
Extremal 1-codes in distance-regular graphs of diameter 3
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Abstract

We study 1-codes in distance-regular graphs of diameter 3 that achieve three different bounds. We show

that the intersection array of a distance-regular graph containing such a code has the form

{a(p+ 1), cp, a+ 1; 1, c, ap} or {a(p+ 1), (a+ 1)p, c; 1, c, ap}

for c = c2, a = a3 and p = p333. These two families contain 10+15 known feasible intersection arrays out of which

four are uniquely realized by the Sylvester graph, the Hamming graph H(3, 3), the Doro graph and the Johnson

graph J(9, 3), but not all members of these two families are feasible. We construct four new one-parameter

infinite subfamilies of feasible intersection arrays, two of which have a nontrivial vanishing Krein parameter:

{(2r2 − 1)(2r + 1), 4r(r2 − 1), 2r2; 1, 2(r2 − 1), r(4r2 − 2)}

and

{2r2(2r + 1), (2r − 1)(2r2 + r + 1), 2r2; 1, 2r2, r(4r2 − 1)}

for r > 1 (the second family actually generalizes to a two-parameter family with the same property). Using

this information we calculate some triple intersection numbers for these two families to show that they must

contain the desired code. Finally, we use some additional combinatorial arguments to prove nonexistence of

distance-regular graphs with such intersection arrays.

Keywords: distance-regular graphs, 1-codes, Krein condition, triple intersection numbers, nonexistence, algebraic

combinatorics
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1 Introduction

Using the distance function, we study codes in distance-regular graphs. A number of bounds for codes can be

obtained. The best known one is the sphere packing bound. In this paper we will be looking at codes in distance-

regular graphs of diameter 3 that achieve three different bounds. We show that the intersection array of a distance-

regular graph containing such a code has the form

{a(p+ 1), cp, a+ 1; 1, c, ap} and {a(p+ 1), (a+ 1)p, c; 1, c, ap} for c = c2, a = a3 and p = p333.

They are satisfied by 10 and 15 feasible intersection array from the table of feasible intersection arrays for primitive

graphs with diameter 3 from Brouwer, Cohen and Neumaier [1, pp. 425–431], respectively. However, not all

members of these two families are feasible. We then construct four new infinite subfamilies of feasible intersection

arrays:

{(2r2 − 1)(2r + 1), 4r(r2 − 1), 2r2; 1, 2(r2 − 1), r(4r2 − 2)}, r > 1; (1)

{c2 − 1, c(c− 2), c+ 2; 1, c, (c+ 1)(c− 2)}, c ≥ 6; (2)

{2r2(2r + 1), (2r − 1)(2r2 + r + 1), 2r2; 1, 2r2, r(4r2 − 1)}, r ≥ 1; (3)

{2r(r + 1)(2r + 1), 2r(2r2 + 2r + 1), r(2r + 1); 1, r(2r + 1), 4r2(r + 1)}, r ≥ 1. (4)

The first cases of (3) and (4) (r = 1) have intersection arrays {6, 4, 2; 1, 2, 3} and {12, 10, 3; 1, 3, 8} and are known to

uniquely determine the Hamming graph H(3, 3) [1, p. 262] and the Doro graph [1, Sec. 12.1], respectively. For (1)

and (3), the graphs with such intersection arrays have a nontrivial vanishing Krein parameter. Therefore, we can

use the method of Coolsaet and Jurǐsić [2] to calculate some triple intersection numbers. This way we prove that

such graphs indeed contain the desired codes (the family (3) actually generalizes to a two-parameter family with the

same property). We then use some additional combinatorial arguments to prove nonexistence of distance-regular

graphs with such intersection arrays (except for r = 1 in the case of (3)). The first two cases of (1) (r = 2, 3)

are {35, 24, 8; 1, 6, 28} and {119, 96, 18; 1, 16, 102} and the second case of (3) (r = 2) is {40, 33, 8; 1, 8, 30} and they

all appear in the table from Brouwer et al. [1, pp. 425–431]. Additional information about the graphs is shown in

Table 1.

In Section 3 we first give some definitions and results on codes in distance-regular graphs. For a distance-regular

graph Γ with intersection array (1) or (3), Section 4 lists certain parameters that will be used in the following

sections. In Section 5 we then prove that for any vertices u and v of Γ at distance 3, the set that consists of u, v

and the vertices of Γ that are at distance 3 from both of them is a maximal 1-code. We show in Section 6 that Γ

does not exist. We conclude the paper with Section 7 that presents some open questions on the subject of codes

in distance-regular graphs.

graph n θ1 θ2 θ3 m1 m2 m3

(1) 4r(2r − 1)(r + 1)2 2r2 + 2r − 1 −1 −2r2 + 1 (2r2 − 1)(2r + 1) 2r(2r2 − 1)(2r + 1) 2r2(2r + 1)

(2) c3 2c− 1 −1 −c− 1 c(c2 − 1)/6 (c+ 1)(c2 + c− 2)/2 c(c− 1)(c− 2)/3

(3) r(2r + 1)3 r(2r + 1) 0 −r(2r + 1) 2r2(2r + 1) (4r2 − 1)(2r2 + r + 1) 2r(2r2 + r + 1)

(4) 2(r + 1)(4r(r + 1)2 + 1) 2r(r + 1) 0 −2r2 − 2r − 1 4r(r + 1)2 + 1 2r(4r(r + 1)2 + 1) 4(r + 1)2

Table 1: The number of vertices n and spectrum {θ10 , θ
m1
1 , θm2

2 , θm3
3 } of the distance-regular graphs with intersection arrays (1–4),

where k = θ0 > θ1 > θ2 > θ3.
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2 Preliminaries

In this section we review some basic definitions and concepts. See Brouwer, Cohen and Neumaier [1] and Godsil [3]

for further details.

Let Γ be a finite, undirected, connected graph, without loops or multiple edges, with vertex set V Γ, edge set EΓ,

shortest path-length distance function ∂, and diameter d := max{∂(x, y) |x, y ∈ V Γ}. For vertices u1, . . . , ut ∈ V Γ

and integers r1, . . . , rt ∈ {0, 1, . . . , d} define{
u1 . . . ut
r1 . . . rt

}
:= {v ∈ V Γ | ∂(v, ui) = ri, i = 1, . . . , t} and

[
u1 . . . ut
r1 . . . rt

]
:=
∣∣∣{ u1 . . . utr1 . . . rt

}∣∣∣ , (5)

where |S| denotes the cardinality of a set S. Note that the symbols defined in (5) are invariant under permutations

of their columns. We will abbreviate the latter as [r1 . . . rt] whenever no confusion about the t-tuple (u1, . . . , ut)

may arise. When t = 3, we call the resulting cardinalities triple intersection numbers.

Let Γi(u) for some vertex u ∈ V Γ and an integer i be the subgraph of Γ that is induced by the vertices at distance

i from u. The local graph ∆(u) for some vertex u ∈ V Γ is the graph induced by the neighbours of the vertex u in

the graph Γ, i.e. ∆(u) = Γ1(u). We also define the distance i graph Γi as the graph with V Γi = V Γ and u ∼ v

in Γi whenever ∂(u, v) = i in Γ.

For an integer k ≥ 0, the graph Γ is said to be regular with valency k whenever
[
u
1

]
= k for all u ∈ V Γ. The

graph Γ is said to be distance-regular whenever for 0 ≤ i, j, h ≤ d the number phij =
[
u v
i j

]
is independent of

u, v for all vertices u, v ∈ V Γ with ∂(u, v) = h, The constants phij are called the intersection numbers of Γ. Let

i ∈ {0, 1, . . . , d}. We define ci := pi1,i−1, ai := pi1i, bi := pi1,i+1, ki := p0ii, where we assumed p01,−1 = pd1,d+1 = 0.

Moreover, a0 = c0 = bd = 0, c1 = 1 and ai + bi + ci = k, where k := k1. Note that the distance-regularity

immediately implies
[
u
i

]
= ki for any u ∈ V Γ.

Let Γ be a graph of diameter d. Let Ai (0 ≤ i ≤ d) denote an adjacency matrix of Γi, i.e., the binary matrix

indexed by the vertices of the graph Γ, where Ai(u, v) = 1 iff ∂(u, v) = i for any u, v ∈ V Γ. Set A := A1. Let us

assume additionally that Γ is distance-regular. Then A has precisely d + 1 distinct eigenvalues k = θ0, θ1, . . . , θd

and θi < θ0 (1 ≤ i ≤ d) [1, p. 128]. Let mi (0 ≤ i ≤ d) denote the multiplicity of the eigenvalue θi. Let M be the

Bose-Mesner algebra, that is the algebra generated by A. Then the matrices {Ai}di=0 form a base of M. There is

also a base of minimal idempotents {Ei}di=0 [1, p. 44] with the property
∑d

i=0Ei = I, EiEj = δijEi (0 ≤ i, j ≤ d)

and |V Γ|E0 = J , where J is the all-one matrix. We define matrices P and Q such that Aj =
∑d

i=0 PijEi and

Ej = |V Γ|−1
∑d

i=0QijAi (0 ≤ j ≤ d). Note that there is a correspondence between these eigenvalues and minimal

idempotents and that {Pij}di=0 are the eigenvalues of Aj . The matrices P and Q are called the eigenmatrix

and the dual eigenmatrix of Γ. The ordering of minimal idempotents corresponding to the descending order of

eigenvalues is known as the natural ordering. A graph Γ is called formally self-dual [1, p. 49] when P = Q

for some ordering of the minimal idempotents. A graph Γ is called Q-polynomial with respect to the minimal

idempotent E [1, p. 58] for some ordering of the minimal idempotents such that E = E1, if there exist real

numbers z0, . . . , zd and polynomials qj of degree j such that Qij = qj(zi) (0 ≤ i, j ≤ d). A distance-regular

graph that is formally self-dual is also Q-polynomial with respect to the minimal idempotent E1 for an ordering

that achieves P = Q. Furthermore, we can define the Krein parameters qhij [1, p. 48] as such numbers that

Ei ◦ Ej = |V Γ|−1
∑d

h=0 q
h
ijEh (0 ≤ i, j ≤ d), where ◦ represents entrywise multiplication of matrices. If Γ is

formally self-dual, then qhij = phij (0 ≤ h, i, j ≤ d).

Unlike for the cases t = 1 and t = 2, for t ≥ 3 there are no formulas for [r1 . . . rt] that are generally valid in

the case of distance-regular graphs. However, for the case t = 3 that we are interested in, certain restrictions for
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their values may be found sometimes. Let u, v, w ∈ V Γ be three fixed vertices in V Γ, and let U , V and W be

the distances between them, i.e., ∂(u, v) = W , ∂(v, w) = U and ∂(w, u) = V . Then there exists precisely one

vertex x = u such that ∂(x, u) = 0, so [0 j h] is either 0 or 1. We can apply the same argument also for v and w.

Altogether, we obtain

[0 j h] = δjW δhV , [i 0 h] = δiW δhU , [i j 0] = δiV δjU (0 ≤ i, j, h ≤ d). (6)

Another set of equations can be obtained by fixing the distance from two of the vertices u, v, w and counting vertices

at all distances from the third vertex:

d∑
`=1

[` j h] = pUjh − [0 j h],

d∑
`=1

[i ` h] = pVih − [i 0 h],

d∑
`=1

[i j `] = pWij − [i j 0]. (7)

The system of 3d2 equations (7) has d3 integral nonnegative variables [i j h] (1 ≤ i, j, h ≤ d). These equations are

not all linearly independent. However, we can use the triangle inequality to conclude vanishing of some variables.

For example, for 0 ≤ i, j ≤ d and |i − j| > W or i + j < W we have pWij = 0 and so also [i j h] = 0 (0 ≤ h ≤ d).

Usually, there is no single solution, as the number of variables is generally greater than the number of linearly

independent equations, yet some additional information about the structure of the distance-regular graph can

sometimes be obtained. This will be useful in proving Lemmas 5.1, 6.2, 6.3 and Theorem 6.1.

If a Krein parameter qhij is zero, we can obtain another equation for triple intersection numbers.

Theorem 2.1. ([1, Theorem 2.3.2], [2, Theorem 3]) Consider a distance-regular graph with diameter d, dual

eigenmatrix Q and Krein parameters qhij for i, j, h ∈ {0, 1, . . . , d}. For vertices u, v, w ∈ V Γ define

Sijh(u, v, w) :=

d∑
r,s,t=0

QriQsjQth

[
u v w
r s t

]
.

Then Sijh(u, v, w) = 0 whenever qhij = qjih = qijh = 0.

The identity Sijh(u, v, w) = 0 has the same set of variables as the equations (7), however it turns out to be

independent of them in general (when i, j, h 6= 0). Furthermore, there are instances when Sijh(u, v, w) = 0,

Sjhi(u, v, w) = 0 and Shij(u, v, w) = 0 are linearly independent as we will see in Sections 5 and 6.

3 Codes

We now introduce some results and terminology on codes. Let Γ be a graph with diameter d and e a positive integer.

A subset C of the vertex set of Γ is called an e-code if its minimum distance δ := min{∂(u, v) |u, v ∈ C, u 6= v}
is at least 2e + 1, i.e., balls of radius e around the elements of C are all pairwise disjoint. For an e-code C in a

distance-regular graph, its size is bounded above, since
(∑e

i=0

[
u
i

])
|C| ≤ |V Γ| for a vertex u ∈ V Γ. This bound is

known as the sphere packing bound [3, p. 238]. An e-code is called perfect if equality holds in the sphere packing

bound. We will now specialize on codes in distance-regular graphs of odd diameter.

Proposition 3.1. Let Γ be a distance-regular graph of diameter d = 2e+ 1, e ∈ N, and C an e-code in Γ. Then,

|C| ≤ pddd + 2.

Proof. Let u, v ∈ C be two distinct vertices. Then ∂(u, v) = d and the set of vertices at distance d from both u

and v together with these two vertices contains C. The size of this set is pddd + 2 and the result follows. �
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Figure 1: A perfect 1-code in the

Odd graph on 7 points.

If equality is achieved in the above bound, then we call C a maximal e-code.

Proposition 3.2. Let Γ be a distance-regular graph of diameter d = 2e+1, e ∈ N,

with a maximal e-code C. Then cd ≥ ad p
d
dd holds. If equality is achieved, then

each vertex u that is adjacent to a vertex v ∈ C is at distance d from precisely

one vertex in C. In other words, for any u, v, w ∈ V Γ with v, w ∈ C, ∂(u, v) = 1

and ∂(u,w) = d− 1, we have
[
u v w
d d d

]
= 1.

Proof. If |C| = 2, then pddd = 0 and the statement is obvious. Otherwise, let

v, w, x ∈ C be three distinct vertices. As all vertices at distance d from w and x

are in the code, it follows that no neighbour of v is at distance d from both w and

x. So every neighbour of v is at distance d from either one or zero vertices of C.

Therefore, ⋃
w∈C\{x,v}

{
v w
1 d

}
⊆
{
v x
1 d− 1

}
and since the sets on the left-hand side are disjoint, we have ad p

d
dd ≤ cd. If

equality holds, then there are no neighbours u of v that are at distance d from

zero vertices of C and the stated properties of locally regular codes follow. �

Figure 2: A locally regular and last

subconstituent perfect 1-code in the

Hamming graph H(3, 3). This graph

is also 3-homogeneous.

If equality holds in the above bound, then we call C a locally regular e-code.

Proposition 3.3. Let Γ be a distance-regular graph of diameter d = 2e+1, e ∈ N,

and C an e-code in Γ. Then,

|C| ≤ kd∑e
i=0 p

d
id

+ 1. (8)

Proof. Let u ∈ C. Then, C \ {u} is an e-code on Γd(u), so the result follows by

the sphere packing bound and the properties of perfect e-codes. �

If equality is achieved in (8), then we call C a last subconstituent perfect e-code and each vertex v that is at

distance d from a vertex u ∈ C is at distance at most e from precisely one vertex of C.

Corollary 3.4. Let Γ be a distance-regular graph of diameter d = 2e+ 1, e ∈ N, with a maximal e-code C. Then

kd ≥ (pddd + 1)
∑e

i=0 p
d
id holds.

Proof. Since C is maximal, we have |C| = pddd + 2. The result then follows by Proposition 3.3. �

Examples of 1-codes in distance-regular graphs of diameter 3 are shown in Figures 1 and 2. In both figures the

elements of the codes are the filled vertices, with the balls of radius 1 around them outlined. For square vertices,

their distance partitions are also shown.

The vertices of the Odd graph on 7 points, as shown in Figure 1, can be thought of as subsets of size 3 of a set P

with 7 elements, with two vertices being adjacent whenever they are disjoint. It can easily be checked that any two

vertices at distance 2 have precisely two elements in common, while any two vertices at distance 3 have precisely

one common element. If we think of vertices as lines, then a perfect 1-code is achieved by choosing the lines of a
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Fano plane with point set P . Note that this code is not maximal, as p333 = 9 and equality is not achieved in the

bound from Proposition 3.1.

The vertices of the Hamming graph H(3, 3), as shown in Figure 2, can be thought of vectors of length 3 over an

alphabet of size 3, with two vertices being adjacent when they match in exactly two positions of the vector. A

maximal 1-code can be obtained by choosing three vertices such that any two differ in all positions. This code is

also locally regular and last subconstituent perfect, but it is not perfect as there are 6 vertices in the graph that

are at distance 2 from all three vertices in the code (i.e., the ones that match with each code vertex in exactly one

position).

Proposition 3.5. Let Γ be a distance-regular graph of diameter d = 2e + 1, e ∈ N, and C a perfect e-code in Γ.

Then C is also a last subconstituent perfect e-code.

Proof. Let u ∈ C. For every x ∈ Γd(u) there is precisely one vertex v ∈ C \ {u} such that ∂(x, v) ≤ e. Therefore,

kd = (|C| − 1)
∑e

i=0 p
d
id and the code C is last subconstituent perfect. �

Proposition 3.6. Let Γ be a distance-regular graph of diameter 3 with a maximal 1-code C that is both locally

regular and last subconstituent perfect. Set a = a3, p = p333 and c = c2. Then Γ is primitive and its intersection

array is either

{a(p+ 1), cp, a+ 1; 1, c, ap} or (9)

{a(p+ 1), (a+ 1)p, c; 1, c, ap}. (10)

Furthermore, if Γ has intersection array (10), then it is a Shilla graph.

Proof. Since the code C is locally regular, we have c3 = ap and k = a + c3 = a(p + 1) by Proposition 3.2. Since

a = a3 6= 0, the graph Γ is primitive. By [1, Lem. 4.1.7], p323 = a(b1+p(b2−a−1))/c. Then p = p333 = k−1−a−p323
gives us b1 = p(1 + a + c − b2). Taking into account that C is also last subconstituent perfect, we obtain k3 =

(p+ 1)(a+ 1) and therefore b1b2 = cp(a+ 1), i.e., b2(a+ c+ 1− b2) = c(a+ 1). By solving the obtained quadratic

equation for b2 we derive the desired intersection arrays. Finally, we assume Γ has the second intersection array.

It can easily be verified that a = a3 is an eigenvalue of Γ. By [4, Thm. 7] we then have θ1 = a3, so Γ is a Shilla

graph. �

Remark 3.7. The intersection arrays (9) and (10) are often not feasible. Table 2 lists intersection arrays from

the two families that can be found in Brouwer et al. [1, pp. 425–431].

Let Γ be a k-regular graph. If there are integers λ and µ such that the number of common neighbours of any

two distinct vertices is λ when they are adjacent and µ otherwise, then Γ is said to be strongly regular with

parameters (k, λ, µ).

Proposition 3.8. Let Γ be a distance-regular graph with intersection array (9), eigenvalues θ0 > θ1 > θ2 > θ3

and a maximal 1-code C. Then θ2 = −1, the distance graph Γ3 is strongly regular with parameters (k3, λ3, µ3) =

((p+ 1)(a+ 1), p, a+ 1), and C is a perfect 1-code. If the distance graph Γ2 is strongly regular as well, then

a = c+ 1, θ1 = c+ p+ 1, θ3 = −c− 1 and the parameters of the corresponding strongly regular graph are

(k2, λ2, µ2) =
(
(c+ 1)p(p+ 1), (c+ 1)(p2 − p+ 2)− p, (c+ 1)p(p− 1)

)
.
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# intersection array p status # intersection array p status

A1 {5, 4, 2; 1, 1, 4} 4 ! Sylvester graph [1, 13.1A] B1 {6, 4, 2; 1, 2, 3} 1 ! H(3, 3), family (3)

A2 {35, 24, 8; 1, 6, 28} 4 open, family (1), family (2) B2 {12, 10, 2; 1, 2, 8} 2 open

A3 {44, 30, 5; 1, 3, 40} 10 does not exist by [4] B3 {12, 10, 3; 1, 3, 8} 2 ! Doro graph [1, 12.1], family (4)

A4 {48, 35, 9; 1, 7, 40} 5 open, family (2) B4 {18, 10, 4; 1, 4, 9} 1 ! J(9, 3)

A5 {49, 36, 8; 1, 6, 42} 6 open B5 {24, 21, 3; 1, 3, 18} 3 open

A6 {54, 40, 7; 1, 5, 48} 8 open B6 {25, 24, 3; 1, 3, 20} 4 open

A7 {63, 48, 10; 1, 8, 54} 6 open, family (2) B7 {30, 28, 2; 1, 2, 24} 4 open

A8 {80, 63, 11; 1, 9, 70} 7 open, family (2) B8 {40, 33, 3; 1, 3, 30} 3 open

A9 {99, 80, 12; 1, 10, 88} 8 open, family (2) B9 {40, 33, 8; 1, 8, 30} 3 open, family (3)

A10 {119, 96, 18; 1, 16, 102} 6 open, family (1) B10 {50, 44, 5; 1, 5, 40} 4 open

B11 {60, 52, 10; 1, 10, 48} 4 open, family (4)

B12 {65, 56, 5; 1, 5, 52} 4 open

B13 {72, 70, 8; 1, 8, 63} 7 open

B14 {75, 64, 8; 1, 8, 60} 4 open

B15 {80, 63, 12; 1, 12, 60} 3 open

Table 2: Intersection arrays corresponding to (9) and (10) from [1, pp. 425–431].

Proof. Since k = b2 + c3− 1, Γ has eigenvalue −1 and Γ3 is strongly regular with the desired parameters according

to [1, Prop. 4.2.17]. As

|V Γ| = 1 + a(p+ 1) + ap(p+ 1) + (a+ 1)(p+ 1) = (1 + a(p+ 1))(p+ 2) = (1 + k)|C| ,

the sphere packing bound is achieved, so C is a perfect 1-code. The distance graph Γ2 is strongly regular if and

only if c3(a3 + a2 − a1) = b1a2 by [1, Prop. 4.2.17], in which case a = c+ 1, the intersection array of Γ is

{(c+ 1)(p+ 1), cp, c+ 2; 1, c, (c+ 1)p}

and the rest of the statement follows directly. �

Let Γ be a distance-regular graph with intersection array (9). We note that a = c+ 1 for all open cases A2–A10,

but not for A1, i.e., the Sylvester graph. If we assume a = c+ 1 and that Γ additionally has

• a vanishing Krein parameter, then this is precisely q311, which implies Γ is Q-polynomial for the natural

ordering [5]. In this case c = (p2 − 4)/2 and by integrality of c also p = 2r for r ∈ N\{1}, which gives us

precisely the intersection array (1).

• p = c − 2, we obtain the feasible family (2). The Krein bound q311 ≥ 0 is equivalent to c ≥ 6. This family

covers A2, A4, A7, A8 and A9 in Table 2.

Let Γ be a distance-regular graph with intersection array (10). If we assume that Γ has

• q311 = 0, which implies Γ is Q-polynomial for the natural ordering [5], then we have p = 2r− 1, a = t(2r+ 1)

and c = r(r + t) for some r, t ∈ N, so its intersection array is

{2rt(2r + 1), (t(2r + 1) + 1)(2r − 1), r(r + t); 1, r(r + t), t(4r2 − 1)}, t ≥ r ≥ 1 . (11)

The condition t ≥ r is implied by the nonnegativity of q333. Note that for r = 2 and t = 4 we obtain B15. If

Γ is additionally formally self-dual, this implies t = r, which gives us precisely the intersection array (3).
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• θ2 = 0, then a = c(p + 2)/(p + 1), which implies c = r(p + 1) for some r ∈ N and furthermore a = r(p + 2).

Integrality of m1 requires 2r + 1 | p(p+ 1)(p+ 2). Setting p = 2r − 1 gives us precisely the intersection array

(3), while setting p = 2r gives us the feasible family (4).

4 Intersection numbers and eigenmatrices

Let Γ be a distance-regular graph and u, v, w ∈ V Γ. The relations on the triple intersection numbers [i j h]

(0 ≤ i, j, h ≤ d) corresponding to (u, v, w) in the system (7) can be interpreted in terms of distance distributions

corresponding to two vertices (the sizes of parts are the intersection numbers). In this section, we will specify the

intersection numbers and eigenvalues of Γ for (1), (3) and (11), which will be then used in Sections 5 and 6 to

compute the values [i j h].

Let us first define the matrices Hh :=
(
phij
)d
i,j=0

(0 ≤ h ≤ d). For d = 3, we then have:

H1 =


0 1 0 0

1 a1 b1 0

0 b1 p122 p132

0 0 p123 p133

 , H2 =


0 0 1 0

0 c2 a2 b2

1 a2 p222 p232

0 b2 p223 p233

 , H3 =


0 0 0 1

0 0 c3 a3

0 c3 p322 p332

1 a3 p323 p333

 .

Let us suppose Γ has intersection array (1), resp. (3). Then the intersection numbers phij (0 ≤ i, j, h ≤ 3) are

recorded in the matrices diag(k0, k1, k2, k3), H1, H2 and H3. We also compute the entries of the eigenmatrix P

and dual eigenmatrix Q using the sequence of cosines [3, 13.2]. (Recall that we are using the natural ordering of

the minimal idempotents.) For (1), resp. (3), the matrices H1, H2, H3 and P,Q are equal to

H1 :


0 1 0 0

1 2(r2 + r − 1) 4r(r2 − 1) 0

0 4r(r2 − 1) 2r(2r − 1)(2r2 − 1) 4r3

0 0 4r3 2r2

 ,


0 1 0 0

1 r(2r − 1) (2r − 1)s 0

0 (2r − 1)s (2r − 1)2s (2r − 1)s

0 0 (2r − 1)s s

 ;

H2 :


0 0 1 0

0 2(r2−1) (2r−1)(2r2−1) 2r2

1 (2r−1)(2r2−1) 2(4r4−2r3−1) 2r2(2r−1)

0 2r2 2r2(2r−1) 2r2

 ,


0 0 1 0

0 2r2 2r2(2r−1) 2r2

1 2r2(2r−1) r(4r2+3)(2r−1)−2 2r(s−2r)

0 2r2 2r(s−2r) 2r2

 ;

H3 :


0 0 0 1

0 0 2r(2r2−1) 2r2−1

0 2r(2r2−1) 2r(2r−1)(2r2−1) 2r(2r2−1)

1 2r2−1 2r(2r2−1) 2r

 ,


0 0 0 1

0 0 r(4r2−1) r(2r+1)

0 r(4r2−1) (s−2r)(4r2−1) r(4r2−1)

1 r(2r+1) r(4r2−1) 2r−1

 ;

P = Q :


1 (2r2−1)(2r+1) 2r(2r+1)(2r2−1) 2r2(2r+1)

1 2r2+2r−1 −2r −2r2

1 −1 −2r 2r

1 −2r2+1 4r2−2 −2r2

 ,


1 2r2(2r+1) (4r2−1)s 2rs

1 r(2r+1) 0 −s
1 0 −2r−1 2r

1 −r(2r+1) 4r2−1 −2r2+r

 ;

where s = 2r2 + r + 1. As P = Q, the graph Γ is formally self-dual. In particular, this implies phij = qhij for 0 ≤
i, j, h ≤ 3. For (1) the distance graphs Γ2 and Γ3 are strongly regular with eigenvalues 2r(2r+1)(2r2−1), 4r2−2,−2r

and 2r2(2r + 1), 2r,−2r2, respectively (see the last two columns of P ).
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Let us now suppose Γ has intersection array (11). In Sections 5 and 6, we will need the following data:

a1 = 2r(t− 1) + t, a2 = 2r2(2t− 1), a3 = t(2r + 1), c3 = p323 = t(4r2 − 1),

p133 = s, b2 = c2 = p233 = r(r + t), p333 = 2r − 1,

P =


1 2rt(2r+1) 2st(4r2−1)/(r+t) 2rs

1 t(2r + 1) 0 −s
1 t− r −2t− 1 r + t

1 −r(2r+1) 4r2 − 1 −r(2r−1)

 ,

Q =


1 2r 2rst(4r2 − 1) 2st

1 1 −s(r − t)(2r − 1) −s
1 0 −r(r+t)(2t+1) r + t

1 −1 t(r + t)(4r2 − 1) −t(2r−1)

 · diag


1

(2rs− r − t)/(r + t)

(2r + 1)/((r + t)(2r2 + t))

(2rs−r−t)/((r+t)(2r2+t))

 ,

where s = 2rt+t+1. Unlike in the previous cases, Γ is not formally self-dual in general. It is, however, Q-polynomial

with q311 = q113 = q131 = 0.

5 Triple intersection numbers

Let Γ be a distance-regular graph with intersection array (1) or (11). We show that there exists a maximal 1-code

in the graph Γ (Theorem 5.2) and then show that it is also locally regular and last subconstituent perfect. Note

that the results in this section also apply to the family (3) that is a subfamily of (11). We start with a preliminary

result that will be crucial in the proof of Theorem 5.2.

Lemma 5.1. Let Γ be as distance-regular graph with intersection array (1) or (11) and u, v and w its vertices

such that ∂(u, v) = ∂(u,w) = ∂(v, w) = 3. Then the following equations hold:[
u v w
1 3 3

]
=
[
u v w
3 1 3

]
=
[
u v w
3 3 1

]
=
[
u v w
2 3 3

]
=
[
u v w
3 2 3

]
=
[
u v w
3 3 2

]
= 0, (12)[

u v w
3 3 3

]
= p333 − 1. (13)

Proof. Set α =
[
u v w
1 2 2

]
, β =

[
u v w
2 1 2

]
, γ =

[
u v w
2 2 1

]
, and δ =

[
u v w
3 3 3

]
. The system of equations (7) has a

four-parametrical solution that can be expressed with α, β, γ and δ that are integral and nonnegative.

The general solution to the system is shown in Table 3. The table is split in three slices, each of which contains all

the variables
[
u v w
i j h

]
for a fixed i. By arranging the slices from bottom to top, we get a 3× 3× 3 cube with the

variables
[
u v w
i j h

]
(1 ≤ i, j, h ≤ 3) as its cells (see (6) and (7)).

Case 1. For the intersection array (1), we now obtain from Table 3:

2r2 − 1−
[
u v w
1 3 3

]
=
[
u v w
1 2 3

]
=
[
u v w
1 3 2

]
= 4r3 − 2r − α,

2r2 − 1−
[
u v w
3 1 3

]
=
[
u v w
3 1 2

]
=
[
u v w
2 1 3

]
= 4r3 − 2r − β,

2r2 − 1−
[
u v w
3 3 1

]
=
[
u v w
2 3 1

]
=
[
u v w
3 2 1

]
= 4r3 − 2r − γ,

α+ β + γ + δ +
[
u v w
2 2 2

]
= 8r4 − 6r2 + 2r,

γ −
[
u v w
2 3 2

]
=
[
u v w
2 3 3

]
= 4r3 − 2r2 − α− δ,

α−
[
u v w
2 2 3

]
=
[
u v w
3 2 3

]
= 4r3 − 2r2 − β − δ,

β −
[
u v w
3 2 2

]
=
[
u v w
3 3 2

]
= 4r3 − 2r2 − γ − δ.

(14)
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3 p
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3 p
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p
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3
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01
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10

p
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3p
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3p
01

3

10

3p

p
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3

p
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3

p
03

3

p
01

3

p
00

3 p
10

3

p3
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p3

20

p
30

3p
20

3

p
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3

p3

00

p
00

3

p
31

3

n
n

k
k

k

k n

k

k

1

1
1

1

1

1
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[ 1 1 1 ] = 0 ∆ [ 1 2 1 ] = 0 ∆ [ 1 3 1 ] = 0 ∆

[ 1 1 2 ] = 0 ∆ [ 1 2 2 ] = α [ 1 3 2 ] = c3 − α
[ 1 1 3 ] = 0 ∆ [ 1 2 3 ] = c3 − α [ 1 3 3 ] = a3 − c3 + α

[ 2 1 1 ] = 0 ∆ [ 2 2 1 ] = γ [ 2 3 1 ] = c3 − γ
[ 2 1 2 ] = β [ 2 2 2 ] = p322−γ−[ 2 2 3 ] [ 2 3 2 ] = p323−c3+γ−[ 2 3 3 ]

[ 2 1 3 ] = c3 − β [ 2 2 3 ] = p323−c3+α−[ 3 2 3 ] [ 2 3 3 ] = p333+c3−a3−1−α−δ

[ 3 1 1 ] = 0 ∆ [ 3 2 1 ] = c3 − γ [ 3 3 1 ] = a3 − c3 + γ

[ 3 1 2 ] = c3 − β [ 3 2 2 ] = p332−c3+β−[ 3 3 2 ] [ 3 3 2 ] = p333+c3−a3−1−γ−δ
[ 3 1 3 ] = a3−c3+β [ 3 2 3 ] = p333+c3−a3−1−β−δ [ 3 3 3 ] = δ

Table 3: The general solutions for (7) in the setting of Lemma 5.1. The values marked with ∆ are zero due to the triangle inequality.

Since q311 = q113 = q131 = 0, Theorem 2.1 and (14) give the system of three equations

(1− r)α+ rβ + rγ + (1− r)δ = 4r4 + 2r3 − 6r2 + 2r, (15)

rα+ (1− r)β + rγ + (1− r)δ = 4r4 + 2r3 − 6r2 + 2r, (16)

rα+ rβ + (1− r)γ + (1− r)δ = 4r4 + 2r3 − 6r2 + 2r. (17)

By solving (15–17) for α, β and γ, we obtain

α = β = γ = 4r3 − 2r2 − 2r(2r − 1)− δ(r − 1)

r + 1
. (18)

Plugging α, β, γ expressed by δ and r in equation (18) into the last three equations of (14) gives us[
u v w
2 3 3

]
=
[
u v w
3 2 3

]
=
[
u v w
3 3 2

]
=

2r(2r − 1− δ)
r + 1

,[
u v w
1 3 3

]
=
[
u v w
3 1 3

]
=
[
u v w
3 3 1

]
=

(r − 1)(−2r + 1 + δ)

r + 1
,

implying δ = 2r − 1 = p333 − 1. Therefore, the system of equations (14–17) has a single solution that agrees with

the statement of the lemma.

Case 2. For the intersection array (11), we obtain

t(2r + 1)−
[
u v w
1 3 3

]
=
[
u v w
1 2 3

]
=
[
u v w
1 3 2

]
= t(4r2 − 1)− α,

t(2r + 1)−
[
u v w
3 1 3

]
=
[
u v w
3 1 2

]
=
[
u v w
2 1 3

]
= t(4r2 − 1)− β,

t(2r + 1)−
[
u v w
3 3 1

]
=
[
u v w
2 3 1

]
=
[
u v w
3 2 1

]
= t(4r2 − 1)− γ,[

u v w
2 3 3

]
= 2(r − 1)(2rt+ t+ 1)− α− δ,[

u v w
3 2 3

]
= 2(r − 1)(2rt+ t+ 1)− β − δ,[

u v w
3 3 2

]
= 2(r − 1)(2rt+ t+ 1)− γ − δ.

(19)

As the Krein parameters q311, q113 and q131 of Γ vanish, we derive additional equations by Theorem 2.1 and (19).

Since Q21 = 0, the triple intersection numbers [i j h] where at least two of i, j, h are 2 are always multiplied by

zero in the equation from Theorem 2.1, so we omit them in (19). The obtained equations are

− (r + 1)α+ rβ + rγ − rδ = 2(r − 1)(2r2t− rt− r − t), (20)

rα− (r + 1)β + rγ − rδ = 2(r − 1)(2r2t− rt− r − t), (21)

rα+ rβ − (r + 1)γ − rδ = 2(r − 1)(2r2t− rt− r − t). (22)
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By solving (20–22) for α, β, γ, we obtain

α = β = γ = 4r2t− 2rt− 2r − 2t+
rδ

r − 1
. (23)

Plugging α, β, γ expressed in terms of δ and r in equation (23) into the last three equations of (19) gives us[
u v w
2 3 3

]
=
[
u v w
3 2 3

]
=
[
u v w
3 3 2

]
=

(2r − 1)(2r − 2− δ)
r − 1

,[
u v w
1 3 3

]
=
[
u v w
3 1 3

]
=
[
u v w
3 3 1

]
=

r(−2r + 2 + δ)

r − 1
,

implying δ = 2r − 2 = p333 − 1. Therefore, the system of equations (19–22) has a single solution that agrees with

the statement of the lemma. �

Theorem 5.2. Let Γ be a distance-regular graph with intersection array (1) or (11). Then, for any two vertices

u, v of Γ with ∂(u, v) = 3, the graph Γ contains a unique maximal 1-code C such that u, v ∈ C, i.e. any 1-code in

Γ containing u and v is a subset of C.

Proof. From the equations (12) of Lemma 5.1 we see that choosing three vertices u, v, w in the graph Γ at distance

3 from each other gives us no vertices at distance 3 from u and v, and at distance 1 or 2 from w. Instead, the

equation (13) tells us that there are p333 − 1 vertices at distance 3 from u, v and w. Since substituting w with each

of the vertices from
{
u v
3 3

}
will give us the same equations, it means that all p333 vertices from

{
u v
3 3

}
are pairwise

at distance 3 from each other. The set C := {u, v} ∪
{
u v
3 3

}
is therefore a maximal 1-code with p333 + 2 vertices,

as defined in Section 3. Since C contains all the vertices at distance 3 from u and v, every 1-code of Γ containing

both u and v is a subset of C. �

We conclude this section with a lemma and its corollary.

Lemma 5.3. Let Γ be a distance-regular graph with intersection array (1) or (11) and C its maximal 1-code. Then

C is both locally regular and last subconstituent perfect.

Proof. Since we have c3 = p323 = a3 p
3
33 (see Section 4), C is locally regular by Proposition 3.2 and last subcon-

stituent perfect by Proposition 3.3. �

Corollary 5.4. Let Γ be a distance-regular graph with intersection array (1) or (11) and u′, v, w vertices of Γ such

that ∂(u′, v) = 1, ∂(u′, w) = 2 and ∂(v, w) = 3. Then we have
[
u′ v w
3 3 3

]
= 1.

Proof. By Theorem 5.2, a maximal 1-code C such that v, w ∈ C is uniquely defined by the vertices v, w at distance

3. The result then follows by Lemma 5.3 and Proposition 3.2. �

6 Nonexistence

We proceed in a manner similar to what we did in the proof of Lemma 5.1, only this time we choose three vertices

u′, v, w at pairwise distances 1, 2 and 3. The general solution of the system we obtain in this case is shown in

Table 4. Note that
[
u′ v w
3 3 3

]
= 1 holds by Corollary 5.4.
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Theorem 6.1. A distance-regular graph with intersection array (1) does not exist. In particular, there is no

distance-regular graph with intersection array A2 or A10, i.e.,

{35, 24, 8; 1, 6, 28}, or {119, 96, 18; 1, 16, 102} .

Proof. Let Γ be a distance-regular graph with intersection array (1) and u′, v and w′ its vertices such that

∂(u′, v) = 1, ∂(u′, w) = 2 and ∂(v, w) = 3. Set α′ =
[
u′ v w
1 1 2

]
and β′ =

[
u′ v w
2 2 1

]
. The intersection numbers from

Table 4 can be expressed in terms of r (see Section 4), giving:

−2r + α′ +
[
u′ v w
1 1 3

]
=
[
u′ v w
1 2 1

]
= 2r2 − 2,

2r − 1 +
[
u′ v w
1 2 2

]
=
[
u′ v w
2 2 3

]
= 4r3 − 2r2 − α′,[

u′ v w
2 1 2

]
= 4r3 − 2r − 1− α′,[

u′ v w
1 2 3

]
=
[
u′ v w
2 1 3

]
= −2r + 1 + α′,

1 +
[
u′ v w
2 3 1

]
=
[
u′ v w
3 2 1

]
= 4r3 − 2r2 − 2r + 2− β′,[

u′ v w
2 2 2

]
= 8r4 − 8r3 − 2r2 + 2r + α′ − β′,

2r2 − 1−
[
u′ v w
3 3 2

]
=
[
u′ v w
3 3 1

]
= −4r3 + 4r2 + 2r − 2 + β′,

−β′ +
[
u′ v w
2 3 2

]
=
[
u′ v w
3 2 3

]
= 2r2 − 1,

−β′ +
[
u′ v w
3 2 2

]
=
[
u′ v w
2 3 3

]
= 2r − 1.

(24)

Since q311 = q113 = 0, Theorem 2.1 and (24) give the system of equations

− r2α′ + (r − 1)2β′ = 4r5 − 14r4 + 10r3 + 2r2 − 4r + 1, (25)

−rα′ + rβ′ = 4r4 − 6r3 − 2r2 + 4r − 1. (26)

By solving (25–26) for α′ and β′, we obtain

α′ = 2r2 + r − 3 +
1

r
, (27)

β′ = (4r2 − 1)(r − 1). (28)

It follows from the equation (27) and the integrality of α′ and r that the system of equations (24–26) does not have

any solutions for r > 1. We must then conclude that the choice of the vertices u′, v, w of Γ is not possible. This

contradicts the fact that p123 = 4r3 > 0. Therefore, the graph Γ does not exist. �

The above result also shows the nonexistence of the first member of the infinite family of formally self-dual graphs

with m3 vertices and intersection array: {7(m− 1), 6(m− 2), 4(m− 4); 1, 6, 28}, m ≥ 6, which is realized when m

is a power of two by a bilinear forms graph, see Brouwer et al. [1, p. 425].

Lemma 6.2. Let Γ be a distance-regular graph with intersection array (11) and u′, v and w its vertices such that

∂(u′, v) = 1, ∂(u′, w) = 2 and ∂(v, w) = 3. Then,
[
u′ v w
1 1 3

]
= t holds.

Proof. Let α′ and β′ be defined as in the proof of Theorem 6.1. The intersection numbers from Table 4 can be
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[ 1 1 1 ] = 0 ∆ [ 1 2 1 ] = c2 [ 1 3 1 ] = 0 ∆

[ 1 1 2 ] = α′ [ 1 2 2 ] = a2 − α′ [ 1 3 2 ] = 0 ∆

[ 1 1 3 ] = a1 − α′ [ 1 2 3 ] = b2 − a1 − 1 + α′ [ 1 3 3 ] = 0 ∆

[ 2 1 1 ] = 0 ∆ [ 2 2 1 ] = β′ [ 2 3 1 ] = a2 − β′

[ 2 1 2 ] = c3−1−α′ [ 2 2 2 ] = p122 − β′ − [ 2 2 3 ] [ 2 3 2 ] = p332 − [ 3 3 2 ]

[ 2 1 3 ] = a3−a1+α′ [ 2 2 3 ] = p223−p333+a1−a3+1−α′ [ 2 3 3 ] = p333 − 1

[ 3 1 1 ] = 0 ∆ [ 3 2 1 ] = c3 − c2 − β′ [ 3 3 1 ] = a3 − a2 + β′

[ 3 1 2 ] = 0 ∆ [ 3 2 2 ] = p232 − [ 3 3 2 ] [ 3 3 2 ] = p133−1−[ 3 3 1 ]

[ 3 1 3 ] = 0 ∆ [ 3 2 3 ] = p233 − 1 [ 3 3 3 ] = 1

Table 4: The general solutions for (7) in the setting of the proofs of Theorem 6.1 and Lemma 6.2. The values marked with ∆ are zero

due to the triangle inequality.

expressed in terms of r and t (see Section 4), giving:[
u′ v w
1 1 3

]
= 2r(t− 1) + t− α′,

1 +
[
u′ v w
3 2 3

]
=
[
u′ v w
1 2 1

]
= r(r + t),

(r + 1)(1− r + t) +
[
u′ v w
1 2 3

]
=
[
u′ v w
2 1 3

]
= 2r + α′,[

u′ v w
3 3 2

]
=
[
u′ v w
2 3 1

]
= 2r2(2t− 1)− β′,

r(r + t)−
[
u′ v w
3 3 1

]
=
[
u′ v w
3 2 1

]
= t(4r2 − 1)− r(r + t)− β′,[

u′ v w
2 3 3

]
= 2r − 2.

(29)

As in Case 2 of Lemma 5.1, we omit the values of [i j h] where at least two of i, j, h are 2. Since q311 = q113 = 0,

Theorem 2.1 and (29) give the system of equations

−rα′ + (r + 1)β′ = 2r(r2(2t− 1)− t), and − (r + 1)α′ + rβ′ = 2r(r(r − 1)(2t− 1)− t+ 1).

By solving it for α′ and β′, we get α′ = 2r(t− 1), β′ = 2r(2rt− r − t) and
[
u′ v w
1 1 3

]
= 2r(t− 1) + t− α′ = t. �

We now restrict our focus to the family of distance regular graphs with intersection array (3), which is a subfamily

of (11) for t = r.

Lemma 6.3. Let Γ be a distance-regular graph with intersection array (3) and u′, v and w′ its vertices, such that

∂(u′, v) = ∂(u′, w′) = ∂(v, w′) = 1. Then, we have either

(a)
[
u′ v w′

1 1 1

]
= 0,

[
u′ v w′

2 3 3

]
= 2r2 − r + 3 and

[
u′ v w′

3 3 3

]
= 2r − 2, or

(b)
[
u′ v w′

1 1 1

]
= r,

[
u′ v w′

2 3 3

]
= 2r2 + 4 and

[
u′ v w′

3 3 3

]
= r − 3.

Proof. Set γ′ =
[
u′ v w′

1 1 1

]
and δ′ =

[
u′ v w′

3 3 3

]
. The system of equations (7) has a biparametrical solution that

can be expressed with γ′ and δ′ that are integral and nonnegative. Again, we show the general solution of the

system in Table 5. [
u′ v w′

1 1 2

]
=
[
u′ v w′

1 2 1

]
=
[
u′ v w′

2 1 1

]
= 2r2 − r − 1− γ′,[

u′ v w′

2 3 3

]
=
[
u′ v w′

3 2 3

]
=
[
u′ v w′

3 3 2

]
= 2r2 + r + 1− δ′.

(30)

Once again we use the vanishing of q311 (see Theorem 2.1) and (30). Since Q21 = 0, we again omit the values [i j h]

where at least two of i, j, h are 2. This time we obtain the equation (r + 1)γ′ + rδ′ = 2r2 − 2r. Since γ′ and δ′
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[ 1 1 1 ] = γ′ [ 1 2 1 ] = a1 − 1− γ′ [ 1 3 1 ] = 0 ∆

[ 1 1 2 ] = a1 − 1− γ′ [ 1 2 2 ] = b1 − a1 + 1 + γ′ [ 1 3 2 ] = 0 ∆

[ 1 1 3 ] = 0 ∆ [ 1 2 3 ] = 0 ∆ [ 1 3 3 ] = 0 ∆

[ 2 1 1 ] = a1 − 1− γ′ [ 2 2 1 ] = b1 − a1 + 1 + γ′ [ 2 3 1 ] = 0 ∆

[ 2 1 2 ] = b1 − a1 + 1 + γ′ [ 2 2 2 ] = p122 − [ 2 1 2 ]− [ 2 3 2 ] [ 2 3 2 ] = p123 − p133 + δ′

[ 2 1 3 ] = 0 ∆ [ 2 2 3 ] = p123 − p133 + δ′ [ 2 3 3 ] = p133 − δ′

[ 3 1 1 ] = 0 ∆ [ 3 2 1 ] = 0 ∆ [ 3 3 1 ] = 0 ∆

[ 3 1 2 ] = 0 ∆ [ 3 2 2 ] = p123 − p133 + δ′ [ 3 3 2 ] = p133 − δ′

[ 3 1 3 ] = 0 ∆ [ 3 2 3 ] = p133 − δ′ [ 3 3 3 ] = δ′

Table 5: The general solutions for (7) in the setting of Lemma 6.3. The values marked with ∆ are zero due to the triangle inequality.

are integral and nonnegative, we derive two solutions, one for γ′ = 0 and δ′ = 2r − 2, and another for γ′ = r and

δ′ = r − 3. Thus

(a) δ′ =
[
u′ v w′

3 3 3

]
= 2r − 2 ⇒

[
u′ v w′

1 1 1

]
= γ′ = 0,[

u′ v w′

2 3 3

]
= 2r2 + r + 1− δ′ = 2r2 − r + 3;

(b) δ′ =
[
u′ v w′

3 3 3

]
= r − 3 ⇒

[
u′ v w′

1 1 1

]
= γ′ = r,[

u′ v w′

2 3 3

]
= 2r2 + r + 1− δ′ = 2r2 + 4.

�

Lemma 6.4. Let Γ be a distance-regular graph with intersection array (3) and u′, v its adjacent vertices. Then

there are exactly x =
r(2r − 1)(3− r)

r + 1
vertices w′ ∈

{
u′ v
1 1

}
such that

[
u′ v w′

1 1 1

]
= 0.

Proof. Let x be the number of vertices w′1 ∈
{
u′ v
1 1

}
such that

[
u′ v w′1
1 1 1

]
= 0, and therefore

[
u′ v w′1
2 3 3

]
=

2r2 − r + 3. For the remaining a1 − x vertices w′2 ∈
{
u′ v
1 1

}
,
[
u′ v w′2
1 1 1

]
= r and

[
u′ v w′2
2 3 3

]
= 2r2 + 4 hold. A

two way count of the pairs (w′, w) such that w′ ∈
{
u′ v
1 1

}
, w ∈

{
u′ v
2 3

}
and δ(w,w′) = 3 gives us the relation[

u′ v w′1
2 3 3

]
x+

[
u′ v w′2
2 3 3

]
(a1 − x) =

[
u′ v w
1 1 3

]
p123, which has the desired x as its only solution. �

Theorem 6.5. A distance-regular graph Γ with intersection array (3) and r ≥ 2 does not exist. In particular,

there is no distance-regular graph with intersection array B9, i.e., {40, 33, 8; 1, 8, 30}.

Proof. We consider three cases.

Case r = 2. Let u′ and v be two adjacent vertices of Γ, and w′ ∈
{
u′ v
1 1

}
. By Lemma 6.3,

[
u′ v w′

3 3 3

]
= 2r−2 = 2

must hold for all a1 = 6 choices of w′ (as the other option is r− 3 = −1 < 0 and therefore invalid). However, even

this is not possible, since by Lemma 6.4, this is only true for x = 2 choices of w′. Hence the graph Γ does not exist.

Case r = 3. Let u′ and v be two adjacent vertices of Γ and w′ any of their a1 = 15 common neighbours. By

Lemma 6.4, we have x = 0, so
[
u′ v w′

1 1 1

]
= r = 3. Therefore, the graph induced on the common neighbours of u′

and v has 15 vertices and valency 3. This contradicts the hand-shake lemma, so Γ does not exist.

Case r > 3. By Lemma 6.4, x < 0 for r > 3, so Γ does not exist. �
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7 Final remarks

We conclude our study with some remarks and pose some questions on the topic of this article.

Looking at the known examples of distance-regular graphs of diameter 3 with maximal 1-codes, it becomes natural

to ask whether more general results could be obtained. For example, is a maximal 1-code in a distance-regular

graph of diameter 3 always last subconstituent perfect? Is it always locally regular if the graph is additionally

primitive? Are there, besides the Sylvester graph, any other graphs Γ with intersection array (9) such that Γ2 is

not strongly regular? Can we find more feasible families of distance-regular graphs that cover more examples from

Table 2?

In Brouwer et al. [1, pp. 425–431] there are 10 feasible intersection arrays that provide potential counterexamples

to the first two questions (i.e., strict inequalities in Proposition 3.2 and Corollary 3.4):

(C1) {22, 16, 5; 1, 2, 20}, (C2) {35, 30, 3; 1, 2, 25}, (C3) {39, 30, 4; 1, 5, 36}, (C4) {44, 35, 3; 1, 4, 42}, (C5) {44, 36, 5; 1, 9, 40},
(C6) {44, 42, 5; 1, 7, 40}, (C7) {49, 36, 5; 1, 4, 45}, (C8) {74, 63, 5; 1, 9, 70}, (C9) {80, 72, 9; 1, 12, 72}, (C10) {90, 78, 7; 1, 13, 84}.

The existence of a graph with an intersection array from the above list and a maximal 1-code would provide a

negative answer to both questions. We have not found a feasible intersection array for which equality holds in only

one of the inequalities.

Besides the general proof given in Sections 5 and 6, some proofs of nonexistence exist for certain special cases.

For the case of a graph Γ with intersection array (1) and r > 3, an alternative approach due to K. Coolsaet and

M. Urlep independently (private communication) can be taken, by showing that Γ is locally strongly regular with

parameters k′ = 2(r2 + r − 1) and λ′ = µ′ = 2r − 1. The nonexistence then follows from a two way counting of

edges between
{
u′ w′

1 1

}
and

{
u′ w′

1 2

}
, where ∂(u′, w′) = 1, which leads to a contradiction.

An alternative proof for the nonexistence of a graph Γ with intersection array (3) and r = 2 was given by M. Urlep

and the second author. For two adjacent vertices u′ and w′ of Γ, we compare the two way count of edges between{
u′ w′

1 1

}
and

{
u′ w′

2 2

}
to the two way count of 2-paths starting and ending in

{
u′ w′

1 1

}
with the midpoint in{

u′ w′

2 2

}
, and obtain a contradiction.
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