, 10, 12\} \{2, 5, 6, 11, 13\}$ $\{3, 6, 7, 12, 14\}$ $\{4, 7, 8, 13, 15\}$ $\{5, 8, 9, 14, 16\}$ $\{6, 9, 10, 15, 17\}$ $\{7, 10, 11, 16, 18\}$ $\{8, 11, 12, 17, 19\}$ $\{9, 12, 13, 18, 20\}$ $\{10, 13, 14, 19, 0\}$ $\{11, 14, 15, 20, 1\}$ $\{12, 15, 16, 0, 2\}$ $\{13, 16, 17, 1, 3\}$ $\{14, 17, 18, 2, 4\}$ $\{15, 18, 19, 3, 5\}$ $\{16, 19, 20, 4, 6\}$ $\{17, 20, 0, 5, 7\}$ $\{18, 0, 1, 6, 8\}$ $\{19, 1, 2, 7, 9\}$ $\{20, 2, 3, 8, 10\}$ Note: Similarly the Fano plane can be obtained from $\{0, 1, 3\}$ in \mathbb{Z}_7 . Aleksandar Jurišić 15