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OBZORNIK ZA MATEMATIKO IN FIZIKO

LJUBLJANA, MAREC 1999

letnik 46, številka 2, strani 33—64

Glasilo Društva matematikov, fizikov in astronomov Slovenije, 1001 Ljubljana,

Jadranska c. 19, p.p. 2964, telefonska št. (061) 17-66-553, številka žiro računa

50106-678-47233, devizna nakazila SKB banka d.d. Ljubljana, sWIFT: SKBASI2X,

številka računa 429619, Ajdovščina 4, Ljubljana.

Uredniški odbor: Miran Černe (glavni urednik), Boris Lavrič (urednik za

matematiko in odgovorni urednik), Martin Čopič (urednik za fiziko), Boštjan Jaklič

(tehnični urednik).

Računalniško oblikoval Martin Zemljič.

Člani društva prejemajo Obzornik brezplačno. Celoletna članarina 3.000 SIT.

Naročnina v knjigarnah in za ustanove 6.000 SIT, za študente 1.500 SIT, za tujino

25 EUR. Posamezna številka za člane 600 SIT, stare številke 400 SIT.

Založilo DMFA — založništvo. Tisk: Tiskarna KURIR. Naklada 1500 izvodov.

Revijo sofinancirata Ministrstvo za znanost in tehnologijo ter Ministrstvo za

šolstvo in šport.

Po mnenju MZT št. 415-52/92 z dne 5.2.1992 šteje revija med proizvode iz

13. točke tarifne št. 3 zakona o prometnem davku, za katere se plačuje 5% davek

od prometa proizvodov.

DMFA je včlanjeno v Evropsko matematično društvo (EMS), v Mednarodno

matematično unijo (IMU), v Evropsko fizikalno društvo (EPS) in v Mednarodno

združenje za čisto in uporabno fiziko ([UPAP). DMFA ima pogodbo o recipročnosti

z Ameriškim matematičnim društvom (AMS).

(0 1999 DMFA Slovenije — 1383 Poštnina plačana na pošti 1102 Ljubljana

POSEBNA ŠTEVILKA

ob drugem srečanju iz linearne algebre

Bled 1999

To številko sta strokovno uredila Matjaž Omladič in Tomaž Košir, jezikovno pa

jo je pregledala Anesa Bukič.

Na ovitku: Marcel Duchamp, Pot od device do neveste, 1912.



MATJAŽ OMLADIČ

DRUGO Sl]

V prispevku predstavimo srečanje iz linearne algebre, ki bo letos junija že drugič

potekalo na Bledu. Podamo tudi povzetke vabljenih predavanj za letošnje srečanje.

THE SECOND MEETING IN LINEAR ALGEBRA

BLED 1999

An introduction of the second meeting in Linear Algebra which will be held at Bled

in June 1999 is given. Abstracts of the invited talks for the meeting are listed.

Linearna algebra je zanimiva veja matematike, ki zadnje čase vse bolj

pridobiva na popularnosti. Mazlog za to je njena široka uporabnost v

različnih drugih vejah matematike in v drugih vedah. Prav zato se z njo

ukvarjajo ljudje različnih zanimanj in različnih predznanj. K temu morda

prispeva tudi dejstvo, da je mnoge probleme linearne algebre razmeroma

lahko formulirati in so zato ti problemi (ne pa nujno tudi njihove rešitve)

lahko razumljivi razmeroma širokemu krogu matematikov različnih profilov.

Tudi znanstvenih srečanj s tega področja je veliko. Zato se kaže potreba po

organizaciji manjših srečanj, na katerih bi se sestajali ljudje sorodnih inte-

resov v linearni algebri. Blejsko srečanje namenja pozornost tistemu delu

linearne algebre, kjer se stika algebra s funkcionalno analizo. Ta stik ima v

razvoju slovenske matematike poseben pomen, saj ga je pri nas prvi gojil

profesor Vidav, za njim pa še mnogi drugi slovenski matematiki. Tako se je

v Sloveniji razvila prava šola, ki se ukvarja s tem področjem. Naši matema-

tiki pa imajo na tem področju razvito tudi bogato mednarodno sodelovanje.

Zato ni čudno, da so lahko pričeli z organizacijo teh srečanj pri nas. Prvo

blejsko srečanje iz linearne algebre je potekalo od 20. 5. do 31. 5. 1996 v

Hotelu Park na Bledu. Udeležili so se ga mnogi ugledni gosti iz tujine: Ra-

jendra Bhatia (New Delhi, Indija), Paul A. Binding (Calgary, Kanada), nie

zius Grunenfelder (Halifax, Kanada), John Holbrook (Guelph, Kanada),

A. Jafarian (New Haven, ZDA), Charles R. Johnson (Williamsburg, ZDA),
Thomas J. Laffey (Dublin, Irska), Heinz Langer (Dunaj, Avstrija), Raphael

Loewy (Haifa, Izrael), Martin Mathieu (Tubingen, ZRN), Branko Najman

Zagreb, Hrvaška), Denes Petz (Budimpešta, Madžarska), Steven J. Pierce

San Diego, ZDA), Vlastimil Ptak (Praga, Češka), Heydar Radjavi (Halifax,
Kanada), Leiba Rodman (Willlamsburg, ZDA), Peter Rosenthal (Toronto,

Kanada) in Jaroslav Zemanek (Varšava, Poljska). Poleg teh so se srečanj

udeležili tudi mnogi slovenski matematiki, tako ugledni profesorji kot tudi

podiplomski študentje. Podobno kvalitetno udeležbo pričakujemo tudi le-
tos, ko so svojo namero po sodelovanju poleg mnogih izmed zgoraj naštetih

potrdili tudi: Man-Duen Choi (Toronto, Kanada), Raul Curto (lowa City,

ZDA), Alexander S. Fainshtein (Magnitogorsk, Rusija) in Wojtek Wojtinsky

(Varšava, Poljska). Letošnje srečanje bo potekalo v Hotelu Park na Bledu

od 1. 6: do 10. 6. 1999. Tudi tokrat nameravamo srečanje organizirati na
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podoben način kot pred tremi leti. Prve jutranje ure bodo namenjene va-

bljenim predavanjem, ki naj bi pomenila uvod v nadaljnje delo. Kasneje se

bomo organizirali v delavnicah, kjer se bomo ukvarjali s konkretnimi odpr-

timi problemi. Nekoliko v nasprotju z navado na podobnih srečanjih bomo

tako lahko posvetili več časa premišljevanju o problemih kot pa pripove-

dovanju formalnih predavanj. 'Ta način dela se je izkazal kot zelo ploden

ob prvem srečanju, ko so izsledki dela mnogih delovnih skupin predstavljali

osnovo za nekatere članke, ki so bili kasneje objavljeni v mednarodnih znan-

stvenih revijah. S tega zornega kota je bila morda najuspešnejša delovna

skupina za študij nerazcepnosti in trikotljivosti operatorskih polgrup, ki je

v toku srečanja v celoti rešila zanimiv problem, ki je že izšel kot članek sed-

mih avtorjev v ugledni ameriški reviji Journal of Functional Analysis.

POVZETKI VABLJENIH PREDAVANJ ZA LETOŠNJE SREČANJE

ABSTRACTS OF INVITED TALKS FOR THE MEHFTING IN JUNE 1999

pa

COMPLETELY POSITIVE MATRICES, GRAPHS WITH NO LONG

ODD CYCLE AND GRAPHS WITH NO SHORT ODD CYCLE

AVRAM BERMAN

Department of Mathematics, Technion—lsrael Institute of Technology, Haifa, Israel.

A matrix A is completely positive if it can be decomposed as A — BB',

where B is a (not necessarily sguare) elementwise nonnegative matrix.

An obvious necessary condition for a symmetric nonnegative matrix to be

completely positive is that it is positive semi definite. This condition is not

sufticient. A sufficient condition for a symmetric nonnegative matrix to be

completely positive is that its comparison matrix is positive semi definite.

[his condition, due to Drew, Johnson and Loewy, is not necessary. 'The

sufficient condition is necessary if the graph of the matrix is triangle free

(contains no short odd cycles). The necessary condition is sufficient if the

graph contains no odd cycle of length greater than 4 (long odd cycle). We

will discuss the relationship between these two results.

The smallest number of columns of 5 in the decomposition A < BB'

is called the cp-rank of A. We will discuss some results and conjectures on

bounds for the cp-rank.

MULTIPARAMETER STURM-LIOUVILLE PROBLEMS WITH

EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS

TIRTHANKAR BHATTACHARYYA

(Joint work with Paul Binding and Karim Seddighi.)

Mathematics- Statistics Unit, Indian Statistical Institute, Bangalore, India.

Linked eguations
mn

—ji Se diti < > Ajrijvi, 151,2 (1)
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are studied on |0,1| subject to boundary conditions of the form

y;(0) cos a; — y; (0) sin a; (2)

biyi(1) — diyi(1) — eTA(ciy/(1) — aswi(1)), (3)

where |e; ea :::e,| € IR"%" is an arbitrary matrix, ajd; — b;c; A 0 for all z

and A < (A;,As,...,A,) are parameters. Results are given on existence,

location, asymptotics and perturbation of the eigenvalues A; and oscillation

of the eigenfunctions y;.

So far there seems to be no analysis of Sturm theory with A-dependent

boundary conditions for more than one parameter, and it is our aim to

start such a theory by considering a special case. We study (1) subject to

(2) and (3). For n < 2, we study the eigencurves for (1) for each fixed %

and we obtain expressions for the derivatives EVI along the eigencurves, and

certain asymptotics. We give the basic existence and unigueness theorem

for eigenvalues A and we obtain an oscillation theorem which generalizes

all the classical results. For n > 2, the theory of commuting self-adjoint

operators on a Krein space arises naturally in the context. We refine the

analysis to show existence and completeness under a general set-up and

various definiteness conditions.

FREDHOLM FAMILIES OF OPERATORS GENERATING

NILPOTENT LIE ALGEBRAS

ALEXANDER 8. FAINSHTEIN

Chair of Higher Mathematics, Magnitogorsk State Technical University, Magnitogorsk,

Russia.

In this communication we try to develop a Fredholm theory for families

of operators in Banach spaces generating nilpotent Lie algebras. For the

concept of Taylor joint spectrum and the polynomial spectral mapping

theorem for such families of operators see the author's paper in J. Operator

[heory, 29 (1993), 3—27.

Let £ be a complex finite-dimensional nilpotent Lie algebra, a complex

vector space X bea E£-module and Kos(£, X) be the relative chain Koszul

complex with the homology spaces H;(E,X). The complex Kos(E, X) is

said to be Fredholm if the spaces H;( 5, X) are finite-dimensional. Then the

index of Kos(E, X) is defined as ind(E, X) — Y,(—1)' dim H;(E, X).

Let a < (a,,.,a,) be a family of bounded operators in a Banach space X

generating nilpotent Lie algebra £(a). We say a is Fredholm if Kos( E(a), X)

is Fredholm and define its index by ind(a, X) < ind( E(a), X). The essential

spectrum cela, X) of a is the set of A e C" such that a — A fails to be

Fredholm. On the other hand, for given a we may take a nilpotent Lie

algebra EF with generators e,,.,e, and define FE-module structure on X by

the Lie algebra homomorphism p : 8 — £(X) with p(e;) — a;. If we define

a to be Fredholm if Kos(£,X) is Fredholm we get an eguivalent definition
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of the Fredholmness and the joint essential spectrum. 'The index however

depends on the choice of B.

We prove the polynomial spectral mapping theorem for essential spec-

trum and analogues of known results on families of operators on tensor pro-

ducts. We also prove the following results on triviality of the index.

Let F' and £ be finite-dimensional nilpotent Lie algebras.

1. Let jj : F — EF be a Lie algebra epimorphism, X be an £-module

(hence also an F-module). Complexes Kos(F,X) and Kos(E,X) are si-

multaneously Fredholm and if in this case 1; is not an isomorphism then

ind(F, X) <0.

2. Let Z be a proper Lie subalgebra of F' and X be an F-module (hence

also an E-module). If Kos( 5, X) is Fredholm then Kos(F', X) is Fredholm

and ind(F, X) <0.

I am deeply grateful to the organizers for the invitation and to the Open

Society Institute in Ljubljana for the support allowing me to attend the 2nd

Linear Algebra Workshop.

ASCENT AND DESCENT FOR COMMUTING ENDOMORPHISMS

LUZIUS GRUNENFELDER AND MATJAŽ OMLADIČ
Department of Mathematics, Statistics and Computing Science, Dalohousie University,

Halifax, Canada, Department of Mathematics, University of Ljubljana, Ljubljana,

Slovenia.

Let B be an algebra over a field and let 4 be a leit B-module. If

a: M — M ss a B-endomorphism then ker a' C kera"! and a'M 2 aH M

for every z > 0. 'The ascent of a is the least positive integer r for which

ker a" <— kera""! and the descent is the least positive integer s for which

aš M — a""'M, if such integers exist and oo if they don't. If both the ascent

r and the descent s of a are finite then r < s and M < kera" Ba" M. "This

is Fitting's Lemma. It holds in particular for every a € Endpg(M) if the

B-module /M is both Artinian and Noetherian. More generally, we may say

that a has the Fitting property if M < K 9 J, where K <— U;kera" and

J < oja M.

Here we use homological technigues involving the Koszul complex to

define and explore the notion of ascent and descent, as well as a Fitting type

decomposition of M, for finite seguences a — (aj,a2,...,4n) of commuting

endomorphisms of a B-module M. '[he approach works for any module M

over a commutative ring A and any finite seguence of elements of A acting as

endomorphisms, without specific reference to an B-module structure on M.

However, in our context the Fitting decomposition is of course B-invariant.

In general, we say that the n-tuple a has the Fitting property 14 M < KBJ

and (a) J — J, where K < U; Homa(A/(aj", M), J < A;ta)' M and (a) is the

ideal in A generated by the n-tuple a. 'The main result is that a has finite

ascent and finite descent if and only if a has the Fitting property and (a)

acts nilpotently on A. It turns out that ascent and descent are invariants

of the ideal (a) in A, in fact of the subspace generated by a, i.e. they are
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independent of the choice of the finite generating set, even in the absence

of the Fitting property.

Apart from their independent interest, the results presented have also

been motivated by the guestion of how to study the spectral behaviour

of a seguence of commuting bounded operators. Our approach provides a

Fitting type decomposition for every point in the Taylor spectrum.

COMPLETELY RANK-NONINCREASING LINEAR MAPS5

DON HADWIN

Department of Mathematics, University of New Hampshire, Durham, USA.

We discuss operator-valued linear mappings on a linear space of ope-

rators that are completely rank-nonincreasing (in the sense of completely

positive or completely bounded maps) . We conjecture that these are pre-

cisely the pointwise strong-operator limits of elementary maps. We show

that partial positive results, combined with Voiculescu's theorem on appro-

ximate unitary egulvalence lead to completely algebraic characterizatlons

of approximate summands, compressions and skew-compressions of a repre-

sentation of a C"-algebra. We also use this concept to provide countere-

xamples to two conjectures of R. Curto and D. Herrero on joint similarity

orbits of matrices.

SCHUR NORMS- COMPUTATION AND APPLICATION

JOHN HOLBROOK

Department of Mathematics and Statistics, University of Guelph, Guelph, Canada.

By the Schur norm || M ||g of an n x n matrix M we mean its norm as

a, Schur multiplier on (M,(C), [-|), where [|-[| denotes the operator norm.

I[hus

Mis — maxi. Mo X/: (IX s 1),

where M o X is the Schur (elementwise) product of the matrices M and

X. "This norm is notoriously hard to compute (even for 2 x 2 matrices!);

we review methods of finding || M||g, some going back to Schur and some

depending on erplicit Haagerup factorization via

Ms — mini X ||. (Ylje: XY < M;,

where ||:||, and |[:||« denote the max-row and max-column norms of their

matrix arguments. We consider a number of applications. We may briefly

recall applications discussed during LAW 96; for example, Šchur norm

computations shed light on multivariate von Neumann inegualities of the

type

ip(Ci, Ca, C3)[| S Const - [|pllco;
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where the C;, are commuting contractions and p is analytic on the polydisc.

Details may be found in [1]. Among more recent applications, we report on

work with R. Bhatia (see [2|) concerning Frechet derivatives of the power

function: let A — A" be the map that takes a positive definite matrix to

its rth power, and let DA" be the Frechet derivative of this map. We show

that || DA" || — |[rA"—!| precisely when r is notin the interval (1//2, 2). We

also summarize work with F. Gilfeather (see [3)) on the Pedersen conjecture

about commutators: for positive definite matrices A and B, and contraction

C, and any matrix—-monotone function f,

If(4)C - CHB)Ii s FUAC - CBi|).

References

[1] J. Holbrook, Sehur norms and the multivariate von Neumann ineguality, preprint.

[2] R. Bhatia and J. Holbrook, Noncommutative Frechet derivatives, preprint.

[3] F. Gilfeather and J. Holbrook, On the Pedersen conjecture, preprint.

SOME NEW INVARIANTS RELATING TO THE SIMULTANEOUS

SIMILARITY OF MATRICES

THOMAS J. LAFFEY

Department of Mathematical Science, University College, Dublin, Ireland.

Let M,(C), M,(C|z|) denote the rings of n x n matrices over C

and the associated polynomial ring Cl|r|, respectively, and let GL(n, C),

GL(n, C|z|) denote, as usual, the groups of units of these rings. We say

that a pair of elements A(r), B(r) in M,(C|z|) are PS-egutalent if there

exists P(r) € GL(n, Cir]), 0 € GL(n, C) with B(£) — P(rJA(1)0.

Recall that A(£) and B(r) are eguzalent if there exists H(r),

K(z) e GL(n, C/r]) with B(r) < H(71)A(1)K(r), and that every element

A(4) is eguivalent to a diagonal matrix diag(si(£),...,s,(4),0,...,0) where

r is the rank of A(4), and where s;(£),...,s,(4) are canonically determi-

ned monic polynomials (called the Smsath invariants or invariant factors of

A(x)) with the property that s;(7) divides s;,,(2) fori—51,2,...,r — 1.

We show that if det A(r) £ 0, then A(r) is PS-eguivalent to an upper

triangular matrix S(x) — (s;;(4)) where the diagonal entries s;;(x) are the

Smith invariants s;(x) and where for ; > %, either s;;(1) — 0 or s;;(£) isa

monic polynomial having degree less than deg s;;(4) and having s;;(£) asa

proper divisor. |

Such an 9(4) is called a near canonical form (NCF) of A(x). "The

guestion of the PS-eguivalence of A(z), B(£) can be reduced to that of the

P S-eguivalence of two NCFs S(r), T(£) with the same Smith invariants.

In the generic case in which the eguation det A(x) <— 0 has distinct

roots, we can assume the associated NCFs are

s)- (Rt LG) PI Lin]
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and

u(x) < (uj(£),...,upi(x))

K(vi(7),... Vn-i(x))

where each nonzero uz(a), vi(x) is a monic polynomial with w;(A,)

< vj(A,) <— 0, where A; is a fixed root of s,(x) — 0. Let U <

— span(uj(£),...,u,-1(1)), V < span(v;(£),...,v,-1(£)). Then if A(4),

B(x) are PS- eguivalent, dim U <— dimV. Furthermore, if we write s,,(z) —
—<(xz—A;)-: (ez —Ay) and for 0 sz w(x) € Clzj, define

$(w(z)) < max4k > 0|(£—A;):--(xz — A;) divides w(r)H,

we can choose a basis of V inductively as follows:

Let u,(£) € U be a nonzero element w(r) with $(uw(z)) maximal and having

chosen %;(1),..., 4p(£) and k < dimU, we choose ti;,,1(£) to be an element

z(x) of UA spanjii,(£),..., Ux(£)H with €$(z(x2)) maximal. Choose a, basis

of V in the same way. 'Then if A(r), B(x) are PS-eguivalent, P(d;(£)) <

— $(0;(4)) for all s.

An algorithm to determine P5-eguivalence will be presented and appli-

cations given to the problem of determining the simultaneous similarity of

two lists (Aj,..., A,) and (B;,..., B,) of elements of M,(C).

[his is joint work with J. A. Dias Da Silva.

RANK PRESERVERS ON SPACES OF SYMMETRIC MAT!

RAPHAEL LOEWY

Department of Mathematics, Technion — Israel Institute of Technology, Haifa, Israel.

Let S,() denote the set of all n x n symmetric matrices over the field

if". Let k be a positive integer such that k < n. A linear operator T' on

S,,(/) is said to be a rank-k preserver provided that it maps the set of all

rank k matrices into itself.

Suppose that k — 2r is an even integer. Beasley and Loewy showed that

if FF is algebraically closed of characteristic £ 2, then any rank-k preserver

on 5,() must be a congruence map. They also showed that if n > 2k — dr,

any rank-k preserver on 5, (IR) must be a congruence map, possibly followed

by negation. Following this and earlier results, the problem of characterizing

rank-k preservers on S,(R,) is still open if k 41 < n < 2k—1.

In this talk we describe an improvement of the Beasley-Loewy result

for S,(MR). !t turns out that three types of subspaces are relevant to the

investigation of rank-k preservers: (1) A subspace where each nonzero matrix

has rank at least k. (II) A subspace where each nonzero matrix has rank

egual to k. (ITI) A subspace where each matrix has rank at most k.
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We consider those three types of subspaces. In particular, we obtain the

following result: Suppose that F' is an infinite field, k — 2r and 2n > 5r --1.

Suppose that L is a subspace of S,(F') of type (ITI) such that

1
dim L > max42r? 4 2r, 2 (žar — 2n — r? 4 3r 4 4)].

Then L is decomposable. 'This is an analogue of a theorem of Atkinson and

Lloyd, who considered a subspace of the space of all m x n matrices over F

which is of type ITI.

Several open problems will also be mentioned.

STRONG PARTIAL ISOMETRIES

VLASTIMIL PTAK

Mathematics Institute, Czech Academy of Sciences, Prague, Czech Republic.

The classical Toeplitz operators are defined as compressions to H? of

the multiplication operator M(y) on L", p being an LU function. An

operator T': H? — [? is Toeplitz for a suitable v if and only if it satisfies

the relation 77 — S"TS where S is the (forward) shift operator on H".

[he function p is defined uniguely by 7'. A Hankel operator corresponding

to y is the compression from £? to H? of M(y), P(H?)M(y)|H". An

operator X : H? — H? is Hankel if and only if it satisfies the intertwining

relation XS < ZX, Z being the backward shift on H?; this relation

does not define the corresponding $ uniguely. Sz. Nagy and Foias studied

generalized Toeplitz operators on Hilbert spaces X : H,; — Ha defined by

the relation X < 1,X1], Tj; and 1; being arbitrary contractions on HM;

and Hs respectively. 'They found a unigue symbol Y constructed irom the

minimal isometric dilations U] and U) of T; and 1% acting on K; and K...

In this manner X appears as the compression P(Ho,)Y (H; of Y. In Acta

Sci. Math (Szeged) 52 (1988) P. Vrbova and the author introduced a Hankel

operator corresponding to 1; and 7, imitating the classical case, replacing

H? by Ks 8 M5. The generalized Hankel operator H < P(K, S Ha)Y H,

satisfies the intertwining relation 7, H < H1Y. To obtain an analogue of

the Nehari theorem another condition has to be imposed, the so called

R-boundedness — this condition is trivlally satistied in the classical case; its

meaning clears up the general situation. Recently (Math. Bohemica 122

(1997)) the author described a wider class of Hankel type operators defined

by the intertwining relation 7/1 <— HI and other boundedness conditions.

One of the important tools in these investigations is the decomposition

R — PA(ROH-) where P is the closure of P(R)H anda related coisometry

W -— (U"[|P)". The particular case where HM" c R, in other words,

RoaH?- —< H- will be investigated, its motivation explained and the
technigues tor its solution described. 'Fhe connection of this problem with
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strong partial isometries will be discussed. In a joint paper C. Mancera,

P. Paul, V. Ptak, V. Vasyunin prove the following: given a contraction T'

on a Hilbert space such that 7" is a partial isometry for each n > 0 then H

may be orthogonally decomposed into four /' reducing subspaces such that

the corresponding parts are (1) unitary (2) forward shift (3) backward shift,

and (4) orthogonal sum of finite truncated shifts (some of the parts may be

missing).

THE PERRON-FROBENIUS THEOREM REVISITED

HEYDAR RADJAVI

Department of Mathematics, Statistics and Computing Science, Dalohousie University,

Halifax, Canada.

[he celebrated Perron-Frobenius 'Theorem makes several assertions

about the form, spectrum, and fixed positive vectors of certain maftrices

with non-negative entries. It turns out that most of these assertions hold

in a much more general setting, 1.e., for a large class of multiplicative se-

migroups of non-negative matrices. These extensions will be discussed in

this talk. 'There are no prereguisites except elementary linear algebra and

elementary analysis.

A RESOLVENT CONDITION IMPLYING POWER

BOUNDEDNESS.

JAROSLAV ZEMANEK

Institute of Mathematics, Polish academy of Sciences, Warsaw, Poland.

Analytic resolvent conditions will be related to the behaviour of the

powers, their consecutive differences and Cesaro means. Some examples

and characterizations of the extremal cases will motivate open guestions for

further research.

THE ROLE OF ASCENT AND DESCENT IN ANALYSIS.

JAROSLAV ZEMANEK

Institute of Mathematics, Polish academy of Šciences, Warsaw, Poland.

We intend to show the role of ascent, descent, and closedness of operator

ranges in the ergodic behaviour of linear operators with respect to various

operator topologies.

Perhaps the details of the above talks, and further related results and

problems, could be discussed in a working group under the general title

Powers and resolvents.
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VEČPARAMETRIČNA SPEKTRALNA TEORIJA

PAUL BINDING IN TOMAŽ KOŠIR.

V sestavku opišemo večparametrične probleme lastnih vrednosti in predstavimo

Atkinsonov algebraični pristop za študij teh problemov.

MULTIPARAMETER SPECTRAL THEORY

Multiparameter eigenvalue problems and Atkinson's algebraic approach to study

such problems are described.

One way in which multiparameter eigenvalue problems arise is when the

method of separation of variables is used to solve boundary value problems

for partial differential eguations. Bach 'separation constant' gives rise to

a diflerent parameter. [he resulting eguations are simpler boundary value

problems for ordinary difterential eguations, for example of Sturm-Liouville

type, that are linked by parameters. Two-parameter problems of this type

have been studied since the earliest days of the subject, and the following

formulation is, for example, the main object of study in a monograph of

Faierman:

d

da;

dy;
(P. (zi) JE) - (Ara; (zi) £ Aabi (2;) — gi (£i)) yi <0, i51,2,.| (1)

where 0 < z; < 1, and boundary conditions are

dyi

du;
yi (0) cos a; — p; (0) (O0)sina; < 0, 0 < a; < r,

and

dyi

dz;

for 2 < 1,2. These and other problems have motivated the development of

multiparameter spectral theory.

In the 1960s Atkinson laid the foundations of abstract multiparameter

spectral theory and gave an overview of possible directions for further rese-

arch. Since then the area has been explored by a number of mathematici-

ans and we mention just a few of them. Analytical aspects were studied by

Binding, Browne, Faierman, Sleeman, Turyn and Volkmer, algebraic and

geometric aspects by Fainshtein, Grunenfelder, Isaev and Košir, nonlinear

problems by Huang, McGhee, Rynne and Shibata, and numerical aspects

by Blum, Ji, Muller and Shimasaki. In Slovenia, Vidav's PhD thesis is an

yi (1) cos 6; — p; (1) (1)sinB; —0, 0< 6; < r,

Paul Binding, Department of Mathematics and Statistics, University of Calgary, Calgary,

Canada. Tomaž Košir, Department of Mathematics, University of Ljubljana, Ljubljana,

Slovenia.

42 Obzornik mat. fiz. 46 (1999) 2



early contribution to the area. Since then Bohte, Plestenjak, Slivnik and

Tomšič have considered numerical aspects of the theory.

One of the main goals of multiparameter spectral theory is to give

completeness results for different multiparameter spectral problems. For

example, one could try to expand functions defined on the domain of the

partial differential eguation in terms of Fourier-type series involving the

eigenfunctions of the separated (say Sturm-Liouville) eguations.

In the abstract theory, the main object studied is the n-tuple of n-pa-

rameter pencils

W;(A) < YO

also called the multiparameter system. Here A;; are, for all 7, linear ope-

rators in the Hilbert space /7;. In applications like (1), A;;,j<1,2,...,n,

are multiplication operators and A;o are diflerential operators. 'Typically

then the A;;, 7 7 0 are continuous and the A;g are closed densely defined

operators either with compact resolvent or of Fredholm type. In the multi-

parameter eigenvalue problem we first find n-tuples of complex numbers A

such that all the operators W,;(A) are singular. This can be considered as a

generalization of the ordinary eigenvalue problem.

One fundamental tool of abstract multiparameter spectral theory is a

tensor product construction. We consider the tensor product space H <

—H;,8AH,50':.- OH, and certain determinantal operators associated with

A;j acting in H. Specifically, A; is (up to a sign) the tensor determinant of

the array |Apr|1<k<n,0<i<n With j-th column omitted. We limit our interest

to so-called nonsingular multiparameter systems when 46 on H is one-

-to-one. Then the operators I'; < ALJA; commute and provide a joint
spectral decomposition of 7. If the A;; are hermitlan and Ag > 0 then

the eigenvalues are semisimple, and a basis of joint eigenvectors for the [,

exists for FI. It is important to note that these eigenvectors can in fact

be constructed out of (decomposable) tensors of the eigenvectors for the

original operators W,;, so the I'; do not need constructing explicitly.

In general, completeness reguires "joint root subspaces'" of the form

Here N(A) is the nullspace of a linear map A. As before, it is desirable to

express completeness in terms of the W,; rather than the I;. In finite di-

mensions the relative complexity of the two approaches can be gauged from

the relation dim H < ][;., dim H;. In infinite dimensional examples, when

the W; are ordinary differential operators the I'; are partial differential ope-

rators. Assuming that the W,; arise from separation of a partial differen-

tial operator in the first place, it follows that the main virtue of the tech-

nigue disappears unless one has completeness statements in terms of the W/;.
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Dificulties in proving multiparameter completeness results arise when the

eigenvalues are not semisimple, i.e., when root vectors exist.

Various authors constructed root vectors for particular types of eigenva-

lues and for particular types of multiparameter systems. For instance, Bin-

ding described root vectors for real eigenvalues of uniformly-elliptic multi-

parameter systems, Faierman conjectured the structure of the general root

vectors for non-real eigenvalues of the two-parameter spectral problem (1),

and Košir described root vectors for nonderogatory and simple eigenvalues

of finite-dimensional multiparameter systems. An algebraic construction of

the root subspaces (3) was given by Grunenfelder and Košir for general ei-

genvalues in finite dimensions and for eigenvalues of Fredholm type in infi-

nite dimensions. This construction uses coalgebraic technigues and is in ge-

neral technically involved. It is expected that one can use special structure

of a boundary value problem of type (1), particularly if 1t is of elliptic type,

to simplify the construction and to obtain numerical algorithms suitable for

applications.

In the working group we propose to study analytic, algebraic, geometric

and numerical aspects of the above described multiparameter eigenvalue

problem (2), with special emphasis on elliptic boundary value problems of

type (1).



Predstavljeni so odrezani momentni problemi, prirejeni uteženim operatorjem po-

mika v dveh spremenljivkah v kompleksni ravnini.

TRUNCATED MOMENT PROBLEMS: EXISTENCE, UNIOUENESS,

AND LOCALIZATION OF THE SUPPORT OF REPRESENTING

MEASURES

We present truncated moment problems associated with 2-variable weighted shifts

in the complex plane.

In (6), (13) we succeeded in obtaining a complete solution to the trun-

cated moment problem in case the interpolating measure has compact su-

pport in the real line; our main contribution there consisted in bringing to

light the notion of recurstveness, which was central to our analysis. As we

move into several variables, the interpolating measure must be allowed to

have support away irom the line; one instance of particular interest, associ-

ated with 2-variable weighted shifts, is the case of compact support in the

complex plane, which we label as the truncated complex moment problem

(TCMP).

Let ju be a positive Borel measure on C, assume that C[z, z] € Z'(u)

and define yi;:s / z'z?dyulz, Z). Given p € CI, z|, p(z, Z) < >,;; dijž 'z), we
have

o s [ | p(2,2) P du(2,2) — Y) ajno | Ft te dj, 2) —

< a AijOkOYI,j k:
ijkt

Observe that ygo > 0 and y;; < Y; for all z, ;. Fo understand the matricial

positivity associated with y:—1;;], we introduce the following lexicographic

order on the rows and columns of infinite matrices: 1, Z, Z, Z?, ZZ, Z?, Z,

ZZ? Z?7, 75 ,,.,e. g., the first column is labeled 1, the second column i IS
labeled Z, the third Z, the fourth Z?, et cetera:; this order corresponds to
the praded homogeneous decomposition of C/z, z]. For m,n > 0 let M|m, n]
be the (m 4-1) x (n -- 1) block of Toeplitz form whose first row has entries

Raul Curto, Department of Mathematics, University of lowa, lowa City, USA.
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given by yn, Ymsl,n—l; "<<, Yman,o and whose first column has entries given

by nn; Ymolnil VO,nam (as a conseguence, the lower right-hand corner

of M(m,n] is Yym). The matrix M < M(y) is then built as follows:

M|0,0] M[0,1] Ml[0,2]

mo| MILO M11 Mli,2
— 2,0 2,1] Ml2,2]M)2,0] Mi

It is now not hard to see that the above mentioned positivity ((1)) is

eguivalent to the condition M > 0, as a guadratic form on C%"., Suppose

now that we are just given a double-indexed seguence y < 1y;;! subject to

the constraints yoo > O and ;;; <— Yi; for all 4,;. The classical (complex)

full moment problem asks for necessary and sufticient conditions on the

seguence -y to guarantee the existence of a positive Borel measure yu which

interpolates y, 1.e.,

| Fizlan(e,z —yij (i,j>0). (2)

An obvious necessary condition is then M > 9; this corresponds to the

positivity of the Riesz functional L(p):< > ,;; a;jyij on the cone »? generated

by polynomials of the form pp. If X is a closed subset of C, the Riesz-

Haviland Criterion states that y admits a representing measure supported

on K if and only if L(p) > 0 for every polynomial p which is nonnegative

on K.

With ;, ZL, M and K as above, suppose there exists a polynomial g

such that K —< K,:—4z € C:g(z, Z) > 0). In the presence of a representing

measure yu supported on K, the ineguality Z,(pp):—L(gpp) <— Jy 4pB > 0 (all

p € Ciz, z]) must hold, in addition to L(pp) > 0 (all p e C/z, z]). Therefore

both conditions are necessary for the existence of a representing measure

supported in K. K. Schmudgen established in |23, 'Theorem 1] that for

K, compact these two conditions are indeed sufticient, and this is the case

also for compact sets K which are semi-algebratc, that is, obtained as the

intersection of a finite family of K,'s. (For related results, see |23, Corollary

3], [1], [21], [24], [26].
The truncated complex moment problem (TCMP) corresponds to the

case when only an ?nattal segment of y is known. Our approach to TOMP

follows the strategy we employed to solve the real TMP [6]. Indeed, part of

the overall strategy can still be carried out, and concrete conditions can be

found in a number of fundamental cases.

What we believe must be used now is a combination of a few revealing

examples (cf. [7, Chapter 6], [9, Sections 2, 3, 4, and Appendixj, [10|) and

the interplay between M(n) and M(n),, a new associated matrix we have

introduced in [10].
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Theorem 1. Let M(n) > 0 and suppose degg <— 2k or 2k — 1.

There erists rank M (n)-atomic representing measure supported in K, 4f and

only if there 1s some flat ertenston M(n -- 1) for which M,(n 4 k) > 0.

In thus case, there erists such a representing measure having eractly

rank M(n) — rank M,(n - k) atoms in Z(g):—4z € C : g(z,z) — 0;.

M, keeps track of the location of the support, and this in turn can

be used to establish additional constraints when searching for representing

measures. In what follows, we list four open problems to be discussed by

the research group.

(duadratures and Cubatures. A disc of center a and radius r can be

thought of as the guadrature domasn completely determined by the moments
s s 2 ' .

yo < Tr?, yo, — rar? and gij — zr?(Z- - |a|?), or eguivalently, by the

moment matrix

| l 2. 2.

M(O)<|a 7la'

a a?

Ouadrature domains have received ample attention recently, in view of a

natural connection with the theory of hyponormal operators with rank-one

self-commutator, and with rationally cyclic subnormal operators [15|, [16],

[17], [18].

Problem 1. Does the moment matrix M(n) associated with a guadra-

ture domain admat a flat extension, thereby giving rise to a rank M(n)-ato-

mic representing measure?

The study of minimal representing measures (those with exactly

rank M(n) atoms) is intimately connected with guadrature problems. For

K a closed subset of IR", w a positive welght function, and d a nonnegative

integer, the K-guadrature problem for w of precision d entails finding no-

des z0,...,£yy-, € K and densities po,..., pyoi Such that [ p(r)w(x)da <

— ili! prp(£g) for every polynomial p of total degree d. In [5], [9], and
[14], we have applied technigues derived from TCMP to obtain minimal-

-node solutions for various compact sets in R?. The problem of explicitly

computing the nodes and densities of minimal guadrature rules, however,

remains largely unsolved, except in special cases (sguares and discs, and

small values of d; cf. |4]). Our methods circumvent the theory of ortho-

gonal polynomials and considerations of symmetry; instead, the search for

%0,...,£yoi gets restricted to a suitable algebraic variety.

Problem 2. Find minimal guadrature rules of precision 2n. (n > 3) for

the unit sguare, unit disc, or eguilateral trzangle, by building a flat ezlenston

of the associated M (n).
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Problem 3. Let M(2) be a positive moment matrix. Does M(2) always

admit a representing measure?

Our solution of TOMP for flat data was based on the following

Theorem 2 ([7, Theorem 4.7|). Let M be a finite-rank positive infinite

moment matrir. Then M has a unague representing measure, whose support

consists of rank M atoms, obtatned as the zeros of an assoctated analytic

polynomual.

Theorem 3 (/7, Theorem 5.4j). Let M(n) be a flat positive moment

matriz (i.e., rank M(n) < rank M(n—1)). Then M(n) admits a unigue flat

eztension M(n -1).

A dilation-theoretic approach to cubature. Given a measure v, a cuba-

ture formula of degree 2s — 1 for v can be thought of as a finitely atomic

measure x such that / p du — [| pdv for every polynomial p in P,, ,:54p €

Ciz;,..., zg] : degp < 2s—1j. Ifr,., is the orthogonal projection of L"(v)

onto P, ;, and M is the commutative d-tuple of multiplication operators

by the coordinates x;, the compression 7,17, 1 is a d-tuple of self-ad-

joint operators acting on a finite dimensional Hilbert space. In [19], |20/,

M. Putinar has obtained the following result.

Theorem 4 ([20, Theorem 2.3j). There erists a bijective correspon-

dence between all finite-rank, cyclic and commutatwe dilatons N of the

self-adjoint d-tuple r,.,Mr,., and triples (m, V, A) consisting of (1) an in-

teger m > s; (ti) a vector subspace V C P,, satisfying P,, l (V NAPA),

dim(P,-1/(V A Px7a1)). < dim(P,,/V), and P,V - S < P,,E

(0 < k < max(2,m)), where S is a vector complement of V in P,,; and

(ui) a positive operator A on S satisfying T;.,AO,Ts — Ts-], Where ), is

the parallel projection of P,,,, onto S.

Given a dilation /V with cyclic vector 1, Putinar builds m and V

by looking at the kernel 7 of the map p > p(N)1. Since Z is finite

codimensional (because N is finite-rank), the theory of the Hilbert-Samuel

polynomial implies that Z is uniguely determined by a positive degree, m,

and a subspace V. Consideration of the orthogonal differences P,HS(7ZAP,)

then leads to the operator A in Theorem 4. As an application, one can

then obtain an abstract parameterization of all cubature formulas of degree

2s — 1 for a given measure v. H turns out that such parameterization can

be formulated abstractly in terms of certain operator eguations, as follows.

Let Mo, , be two finite dimensional Hilbert spaces, let A, B, C : Ho — H;

be linear operators, and let X;,Y;, D be self-adjoint operators acting on H;.

Find and describe all self-adjoint dilations (X,Y) of (X;,Yi), acting on the

Hilbert space H <— H; 9 H, which satisfy

2ilX,Y] (0 o)
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H x(i).x(5)-(6)
The above construction (which describes the space of cubature formulas

for a given measure) and the construction in [7, Chapter 4] (which gives

an eristence criterion for solutions to 'TOMP) have intriguing similarities,

which we wish to unravel.

Problem 4. Fstablish direct links among: (i) the results in [7, Chapter

4], (4) the above operator eguations, and (uti) the 3-term recurrence relations

(associated with Jacobi matrices) studied by Y. Xu [27].

For the resolution of many of the above problems, some of the tools

and technigues that we propose to utilize are derived from our previous

work on jont hyponormality, which helped us establish the existence of

polynomially hyponormal weighted shifts which are not subnormal [12]. For

the new problems at hand, we propose to consider suitable combinations of

four basic notlons:

e positivity for sguare matrices;

e extendibility of matrices obtained by adding a prescribed number of

rows and columns;

e recursiveness; and

e the structure of the real or complex algebraic variety associated to the

given moment matrix.

When these four basic ingredients interact in appropriate ways, aided by

symbolic manipulation, the result is the construction of concrete algorithms

that often describe in detail the space of all possible representing measures.

One fundamental idea in the basic construction used in |12| was to

extend the intrinsic connection between subnormal operators and classical

moment problems in the positive real axis to classes of nearly subnormal

operators and moment problems for certain linear functionals not necessarily

represented by measures. 'These technigues also allowed us to obtain a

simplification of the main result in [3] for the power moment problem in two

dimensions. We would like to further exploit this circle of ideas to obtain

further connections between operator theory and classical analysis (cf. [21/).
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ROMAN DRNOVŠEK

Predstavljeni so trije zanimivi odprti problemi o spektru in invariantnih podprostorih

za pozitivne operatorje na Banachovih mrežah.

POSITIVE OPERATORS

Three interesting open problems on spectrum and invariant subspaces of positive

operators on Banach lattices are presented.

Positive operators on Banach lattices have been studied extensively in

the last decades. Their study is a subject of great importance to pure and

applied mathematics. 'Fhe excellent monographs [7|, [10], [11], [1], and |8;

contain the most important results on this subject.

[here are still a lot of open guestions on the spectrum and invariant

subspaces of positive operators. Let us describe some interesting problems

that can be discussed during the informal daily sessions. See [10], [8] and

|4] for details about the first two problems.

l. Let 7' be a positive operator on a Banach lattice EF, and let the

spectrum o(T') of T contain only the point 1. Denote by 7 the identity

operator on £. 'The following guestion Is open:

Is st true that T > I?

[his guestion has aftirmative answers in the following cases:

(a) Z is finite-dimensional; |

(b) 1 is a pole of the resolvent R(A,T) < (AI — T)7l,;

(c) T is a lattice homomorphism, i.e., [Tx| — T|z| forall ze B.

2. The peripheral spectrum c,(T') of an operator T' on a Banach lattice

E is defined by

o,(T) :< o(T)NASz€ C: iz] <r(T)I,

where r(7') denotes the spectral radius of 7. For positive operator 7' on

EF we always have r(T) € o,(T). "This important fact follows from the

ineguality

(RUA, T)a| S RUAL,T)iz],

which holds for all x ce E£ and for all A with |A| > r(T). Moreover,

the beautiful theorem of Krein and Rutman asserts that if r(T') is a pole

of the resolvent, then r(T') is an eigenvalue of T' to which there exists a

corresponding positive eigenvector.

Roman Drnovšek, Department of Mathematics, University of Ljubljana, Ljubljana, Slo-
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A subset S of C is said to be eyclic if for all A < JAjw € S it follows

that [A|w" € S for any integer k. The following guestion is still unsolved:

Is st true that every positive operator has cyclic peripheral spectrum?

As above, this guestion has afhirmative answers in some special cases:

(a) EF is finite-dimesional;

(b) the family (A — r(T)) R(A, T) is uniformly bounded for A > r(T).

' 3. A bounded operator 7' on a Banach space X is called sdempotent 1f

T? <T.

A collection C of bounded operators on X is said to be reducable 1f there

exists a non-trivial invarlant closed subspace of X that is invariant under

all members of C. Reducibility of multiplicative semigroups of idempotents

has recently been studied in [9], |2], [5], and [6]. It was an open guestion for

some years whether every such semigroup is reducible. 'Fhe answer has been

given in |2| where an irreducible semigroup of idempotents on the Hilbert

space [" is constructed. This example has been recently modified to give the

following stronger result (see |3|). Given K > 1, there exists an irreducible

semigroup of idempotents on (? that is norm-bounded by K.

If we restrict our attention to positive idempotents on a Banach lattice,

the following guestion is still open:

Is every multiplicative semigroup of positive idempotents reducible?
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TUPE

LEO LIVSHITS

V sestavku obravnavamo tranzitivnost in nerazcepnost polgrup linearnih operatorjev

na končnorazsežnem vektorskem prostoru.

TRANSITIVE LINEAR SEMIGROUPS

Iransitivity and irreducibility of semigroups of linear operators on a finite-dimensi-

onal vector space are discussed.

Much of motivation for the work described in this abstract came from

Operator theoretic realm. As it is often the case there, when trying to

answer a general guestion, one tests a linear algebralc variant first. Ht is not

uncommon for a linear algebraic guestion to be as hard or harder than the

original, but in certain cases, the new guestion becomes significant in its

own right. We present one such account, and shall restrict our attention at

present time to the finite-dimensional case.

A proper subspace M s£ 410% of a vector space V (over a field IF) is said

to be a (non-trivial) invariant subspace for a subset S of the algebra L(V)

of all linear transformations on V, if Tax e M whenever z e M, T € 8.

We call S srreducible 1f it has no non-trivlal invarlant subspaces. A well-

known theorem (named after W. Burnside) states that in the case when

H is algebraically closed and V is finite-dimensional, Z(V) has no proper

irreducible subalgebras. Burnside's theorem does not extend to infinite-

dimensional vector spaces: the subalgebra of L(V) which consists of all

transformations of finite rank is irreducible.

If A is a subalgebra of Z(V) then, for every z € V, 1Ax | A € AH< Ar)

is an invariant subspace for A. If A is irreducible then Ax <— 40% or V for

every z. Yet (x € V | Ax — 40)! is an invariant subspace for A, which shows

that Ax <— V for every non-zero z, whenever A is irreducible. | is easy to

see that the converse is also true. Expressed in the usual terminology, this

states that A is irreducible if and only if it is transitive.

The "transitivity" condition Ax < V 'YWx zA 0 means that for every

x,y € V, x Z 0, there exists A € A such that Ax <— y. Obviously the

latter form of the definition can be considered to be a particular case of the

following general definition:

A collection F of functions from a set ) to a set A is transitive

if for every € O), y € A there exists f ce F such that f(£) < y; (F

is said to be sharply transitive 1f such f is unigue).

Leo Livshits, Department of Mathematics, Colby College, Waterville, USA.
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Consider a vector space V over a field IF and let Y'Y40? play the

role of 2 under a subgroup F of the general linear group GL,,(IF) of all

JF-linear bijections of V. Such F is said to be n-transitive 11 for every pair

of linearly independent subsets (/z;,...,7,? and 4yi,...,yn)? of V there

exists A c F such that A(;) — y;, 4 < 1,...,n. In case such A is unigue

we call F sharply n-transituve. Finite sharply transitive linear groups have

been completely classified by C. Jordan (n > 4) and H. Zassenhaus [6]

(1 < n < 3). There are no infinite sharply n-transitive groups for n > 4.

F. Kalscheuer [3| determined all closed (in Euclidean topology) sharply

transitive linear semigroups in the case IF — IR or C. A very active area of

research in the last thirty years, transitive linear groups have recetved a lot

of attention due to their importance in finite geometry, where, for example,

it is desirable to determine geometries which admit "very transitive" groups

of automorphisms.

Keeping with group-theoretic terminology, one can say that an algebra

A of linear transformations on a vector space V over a field ]F is n-tran-

situve 1f for every linearly independent set fr;,...,1,) C V and any set

/yi,...,Yn) C V there exists A € A such that A(r;) < y;, i<l,...,n. It

is marvelous that such a definition is guite redundant: in contrast to both

permutation and linear groups, all 2-transitive subalgebras of L(V) are au-

tomatically n-transitive, for every n € IN. This is a remarkable theorem of

Jacobson |2|, and a version of it is true in a more general algebraic setting.

(Keep in mind that not every transitive algebra is 2-transitive.) It is also

trivial to see that a subset of L(V) is not sharply transitive (under the ob-

vlous definition) whenever it is closed under addition.

Linear groups and algebras of linear transformations are two examples of

linear semigroups. These are the subsets of L(/) closed under composition.

Let us define (n-)transitivity and trreducibility for linear semigroups in the

same fashion as this was done for algebras. Ht is important to notice that

no linear group can be transitive as a linear semigroup because its elements

cannot send a non-zero vector to zero. '[o resolve this conflict we shall

say that a linear semigroup in Z4(V) is n-0-transitive if for every pair of

linearly independent subsets 4z;,...,£7) and 4y;,...,Yn) of V, there exists

A € S such that A(z;) < y;, 1 < 1,...,n. It is tempting to define sharp

0-transituvity in the obvious way for all linear semigroups, but this definition

turns out to be redundant: every sharpy 0-transitive linear semigroup is a

linear group possibly together with the zero transformation.

The linear span of a linear semigroup is an algebra possessing the same

invarlant subspaces as the original semigroup. lvery 0-transitive linear

semigroup spans a transitive algebra and is hence irreducible. It is easy

to see that the converse is false. Jacobson's 'Theorem does not extend to

linear semigroups either: for each n e N there exists an n-transitive linear
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semigroup which is not (n -- 1)-0-transitive. Of course there is no shortage

of examples of transitive linear semigroups, apart from linear groups and

algebras. Such semigroups shall be our focus. In an attempt to gain better

understanding of their structure it is natural to seek out classes of "small"

transitive linear semigroups which can be considered basic "building blocks"

for constructing many others.

One such class (studied in |1|) consists of the transitive linear semigro-

ups which lack proper transitive left ideals; (a left ideal in a linear semigroup

S is a subset 7 of S such that 5,7 c J). We call these left 1-simple, and

the class of transitive left f-simple semigroups contains all minimal transi-

tive semigroups. Ideals play an important role in the theory of transitive

linear semigroups. One simple reason is that a non-trivial (two-sided) ideal

in a linear semigroup is (0-)transitive 1f and only if the whole semigroup is

(0-)transitive. Semigroups with no non-trivial proper ideals are called sim-

ple if they do not contain the zero transformation, or 0-simple if they do.

Let us restrict our attention henceforth to linear semigroups on a fi-

nite-dimensional vector space. It turns out that in this case every transi-

tive linear semigroup contains the zero transformation. Hence left %-sim-

ple linear semigroups are 0-simple. Furthermore, one can show that every

transitive left t-simple linear semigroup S contains a non-zero idempotent,

and conseguently a primitive idempotent; (a primitive idempotent in S is an

idempotent minimal with respect to the usual partial order on idempotents

in L(V) defined by e < f > e — ef — fe). This makes S an element of a

very important collection of (abstract) semigroups: the class of completely

0-simple semigroups. There is an extensive representation theory available

for this class, including a theorem of D. Rees [4] which classifies all com-

pletely 0-simple semigroups (up to an isomorphism) as particular semigro-

ups of linear transformations, under an operation related to a composition.

B. M. Schein |5] characterized completely 0-simple semigroups as those is-

omorphic to simply transitive semigroups of binary relations on a set. Fhe

existing representation theory, while providing powerful tools, does not yi-

eld the reguired classification of transitive linear semigroups up to simila-

rity.

Nonetheless, one can make some headway using linear algebraic me-

thods. It is not hard to see that all non-zero elements of a transitive left

1-simple linear semigroup 5 have the same rank, which must divide the di-

mension of the underlying vector space. If the rank eguals the dimension

then S1440] is a 0-transitive group, a case which (for the sake of focus) we

treat as "known". Without loss of generality let us concentrate on the case

of a vector space F" —E GE 0...9F. The algebra of all linear trans-
formations on this vector space can be interpreted as the block-matrix al-

gebra M, (M,(IF)). Let G be a 0-transitive linear group in M, (IF) and let
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TCM, ,(GU40H bea set containing zero matrix and satisfying two con-

ditions:

kr

1. J,.y Range(T)<—F ;

2. Distinct elements of P have distinct ranges.

Consider the semigroup S in M, ,(TG) (interpreted as a subset of

M (M,(IF))) which consists of those block matrices which have at most

one non-zero block column. 'Then S is transitive left t-simple, and every

transitive left f-simple semigroup in M, (HF) is simultaneously similar to

a semigroup of this form. (It is also possible to write down the exact

reguirements on the relationship between G and HP which will characterize

all minimal transitive left t-simple linear semigroups as well.) 'This gives

complete (and easily understood) characterization of transitive left 4-simple

semigroups; (the case of minimal such is complicated by a curious algebraic

condition, which we shall not state here for the sake of brevity).

Directions for further study

Every transitive left t-simple linear semigroup is clearly minimal tran-

sitive. Despite the success in characterizing transitive left f-simple linear

semigroups, the same task for minimal transitive semigroups remains un-

finished. Perhaps a simpler guestion is to identify the bigger class of all

transitive linear semigroups which lack proper transitive right ideals. 'This

will hopefully lead to the next major step of the inguiry: a classification of

all completely 0-simple transitive linear semigroups.
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KONČNORAZSEŽNI PROSTORI Z NEDEFINITNIM

SKALARNIM PROD M: R

V sestavku so predstavljeni odprti problemi za unitarne in normalne linearne trans-

formacije na končnorazsežnih vektorskih prostorih z nedefinitnim skalarnim produktom.

FINITE DIMENSIONAL SPACES WITH INDEFINITE SCALAR

PRODUCTS: RESEARCH PROBLEMS

Open problems for unitary and normal linear transtormations on finite-dimensional

vector space with indefinite scalar products are presented.

Let FF be either the field of real numbers or the field of complex numbers,

and consider a symmetric bilinear (in the real case) or sesguilinear (in the

complex case) form [z,yj, x,y € F". In other words, [az -- by, z] — a|z,z| -

- biy, z] and [y, x] < [z,y| for all z,y,z € F" and all scalars a,b c F. In

the real case, we consider also skew bilinear forms, i.e., those for which the

second condition is replaced by |z,y| < —|y,z| for all z,y ec MR. 'These

forms are often called indefinite scalar (or inner) products, to emphasize

connections with the standard (positive definite) scalar (or inner) products

which are characterized by the additional reguirement that |z, z] > 0 for all

x € F" and |z, | <— 0 if and only if z < 0. An indefinite scalar product; |-, -|

is called regular if |z,y| < 0 for all y e F" implies x — 0.

It is of interest to study structures of linear transformations on F" that

respect certain properties described in terms of |-,-;. An interesting class of

problems involves study in the indefinite scalar products context of results

that are well-known and widely used for positive definite scalar products.

Recently, there has been renewed interest in indefinite scalar products, and

many results along the lines just described have been obtained, in particular,

concerning normal transformations (see [9], [10], [12j, [13], [14] [17|), polar

decompositions see (see [3|, [4], [5|), singular values (6|, numerical ranges

(see [16], [15]), plus transformations [18], contractions and inertia (see [1],

[2|), etc. Many interesting problems in this area have not been studied yet.

Several open problems are listed below. As it is often done in linear algebra,

the problems and results will be stated in terms of matrices rather than

linear transtormations.

Partially supported by NSF grant DMS 9800704, and by the Faculty Research Assignment

grant from the College of William and Mary.

Leiba Rodman, Department of Mathematics, The College of William and Mary, Willi-

amsburg, USA.
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Fix an indefinite scalar product [:,:. A matrix A" ec F""" js cal-

led adjotnt of A e F"%" if |Ar,y| — |z, A"y| for all z,y ec F". Altho-

ugh A" is uniguely defined only when the indefinite scalar product is re-

gular, nevertheless the concepts of selfadjosnt and unatary matrices A may

be defined even for non-regular indefinite scalar products by the egua-

lities [Ar,y| <— [z, Ay| for all z,y € F", and |Az, Ay; <— |z,y| for all

z,y € BF", respectively. ČCanonical forms of selfadjoint matrices are well-

known, implicitly they are found in [19, for example.

Problem 1. evelop canonacal forms for unitary matrices, for not

necessarily regular sndefinate scalar products.

For regular complex sesguilinear indefinite scalar products, several ca-

nonical forms of unitary matrices have been developed; see Chapter I.4 in

|8|, [10]. Canonical forms of symplectic (i.e., unitary with respect to a re-

gular real skew symmetric indefinite scalar product) matriz pencils AA -- B

are given in |20..

If |-, | is regular, then A is called normal if AA" — A" A. For non-regular

indefinite scalar products, the notion of normal matrices may be defined as

well: Let (z,y| < (Sz,y), x,y ec F", where S is the real symmetric (or

complex Hermitian, or real skew symmetric, as the case may be) matrix

that determines the indefinite scalar product. 'Then A is called normal if

StAHSA — ASTAHS, where AH stands for the conjugate transpose of A,

and S" is the Moore-Penrose inverse of S.

So far, indecomposable normal matrices and the corresponding canoni-

cal forms have been described only in the cases of regular real symmetric

and complex sesguilinear |:,:| when S has at most 2 negative eigenvalues

(see (10), [12], [13|). The problem of characterizing indecomposable normal

matrices in general seems to be intractable.

Problem 2. Obtatn canontcal forms for some other classes of normal

matrices, in particular, 1nvolving non-regular 1ndefinite scalar products.

In the standard positive definite scalar product, the normality of a

matrix can be characterized in many ways [11], (7). It would be of interest to

sort out these ways for indefinite scalar products. Very likely, most of them

will fail to be characteristic of normality. For example, the set of matrices

A such that A" is a polynomial of A, is a proper subset of the set of normal

matrices.

A factorization X < UA, where U is unitary and A is selfadjoint, is

called a polar decomposition of X. (Note that in contrast to the standard

definition we do not reguire that A be positive semidefinite.) Polar decom-

positions have been studied in detail for regular real symmetric and com-

plex sesguilinear indefinite scalar products in [3], [4], [5].
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Problem 3. Characterize those normal matrices that admit polar

decompositions.

In connection with this problem, note that not every matrix admits a

polar decomposition. It was proved in |3| that every normal matrix admits

a polar decomposition if the indefinite scalar product is real symmetric or

complex sesguilinear and the corresponding matrix 5 has only one negative

eigenvalue. | is conjectured that every normal matrix admits polar decom-

positlons.

One proves easily that if X < UA is polar decomposition and U and

A commute, then X is normal. 'Fhe converse holds for the positive definite

scalar product.

Problem 4. is ihe converse true in tndefinite scalar producis? In other

words, 1] X ts normal and has a polar decompositton X < UVA, must U and

A commute (for some choice of the polar decompositionj?
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Predstavljen je problem karakterizacije linearnih preslikav, ki ohranjajo obrnljivost.

LINEAR MAPS PRESERVING INVERTIBILITY

The problem of characterization of linear maps preserving invertibility is discussed.

Let R and R' be two rings with identities 1 and 1', respectively. A map

b: R — R' is called unitalif A(1) < 1 and it is called invertibility preserving

if d(4) is invertible in R' for every invertible x € R. What are examples of

additive maps having these two properties! Clearly, every isomorphism of

rings, as well as every anti-isomorphism (that is, a bijective additive map

b:R — R' satistying Y(zy) < dy)A(r), z,y € R) is a unital invertibility

preserving map.

Isomorphisms and anti-isomorphisms are special examples of Jordan is-

omorphisms. An additive map $ : R — R' is called a Jordan homomor-

phism if 9(4?) — d(£)", x € R; if it is also bijective, then it is called a

Jordan isomorphisrn.

Isornorphisms and anti-isomorphisms are basic, but not the only exam-

ples of Jordan isomorphisms. Indeed, take any isomorphic noncommuta-

tive rings R, and MR), and anti-isomorphic noncommutative rings 4, and

R,. Let R and R' be direct sums R <— R; B Ra and R' — R) 6 R, where

the operations are defined componentwise. Then 4 : R — R' defined by

dlaj Bas) < gilaj) B pala), where p,; : R; — R,) is an isomorphism

and vs : Rs — R, is an anti-isomorphism, is a Jordan isomorphism which

is neither an isomorphism nor an anti-isomorphism. On the other hand, a

well-known Herstein's result |I. N. Herstein, Jordan homomorphisms, Trans.

Amer. Math. Soc. 81 (1956), 331—341| on Jordan homomorphisms implies

that examples of Jordan isomorphisms different from isomorphisms and anti-

isomorphisms can be produced only if one of the rings contains two nonzero

ideals whose product is zero.

Now let R be an arbitrary unital ring and R' be any unital ring such

that 22 Z 0 for any nonzero x € R'. Then every Jordan isomorphism

$b: R— R' isa unital invertibility preserving map [A. R. Sourour, Inverti-

bility preserving linear maps on £( X), Trans. Amer. Math. Soc. 348 (1996),

13—30|. 'The proof of this statement is elementary and not very difficult.

Peter Šemrl, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia.
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Kaplansky (1. Kaplansky, Algebraic and analytic aspects of operator

algebras, Regional Conference Series in Mathematics 1, Amer. Math. Soc.,

Providence, 1970| asked when the converse is true. More precisely, which

conditions on R and R' imply that every unital additive map 4: R— R'

preserving invertibility is a Jordan homomorphism? As one may expect,

solving this problem is a much more difficult task even for some simple

classes of rings.

Most of the work on this problem was done by mathematicians wor-

king in functional analysis. Therefore, we will consider linear maps on al-

gebras rather than additive maps on rings. Moreover, we restrict our at-

tention to the case when A and B are unital complex Banach algebras and

b: A — B is a linear invertibility preserving map. Also, without loss of ge-

nerality we assume that $ is unital for otherwise we could consider the map

a 5 d(1)-?£la). The goal is to find reasonable conditions implying that $

is a Jordan homomorphism.

For an element a € A we define the spectrum o(a) of a as the set of all

complex numbers A such that A-:1 — a is not invertible. Hence, in the case

that AA <— M,, the algebra of all n x n complex matrices, the spectrum of a

matrix is the set of all its eigenvalues. Note that the condition that a unital

linear map $ preserves invertibility can be reformulated as c(£(a)) C ola

for every a € A. 850, we can ask a guestion that is somewhat easier than

the original Kaplansky's problem: when must a spectrum preserving unital

linear map between two Banach algebras be a Jordan homomorphism? Here,

of course, by a spectrum preserving map we mean a map $ : A — B

satisfying o(9(a)) < o(a), a e A. A lot of work has been done also on

related problems of characterizing linear maps preserving certain spectral

properties.

[The following conjecture seems to be reasonable: Let A and 5 be

semi-simple Banach algebras and $ : A — B a unital bijective linear map

preserving invertibility. | is then conjectured that $ must be a Jordan

isomorphism. This conjecture was formulated (although not always in this

generality) by many mathematicians working on this problem; as far as we

know, however, Aupetit was the first one.

It seems that at the present no technigues are available to handle the

general case. In particular, the problem is still open for C"-algebras and

even for von Neumann algebras as was pointed out by Harris and Kadison

[L. A. Harris, R. V. Kadison, Afhine mappings of invertible operators, Proc.

Amer. Math. Soc. 124 (1996), 2415—2422].
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V sestavku so opisani problemi razcepnosti za družine linearnih operatorjev v pri-

merih, ko ima družina še kako dodatno strukturo (npr. je polgrupa, Liejeva ali Jordanova

algebra itd.) in za operatorje velja še kaka dodatna lastnost (npr. permutabilnost, sub-

multiplikativnost ali sublinearnost spektra, itd.).

REDUCIBILITY PROBLEMS FOR OPERATOR FAMILIES

Families of linear operators with additional structure (e.g. the family is a semigroup,

or a Lie or Jordan algebra, etc.) and additional properties (e.g. permutability, submul-

tiplicativity or sublinearity of spectra, etc.) are considered and reducibility problems for

such families are discussed.

1. Introduction

[he format of the workshop will be very similar to the one we had in

1996 at Bled, which proved guite successful. After one or two introductory

formal lectures, which introduce, discuss and elaborate on some of the

problems mentioned below, we meet at informal daily sessions to go more

deeply into a small number of the problems, work on them both individually

and in groups, and exchange ideas and partial solutions. 'Fhis informal

setting allows discussing any of the problems that are of greater interest

to the participants, and even going back-and-forth between two or three

problems as the general mood of the participants dictates.

Many of the young mathematicians and graduate students who took

part in our last Bled workshop found it very stimulating and rewarding. We

should mention that one of the topics discussed, namely that of commutators

of rank one, was so thoroughly studied during the workshop period that a

substantial paper, authored by seven of the participants, came out of it. It

was published in the Journal of Functional Analysis [1].

2. Problems to be studied

A family of (linear) operators on a vector space V over an algebraically

closed field is said to be zrreducible 1f no non-trivial subspace of V is invariant

under (every member of) F. A family F is called transitive if for every

z z O and y in V, there is a member A of F with Ax <— y. It is easy to see

that if F is an algebra (that is, if it is closed under linear combinations and

products), then /F is transitive if and only if it is irreducible. Perhaps, the

most well-known result along these lines is the classical Burnside's Theorem

that the only transitive algebra of operators on a finite-dimensional V is the

full algebra £(V) of all operators on V.

- Heydar Radjavi, Department of Mathematics, Statistics and Computing Science, Dalo-

housie University, Halifax, Canada.
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If FF is not an algebra, e.g., when it is just a multiplicative or additive

semigroup, or if it is a Lie or Jordan algebra, transitivity implies irreduci-

bility, but not necessarily conversely. Both problems are of interest in pure

and applied mathematics for different families of operators.

Several of the participants in the workshop have worked in various

areas related to these problems. For example, the paper |4; considers the

Jordan-algebra analogue of the Burnside's Theorem and gives a satistactory

solution. 'The Lie-algebra analogue is still open. Transitive matrix groups

have a long history. 'The corresponding problem for semigroups have been

discussed recently in [2]; another variation, specializing to vectors and

matrices with non-negative entries is the subject of another recent paper

[6].

Given a structured family, say a multiplicative semigroup 8, there have

been many studies in the last two decades on what spectral conditions on the

members of S result in reducibility or simultaneous triangularizability of 8.

For example, the papers [3|, [5|, and |7| discuss the effect of submultiplicative

and permutable spectrum or spectral radius on reducibility. Spectrum is

said to be submultiplicative on S if c(AB) € o(A)o(B) for all A and B

in S. (c(T) denotes the spectrum of 7'.) Permutability means o( ABC) <

— o(BAC) for all A, B,C in S. In the complex case, spectral radius p,

is called submultiplicative if p(AB) < p(A)p(B) for all A and Bin S. A

sample result is that permutable spectrum implies reducibility. A sample

unsolved problem that could be discussed in the current workshop: does

there exist an irreducible matrix group of order 2" with submultiplicative

spectrum? (For orders other than 2", the answer is yes.)

There are many more problems in this area that can be discussed. Some

structure problems even for matrix groups with spectral conditions imposed

on them still remain open. We know, for instance, that an irreducible group

of complex matrices with submultiplicative spectrum is essentially finite (it

is contained in CG with G a finite group) and nilpotent, but their general

structure is not completely known.

[here are also interesting topological versions of these problems. It is

known [7| that on semigroups of compact operators on a Hilbert space, o

is permutable if and only if 1t is submultiplicative. Whether this is true or

not for general semigroups of operators remains open.

As a final example, we mention the properties of sublinearity of spec-

trum on a semigroup: o is said to be sublinear on a semigroup S if

o(A - AB) € o(A) - Ac(B) for all pairs A, B in S. This condition does

imply simultaneous triangularizability [8]. There are unsolved related pro-

blems that could be discussed. Sample: if oc is subadditive on 8, 1.e.,

o(A - B) C o(A) - o(B) for all A and B, can 8 be irreducible?

64 Obzornik mat. fiz. 46 (1999) 2



Reterences

[1] G. Cigler, R. Drnovšek, D. Kokol-Bukovšek, T. J. Laftey, M. Omladič, H. Radjavi, and

P. Rosenthal, /nvarzant subspaces for semigroups of algebraic operators, J. Functional

Analysis 160 (1998), 452—465.

[2] R. Drnovšek, L. Livshits, G. Mac Donald, B. Mathes, H. Radjavi, and P. Šemrl, On
iransitive linear semigroups, preprint.

[3] L. Grunenfelder, R. Guralnick, T. Košir and H. Radjavi, Permutability of characters

on algebras, Pacific J. Math. 178 (1997), 63-70.

[4] L. Grunenfelder, M. Omladič, and H. Radjavi, Jordan analogs of the Burnside and
Jacobson density theorems, Pacific J. Math. 161 (1993), 335—346.

[5] L. Lambrou, W. Longstaff and H. Radjavi, Spectral conditions and reducibility of

operator semigroups, Indiana Univ. Math. J. 41 (1992), 449—464.

[6] L. Livshits, G. MacDonald, and H. Radjavi, Cone-transitive matriz semigroups, pre-

print.

[7] W. Longstaff and H. Radjavi, On permutability and submulplicative of speciral radius,

Canadian J. Math. 47 (1995), 1007-1022.

[8] H. Radjavi, Sublinearity and other spectral conditions on semigroups, preprint.

Zahvale

Organizatorji srečanja se zahvaljujejo za finančno pomoč sponzorjem:

e Inštitut za matematiko, fiziko in mehaniko, Univerza v Ljubljani,

e Fakulteta za matematiko in fiziko, Univerza v Ljubljani,

e inštitut za odprto družbo Slovenije,

e Društvo matematikov, fizikov in astronomov Slovenije,

e Ministrstvo za znanost in tehnologijo Republike Slovenije.

Acknowledgements

Organizers are most grateful for the financial support of:

e Institute of Mathematics, Physics and Mechanics, University of Lju-

bljana,

Faculty of Mathematics and Physics, University of Ljubljana,

Open Society Institute Slovenia,

3ociety of Mathematicians, Physicists and Astronomers of Slovenia,

Ministry of Science and Technology of the Republic of Slovenia.6 e 6 6

Obzornik mat. fiz. 46 (1999) 2



VSEBINA — CONTENTS

Drugo srečanje iz linearne algebre Bled 1999 — 'The second

meeting in Linear Algebra Bled 1999 (Matjaž Omladič)............. 33

Povzetki — Abstracts

Avram Berman, Completely positive matrices, graphs unth no

long odd cycle and graphs with no short odd cyele.................. 34

Tirthankar Bhattacharyya, Multiparameter 5turm-Li1ouville pro-

blems with eigenparameter dependent boundary conditions..... 34—35
Alexander S. Fainshtein, Fredholm families of operators genera-

tung nailpotent Lane algebras......................................« o—36

luzius Grunenfelder and Matjaž Omladič, Ascent and descent

Jor commuting endomorphtsms................................. 36—37

Don Hadwin, Completely rank-nonuncreastng hnear maps............. 3[
John Holbrook, Schur norms — computation and applicahon ..... 371—38

| homas J OLafley, Some new invarzants relaling to the simulta-
neous similarity o] MATTICES................ 30—39

Raphael Loewy, /čank preservers on spaces of symmetric

matrices........ EEA ARENI 39-40

vlastimil | Ptak, Strong parttal isometrtes........................ 40—41

leydar Radjavi, The Perron-Frobemus theorem revisited............. 41

J aroslav Zemanek, A resolvent condition wmplying power bound-
EdNESS..LLLLL k a aa na nan 41

Jaroslav Zemanek, 7/'e role of ascent and descent in analysis......... 41

Članki — Articles

Večparametnična spektralna teorija — Multiparameter spectral.

theory (Paul Binding in Tomaž Košir).......................... 42—44

Odrezani momentni problemi: obstoj, enoličnost in lokalizacija no-

silca upodobitvenih mer — Truncated moment problems: exi-

stence, unigueness, and localization of the support of represen-

ting measures (Raul HE. Curto).......... IN 45-50

Pozitivni operatorji — Positive operators (Roman Drnovšek) ...... 51—52

Tranzitivne linearne polg£rupe — Transitive linear semigroups (Leo

Livshits)......................... RR NE NINA o3—596

IK ončnorazsežni prostori z nedefinitnim skalarnim produktom: raz-

iskovalni problemi — Finite dimensional spaces with indefinite

calar products: research problems (Leiba Rodman) | NE o1—60
Linearne preslikave, ki ohranjajo obrnljivost — Linear maps pre-

serving invertibility (Peter Šemrl)............................... 1—62

Problemi razcepnosti za sme operatorjev — Reducibility pro-

blems for operator families (He; ydar Radjavi).................... 63-111

Obzornik mat. fiz. 46 (1999) 2


