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V prispevku predstavimo srecanje iz linearne algebre, ki bo letos junija Ze drugic
potekalo na Bledu. Podamo tudi povzetke vabljenih predavanj za letosnje srecanje.

An introduction of the second meeting in Linear Algebra which will be held at Bled
in June 1999 is given. Abstracts of the invited talks for the meeting are listed.

11va veja matematike, ki zadnje case vse bolj
pridobiva na popularnosti. Razlog za to je njena sSiroka uporabnost v
razlicmh drugih vejah matematike in v drugih vedah. Prav zato se z njo
u;kvam@jﬁ ljudje razhcnih zammany mn razli¢nih predznanj. K temu morda
prispeva tudi QJSWO da je mnoge probleme linearne algebre razmeroma
Z.ahko formulirati in so zato ti problemi (ne pa nujno tudi njihove resitve)
lahk umljivi razmeroma Sirokemu kmgu matematikov razlicnih profilov.
Tudi znamsﬁvem L srecanj S tega podrocja ] Je veliko. Zato se kaze potreba po
organizaciji manjsih S?@@@zﬂj? na katerih b1 se S%m jali Judje sorodnih inte-
resov v linearni algebri. Blejsko srecanje namenja pozornost tistemu delu
linearne aﬁgebre kjef se Sﬁka algebra s funkcionalno aﬂaﬁzg Ta stik ima v
razvoju SE@V@ pogebeﬂ pomen, saj ga je prinas m’w g@jﬁ
rafesw Vidav, za njim p ngg:;; drugi slovenski maﬂm lak
‘v Sloveniji razvila prava S@Ea ki se u_kmma s tem podrocjem. Nasi n
ki pa imajo na tem podrocju razvito tudi | Ogaﬁm mednarodno S@d@v& ]€E.
dno, da so lahko priceli z organizacijo teh Smca,m pri nas. Prvo
do 31. 5. E@%@ \%

Hotelu Park na Bledu. Udelezili so se ga mm@gi ugiedm gostl 1z ‘tmm
j@ﬁdf& Bhatia (N@W Delhi, h}dﬁja ), Paul A. Binding (Calgary, K
Grunenfelder ahfax Kanada), John Holbrook n
Jaf amaﬂ ’DA), Ch ar les R. Johnson (William
mas J. | Egka% anger (Dunaj, A
! ngen, 7 RN
Madz az“gka}

(San T wgm ZDA) , Viastimil Ptak (nga Ceska) Heydar Radjavi (Halifax,
ana,da,} Leiba ] dean ﬂ;hamsb‘mg7 /DA), Peter Rosenthal (Temnm
Kanada) in Jaroslav Zemanek (VarSava, Poljska). Poleg teh so se Sresam
udelezili tudi mnogi slovenski matematiki, tako ugledni EOf@SOTﬂ d
iplomski sﬁuem]e Podobno kvah?@@tno udelezbo pricakujemo tudi le-
ko s0 sv0jO namero p@ S@d@*vamu poleg mnogih 1zmed zgom,j nastetih
potrdili tudi: Man-D Choz (Temnto [Kanada), Raul Curto (Iowa City,
ZDA), Alexander S. E‘amsh‘tem (Magmmgﬂfsk Rusija) in Wojtek Wojtinsky
(Varsava, | ohska,} Leégsmﬁ smcam% bo potekalo v Hotelu

Park na Bledu
od 1.

['udi tokrat nameravamo srecanje organiziratl na

Linearna algebra je zanin

'

Z‘t ni cu
blejsko Sm@ame 17 Emearn@ algebre je potekalo od 20. 5.

%t even J. P lerce
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podoben nacin kot pred tremi leti. Prve jutranje ure bodo namenjene va-
bljenim predavanjem, ki naj bi pomenila uvod v nadaljnje delo. Kasneje se
bomo organizirali v delavnicah, kjer se bomo ukvarjali s konkretnimi odpr-
timi problemi. Nekoliko v nasprotju z navado na podobnih srecanjih bomo
tako lahko posvetili ve¢ casa premisljevanju o problemih kot pa pripove-
dovanju formalmh predavanj. Ta nacin dela se je 1zkazal kot zelo ploden
ob prvem srecanju, ko so izsledki dela mnogih delovnih skupin predstavljali
osnovo za nekatere clanke, ki so bili kasneje objavljeni v mednarodnih znan-
stvenih revijah. S tega zornega kota je bila morda najuspesnejsa delovna
skupina za studi] nerazcepnosti in trikotljivosti operatorskih polgrup, ki je
v toku srecanja v celoti resila zanimiv problem, ki je Ze 1zsel kot ¢lanek sed-
mih avtorjev v ugledni ameriski reviji Journal of Functional Analysis.

ECANJE
E MEETING IN JUNE 1999

POVZETKI VABLJENIH PREDAVANJ ZA LETOSNJE S]

AVRAM BERMAN

Department of Mathematics, Technion—Israel Institute of Technology, Haifa, Israel.

A matrix A is completely positive if it can be decomposed as A = BB’,
where B is a (not necessarily square) elementwise nonnegative matrix.
An obvious necessary condition for a symmetric nonnegative matrix to be
completely positive 1s that it is positive semi definite. This condition i1s not
sufficient. A sufficient condition for a symmetric nonnegative matrix to be
completely positive 1s that 1ts comparison matrix 1s positive semi definite.
This condition, due to Drew, Johnson and Loewy, is not necessary. The
sufficient condition is necessary if the graph of the matrix is triangle free
(contains no short odd cycles). The necessary condition is sufficient if the
graph contains no odd cycle of length greater than 4 (long odd cycle). We
will discuss the relationship between these two results.

The smallest number of columns of B in the decomposition A = BB’
1s called the cp-rank of A. We will discuss some results and conjectures on
bounds for the cp-rank.

MULTIPA
EIGENPAI

TIRTHANKAR BHATTACHARY YA

(Joint work with Paul Binding and Karim Seddighi.)
Mathematics-Statistics Unit, Indian Statistical Institute, Bangalore, India.

Linked equations

—yi +qiYi = i=1,2 (1)
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are studied on |0, 1] subject to boundary conditions of the form

: COS Cx; = yf(@} sin ¥y <2>

Aoy (1) — ayi(1)), ()

biyi(1) — diy;(1) = €;
where |e1 ey - -e,] € R™ "™ is an arbitrary matrix, a;d; — b;c; # 0 for all 1
and A (A1, A2, ..., A\n) are parameters. Results are given on existence,
location, asymptotics and perturbation of the eigenvalues A; and oscillation
of the eigenfunctions y;. |
So far there seems to be no analysis of Sturm theory with A-depend

boundary conditions for more than one parameter, and 1t 1s our aim to
start such a theory by considering a special case. We st Edy (1) subject to

(2) and (3). For n = 2, we study the eigencurves for (1) for each fixed ¢

and we obtain expressions for the derivatives % along the eigencurves, and

ertain agympmmm basic existence and uniqueness theorem
or eigenvalues A and we obtain an oscillation theorem which generalizes
all the classical results. For n > 2, the theory of commuting self-adjoint
operators on a Krein space arises naturally in the context. We refine the
analysis to show existence and completeness under a general set-up and

various definiteness conditions.

ligher Mathematics, Magnitogorsk State Technical University, Magnitogorsk,
Russia.

Chair of Hi

unication we try to develop a Fredholm theory for famailies
of operators in Banach spaces genemﬁmg nilpotent Lie algebras. For the
ngaep?E of Taylor joint spectrum and polynomial Sp@mra& mapping
heorem for such f& nilies of operators see égh@ author’s paper in J. Operator
29 (1993), 3-27.

Let £ be a Cgmkx finite-dimensional nilpotent Lie algebra, a complex
vector space X be a F-module and K 08( F/, X) be the relative chain Koszul
complex with the homology spaces H X). The complex Kos(F, X) is
said to be Fredholm if the spaces H;(F, X ) are finite-dimensional. Then the
).

Kos(F, X) is defined as ind (E ) =5 . (—-1)dim H;(E, X

index of | |

Let a = (ah ., Qp) be a fa __ﬂy of bounded opemmrs in a Banach space X
holm and define its 1 l by H}d( = Eﬂd<E ( ) @SSQHM&E
Sectrum oge(a, X ) of a is the set of A € C™ such that a — A fails to be
Fredholm. On the other hand, for given a we may take a nilpotent Li
algebra F/ with generators €1, ., €n and define F-module structure on X
he Lie algebra homomorphism p: E — L£L(X) with p(e;) = a;. If we defi

a to be Fredholm if Kos(F,

In this comn

X') is Fredholm we get an equivalent definition

Obzornik mat. fiz. 46 (1999) 2 35



of the Fredholmness and the joint essential spectrum. The index however
depends on the choice of F.

We prove the polynomial spectral mapping theorem for essential spec-
trum and analogues of known results on families of operators on tensor pro-
ducts. We also prove the following results on triviality of the index.

Let /' and F be finite-dimensional nilpotent Lie algebras.

1. Let n : FF — E be a Lie algebra ep]_morphlsm X be an E-module
(hence also an F-module). Complexes Kos(F, X) and Kos(E, X) are si-
multaneously Fredholm and if in this case 1 1s not an isomorphism then
ind(F, X) = 0.

2. Let I be a proper Lie subalgebra of /' and X be an F-module (hence
also an F-module). If Kos(F, X) is Fredholm then Kos(F, X) is Fredholm
and ind(F, X) = 0.

I am deeply grateful to the organizers for the invitation and to the Open
Society Institute in Ljubljana for the support allowing me to attend the 2nd

Linear Algebra W

LLUZIUS GRUNENFELDER AND MATJAZ OMLADIC

Department of Mathematics, Statistics and Computing Science, Dalohousie University,
Halifax, Canada, Department of Mathematics, University of Ljubljana, Ljubljana,
Slovenia.

Let B be an algebra over a field and let M be a left B-module. If
a: M — M is a B-endomorphism then ker ¢* C ker a*™! and a*M D o't M
for every ¢ > 0. The ascent of a 1s the least positive integer r for which
kera — kera™! and the descent is the least positive integer s for which
M = a5t M, if such integers exist and oo if they don’t. If both the ascent
r and the descen‘t s of a are finite then » = s and M =kera” & a" M. This
) af the

is Fitting’s Lemma. It holds in particular for every a € Endg(M
Vlore generally, we may say

V[ 1s both /£ |
@ J, where K = U, kera® and

B-module M \rtinian and Noetherian.
that a has the Fitting property if M = K

Here we use homological techniques involving the Koszul complex to
define and explore the notion of ascent and descent, as well as a Fitting type
decomposition of M, for finite sequences a = (a1, as, ..., a,) of co muftmg
endomorphisms of a B-module M. The approach works for any n Od'iﬂ@
over a commutativering A and any finite sequence of elements of A acting as
endgmorphismsﬁ without specific reference to an B-module structure on M.
However, in our context the Fitting decomposition is of course B-invariant.
h}; genemi we say that the n- ‘mp}ﬂ a has the Fitting pmpemy ifM=K&J
and (a)J = J, where K = U; Hom a(A/(a), M), J =n;(a)' M and (a) is the
1deal in A g@nemte by the n-tuple a. The main result is that a has finite
ascent and finite descent if and only if a has the Fitting property and (a)
acts nilpotently on K. It turns out that ascent and descent are invariants
of the ideal (a) in A, in fact of the subspace generated by a, 1.e. they are

36 Obzornik mat. fiz. 46
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independent of the choice of the finite generating set, even in the absence

of the Fittmg property.

Ap m their independent interest, the results presented have also
motivated by the u@gmon of how m o the Sp@@ﬁ“ai b@_cw'mm*

Department of Mathematics, University of New Hampshire, Durham, USA.

We discuss operator-valued linear m apmgS on a linear space of ope-
rators that are completely mnﬁ ngmnm‘@aﬁmg (in the sense of completely
positive or completely bounded maps) . We conjecture that these are pre-
cisely the pointwise strong-operator himits of elementary maps. We show
that partial positive results, combined with Voiculescu’s theorem on appro-
ximate ummw @quwaﬁenae lead to completely algebraic characterizations
of approxim ummeand mpressions and skew-compressions of a repre-
sentation of a C* a&g@m We also use this concept to provide countere-
xamples to two conjectures of R. Curto and D. Herrero on joint similarity
orbits of matrices.

Department of Mathematics and Statistics, University of Guelph, Guelph, Canada.

By the Schur norm ||M||g of an n X n matrix M we mean its norm as
a Schur multiplier on (M,(C), ||-||), where ||-|| denotes the operator norm.

Thus
matrices

[llg = n
where M o X is the Schur (elementwise) product of the 1 IV
X. This norm is notoriously hard to compute (even for 2 X 2 matrices!);
we review methods of finding ||M||g, some going back to Schur and some
depending on explicit Haagerup factorization via

ax{||M o X | <1},

V = MY,

ax—row and max—column norms of their
matrix arguments. W mber of applications. We may briefly
recall applications dzscusse& during LAW 96; for example, Schur norm
computations shed light on multivariate von Neumann inequalities of the

type

where |||, and ||- Hc o

Ip(C1, ¢, C3)|| < Const - ||p||oo,

Obzornik mat. fiz. 46 (1999) 2 37



where the () are commuting contractions and p 1s analytic on the polydisc.
Details may be found in |1|. Among more recent applications, we report on
work with R. Bhatia (see |2]) concerning Fréchet derivatives of the power
function: let A — A" be the map that takes a positive definite matrix to
its rth power, and let DA" be the Fréchet derivative of this map. V

that ||DA"|| = ||rA"~!|| precisely when r is not in the interval (1/4/2,2). W
also summarize work with F. Gilfeather (see [3|) on the Pedersen conjecture
about commutators: for positive definite matrices A and 5, and contraction
C', and any matrix—monotone function f,

IF(A)C - Cf(B)|l < f([[AC — CBJ)).

R eferences

J. Holbrook, Schur norms and the multivariate von Neumann inequality, preprint.
R. Bhatia and J. Holbrook, Noncommutative Fréchet derivatives, preprint.
F. Gilfeather and J. Holbrook, On the Pedersen conjecture, preprint.

Do

r il
i it

Department of Mathematical Science, University College, Dublin, Ireland.

Let M,(C), M,(C|z]) denote the rings of n X n matrices over C
and the associated polynomial ring Clz|, respectively, and let GL(n,C
GL(n,Clz]) denote, as usual, the groups of units of these rings. We say
that a pair of elements A(x), B(xz) in M, (C|z]) are PS-equivalent if there
exists P(x) € GL(n,Clx]), Q € GL(n,C) with B(z) = P(z)A(x)Q.

Recall that A(xz) and B(z) are equivalent if there exists H(x),
K(xz) € GL(n,Clz]) with B(z) = H(x)A(xz)K(z), and that every element
A(x) is equivalent to a diagonal matrix diag(si(z),...,s-(z),0,...,0) where
r is the rank of A(x), and where s1(z),..., s.(x) are canonically determi-
ned monic polynomials (called the Smith invariants or wnvartant factors of
A(x)) with the property that s;(x) divides s;11(x) fort=1,2,...,r — 1.
We show that if det A(x) # 0, then A(x) is PS-equivalent to an upper
triangular matrix S(x) = (s;;(x)) where the diagonal entries s;;(x) are the
Smith invariants s;(z) and where for 7 > 17, either s;;(x) = 0 or s;;(x) is a
monic polynomial having degree less than deg s;;(z) and having s;;(z) as a
proper divisor. |

Such an S(z) is called a near canonical form (NCF) of A(x). The
question of the PS-equivalence of A(x), B(x) can be reduced to that of the
P S-equivalence of two NCFs S(z), T'(x) with the same Smith invariants.

In the generic case in which the equation det A(x) = 0 has distinct
roots, we can assume the associated NCF's are

S(x) = :1“0—1 51:1(@)) o T(z) =

0  su(x)]|’
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and

onic polynomial with u; (A1)

where each nonzero u;(z),v;(z) is a n —
= v;j(A1) = 0, where Ay is a fixed root of s,(z) = 0. Let U =
= span(ui(x),...,u, 1(x)), V = span(vi(x),...,v,—1(x)). Then if A(z),
B(z) are PS-equivalent, dimU = dim V. Furthermore, if we write s,(z) =

= (x — A1) (z — Ay) and for 0 £ w(z) € C|x|, define

(= A1) (= X)) divides w(z)},

$(w(x)) = max{k > 0

we can choose a basis of U inductively as follows:

Let 11(x) € U be a nonzero element w(x) with ®(w(x)) maximal and having

chosen 41 (xz), ..., u(x) and k < dim U, we choose tip_1{x) to be an element

z(x) of U\span{ti(x),...,ur(z)} with ®(z(z)) maximal. Choose a basis
V' in the same way. Then if A(z), B(z) are PS-equivalent, ®(i;(x)) =

®(0;(x)) for all 1.

An algorithm to determine PS-equivalence will be presented and appli-

cations given to the problem of determining the simultaneous similarity of

two lists (Aq,...,A;) and (B1, ..., B;) of elements of M,(C).

This 1s joint work with J. A. Dias Da 5Silva.

Department of Mathematics, Technion — Israel Institute of Technology, Haifa, Israel.

Let S, (F') denote the set of all n X n symmetric matrices over the field
Let & be a positive integer such that & < n. A linear operator 1’ on
rovided that it maps the set of all

.
Sn(F') is said to be a rank-k preserver j
rank k& matrices into itself.

Suppose that & = 2r is an even integer. Beasley and Loewy showed that
if F' 1s algebraically closed of characteristic % 2, then any rank-k preserver
on S, (F') must be a congruence map. They also showed that if n > 2k = 4r,
any rank-k preserver on S, (IR) must be a congruence map, possibly followed
by negation. Following this and earlier results, the problem of characterizing
rank-k preservers on S,(IR) is still open if k +1 <n <2k — 1.
| k we describe an improvement of the Beasley-Loewy result
for S,(R). It turns out that three types of subspaces are relevant to the
investigation of rank-k preservers: (I) A subspace where each nonzero matrix
has rank at least k. (II) A subspace where each nonzero matrix has rank
equal to k. (ITI) A subspace where each matrix has rank at most k.

(1999) 2 39
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We consider those three types of subspaces. In particular, we obtain the
following result: Suppose that F'is an infinite field, £ = 2r and 2n > 5r 4+ 1.
Suppose that L is a subspace of S,,(F') of type (III) such that

1
dim L > max{2r? + 2r, w5(27’1/1*‘ —2n — 7% 4+ 3r +4)}.

Then L 1s decomposable. This is an analogue of a theorem of Atkinson and

Lloyd, who considered a subspace of the space of all m x n matrices over F
which is of type II1I.

Several open problems will also be mentioned.

TRONG PARTIAL ISOMET

VLASTIMIL PTAK
Mathematics Institute, Czech Academy of Sciences, Prague, Czech Republic.

The classical Toeplitz operators are defined as compressions to H? of
the multiplication operaﬁtor M(p) on L?, ¢ being an L* function. An

operator T : H? — H? is Toeplitz for a suitable ¢ if and only if it S&‘HSﬁ@S
the relation 7' = S*T'S where S is the (forward) shift operator on H?.
The function ¢ i1s defined uniquely by 7. A Hankel operaﬁcm‘ Correspondmg

to ¢ is the Compressmn from H? to H? of M(p), P(H*)M(p)|H*. An

H? [H? is Hankel if and only if it satisfies the intertwining

operator X :
relation XS = ZX, Z being the backward shift on H?: this relation

does not define the corresponding ¢ uniquely. Sz. Nagy and Foilas studied
generalized Toeplitz operators on Hilbert spaces X : Ho defined by

the relation X = TZX 17, 11 and T being arbitrary contractions on H

and Hsy respectively. They found a unique symbol ¥ constructed from the
minimal isometric dilations U] and U5 of 17 and T3 acﬁng on /C; and /Cs.
In this manner X appears as the compression P(H2)Y|H; of Y. In Acta
Sci. Math (Szeged) 52 (1988) P. Vrbova and the author introduced a Hankel
operator corresponding to 77 and 75, imitating the classical case, replacing
H? by Ky © Hy. The generalized H P(ICo © H2)Y |Hq

Hankel operator H = I
satisfies the intertwining relation 7o = HT,. To obtain an analogue of
posed, the so called

Nehari theorem another condition has to be 1n
R-boundedness — this condition 1s trivially Satlsﬁed in the dassmai case; ltS
meaning clears up the general situation. Recently (Math. Bohemica 122
(1997)) the author described a W}d@r class Of Hankel type operators defined
by the intertwining relation ToH = HTT and other boundedness conditions.

ine of the important tools in ‘these mvestigations 1s the decomposition
PP (RNAH ‘L) where P is the closure of P(R)H

[ and a related coisometry
W = (U *|P)*. The particular case where H— C R, in other words,

techniques for its solution described. The connection of this problem

will be 1nvestigated, its motivation eprme and ét
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Sfﬁmng partial m@ @JM"E@S WEH be discussed. In a joém paper C. Mancera
P. Paul, V. Ptak, V. Vasyunin prove the following: given a contraction T
on a | ﬂbert space such tha‘é Tn is a partial isometry for each n > 0 then H
may be orthogonally decomposed into four 7' reducing subspaces such that
the corresponding parts are (1) unitary (2) forward shift (3) backward shift,

and (4) orthogonal sum of finite truncated shifts (some of the parts may be
missing).

Dalohousie University,

Department of Mathematics, Stafmg‘tws amd C@mputmg Science,

Halifax, Canada.

The celebrated I m makes several assertions
about the form, spectrum, and fixed positive vectors of certain matrices
with non-negative entries. It turns out that most of these assertions hold
1n a much more general setting, 1.e., for a large class of multiplicative se-
migroups of non-negative matrices. These extensions will be discussed in
this talk. There are no prerequisites except elementary linear algebra and
elementary analysis.

i ot (el iy N
B B - F
B Gs Sl Pus” Ve

Institute of Mathematics, Polish academy of Sciences, Warsaw, Poland.

Analytic resolvent conditions will be related to the behaviour of the
powers, their consecutive differences and Cesaro means. Some examples
and characterizations of the extremal cases will motivate open questions for
further research.

JAROSLAV ZEMANEK

Institute of Mathematics, Polish academy of Sciences, Warsaw, Poland.

We intend to show the role of ascent, descent, and closedness of operator
ranges in the ergodic behaviour of linear operators with respect to various
operator topologies.

Perhaps the details of the above talks, and further related results and
problems, could be discussed in a working group under the general title
Powers and resolvents.
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PAUL BINDING IN TOMAYZ KOSIR

V sestavku opisemo vecparametricne probleme lastnih vrednosti in predstavimo
Atkinsonov algebraicni pristop za studij teh problemov.

Multiparameter eigenvalue problems and Atkinson’s algebraic approach to study
such problems are described.

One way in which multiparameter eigenvalue problems arise is when the
method of separation of variables is used to solve boundary value problems
for partial differential equations. FEach ‘separation constant’ gives rise to
a different parameter. The resulting equations are simpler boundary value
problems for ordinary differential equations, for example of Sturm-Liouville
type, that are linked by parameters. Two-parameter problems of this type
have been studied since the earliest days of the subject, and the following
formulation 1s, for example, the main object of study in a monograph of
Falerman:

where 0 < z; < 1, and boundary conditions are

———bdrer D

dy;
d:L‘i

y; (0) cos a; — p; (0) (0)sina; =0, 0 < oy <,

and d

i (1)Sin/6i — 09 0 < ﬁ’i g ,

| d.’}ff,;

for + = 1,2. These and other problems have motivated the development of
multiparameter spectral theory.

In the 1960s Atkinson laid the foundations of abstract multiparameter
spectral theory and gave an overview of possible directions for further rese-
arch. Since then the area has been explored by a number of mathematici-
ans and we mention just a few of them. Analytical aspects were studied by
Binding, Browne, Failerman, Sleeman, Turyn and Volkmer, algebraic and
geometric aspects by Fainshtein, Grunenfelder, Isaev and Kosir, nonlinear
problems by Huang, McGhee, Rynne and Shibata, and numerical aspects

by Blum, Ji, Muller and Shimasaki. In Slovenia, Vidav’s PhD thesis is an

yi (1) cos B; — p; (1)

Paul Binding, Department of Mathematics and Statistics, University of Calgary, Calgary,
Canada. Tomaz Kosir, Department of Mathematics, University of Ljubljana, Ljubljana,
Slovenia.
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Shvnik and

early contribution to the area. Since then Bohte, Plestenjak,
Tomsi¢ have considered numerical aspects of the theory.
Omne of the main goals of multiparameter spectral theory i1s to give
completeness results for different multiparameter spectral problems. For
example, one could try to expamd functions defined on the domain of the
partial differential equation in terms of Fourier-type series involving the
eigenfunctions of the separated (say Sturm-Liouville) equations.

In the abstract theory, the main object studied is the n-tuple of n-pa-

rameter pencils

=1,2,...,n(n>2), (2)

also called the multiparameter system. Here A;; are, for all 7, linear ope-
rators in the Hilbert space H;. In applications like (1), A4;;, 7 = n,
are multiplication operators and A,y are differential operators. Typically
then the A;;, 7 # 0 are continuous and the A;p are closed densely delined
operators either with compact resolvent or of Fredholm type. In the multi-
parameter eigenvalue Dmmem we first find n-tuples of complex numbers A

\) are singular. This can be considered as a

such that all the operators U
generalization of the ordinary eigenvalue problem.

One fundamental tool of abstract multiparameter spectral thmﬁy m a
tensor product C@HSWU_CMOH We consider the tensor product space H
=H{iQHy® - ané certain determinantal operators associated with
A;; acting 1n Specifically, A, is (up to a sign) the tensor determinant of
the array [Akgh_<g¢<n 0<i<n With 7-th column omitted. We hmn our interest

to so-called nongmguiar mukapam @mr systems when Ag on 1S one-
-to-one. Then the operators I'; mmute and ] mmde a joint
spectral decomposition of H. H ’@ e A;; mitian and Ag > 0 then
the eigenvalues are Semisin ple, and a basis of joint eigenvectors for the I';
exists for H. It is important to note that these eigenvectors can in fact
be constructed out of (decomposable) tensors of the eigenvectors for the
original operators W;, so the I'; do not need constructing explicitly.

In general, completeness requires “joint root subspaces” of the form

| l

Here N (A) is the nullspace of a linear m
express completeness in terms of the W;
mensions the rdaﬁcwe com Eemty of ﬁhe two &pmashes can be gauged from
th@ rdaﬂu@n o lim H;. In infinite dimensional exam ples, when

14 ['; are partial dif emmmi ope-
he W, arise from separation of a partial differen-
tial Opera‘tor in the first piaee it follows that the main virtue of the tech

nique disappears unless one has completeness statements in terms of the W,
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Difficulties in proving multiparameter completeness results arise when the
eigenvalues are not semisimple, i.e., when root vectors exist.

Various authors constructed root vectors for particular types of eigenva-
lues and for particular types of multiparameter systems. For instance, Bin-
ding described root vectors for real eigenvalues of uniformly-elliptic multi-
parameter systems, Falerman conjectured the structure of the general root
vectors for non-real eigenvalues of the two-parameter spectral problem (1),
and Kosir described root vectors for nonderogatory and simple eigenvalues
of finite-dimensional multiparameter systems. An algebraic construction of
the root subspaces (3) was given by Grunenfelder and Kosir for general ei-
genvalues in finite dimensions and for eigenvalues of Fredholm type in infi-
nite dimensions. This construction uses coalgebraic techniques and 1s 1in ge-
neral technically involved. It is expected that one can use special structure
of a boundary value problem of type (1), particularly if 1t 1s of elliptic type,
to simplify the construction and to obtain numerical algorithms suitable for
applications.

In the working group we propose to study analytic, algebraic, geometric
and numerical aspects of the above described multiparameter eigenvalue
problem (2), with special emphasis on elliptic boundary value problems of

type (1).
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Z

Predstavljeni so odrezani momentni problemi, prirejeni utezenim operatorjem po-
mika v dveh spremenljivkah v kompleksni ravnini.

We present truncated moment problems associated with 2-variable weighted shifts
in the complex plane.

plete solution to the trun-

13| we succeeded in obtaining a com
blem in case the m%erpohtmg measure has compact su-
ain contribution there consisted 1n bringing to

D] om 1n reai line; our m
hghﬁ the notion of recursiweness, which was central to our analysis. As we
easure must be allowed to

move into several variables, the interpolating n
have support away from the line; one instance of particular interest, associ-
ated with 2-variable weighted shifts, is the case of compact support in the
complex plane, which we label as the truncated complex moment problem

Let @ be a positive Borel measure on
and define ;;:= [ z'27du(z, 2). Given p € (
have

C, assume that C|z, Z| C Ll(/i)
[ 9 ]9 p( ) ) Z'LJ J ?

> Qijage | 2 22 Tdu(z, z)

(1)

|

[ p(2,2) |? dulz, 2

Qi AR Yit0, 5+ ke
iikt

Observe that ygo > 0 and ~y;; = 7;; for all 7, 7. To understand the matricial
positivity associated with v:={~;;}, we introduce the following lexicographic
order on the rows and columns of infinite matrices: 1, 2, Z'j Z 23 j 7 23 Z 3?
Z7% 7%7,7°, ..., e. g., the first column 1s labeled 1 the second column is
Ead@d Z, the thu'd Z, the fourth Z?, et cetera; this order corresponds to
the graded homogeneous decomposition of C|z, E], For m,n > 0 let M|m,n]

be the (m + 1) x (n+ 1) block of Toeplitz form whose first row has entries

Rail Curto, Department of Mathematics, University of Iowa, lowa City, USA.
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given bY Yrmn, Ym+1n—1, - - -, Ym+n,0 ad whose first column has entries given
bY Ymns Ym—1mn+1, ---, Yo.n+m (@s a consequence, the lower right-hand corner

of M{m,n] is Ypm). The matrix M = M () is then built as follows:

M[0,1] M]J0,?2
M[1,1] M1,2
MI2,2

It is now not hard to see that the above mentioned positivity ((1)) is
equivalent to the condition M > 0, as a quadratic form on C%. Suppose
now that we are just given a double-indexed sequence v = {~;,} subject to
the constraints vgp > 0 and ~;; = 7;; for all ¢,5. The classical (complex)
full moment problem asks for necessary and sufficient conditions on the
sequence -y to guarantee the existence of a positive Borel measure p which
interpolates v, 1.e.,

/zizjdu(zag) — Yij (?’93 > 0) (2)

An obvious necessary condition is then M > 0; this corresponds to the
positivity of the Riesz functional L(p):= >, a;;7;; on the cone 52 generated
by polynomials of the form pp. If K 1s a closed subset of C, the Riesz-
Haviland Criterion states that v admits a representing measure supported

on K if and only if L(p) > 0 for every polynomial p which is nonnegative
on K.

With v, L, M and K as above, suppose there exists a polynomial ¢
such that K = K,:={z € C: q(z,Z) > 0}. In the presence of a representing
measure u supported on K, the inequality L,(pp):=L(qpp) = [ qpp > 0 (all
p € C|z, Z]) must hold, in addition to L(pp) > 0 (all p € C|z, z]). Therefore
both conditions are necessary for the existence of a representing measure
supported in K. K. Schmiudgen established in [23, Theorem 1] that for
K, compact these two conditions are indeed sufficient, and this 1s the case
also for compact sets K which are semi-algebraic, that is, obtained as the
intersection of a finite family of K,’s. (For related results, see |23, Corollary
3], [1], [21], [24], [26].

The truncated complex moment problem (TCMP) corresponds to the
case when only an wnitial segment of v 1s known. Our approach to TCMP
follows the strategy we employed to solve the real TMP |6]. Indeed, part of
the overall strategy can still be carried out, and concrete conditions can be
found in a number of fundamental cases.

What we believe must be used now is a combination of a few revealing
examples (cf. |7, Chapter 6], |9, Sections 2, 3, 4, and Appendix|, [10]) and
the interplay between M (n) and M (n),, a new associated matrix we have
introduced in [10].
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1. Let M(n) > 0 and suppose degq = 2k or 2k — 1.

Theorem >
There exists rank M (n)-atomic representing measure supported in K, if and

only if there is some flat extension M(n + 1) for which My(n+ k) > 0.

In this case, there exists such a representing measure having exactly

rank M (n) — rank M (n + k) atoms in Z(q):={z € C:q(z,Z) = 0}.

M, keeps track of the location of the support, and this in turn can
be used to establish additional constraints when searching for representing
measures. In what follows, we list four open problems to be discussed by

the research group.

Quadratures and Cubatures. A disc of center a and radius r can be

thought of as the guadrature domain completely determined by the moments
2 Y. 2T 2 3

Yoo = 7re, vo1 = war® and y11 = wro(5 + la|?), or equivalently, by the

moment matrix

Quadrature domains have received ample attention recently, in view of a
natural connection with the theory of hyponormal operators with rank-one
self-commutator, and with rationally cyclic subnormal operators |15, [16],

17], [18].

Problem 1. Does the moment matrix M (n) associated with a quadra-
ture domain admit o flat extension, thereby giving rise to a rank M(n)-ato-

mic representing measure?

The study of manimal representing measures (those with exactly
rank M (n) atoms) is intimately connected with quadrature problems. For
K a closed subset of R™, w a positive weight function, and d a nonnegative
{-quadrature problem for w of precision d entails finding no-

integer, the .
~and densities pg, ..., ppr—1 such that [ p(z)w(z)dz =

des zg,..., 271 € K

i\i 61 prp(xy) for every polynomial p of total degree d. In [5], |9], and
14|, we have applied techniques derived from TCMP to obtain minimal-
-node solutions for various compact sets in R?. The problem of explicitly
computing the nodes and densities of minimal quadrature rules, however,
remains largely unsolved, except in special cases (squares and discs, and
small values of d; cf. [4]). Our methods circumvent the theory of ortho-
gonal polynomials and considerations of symmetry; instead, the search for

xo,...,Tp—1 gets restricted to a suitable algebraic variety.

2. Find manimal quadrature rules of precision 2n (n > 3) for

Problem 2
the unit square, unit disc, or equilateral triangle, by building a flat extension

of the associated M(n).
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Problem 3. Let M(2) be a positive moment matriz. Does M (2) always
admit a representing measure?

Our solution of TCMP for flat data was based on the following

Theorem 2 (|7, Theorem 4.7|). Let M be a finite-rank positive infinite
moment matriz. Then M has a unique representing measure, whose support
consists of rankM atoms, obtained as the zeros of an associated analytic

polynomaal.

Theorem 3 (|7, Theorem 5.4]). Let M(n) be a flat positive moment
matriz (i.e., rank M (n) = rank M (n—1)). Then M(n) admats a unique flat
extension M(n +1).

A dilation-theoretic approach to cubature. Given a measure v, a cuba-
ture formula of degree 2s — 1 for v can be thought of as a finitely atomic
measure g such that [ pdp = [ pdv for every polynomial p in Pys_1:={p €
Clzi,...,xzq|: degp < 2s—1}. If mg_1 1s the orthogonal projection of L*(v)
onto Ps_1, and M 1s the commutative d-tuple of multiplication operators
by the coordinates x;, the compression m,_1Mms;_1 1s a d-tuple of self-ad-
joint operators acting on a finite dimensional Hilbert space. In [19], [20],
M. Putinar has obtained the following result.

Theorem 4 (|20, Theorem 2.3|). There exists a bijective correspon-
dence between all finite-rank, cyclic and commutative dilations N of the
self-adjoint d-tuple ws_1Mms_1 and triples (m,V, A) consisting of (i) an in-
teger m > s; (1) a vector subspace V. C P, satisfying Ps_1 L (V N Ps),
dim(Pm_l/(V M Pmm_l)) < dim(Pm/V), and PrV + S = Pk
(0 < k < max(2,m)), where S 1s a vector complement of V in P,,; and
(111) a positive operator A on S satisfying ws_1 AQims = ws_1, where Q1 13
the parallel projection of Pp1 onto S.

Given a dilation N with cyclic vector 1, Putinar builds m and V
by looking at the kernel 7 of the map p — p(IN)1l. Since 7 is finite
codimensional (because N is finite-rank), the theory of the Hilbert-Samuel
polynomial implies that 7 i1s uniquely determined by a positive degree, m,
and a subspace V. Consideration of the orthogonal differences P; © (Z NP;)
then leads to the operator A in Theorem 4. As an application, one can
then obtain an abstract parameterization of all cubature formulas of degree
2s — 1 for a given measure v. It turns out that such parameterization can
be formulated abstractly in terms of certain operator equations, as follows.
Let Ho, H1 be two finite dimensional Hilbert spaces, let A, B,C' : Hy — H;
be linear operators, and let X1, Y7, D be self-adjoint operators acting on H;.
Find and describe all self-adjoint dilations (X,Y") of (X1,Y7), acting on the
Hilbert space H = H{ & H» which satisfy .

2%[X,Y] = (103 8)
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The above construction (which describes the space of cubature formulas
for a given measure) and the construction in |7, Chapter 4| (which gives
an existence criterion for solutions to TCMP) have intriguing similarities,
which we wish to unravel.

Problem 4. Establish direct links among: (i) the results in [7, Chapter
4/, (11) the above operator equations, and (1i1) the 3-term recurrence relations

(assoctated with Jacobi matrices) studied by Y. Xu [27].

For the resolution of many of the above problems, some of the tools
and techniques that we propose to utilize are derived from our previous
work on jownt hyponormality, which helped us establish the existence of
polynomially hyponormal weighted shifts which are not subnormal |12|. F
the new problems at hand, we propose to consider suitable combinations of
four basic notions:

e positivity for square matrices;
e extendibility of matrices obtained by adding a prescribed number of
rows and columns;:

® recursiveness; and
e the structure of the real or complex algebraic variety associated to the
given moment matrix.

When these four basic ingredients interact in appropriate ways, aided by
symbolic manipulation, the result i1s the construction of concrete algorithm

that often describe in detail the space of all possible representing measures.
One fundamental idea in the basic construction used in [12| was to
extend the intrinsic connection between subnormal operators and classical
moment problems in the positive real axis to classes of nearly subnormal
operators and moment problems for certain linear functionals not necessarily
represented by measures. These techniques also allowed us to obtain a
simplification of the main result in [3] for the power moment problem in two
dimensions. | like to further exploit this circle of ideas to obtain

We would
further connections between operator theory and classical analysis (cf. [21]).
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Predstavljeni so trije zanimivi odprti problemi o spektru in invariantnih podprostorih
za pozitivne operatorje na Banachovih mrezah.

- P Py g ? L o i B £ g L e 4 ]
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Three interesting open problems on spectrum and invariant subspaces of positive
operators on Banach lattices are presented.

Positive operators on Banach lattices have been studied extensively in

the last decades. Their study 1s a subject of great importance to pure and
applied m HH, HL and [8_

athematics. The excellent monographs mj 10
contain the most important results on this Subje@t

There are still a lot of open questions on the spectrum and variant
subspaces of positive Op@m‘mrg Let us @%mb@ ﬁemstmg problems
that can be discussed during the informal daily sessions. See [10], |8] and
4] for details about the first two problems.

1. Let I" be a positive operator on a Banach lattice £, and let the
spectrum o(1") of T' contain only the peoint 1. Denote by I the identity
operator on £. The following question is open:

Is it true that T'> 17

) E/ 1s finite-dimensional;

{
(b) 1 is a pole of the resolvent R(A,T) = (A —T')~
(c) T is a lattice homomorphism, i.e., |Tz| = T'|z| for all z € E.

2. The peripheral spectrum o,.(T') of an operator T' on a Banach lattice
I 1s defined by |

o (T) :=0c(T)N{z e C: |z| =7(T)},

") denotes the spectral rac ius of I". For positive operator 1" on

where 7 (1
" we always have r(T) € o,(T). This important fact follows from the

equahty

which holds for all z € E and for all A with |[A] > r(7'). Moreover,
the beautiful theorem of Krein and Rutman asserts that if »(1') is a pole
of the resolvent, then r(T') is an eigenvalue of T' to which there exists a
corresponding positive eigenvector.

Roman Drnovsek, Department of Mathematics, University of Ljubljana, Ljubljana, Slo-
venia.
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A subset S of C is said to be cyclic if for all A = |Ajlw € S it follows
that |Aw® € S for any integer k. The following question is still unsolved:
Is it true that every positive operator has cyclic peripheral spectrum?

As above, this question has afirmative answers in some special cases:
(a) F is finite-dimesional;

(b) the family (A — »(T"))R(A,T') is uniformly bounded for A > r(T').

3. A bounded operator I’ on a Banach space X 1s called idempotent if
T°=T.

A collection C of bounded operators on X i1s said to be reducible if there
exists a non-trivial mvariant closed subspace of X that 1s invariant under
all members of C. Reducibility of multiplicative semigroups of idempotents
has recently been studied in [9], [2], |5], and |6]. It was an open question for
some years whether every such semigroup 1s reducible. The answer has been
given in |2| where an irreducible semigroup of idempotents on the Hilbert
space [? is constructed. This example has been recently modified to give the
following stronger result (see [3]). Given K > 1, there exists an irreducible
semigroup of idempotents on [ that is norm-bounded by K.

If we restrict our attention to positive idempotents on a Banach lattice,
the following question 1s still open:

Is every multiplicative semegroup of positive rdempotents reductble?

References

(1] C. D. Aliprantis, O. Burkinshaw, Positive operators, Academic Press, Orlando 1985.

2] R. Drnovsek, An irreducible semigroup of idempotents, Studia Math. 125 (1997),
97-99.

[3] R. Drnovsek, L. Livshits, G. W. MacDonald, B. Mathes, H. Radjavi, P. Semrl, On

operator bands, preprint.

14] J. J. Grobler, Spectral theory in Banach lattices, Operator Theory: Advances and
Applications 75 (1995), 133-172.

5] L. Livshits, G. W. MacDonald, B. Mathes, and H. Radjavi, Reducible semigroups of
idempotent operators, J. Oper. Theory 40 (1998), 35—69.

6] L. Livshits, G. W. MacDonald, B. Mathes, and H. Radjavi, Do bands have non-trivial

wrreductble representations?, preprint.
[7] W. A. J. Luxemburg, A. C. Zaanen, Riesz spaces I, North Holland, Amsterdam 1971.

8] P. Meyer-Nieberg, Banach lattices, Springer-Verlag, Berlin-Heidelberg-New York
o1 g g g g
1991.

9] H. Radjavi, On the reduction and triangularization of semigroups of operators, J.
Operator Theory 13 (1985), 65-71.

110] H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin-Hei-
delberg-New York 1974.

[11] A. C. Zaanen, Riesz spaces II, North Holland, Amsterdam 1983.

52 Obzornik mat. fiz. 46 (1999) 2



o

LEO I

V sestavku obravnavamo tranzitivnost in nerazcepnost polgrup linearnih operatorjev
na koncnorazseznem vektorskem prostoru.

S

SEMIGROUP

Transitivity and irreducibility of semigroups of linear operators on a finite-dimensi-
onal vector space are discussed.

Much of motivation for the work described in this abstract came from
Operator theoretic realm. As i1t i1s often the case there, when trying to
answer a general question, one tests a linear algebraic vamam first. It is not
on for a linear algebraic question to be as hard or harder than the
but in certain cases, the new question becomes significant in its
own right. We present one such account, and shall restrict our attention at
present time to the finite-dimensional case.

A proper subspace M £ {0} of a vector space V (over a field ) is said
to be a (non-triwial) mmvariant subspace for a subset S of the aﬁgebra
of all linear transtormations on V, it T'x € M whenever z € M
We call 5 wrreducible it it has no non-trivial invariant Subgp&@es
(named after W. Burnside) states that in the case when

and V 1s finite-din has Nno proper

uncomaun
original,

known theorem
* 15 algebraically closed

ensional,

irreducible subalgebras. Burnside’s theorem does not extend to 1nfinite-
hich consists of all

dimensional vector spaces: the subaig@m of L(V)
ations of finite rank 1s irreducible.

A is a subalgebra of L(V) then, for every z € V, { Az | A
1s an invariant subspace for A. If A is irreducible then Az = {8} or V
every . Yet {z € V | Ax = {0}} is an invariant subspace for A, which shows
that Az = V for every non-zero x, whenever A 1s irreducible. Et 1S easy ‘to
see that the converse i:% &ES@ true. Hxg
states that A 1

“fwaﬂsﬁlwﬁy means that for every
r,y € V, x # 0, there exists A € A Ar = y. Obviously the
latter form of the definition can be COH_SE@E‘@d to be a particular case of the
following general definition:

A collection F of functions from a set ) to a set A is trans @ﬁw@
if for every = € (), y € A there exists f € F such that f(x) =y; (F

is said to be sharply transitive if such f is unique).

Leo Livshits, Department of Mathematics, Colby College, Waterville, USA.
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Consider a vector space V over a field IF and let V\{0} play the
role of {} under a subgroup F of the general linear group GL (IF) of all
I'-linear bijections of V. Such F is said to be n-transifive if for every pair
‘of linearly independent subsets {z1,...,z,} and {y1,...,y,} of V there
exists A € F such that A(z;) = v;, 1 = 1,...,n. In case such A is unique
we call F' sharply n-transitive. Finite sharply transitive linear groups have
been completely classified by C. Jordan (n > 4) and H. Zassenhaus [6]
(1 < n < 3). There are no infinite sharply n-transitive groups for n > 4.
F. Kalscheuer |3] determined all closed (in Euclidean topology) sharply
transitive linear semigroups in the case I = R or €. A very active area of
research 1n the last thirty years, transitive linear groups have received a lot
of attention due to their importance in finite geometry, where, for example,
it 1s desirable to determine geometries which admit “very transitive” groups

of automorphisms.

Keeping with group-theoretic terminology, one can say that an algebra
A of linear transformations on a vector space V over a field IF' is n-tran-
sitive if for every linearly independent set {xy,...,z,} C V and any set
{y1,...,Yn} C V there exists A € A such that A(z;) =vy;, 1 =1,...,n. It
1s marvelous that such a definition is quite redundant: in contrast to both
permutation and linear groups, all 2-transitive subalgebras of L(V) are au-
tomatically n-transitive, for every n € IN. This is a remarkable theorem of
Jacobson |2|, and a version of it is true in a more general algebraic setting.
(Keep in mind that not every transitive algebra is 2-transitive.) It is also
trivial to see that a subset of L()) is not sharply transitive (under the ob-

vious definition) whenever it is closed under addition.

Linear groups and algebras of linear transformations are two examples of
linear semigroups. These are the subsets of L(V) closed under composition.
Let us define (n-)transitivity and wrreducibility for linear semigroups in the
same fashion as this was done for algebras. It i1s important to notice that
no linear group can be transitive as a linear semigroup because its elements
cannot send a non-zero vector to zero. To resoive this conflict we shall
say that a linear semigroup in L(V) is n-0O-transitive if for every pair of
linearly independent subsets {x1,...,x,} and {y1,...,yn} of V, there exists
A € § such that A(x;) = vy;, ©+ = 1,...,n. It 1s tempting to define sharp
0-transitivity in the obvious way for all linear semigroups, but this definition
turns out to be redundant: every sharpy O-transitive linear semigroup is a
linear group possibly together with the zero transformation.

The linear span of a linear semigroup i1s an algebra possessing the same
invariant subspaces as the original semigroup. Every O-transitive linear
semigroup spans a transitive algebra and 1s hence irreducible. It is easy
to see that the converse is false. Jacobson’s Theorem does not extend to
linear semigroups either: for each n € IN there exists an n-transitive linear
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Of course there 1s no shortage
linear groups and
pt to gain better

semigroup which is not (n 4 1)-0-transitive. (
of examples of transitive linear semigroups, apart from
algebras. Such semigroups shall be our focus. In an attem
understanding of their structure it i1s natural to seek out classes of “small”
transitive linear semigroups which can be considered basic “building blocks”
for constructing many others.

One such class (studied in |1]) consists of the transitive linear semigro-
ups which lack proper transitive left ideals; (a left ideal in a linear semigroup
S is a subset J of S such that §7 C 7). We call these left t-ssmple, and
the class of transitive lelt féwgimpig semigroups contains all minimal transi-
tive semigroups. lIdeals play an immportant role in the theory of transitive
linear semigroups. One simple reason is that a non-trivial (two-sided) ideal
in a linear semigroup is (0-)transitive if and only if the whole semigroup is
(0-)transitive. Semigroups with no non-trivial proper ideals are called simn-
ple if they do not contain the zero transformation, or 0-stmple if they do.

Let us restrict our attention henceforth to linear semigroups on a fi-
[t turns out that m this case every transi-
ence left t-sim
how that every
mpotent,

-dimensional vector space.
igroup Comamg the zero J@mnsfw
ple linear semigroups are 0-simple. Furt]
transitive left t-simple linear semigroup S contains a non-zero 1d
and consequently a primitive idempotent; (a primitive idempotent in S is an
idempotent minimal with respect to the usual partial order on idempotents
in L(V) defined by e < f & e = ef = fe). This makes S an element of a
very important collection of (abstract) semigroups: the class of completely
0- mmpie semigroups. lhere 1s an extensive represematmn theory available
for this class, md_udmg a theorem of D. Rees [4] which classifies all com-
pletely @-—:S:a.mpk semigroups (up to an isomorphism) as particular semigro-
‘ups of linear transtformations, under an @p@m“man related to a composition.
3. M. Schein [5] chamctemzed completely O-simple semigroups as those is-
omorphic to simply transitive semigroups of binary relations on a set. The

tive linear sem

Nonetheless, one can make some headway using linear algebraic me-
thods. It i1s not hard to see that all non-zero elements of a transitive left
t-simple linear semigroup S have the same rank, which must divide the di-
mension of the underlying vector space. If the rank equals the dimension
then S\{0} is a O-transitive group, a case which (for the sake of focus) we
treat as “known”. Without loss of generality let us concentrate on the case
of a vector space I M OF @...0F . The algebra of all linear trans-
formations on tms vector space can be interpreted as the biockwma‘tm}{ al-

gebra M, (M, (IF')). Let G be a O-transitive linear group in IM _(IF') and let
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I'cM, ,(GU{0}) be a set containing zero matrix and satisfying two con-

ditions:

kr

1. U, . Range(T) = F ;

2. Distinct elements of I' have distinct ranges.

Conmder the semigroup S in M,  (I'G) (interpreted as a subset of
M, (M _(IF))) which consists of those block matrices which have at most
one non-zero block column. Then S 1s tra,nsmwe left t-simple, and every
transitive left t-simple semigroup in M, (IF) is simultaneously similar to
a semigroup of this form. (It is also possible to write down the exact
requirements on the relationship between G and I' which will characterize
all minimal transitive left ¢-simple linear semigroups as well.) This gives
complete (and easily understood) characterization of transitive left t-simple
semigroups; (the case of minimal such is complicated by a curious algebraic

condition, which we shall not state here for the sake of brevity).

Directions for further study

Every transitive lett t-simple linear semigroup is clearly minimal tran-
sitive. Despite the success in characterizing transitive left ¢-simple linear
semigroups, the same task for minimal transitive semigroups remains un-
finished. Perhaps a simpler question is to identify the bigger class of all
transitive linear semigroups which lack proper transitive right ideals. This
will hopefully lead to the next major step of the inquiry: a classification of
all completely 0-simple transitive linear semigroups.
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LEIBA RODMAN

V sestavku so predstavljeni odprti problemi za unitarne in normalne linearne trans-
formacije na konc¢norazseznih vektorskih prostorih z nedefinitnim skalarnim produktom.

Open problems for unitary and normal linear transformations on finite-dimensional
vector space with indefinite scalar products are presented.

Let F' be either the field of real numbers or the field of complex numbers,
and consider a symmetric bilinear (in the real case) or sesquilinear (in the

mplex case) form |z,y|, z,y € F™. In other words, |ax + by, z| = a|z, z] +
F'* and all scalars a,b6 € F'. In

+ bly, z| and |y, x| = |z,y]| for all z,y,z €
the real case, we consider also skew bilinear forms, 1.e., those for which the
second Condﬁmgn is replaced by |z,y| = —l|y, x| for all z 'y € IR. These
forms are often called indefinite scalar (w mner} nroducts, to emphasize
connections with the standard (positive definite) scalar (or inner) products
which are characterized by the additional requirement that |z, z| > 0 for all
x € '™ and |z, 2] = 0 if and only if z = 0. An indefinite scalar product |-, -
is called regular if |x,y] = 0 for all y € F™ implies z = 0.

[t 1s of interest to study structures of linear transformations on '™ that
respect certain properties described in terms of |-, -|. An interesting class of
problems 1nvolves study in the indefinite scalar products context of results
d for positive definite scalar products.
Recently, there has been renewed interest in indefinite scalar products, and
many results ahng the lines just described have been obtained, in particular,
commymng normal transformations {%@ 9], [10], [12], [13], [14] |17]), polar
decompositions see (see |3|, [4], [5]), singular V&M@g 6], numerical ranges
(S@@ 116], |15]), plus transformations 18], contractions and inertia (see |1],
2]), etc. Many interesting problems in this area have not been studied yet.
Several open problems are listed below. As it is often done in linear algebra,
the problems and results will be stated in terms of matrices rather than
linear transformations.

esearch Assignment
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Leiba Rodman, Department of Mathematics, The College of W
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Fix an indefinite scalar product [-,:]. A matrix A* € F™*" is cal-
led adjoint of A € F™ ™ if [Ax,y] = |z, A*y| for all z,y € F™. Altho-
ugh A* is uniquely defined only when the indefinite scalar product is re-
gular, nevertheless the concepts of selfadjoint and unitary matrices A may
be defined even for non-regular indefinite scalar products by the equa-
lities [Az,y] = [z, Ay] for all z,y € F", and Az, Ay|] = |z,y] for all
r,y € F™, respectively. Canonical forms of selfadjoint matrices are well-
known, implicitly they are found in [19], for example.

Problem 1. Develop canonical forms for unitary matrices, for not
necesg&rzl’y reqular indefinite scalar products.

For regular complex sesquilinear indefinite scalar products, several ca-
nonical forms of unitary matrices have been developed; see Chapter 1.4 1n
8], [10]. Canonical forms of symplectic (i.e., unitary with respect to a re-
cular real skew symmetric indefinite scalar product) matriz pencils NA + B
are given in [20].

If |-, -] isregular, then A is called normalif AA* = A*A. For non-regular
indefinite scalar products, the notion of normal matrices may be defined as
well: Let |z,y] = (Sz,y), x,y € F", where S is the real symmetric (or
complex Hermitian, or real skew symmetric, as the case may be)} matrix
that determines the indefinite scalar product. Then A is called normal if

STAHSA = AST AP S where A™ stands for the conjugate transpose of A,
and ST is the Moore-Penrose inverse of S.

So far, indecomposable normal matrices and the corresponding canoni-
cal forms have been described only in the cases of regular real symmetric
and complex sesquilinear [-,:] when S has at most 2 negative eigenvalues
(see [10], [12], [13]). The problem of characterizing indecomposable normal
matrices in general seems to be intractable.

Problem 2. Obtamn canonical forms for some other classes of normal
matrices, in particular, involving non-reqular indefinite scalar products.

In the standard positive definite scalar product, the normality of a
matrix can be characterized in many ways [11], [7]. It would be of interest to
sort out these ways for indefinite scalar products. Very likely, most of them
will fail to be characteristic of normality. For example, the set of matrices
A such that A" 1s a polynomial of A, is a proper subset of the set of normal
matrices.

A factorization X = UA, where U is unitary and A is selfadjoint, is
called a polar decomposition of X. (Note that in contrast to the standard
definition we do not require that A be positive semidefinite.) Polar decom-
positions have been studied in detail for regular real symmetric and com-
plex sesquilinear indefinite scalar products in [3], [4], [5].
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Problem
decompositions.

Characterize those normal matrices that admat polar

, note that not every matrix admits a
polar decomposition. It was proved in [3]| that every nors nal matrix admaits
a polar decomposition if the indefinite scalar product is %ai symmetric or
complex sesquilinear and the corresponding matrix 57 has only one negative
eigenvalue. It is conjectured that every normal matrix admits polar decom-
positions.

[n connection with this problen

= U A 1s polar decomposition and U and
T'he converse holds for the positive definite

One proves easily that if X
A commute, then X is normal.
scalar product.

Problem 4. Is the converse true in indefinite scalar products? In other
words, 1f X 1s normal and has a polar decomposition X = UA, must U and

A commute (for some choice of the polar decomposition)?
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Predstavljen je problem karakterizacije linearnih preslikav, ki ohranjajo obrnljivost.

BILITY

The problem of characterization of linear maps preserving invertibility is discussed.

and R’ be two rings with identities 1 and 1’, respectively.
R — R'is called unitalif ¢(1) =1’ and it is ﬁaﬂe mvertzbmﬁy
if ¢(x) is invertible in R’ for every invertible x € R. W
additive maps having these two } memmﬁ Clearly, every 1son
mng% as well as every anti-isomorphism

at 1s, a bijective additive maj
O R’ satisfying ¢(zy) = o(y)p(x), @ ) is a unital mwm@zhécy
preserving map.

Isomorphisms and anti-isomorphisms are special examples of Jordan is-
omorphnisms. An additive map ¢ : H R’ is called a Jordan homomor-
phism if ¢(z?) = ¢(z)?, x € R; if it is also bijective, then it is called a

Jordan isomorphism.

Isomorphisms and anti-isomorphisms are basic, but not the only exam-
ples of Jordan isomorphisms. leed, take any isamerphic noncommut:
MV@ mngs R and R}, and anti-isomorphic n

? and R’ be dir @@ﬁ

fﬂhaﬁg exan -pﬁes of 5 ordan isomorphisms dif emm ﬁ‘om 1somorphisms and anti-
1somorphisms can be produced only if one of the rings contains two nonzero
1deals whose product is zero.

Now let R be an arbitrary unital ring and R’ be any unital ring such
that 22 # 0 for any nonzero x € R'. Then every Jordan isomorphism
¢ : R — R' is a unital invertibility preserving map |A. R. Sourour, Inverti-
bility preserving linear maps on £{X ), Trans. Amer. Math. Soc. 348 (1996),
13-30]. The proof of this statement is elementary and not very difficult.

Peter Semrl, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia.
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Kaplansky |I. Kaplansky, Algebraic and analytic aspects of operator
algebras, Regional Conference Series in Mathematics 1, Amer. Math. Soc.,
Providence, 1970| asked when the converse is true. More precisely, which
conditions on R and R’ imply that every unital additive map ¢ : R — R’
preserving invertibility is a Jordan homomorphism? As one may expect,
solving this problem 1s a much more difficult task even for some simple
classes of rings.

Most of the work on this problem was done by mathematicians wor-
king in functional analysis. Therefore, we will consider linear maps on al-
gebras rather than additive maps on rings. Moreover, we restrict our at-
tention to the case when A and B are unital complex Banach algebras and
¢ . A — B is a linear invertibility preserving map. Also, without loss of ge-
nerality we assume that ¢ is unital for otherwise we could consider the map
a+— ¢(1)71¢(a). The goal is to find reasonable conditions implying that ¢
1s a Jordan homomorphism.

For an element a € A we define the spectrum o(a) of a as the set of all
complex numbers A such that A -1 — a i1s not invertible. Hence, in the case
that A = M,,, the algebra of all n X n complex matrices, the spectrum of a
matrix 1s the set of all its eigenvalues. Note that the condition that a unital
linear map ¢ preserves invertibility can be reformulated as o(¢(a)) C o(a)
for every a € A. So, we can ask a question that i1s somewhat easier than
the original Kaplansky’s problem: when must a spectrum preserving unital
linear map between two Banach algebras be a Jordan homomorphism? Here,
of course, by a spectrum preserving map we mean a map ¢ : A — B
satisfying o(¢(a)) = o(a), a € A. A lot of work has been done also on
related problems of characterizing linear maps preserving certain spectral
properties.

The following conjecture seems to be reasonable: Let A and B be
semi-simple Banach algebras and ¢ : A — B a unital bijective linear map
preserving invertibility. It i1s then conjectured that ¢ must be a Jordan
isomorphism. This conjecture was formulated (although not always in this
generality) by many mathematicians working on this problem; as far as we
know, however, Aupetit was the first one.

It seems that at the present no techniques are available to handle the
general case. In particular, the problem is still open for C™*-algebras and
even for von Neumann algebras as was pointed out by Harris and Kadison

L. A. Harris, R. V. Kadison, Affine mappings of invertible operators, Proc.
Amer. Math. Soc. 124 (1996), 2415-2422].
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V sestavku so opisani problemi razcepnosti za druzine linearnih operatorjev v pri-
merih, ko ima druzina Se kako dodatno strukturo (npr. je polgrupa, Liejeva ali Jordanova
algebra itd.) in za operatorje velja se kaka dodatna lastnost (npr. permutabilnost, sub-
multiplikativnost ali sublinearnost spektra, itd.).

Families of linear operators with additional structure (e.g. the family is a semigroup,
or a Lie or Jordan algebra, etc.) and additional properties (e.g. permutability, submul-
tiplicativity or sublinearity of spectra, etc.) are considered and reducibility problems for
such families are discussed.

The format of the workshop will be very similar to the one we had 1n
1996 at Bled, which proved quite SUCQ@SSﬁ_ﬂ After one or two introductory
E@Céums which introduce, discuss and elaborate on some of the
problems ment mﬁed below, we n ee”ﬁ at mformal daily sessions to go more
de@pﬁy into a small number of *&he pmkmg work on them both individually

d in groups, and exchange ideas and partial solutions. This informal

setting allows discussing any of the problems that are of greater interest
to the participants, and even going back-and-forth between two or three
problems as the general mood of the participants dictates.
Many of the young mathematicians and graduate students who m@k
part in our last Bled workshop found it very stimulating and rewarding. We
should mention that one of the topics discussed, namely that of commutators
of rank one, was so thoroughly studied during the workshop period that a
substantial paper, authored by seven of the participants, came out of it. It
was published in the Journal of Functional Analysis [1].

A family of (linear) operators on a vector space V over an algebraically
closed field 1s said to be irreducible if no non-trivial subspace of V' 1s invariant
under (every member of) F. A family F is called transitive if for every
r # 0 and y in V', there is a member A of F with Az = y. It 1s easy to see
that if F is an algebra (that is, if it is closed under linear combinations and
products), then F is transitive if and only if it is irreducible. Perhaps, the
most well-known result along these lines is the classical Burnside’s Theorem
that the only transitive algebra of operators on a finite-dimensional V is the

full algebra £(V') of all operators on V.

- Heydar Radjavi, Department of Mathematics, Statistics and Computing Science, Dalo-
housie University, Halifax, Canada.
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If 7 1s not an algebra, e.g., when 1t is just a multiplicative or additive
semigroup, or if it 1s a Lie or Jordan algebra, transitivity implies irreduci-
bility, but not necessarily conversely. Both problems are of interest in pure
and applied mathematics for different families of operators.

Several of the participants in the workshop have worked m various
areas related to these problems. For example, the paper [4] considers the
Jordan-algebra analogue of the Burnside’s Theorem and gives a satisfactory
solution. The Lie-algebra analogue 1s still open. Transitive matrix groups
have a long history. The corresponding problem for semigroups have been
discussed recently in [2]|; another variation, specializing to vectors and
matrices with non-negative entries i1s the subject of another recent paper

6].

Given a structured family, say a multiplicative semigroup &, there have
been many studies in the last two decades on what spectral conditions on the
members of § result in reducibility or simultaneous triangularizability of §.
For example, the papers [3], [5], and |7] discuss the effect of submultiplicative
and permutable spectrum or spectral radius on reducibility. Spectrum is
said to be submultiplicative on § if ¢(AB) C o(A)o(B) for all A and B
in §. (o(T) denotes the spectrum of T'.) Permutability means ¢(ABC) =
= o(BAC) for all A,B,C in &. In the complex case, spectral radius p,
is called submultiplicative if p(AB) < p(A)p(B) for all A and B in §. A
sample result is that permutable spectrum implies reducibility. A sample
unsolved problem that could be discussed in the current workshop: does
there exist an irreducible matrix group of order 2% with submultiplicative
spectrum? (For orders other than 27, the answer is yes.)

There are many more problems in this area that can be discussed. Some
structure problems even for matrix groups with spectral conditions imposed
on them still remain open. We know, for instance, that an irreducible group
of complex matrices with submultiplicative spectrum is essentially finite (it
is contained in CG with G a finite group) and nilpotent, but their general
structure i1s not completely known.

There are also interesting topological versions of these problems. It is
known [7] that on semigroups of compact operators on a Hilbert space, o
1s permutable if and only if it 1s submultiplicative. Whether this is true or
“not for general semigroups of operators remains open.

As a final example, we mention the properties of sublinearity of spec-
trum on a semigroup: o is said to be sublinear on a semigroup & 1if
og(A + AB) C o(A) + Ao(B) for all pairs A, B in &. This condition does
imply simultaneous triangularizability |8|. There are unsolved related pro-
blems that could be discussed. Sample: if ¢ i1s subadditive on &, 1i.e.,

0(A+ B)Co(A)+ o(B) for all A and B, can § be irreducible?
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