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"Like Freakonomics,
Struck by Lightning attacks
conventional wisdom.”
OTTAWA CITIZEN



More Praise for Struck by Lightning

“Rosenthal is a light-hearted and entertaining writer.... If you’re struck
by the role of luck and coincidence in life, youw’ll find Rosenthal a
good guide to what can be predicted by the law of averages.”

—Toronto Star

“Another great challenger of conventional wisdom.... Helps you figure
out the true meaning of political polls, and how to assess randomness
in everything from dice throwing to the game Rock, Paper, Scissors....
Extremely well written and easy to read, with fascinating anecdotes
and examples.”

~—Winnipeg Free Press

“Too many times, we make decisions based on prevailing assumptions
or anecdotal evidence when a proper analysis of the numbers would
give us a different viewpoint and therefore, a competitive advantage....
When applied to business ... it’s often a smarter bet to invest in a book
that gives you new knowledge over one filled with simple old rules.”

' —Ottawa Citizen

“Odds are you’ll like this lightning strike.... The most fun are those
tidbits of probabilities with which you can astound your friends and
make some cash if you want to rub your knowledge in their collec-
tive faces.... Amaze your friends, confound your rivals. Buy Struck
by Lightning and have some fun.”

' —The Calgary Sun

“Like your favourite high-school math teacher, [Rosenthal] uses
entertaining parables to illustrate a range of statistical concepts,
from the science of polling to the unromantic nature of coinci-
dences.... It’s all a little comforting, really.... Most of the things we
fret about just ain’t worth the sweat.”

—Tbhe Toronto Sun



“Fate, random accidents, and coincidence can largely be explained by

math. If that sounds like Greek to you, try Struck by Lightning by

Jeffrey S. Rosenthal, an engaging and readable math whiz.”
—Elle Canada

“Rosenthal’s mathematical look at life’s seemingly random occurrences
is both refreshing and detailed. He advocates using educated decisions
and a more pragmatic approach to problem solving, and he does it
with a punchy, quick-witted writing style.... Rosenthal succeeds in
bringing mathematical theory to the masses, making it funny ... and
highly relevant.” .

—Quill & Quire

“Statistics and probability made fun, easy, and useful for everyday
life.... Sure to deliver an A to everyone, which is what Rosenthal
deserves for this clever book.”

—Publishers Weekly

“Read Struck by Lightning and you will read a book by your favourite
professor, the one who made a difficult subject easy to understand. I
guarantee your chances of enjoying this book are plus or minus §
percent at least 19 times out of 20.”

~—Michael Adams

“Jeffrey Rosenthal’s delightful book will enhance your feelings for
probability and its odd relevance to so many aspects of life. If you
read it, you will almost certainly not be struck by lightning.”

—]John Allen Paulos, author of
Innumeracy and A Mathematician Reads the Newspaper
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Surrounded by Randomness

Probabilities Everywhere

When I was a graduate student at Harvard University, I booked a flight
to New York’s John F. Kennedy Airport to visit some relatives. Exactly
one week before my flight, there was a major accident at the same air-
port: an Avianca airplane missed its first landing approach, ran out of
fuel during its second approach, and crashed, killing 73 people.

At first I was shocked. How could I travel to Kennedy airport so soon
after such a tragedy? Surely it wasn’t safe. I would have to cancel my
visit! -

In an effort to calm myself, I tried to think logically. At the time, I was
working on a doctoral dissertation related to the mathematics of proba-
bility theory, but my research was rather theoretical, and not related to
everyday life. Could I perhaps apply my abstract knowledge to this very
concrete situation?

I did a quick calculation. I determined that there are about 5,000
flights per week to Kennedy airport. So, even if this airport accident was
somehow the fault of the Kennedy Airport itself (which it probably
wasn’t), and even if I knew that there would be another accident there
sometime during the next week (which I didn’t), there would still be only
one chance in 5,000 that my own flight would be affected.

Now, one chance in 5,000 isn’t so small, but it isn’t so large either. It
was small enough to reassure me that my flight would probably be fine.
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"I flew to New York as scheduled and, in a victory for probability theory,
I encountered no difficulties whatsoever.

In the years following my New York adventure, I began to realize
that we are all constantly faced with situations and choices that involve
randomness and uncertainty. A basic understanding of the rules of
probability theory as they apply to real-life circumstances can help us
to make sense of these situations, avoid unnecessary fear, seize the
opportunities that randomness presents to us, and actually enjoy the

uncertainties we face.

Human beings have always been both fascinated and appalled by ran-
domness. On the one hand, we love the thrill of a surprise party, the
unpredictability of a budding romance, the mystery of a good detective
novel, and the freedom of not knowing what tomorrow may bring. We
are inexplicably delighted by strange coincidences and striking similari-
ties. Staid urban sophisticates gladly plunk down millions of dollars on
lottery tickets and horse races—and on the stock market. Weary adults,
after a hard day of work, are happy to play cards or roll the dice in a
feisty game of chance. Audiences root for Casablanca’s inconsistent and
unpredictable Rick Blaine (Humphrey Bogart), over the brave and
heroic—but predictable—Victor Laszlo (Paul Henreid ).

On the other hand, we hate uncertainty’s dark side. From cancer to
SARS, diseases strike with no apparent pattern, ruining lives and baffling
medical science. Terrorists attack, airplanes crash, bridges collapse, and
we never know who will die next. Even the weather can suddenly and
unexpectedly turn deadly, or just ruin an outdoor wedding. Successful
politicians usually go out of their way to sound sure about everything,
thus helping us to forget their (and our) lack of control over major
national events that are ultimately, well, random. »

Randomness is often neither good nor bad, but simply confusing. We
are told of poll results accurate “to within four percentage points, 19
times out of 20,” or of a study that “proves” that a certain medication is
good and certain lifestyle choices are bad. We are told that we have
“nothing to lose” when we nervously ask someone out on a date, despite
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the frightening possibility of rejection. We are assured that there is a
“40% chance of rain today.” We are warned of the risk of “false positive”
results when we are diagnosed with a disease. It is not always clear how
we should react to such probabilities, or even what they really mean.

At times we try to ignore or explain away the random nature of our
world. We imagine that God creates the weather intentionally, to punish
us, or that counting flower petals can tell us whether “she loves me or she
loves me not.” In Shakespeare’s Julins Caesar, Cassius denies the effect of
luck on human destiny, declaring, “The fault, dear Brutus, is not in our
stars/But in ourselves, that we are underlings.” In the movies, poker-
playing, cigar-chewing cowboys get Royal Flushes through sheer
willpower. In The Cooler, Bernie (William H. Macy) causes gamblers to
lose just by standing nearby. And the rascally hero of Star Wars, Han
Solo (Harrison Ford), warned by an android that the odds against suc-
cessfully navigating an asteroid field are approximately 3,720 to one,
scoffs “Never tell me the odds!”

But the reality is that when it comes to randomness, you can run but
you can’t hide. So many aspects of our lives are governed by events not
completely in our control, and uncertainty is here to stay. We have two
options: we can let uncertainty get the better of us or we can learn to
understand randomness. If we do the latter, we will make better choices
and learn to harness uncertainty for our own purposes.

Let’s consider a few scenarios and how an understanding of uncer-
tainty and probability might help us sort them out.

e You are planning a trip to a foreign country, but yéu are put off by
reports of terrorist activities there. Should you go anyway? A simple
understanding of probabilities will allow you to assess the risk of ter-
rorism on your trip, and to decide whether the probabilities are high
enough to affect your plans.

e You need a secret code to conduct a secure financial transaction over
the Internet. If you just make up a code, an enemy agent might antic-
ipate your psychology, guess the code, and obtain secret informa-
tion. On the other hand, if you use randomness to generate your
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code, you can virtually guarantee security against even the cleverest
eremy. Modern computers use randomness in this way all the time.
You are involved in a battle of wits with a clever opponent and want
to avoid being outsmarted. You can use randomness to create a Nash
equilibrium strategy in which your opponent can do no better than
guess.

The local police chief and politicians all insist that crime is out of
control and that more money is needed for law enforcement. You
can use linear regression to decide for yourself whether or not crime
is actually increasing.

You are considering asking out that cute accountant in the business
office, but you are worried that she will reject your advance or per-
haps even complain about it. Utility theory allows you to quantify
your feelings about your wants and fears, and to compute whether
or not they justify making that phone call.

Your doctor informs you that you must take a certain drug, shown
conclusively to be effective by the latest medical study. By consider-
ing the study’s biases and p-value, you can determine for yourself
whether or not to accept its conclusions.

A rival scoffs that you are more likely to be struck by lightning than
to succeed in your business venture. A simple check of the numbers
will reveal just how unlikely lightning deaths really are and put your
rival’s comments into context.

You are annoyed by all the spam e-mail you receive, and you wish
you could find a way to block it. Probability theory helps computers
to separate spam from genuine messages, sparing you the burden of
a jammed mailbox.

In one day, you see three different people who have all dyed their
hair green. Is this a new and popular fashion trend? Random events
tend to occur in bunches due to Poisson clumping, and many appar-
ently striking coincidences or trends are the result of pure chance,
and are of no meaning or consequence.

A friend tries to stump you with the “Monty Hall problem”: which
of three doors is most likely to have a car behind it, if you already
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know that Door #3 is empty? The theory of conditional probability
allows you to compute all the odds and make the right choice.

° You write a fantastic song, but you worry that perhaps someone else
may have already written the exact same song. Probability theory
provides a useful perspective on uniqueness and practically gnaran-
tees that your song is brand new.

° You wonder how scientists and engineers compute all of the compli-
cated quantities required to build bridges, conduct medical studies,
and design nuclear reactors. Monte Carlo sampling uses randomness
on high-speed computers to compute many such quantities.

® You need to decide whether to call a poker bet, or how many houses
to buy in Monopoly. Probability theory provides many insights into

-strategies for games of chance, and using it allows you to win more
often in the long run.

These scenarios are many and varied, but they all have one thing in com-
mon. In each case, knowing the rules of probability, randomness, and
uncertainty allows us to make better decisions and to understand the
world around us more clearly. Even simple probability calculations can
help reduce our stress and clarify our choices, by putting randomness in
perspective: a “Probability Perspective” based on rational thought about
randomness rather than on irrational emotional responses.

While no one can predict uncertain events with certainty, we can at

 least understand the uncertainty itself. This book will discuss the proba-

bilities associated with many different events. By thinking logically
about the likelihood of various outcomes, we can make better decisions
and understand our lives more deeply. We can better cope with the
uncertainties we face and perhaps even learn to enjoy them.

So the next time your daughter is flying in for the holidays, in the midst
of a rainstorm and with thunder and lightning across the skies, don’t
panic. Don’t despair. Don’t fill your mind with images of horrible acci-
dents. Instead, remember the Probability Perspective. Remember that
each year there are about 10 million commercial flights in the United
States alone—including many during rainstorms—and on average only
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about five crashes involving fatalities. The probability that your dangh-
ter’s flight will result in even one death is only about one chance in 2 mil-
lion. It just isn’t going to-happen. i

In place of worrying, enjoy the moment. Eagerly anticipate her visit.
Cook her favourite meal. Prepare for a fun game of chance involving
cards or dice. Think about the fascination and 1ntr1gue that randomness
adds to our daily lives.

And when your daughter finally arrives, a little wet and very hungry

but perfectly safe, be sure to give her a big hug.

2

What Are the Odds of That?

Coincidence and Surprise

We are often struck by seemingly astounding coincidences. You meet
three friends for dinner and discover that all four of you are wearing
dresses of the same colour. You dream about your grandson the day

" before he phones you out of the blue. Your two office mates both get

called for jury duty on the same day. You discover that your boss’s new
bride went to the same tiny elementary school that you did. Such events
amuse us, or fascinate us, or arouse our suspicions, or evoke deep mysti-
cal significance. But should they?

From the Probability Perspective, our first question should be, how
unlikely was the event? Was the coincidence run of the mill or truly
astounding?

Out of How Many?

Everything that happens is surprising in some sense, from someone’s
perspective.

The Astounding Lottery Winner
“I don’t believe it,” Jennifer exclaims. “John Smith from Smalltown just

won the lottery jackpot!”
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“Wow, that’s great,™you reply cautiously. “Do you know him?”

“No, unfortunately not.”

“Had you heard of him before?”

“No, never.”

“Have you ever been to Smalltown?”

“Nope.”

“So why are you so surprised?”

“Because the probability of winning that lottery jackpot is about one
in 14 million,” Jennifer declares with an air of authority. “And yet John
Smith pulled it off!”

Winning any commercial lottery jackpot is extremely unlikely. On the
other hand, millions of people buy lottery tickets every day, and usually
at least one of them will win. This doesn’t surprise us at all, but why not?
The reason is that one person out of millions has won the lottery. There
are millions of different chances for someone to win the lottery, so of
course usually someone does.

If you flip a coin 10 times and get heads every time, that would be
rather surprising, because the chances of its happening were 1 in 1,024
(computed by taking a factor of 1/2 for each of the ten coins, and multi-
plying them all together), which is less than 0.1%. However, if you spend
an entire afternoon repeatedly flipping the same coin, and after several
hours you finally get 10 heads in a row, that was bound to happen and is
not surprising at all.

So, whenever a friend announces a surprising development, the first
thing you should ask yourself is, out of how many? That is, how many
different chances were there for that event—or any other similarly sur-
prising one—to arise?

A Cousin at Disney World (A True Story)
When I was 14 years old, my family travelled to Orlando, Florida, to

visit Disney World. For two days we went on scary roller coasters and

WHAT ARE THE ODDS OF THAT?

gentle train rides, saw haunted houses and singing puppets, and ate lots
of junk food. Remarkably, in the midst of thousands of strangers, we ran
into my father’s cousin Phil and his family. They lived in Connecticut,
and none of us had any idea that the other family was in Florida. We
were all stunned at the coincidence. ,

How surprised should we have been? There were about 230 million
people in the United States at that time. So, the probability that any one
person chosen at random at Disney World would be my father’s cousin
Phil, was something like one chance in 230 million, unimaginably low.
However, over the course of our two days at Disney World, we had
passed many different strangers waiting in line for many different rides
and treats. In total there must have been az least 2,000 people that we
saw close enough to recognize, any one of whom could have been Phil.
So, right away this increases the probability by a factor of 2,000, to one
chance in 115,000.

But Cousin Phil wasn’t the only person we might have run into. What
about my father’s other cousins? What about my mother’s cousins? What
about numerous other relatives? Or our friends or work colleagues? Or
our neighbours? Or classmates? Or relatives of friends? Or friends of
neighbours? There must be at least 500 people whom we could have run
into who would have surprised us as much as Phil did. This increases the
probability by another factor of 500, to one chance in 230.

Of course, one chance in 230 is still less than half of one percent. So,
on most trips to Disney World, you probably won’t run into anyone that
you know.. But still, over a lifetime of travelling and visiting and explor-
ing, you are bound to run into people unexpectedly, now and then. It
really isn’t so surprising after all.

This “out of how many” issue comes up in many ways. For example, a
friend told me that the night before her father died, she had a dream in
which her father appeared, looking surprisingly peaceful. Some might
consider that this dream showed that my friend somehow “knew” that
her father was about to die, or even that my friend’s father had somehow
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communicated with her on a subconscious level over the 500 kilometres
between them. :

Perhaps. But another explanation is that we all dream about many
things every night. The dreams that we are most likely to remember or
take note of or discuss with others are those that happen to have some
surprising connection to other events. My friend might dream of her
father on perhaps one night in 50, so the probability that she would
dream about him the night before he died is only about one in 50. How-
ever, the probability that she would have some dream at some point in
her life that would have some connection to some event, is much much
higher. So, the question is: one profound dream out of how many dreams
in total?

Nobel Prize winner Richard Feynman wrote about an incident that
occurred when he was a student. Suddenly, the physicist got a feeling
that he knew, somehow, that his grandmother had died. Just then the
phone rang. Had his prediction come true? Had his grandmother passed
away? No, the phone call was for another student, and Feynman’s
grandmother was just fine. This story nicely illustrates that very often
we have hunches or dreams or predictions, but we tend to forget the
ones that don’t come true. Then, when one does come true, we forget
that this is one hunch out of many, so the observation is less surprising
than it may appear. » ‘

Consider this classic physics question. Suppose you take a cup of water
and pour it into the ocean. Gradually, currents and tides and rain and
evaporation mix all of the world’s water together. Five years later, you go
to some other ocean, on the other side of the world, and fill a fresh glass
with water. How many molecules of water from the first glass will end up
in the second? .

The world’s oceans contain a lot of water, about a billion cubic kilo-
metres’ worth. Compared with that volume, one cup of water is hardly
anything: about two parts in the number written as 1 followed by 22
zeros. So, the probability of any one particular molecule from your first
glass making its way to your second glass is just two chances in 1 fol-
lowed by 22 zeros: that is, practically impossible.
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On the other hand, molecules are unimaginably tiny, and even one cup
of water contains a tremendous number of them, almost as many as 1 fol-
lowed by 25 zeros. Indeed, there are so many molecules in that first small
glass of water that, purely by chance, over 1,000 of them will arrive five -
years later in the second glass of water. Now, 1,000 molecules sounds like
a lot but, again, out of how many?

Can we apply similarly rational probability logic to the magic of love?
Many people have a story of just “happening” to meet their future
spouse under very unlikely circumstances. In my own case, while my
wife, Margaret, and I had previously met briefly at a party, we truly
interacted only when I just happened to walk to a post office one after-
noomn, accompanying a friend who just happened to be assisting a col-
league by forwarding some packages on his behalf. Meanwhile,
Margaret just happened to get off work early that day, and just happened
to require postal services herself, and just happened to choose the exact
same post office (which wasn’t near her home or work). )

What are the odds that I would accompany my friend on this mission?
What are the chances that Margaret would go to the very same post
office on the very same day? What is the probability that we would be
there at the same exact time? Multiplying all these factors together,
surely the probability of our meeting up that day was one chance in tens
of thousands, at most.

And yet it happened. How do I explain that? Well, I could argue that
even if Margaret and I hadn’t met at the post office, we might have met
somewhere else, later on, perhaps at another party. Or I could reason
that of all the errands I run each week, something interesting was bound
to happen some time. Or I could declare dispassionately that each person
actually has many potential compatible partners and that sooner or later
you will eventually meet one of them. But none of these arguments seems
too convincing. I guess ’m just a lucky guy.

11
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Friends of Friends of Friends

Sometimes we discover seemingly surprising chains of connections, like
finding out that your next-door neighbour is your brother’s house-
keeper’s cousin. When should we be surprised and when shouldn’t we?

Some chains are more interesting than others. When the evil Star Wars
character Darth Vader declares to the heroic Luke Skywalker, “I am your
father,” the revelation is unexpected and profound. But in Mel Brooks’s
spoof version, Spaceballs, when Lord Dark Helmet instead says “I am
your father’s brother’s nephew’s cousin’s former roommate,” the obser-
vation is far more mundane (and therefore an amusing parody). Why,
precisely, do we perceive these two similar-sounding facts so differently?

Again, the explanation is, out of how many? We each have just one
father. While there may be a few others of equal importance to us—
mother, siblings, children, perhaps lifelong best friend—the position of
father is still quite an exalted one, surely a “top 10” close association. So,
it is quite surprising if our arch-enemy turns out to be so closely related
to us. On the other hand, there are many, many people who are as impor-
tant to us as our “father’s brother’s nephew’s cousin’s former room-
mate.” So the fact that Lord Dark Helmet occupies such a distant role
merely places him as one out of a tremendous number of associates.
There is no reason to be surprised at this, and we are not. But just how
many such associates are there? How many people are there who-are
related to you by some short chain of relations like this?

This question is related to the six degrees of separation phenomenon.
This phrase originated in an experiment performed by the Harvard psy-
chologist Stanley Milgram back in 1967. He mailed out packages to ran-
domly selected people in Kansas and Nebraska, with instructions to try to
forward the package to a particular “target” individual in Massachusetts.
The catch was that recipients were allowed to forward the package only
to someone they knew on a first-name basis. Thus, a recipient in Kansas
would have to think: Whom do I know on a first-name basis who might in
turn know someone who knows someone who knows this Massachusetts
target?

WHAT ARE THE ODDS OF THAT?

Milgram found that, of the packages that were returned, the average
number of steps in the chain was about six. Hence, the concept of “six
degrees of separation” was born, with the intriguing idea that we are all
connected to each other by short chains of “friends of friends of friends”
or “associates of associates of associates.”

Milgram’s experiment had many flaws. It was restricted to just one
country. And many packages never arrived, perhaps indicating simple
indifference but perhaps also suggesting that longer chains were neces-
sary (and never completed) in those cases. On the other hand, the recipi-
ents had to decide themselves to whom they should forward the package,
and they had no way of knowing which choice would lead to the short-
est chain. Overall, most scientists accept Milgram’s concept that we are
all connected through relatively short chains of acquaintances, though
the precise figure of six is perhaps more apocryphal than real.

There is another way to think about these connections. Suppose each
person has, say, a total of 500 “friends,” that is, people they know on a
first-name basis. Then the number of friends-of-friends chains is 500 X
500, or 250,000. The number of friends-of-friends-of-friends chains is
equal to 500 X 500 X 500, or 125 million. Of course, some of these dif-
ferent chains will lead back to the same person, so your total number of
friends-of-friends-of-friends is somewhat less than 125 million, but it is
still awfully large. So, six degrees of separation, even for the entire
world’s population, seems pretty reasonable.

Mathematicians love such chains of connections, and they have their
own unique version, which is based on the work of the brilliant Hungar-
ian mathematician, Paul Erdés (1913-96). Erdos spent his life living out
of a suitcase while visiting other mathematicians around the world. The
mathematicians would take care of his daily needs for the privilege of
collaborating with him to solve their research problems. As a result,
Erdés was a co-author of over 1,500 published papers, written jointly
with hundreds of different mathematicians from around the world.

Inspired by this extensive web of connection, mathematicians
invented Erdés numbers. Every mathematician who ever wrote a paper
jointly with Paul Erdds gets an Erdos number of 1 (there are over 500
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such people). Everyone who ever wrote a paper jointly with someone
who has an Erdés number of 1 in turn gets an Erdés number of 2 (there
are about 7,000 such people). And so on. My own Erdds number is 3: 1
published a paper in 1999 with the mathematician Robin Pemantle,
who in turn had published a paper in 1996 with the mathematician
Svante Janson, who himself published a paper with Paul Erdés that
same year—thus providing a chain of three mathematicians from me to
Erdds. Unfortunately, this is not such a special accomplishment; over
33,000 other mathematicians also have an Erdés number of 3. '

Not to be left out, movie lovers have created their own version of
Erdds numbers; these are known as Bacon numbers. Everyone who has
ever co-starred in a movie with actor Kevin Bacon gets a Bacon number
of 1; everyone who has co-starred in a movie with one of those people
gets a Bacon number of 2, and so on. For example, Susan Sarandon has
a Bacon number of 2, because she co-starred in Dead Man Walking with
Sean Penn, who in turn co-starred in Mystic River with Kevin Bacon.

Similar ideas have been applied to such diverse items as World Wide
Web links (how many hyperlinks do you have to click on, with your Web
browser, to travel a path from your Web page to mine?); to rock musi-
cians who recorded music together (for example, Ray Charles is just
three steps away from Ozzy Osbourne, because Charles recorded with
Michael Jackson, who recorded with the heavy-metal guitarist Slash,
who in turn recorded with Osbourne); to baseball players who have been
teammates {for example, there are several different paths, each five play-
ers long, that link 1930s slugger Babe Ruth to current pitching star
Roger Clemens); to Marilyn Monroe numbers (for which decorum pre-
vents me from specifying what type of connection is counted).

It seems that when it comes to finding different sorts of connections
between different sorts of folks, the sky is the limit. This puts “coinci-
dences” in a whole new perspective: there are so many possible connec-
tions, that it is no surprise that they occasionally coincide by pure chance.

14
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Counting the Pairs

One fun probability fact is known as the birthday problem. It says that if
23 people are selected at random, there is just over a 50% chance that
two of them will have the same birthday (meaning day and month only,
not year). With 41 or more people, the probability is over 90%. This
makes for a nice parlour trick; the next time you’re at a decent-sized
party, find a poor sucker who hasi’t yet heard of the birthday problem,
bet him that two people in the room have the same birthday, and watch
the money roll in.

. Why are these probabilities so high? Once again, the question is, out of
how man}}? But this time, the answer is a bit more subtle. Our first reac-
tion is to say that there are 365 days in a year (let’s not bother with leap
years), so with just 23 people, we have covered only 23 out of 365 days,
or 6.3%. This is a very small probability, which casts doubt on the valid-
ity of our parlour trick. However, this is the right answer to the wrong
question. If you asked 23 people if any of them had their birthday today
(or Christmas Day, or any other one specific day), there would indeed be
only a 6.3% chance that one of them would answer yes.

(This fact once helped me with some detective work. At a statistics
conference dinner, three people’s birthdays were being celebrated. I was
suspicious; there were only 180 people in the room, so statistically there
should have been only 180 divided by 365, or about one half of a person,
who had a birthday on that particular day. I was right to wonder; it later
turned out that two of those “birthday boys” actually had their birth-
days the following month and were just cashing in on the celebration.)

But with our parlour trick, we are asking whether any of 23 randomly
selected people have the same birthday as anyone else’s birthday, not a
specific day like today or Christmas. And that difference explains why
the probability is so much higher.

The reason is that there are a lot more pairs of people than there are
people. For example, suppose there are just four people at the party:
Amy, Betty, Cindy, and Debbie. Then the number of pairs of people is six:
Amy-Betty, Amy-Cindy, Amy-Debbie, Betty-Cindy, Betty-Debbie, and
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Cindy-Debbie. The more people at the party, the more pairs—a lot
more. With 23 party-goers there are 253 pairs, while with 41 party-goers
there are 820 pairs. (The number of pairs is equal to the number of party-
goers, multiplied by 1 less than that number, divided by 2. So, with four
people, there are 4 X 3 + 2 = 6 pairs; with 23 people, there are 23 X 22
+ 2 = 253 pairs; with 41 people, 41 X 40 + 2 = 820 pairs.)

Now we can see why the birthday problem works. Even with only 23
people, there are 253 pairs of people. Any one of those pairs has proba-
bility 1/365 of having the same birthday, so the average number of pairs
with the same birthday is 253/365, which equals 0.69 of a pair, Since
0.69 is well over 0.5, this suggests better than a 50% chance of a birth-
day match. The figure 0.69 represents a little bit of overcounting, since
it’s possible that several different pairs will all have the same birthday.
Correcting for this, it turns out that the true probability of at least one
matching birthday out of 23 people works out to 50.7%. At a party of
41 people, the average number of pairs with the same birthday is
820/365, or 2.25 pairs, and the probability of at least one pair is a
whopping 90.3%.

Tahle 2.1 Probabhilities and Average Numbers of Birthday Matchings

# People # Pairs Average # Matches  Prob. of Match
4 6 0.02 1.64%
10 45 0.12 11.69%
20 190 ¢, 052 41.14%
23 253 0.69 50.73%
30 435 1.19 - 70.63%
35 595 1.63 81.44%
40 - 780 2.14 89.12%
41 820 2.25 90.32%
45 990 2.71 94.10%
50 1,225 ) 3.36 97.04%
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The point is that probabilities of matchings—whether birthdays, or
incomes, or hometowns, or favourite novels, or the amount of change in
pockets, or anything else—are much higher than you might think,
because there are so many possible pairs out there. So the next time two
different items happen to match up, don’t jump out of your skin. Instead
ask yourself, out of how many pairs? '

Musical Mayhem
You’re excited because you’ve just purchased the Super Special Song
Spooler digital music device. Eagerly you download 4,000 of your
favourite songs, and press the button to play them in random order. The
headphones pulsate as guitar riffs mingle with drum solos in a scintillat-
ing symphony of sounds. You look forward to musical variety and bliss
for the rest of your days. ‘

As the 75T song begins, you are shocked to hear that it is a repeat of
the 427 song. In choosing just 75 songs out of 4,000, that stupid music
device has already chosen a repeat. How could this be? The device must
be defective!

Before demanding a refund, you do some calculations. Out of a col-
lection of 75 songs, the number of pairs of songs is equal to 2,775. That’s
a lot of pairs, more than half of 4,000, the total number of songs avail-
able. In fact, when choosing 75 sorigs at random, out of the 4,000 avail-
able, the probability is 50.2% that you will hear at least one repeat.

So, perhaps the device isn’t to blame after all. You decide to keep your
headphones on.

When It Rains, It Pours

In the first week of November 2003, five separate homicides were
recorded in the Greater Toronto metropolitan region, an area that aver-
ages just 1.5 homicides per week. This fact was widely reported in the
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media, amid fears of a huge and increasing crime wave. Toronto’s police
chief called for a public inquiry into the judicial system, saying it “pro-
vides no apparent deterrent.” Was such concern justified?

Before answering that question, consider the following puzzle. Figure
2.1 shows two different sets of 100 dots each. One set of dots was placed
purely at random, with each dot equally likely to appear anywhere in the
box. The other set of dots was placed more deliberately. Which set of
dots is truly random: the left set or the right set?

Figure 2.1 Which Dots Are Truly Random — the Left or the Right?
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in this diagram, the dots on the left side exhibit various patterns. In
some places, two or three dots are very close together. In other places,
there are large areas with only a few dots. In fact, the dots towards the
bottom almost appear to be following a spiral pattern; they don’t appear
random at all.

By contrast, the dots on the right are nicely spread out. No dot is too
close or too far from another. No region is too sparsely covered. Thesg
dots seem to be nicely random. However, it is the dots in the left set that
are truly random. In that set, each dot was placed anywhere in the box
with equal probability, without regard to any other dot. All of the nearby
dots, sparse regions, spiral patterns, and so on, happened purely by
chance (I promise). It is the set of dots on the right that are not truly ran-
dom. For those dots, I started with an evenly spread grid of dots and just
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~applied a very small random movement to each dot (so they wouldn’t line

up perfectly). The dots in the right half have just a zny bit of randomness
(enough to fool the eye) but are still carefully designed to be distributed
evenly over the entire box in a highly non-random way.

This example illustrates that wherever there are lots of events (like
dots), some of them will tend to clump up together here and there, purely
by chance, without signifying anything at all about trends or causes or
connections. Randomness tricks us into seeing patterns and relation-
ships that are really nothing more than chance occurrences. Probabilists
refer to this phenomenon as Poisson clumping. The precise probabilities
(the Poisson distribution) were first computed by the French mathemati-
cian Siméon-Denis Poisson in 1837.

Poisson clumping can make some people jumpy. I was once hired as a
consultant to an on-line gambling Web site, because the manager
thought that the computer wasn’t selecting keno balls correctly. The balls
should have been selected uniformly at random, but the manager
thought that too many of them were coming from positions on the dis-
play board that were close to the number 17, and he feared that a sly cus-
tomer could use this fact to make a profit. He needn’t have worried; a
careful statistical analysis confirmed that the balls were indeed being
chosen with uniform probabilities. What the manager had seen was
nothing more than Poisson clumping at work.

So what about those Toronto homicides? The Poisson distribution tells
us that with an average of 1.5 homicides per week, there is still a 1.4%
probability of seeing five homicides in a given week, purely by chance.
So, we should expect to see five homicides in the same week once every
71 weeks—nearly once a year! It really isn’t so surprlsmg, nor does it sig-
nify anything other than bad luck.

By contrast, each week has just over 22% probability of being com-
pletely homicide-free, and indeed Toronto experiences ‘many weeks
without any homicides at all. But T have yet to see a newspaper headline
that screams “No Murders This Week!”

Another way to think about Poisson clumping is in terms of pairs and
larger groups. In the diagram above, there are 100 dots in the left-hand
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box. This means there are 4,950 pairs of dots. With so many pairs, it is
not surprising that some of the pairs are in very close proximity. Simi-
larly, with 78 homicides in a year, there are 3,003 pairs of homicides, and
over 21 million different groups of five homicides. With so many five-
homicide groups to choose from, it is not so surprising that some group.
of five homicides would all take place within the same week.

Poisson clumping also explains why you sometimes get invited to two
or three parties on the same night, after several party-free weeks. Or
encounter two bad drivers within a few minutes, after several hours of
problem-free driving. Or get treated rudely by five different people in one
day. Or get three wrong-number telephone calls on the same evening. Or
see three buses arriving in a row for no reason, after 25 frustrating min-
utes without a bus. There is nothing mystical or alarming or unexpected
about these events. They are just a consequence of the laws of probability.

Speaking of buses, Poisson clumping also explains the importance of
bus schedules. If buses arrive regularly, once every 10 minutes, then you
have to wait between zero and 10 minutes for the bus, which works out
to five minutes on average. However, if the buses arrive completely inde-
pendently, without regard for the schedule or each other, this is no longer
the case. You might be lucky and see a bus (or even several buses) right
away, or you might be unlucky and have to wait a long time. It turns out
that on average you will have to wait 10 minutes for a bus in this case—
exactly twice as long as you would have if the buses were following a
schedule. So, if your city’s buses are passing by in a haphazard manner,
complain to the mayor that your average waiting time has been unneces-
sarily doubled.

We see that many so-called coincidences can be explained as pure
chance. The seemingly surprising observation may be just one out of
many possibilities (like seeing my dad’s cousin at Disney World), or be
caused by the large number of pairs (like the birthday problem), or be
due to Poisson clumping (like the weekly homicide count, or the spiral
pattern of the dots). ' '
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Other times, coincidences arise because two seemingly unrelated
events actually have the same cause. Bank profits shoot up just when
housing prices tumble; both phenomena are due to rising interest rates.
Or airline traffic and museum attendance both skyrocket in the same
week, which happens to be spring break.

Sometimes such common causes are very subtle, and go unnoticed-—
even ‘though they explain seemingly surprising coincidences. The next
time two or more people suddenly make the same suggestion, or discuss
the same problem, or take the same action, ask yourself whether some
common cause might explain the surprise.

Parental Musings
You finally found a babysitter for Jason, and you and your husband are
enjoying a rare moment of quiet romance at an elegant French restaurant.

As you luxuriously swirl your $15 glass of red wine, a few drops spill
onto the white tablecloth. The tiny patches of colour remind you of the
craziness of Jason’s fifth birthday party last year, when more spaghetti
sauce ended up on the carpet than in the children’s stomachs.

You remember how happy Jason seemed that day. A month later, he
started kindergarten, and since then he has seemed more tense. When
you discussed this change with his teacher in the fall, she agreed that
Jason had had trouble adjusting to the new routines, but said that he
seemed to be improving.

At the kindergarten music show a few weeks later, Jason smiled a lot
and he enjoyed the event. He sat beside little Haldor, his new best friend.
Haldor seems like a good kid.

Haldor, whose parents are Norwegian, had sung a traditional Norwe-
gian folk song. He wasn’t a great singer, but the song still evoked lovely
images of spectacular fjords and happy people. Scandinavia would be an
interesting region to visit some day.

“Maybe we should take a vacation in Scandinavia,” your hushand

suddenly declares. You stare at him, stunned. “Why, I was just thinking
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about Scandinavia myself!” you exclaim. “What an astounding coinci-

dence!”
Unbeknownst to you, your husband had also noticed those drops of
red wine. He, too, had been reminded of Jason’s party, and the kinder-

garten show, and Jason’s new friend Haldor, and . . .

Even if there is no common cause, most coincidences can be explained
by some combination of the “out of how many” principle, and Poisson
clumping, and the multiplicative powers of “friends of friends.”
That doesn’t make coincidences any less striking, but it does help us to

understand why they occur so frequently.
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Laying Down the Law

Why Casinos Always Win

Whether in the opulence of Las Vegas, or in the thousands of more
modest operations around the world, or even just in the movies, we have
all seen casinos at work. These establishments are filled with anxious
gamblers and curious tourists who are placing bets on everything from
slot machines, to roulette wheels, to crap shoots, to keno draws, to poker
and blackjack tables. On any given bet, anything can happen: some play-
ers lose, others win. Some get rich, others go broke. Some stay and bet all
day, others leave after just a few minutes.

But in the midst of all of this randomness, there is one absolute certainty:
In the long run, the casino itself always makes money. Casinos are truly
cash cows. When people debate the ethics of government-sponsored
betting, concerns are often raised about the social impact of gambling
houses, the problem of gambling addiction, and the message sent to our
children. But no one ever raises the concern that the casino will lose
money; that simply never happens.

How can this be? How can such certainty arise from so much uncertainty?
With individual players’ fortunes being so random, so unpredictable,
how is it that the casino itself profits at such a steady, predictable rate?

The answer to this question involves two key facts. The first is that the
casino’s overall performance is the combined result of many, many indi-
vidual bets. Each hour, there may be hundreds or even thousands of bets
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on roulette, and thousands more on the slot machines and the other
games. Whereas any individual gambler might make just a few bets here
and there, the casino as a whole is involved with a huge number of sepa-
rate bets. »

When random events are repeated over and over again, the fraction of
successes gets closer and closer to their average value (also called
expected value). Thus, if you repeatedly flip a fair coin, in the long run
about half of the flips will be heads. Or if you repeatedly toss a fair six-
sided die, in the long run about one-sixth of the rolls will come up 5. This
isn’t just conjecture, it’s the law: the Law of Large Numbers. This law
says that if you repeat any random event often enough, over the long run
the good luck will cancel out the bad, and you will be left with approxi-
mately the “correct” average; that is, an average that mimics the true
probabilities.

In Tom Stoppard’s play Rosencrantz and Guildenstern Are Dead, a
coin is repeatedly flipped, hundreds of times, over the course of several
days. Every single time, the coin comes up heads. This is one of many
occurrences that disturb the central characters’ sense of reality. Are
they right to be concerned? Absolutely! The Law of Large Numbers
guarantees that, over the long run, good and bad luck tend to cancel
each other out, and averages tend to settle down to their true probabil-
ities. Thus, when you flip a coin many, many times, you will get
approximately half heads and half tails. Events like hundreds of heads
in a row simply never occur. : -

Of course, the coin doesn’t know that the tails should cancel out the
heads. Indeed, even if you have just gotten heads four times in a row, the
coin is still equally likely to show heads or tails on the next flip. What
the Law of Large Numbers says is that, even though each coin flip is
equally likely to be heads or tails, without regard to what came before,
nevertheless the fraction of heads will get closer and closer to one half,
in the long run. :

The Law of Large Numbers says that if a gambling game is even very
slightly to your advantage o average, and you play it long enough, you
are sure to come out ahead. On the other hand, if a game is even very
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slightly to your disadvantage on average, and you play it long enough,
you are sure to come out behind. Even though each individual game is
independent, with no regard for what came before, nevertheless in the
long run, all that matters is the game’s average amount won or lost.

The second key fact is that in every professional casino, every single
betting game is weighted ever so slightly in the house’s favour. Each gam-
bling game’s payout rules are designed specifically so that, even though
on any one bet anything can happen, over the long run, on average, the
house will come out slightly ahead.

If a casino has only a few customers, and they each make only a few
bets——perhaps even large bets—there is no telling what will happen. The
customers might lose their bets or they might win. The casino might
make money or it might lose money. The outcome is random, with no
guarantees.

On the other hand, if a casino has many customers making many dif-
ferent bets, randomness virtually disappears. The Law of Large Num-
bers says that because each individual bet is weighted slightly in the
house’s favour, it is a certainty that the house will make money over the
long run.

In short, to make a profit, the casino doesn’t have to be lucky, just
patient, While the players might base their gambling hopes on the illu-
sion of having a “hot hand” or a “lucky number,” or on the alignment of
the planets, the casino can afford to base its hopes on something more
certain: the Law of Large Numbers.

The Honourahle Bus Fine

You’re on a European bus where payment is handled by a sort of honour
system. No one collects fares when riders board, but they are expected to
buy a ticket anyway. Occasionally, inspectors arrive to check tickets and
they give a fine to any ticketless riders.

Being an honest person, you have bought your ticket. However, while
waiting for the bus, you see Cheapskate Charlie loitering by the ticket
machine, so close that you can overhear his mutterings.
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“Hmmm, it costs one euro for a bus ticket. If I don’ have’a ticket, and
I get caught, then I will get a 10-euro fine. However, there s; only about
one chance in 20 that I will get caught. So, in the long run, I’ll .only h’;lfve
to pay the 10 euros about one time in 20. That works out to. ]us}t; hf a
euro per ride. So, according to the Law of Large Numbers, in the long
run it’s cheaper for me to never buy a ticket.” . ,

Satisfied and smug, Charlie enters the bus with no t1c}<et. You re. not
looking for a fight, so you say nothing. However, that mglllt you write .a
letter to the local transit authority, suggesting that they increase their

fine to at least 20 euros immediately.

Calculating the Averages: Rouletie and Keno

For a casino to profit from the Law of Large N?Jrnber.s, .it has to mca;ke
sure that every single betting game is Weighted.shghtly in Ltfz ffavour. r1:-:1
slip-up, one game that is weighted just barely in the player’s favour, an
the casino might lose millions of dollars in the long run. ' o
How does the casino guarantee that the games are weighted in its
favour? It employs experts in probability theory to calculate the average,
net payout for each game.
Or';: E:g t}Tc()i\’N thii;3 wyorks, consider the simplest example: roulette. P; stanl—
dard (American-style) roulette wheel consists o.f 38 spots: the mz)m e;s '
to 36 (alternately red and black), plus the speqal. spots 0 and 0 1(W bxcu
are green). The wheel is designed so ;h;t \;v;len 11; is spun, the marker ba
i i to land in any one of the 38 spots. .
) ‘Xlgiily}r’elrﬂ;lzces a bet on jvhere the ball will drop on .the n:;cfs.pm;
There are a variety of different betting options, each having a di eren
payout. For example, a player might choose to bet $10 on red, meamr.lﬁ
that he will win $10 if the ball lands on 01116 of the 18 retd spots, but wi
i Il instead lands on a black or green spot.
10:3(/'51:? }112;};: on average? Well, there are 1.8 red spots out of }318 total
spots, so 18 times out of 38, the player will win $10. However, tf e;e a}r‘e
20 black or green spots out of 38 total spots, so 20 times out of 38, the

26

LAYING DOWN THE LAW

player will lose $10. Therefore, the player’s average winning on the bet
equals $10 X 18 + 38 minus $10 x 20 + 38. This works out to
—$0.526; that is, on average, the player will lose just over 52 cents by
making this bet. .

Of course, the player will never actually lose 52 cents. On each bet, he
will either win $10 or lose $10. However, if he makes lots and lots of such -
bets, over and over again, in the long run, on average, he will lose about
52 cents for each bet he makes. The Law of Large Numbers claims
another victim. These same odds apply to all of the casino’s thousands of
customers, ensuring huge profits for the casino,

Another way to think about long-run gambling is in terms of the well-
known gambler’s ruin question. Suppose you start with $1,000, and
repeatedly make $10 bets on red. What is the probability that you will
double your holdings—that is, win another $1,000—before you lose the
$1,000 you started with? Since you have almost a 50% probability of
winning each roulette bet, you might expect to have almost a 50%, prob-
ability of winning $1,000 before losing $1,000. In fact, the probability of
winning $1,000 before losing $1,000 when repeatedly making $10
roulette bets is just one chance in 37,650—a tiny probability. So, if you
keep betting on roulette, it is virtually impossible that you will make
$1,000 before losing your initial $1,000 capital.

What about the other possible roulette bets? Certain other bets—such
as betting on black, or on the odd numbers, or the even numbers, or the
numbers 1 to 18, or the numbers 19 to 36—work exactly the same as the
bet on red. In each case, there are 18 spots on which you win and 20
spots on which you lose, so on average you will lose just over 52 cents for
every $10 bet.

Of course, there are many other kinds of roulette bets, For example,
there are the “dozen” bets, where you bet on a collection of 12 numbers,
If you bet $10 on the “second 12 numbers (13 to 24) and the ball lands
on one of the spots 13 to 24, you win $20. If the ball lands on one of the
other spots, you lose just your $10 bet,

Wow, you might think, this is great. If I sometimes win $20 and some-
times lose just $10, surely the odds are in my favour,
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* Unfortunately, no. Because there are just 12 spots in the range 13 to 24,
just 12 times out of 38 will you win $20. The other 26 times out of 38,
you will lose $10. Hence, your average winning on this bet is equal to
$20 X 12 + 38 minus $10 X 26 + 38. This again works out to —$0.526,
the same as before. So the odds are still against you on this bet. And, in
the long run, you will again lose about 52 cents for every bet that you
make, just like when you bet on red.

What about betting on just a single number? If you bet $10 on, say, 22,
then you win $350 if the ball lands on 22. Otherwise, you just lose your
$10. This is it, you figure. If you bet for a while, then eventually you will
win a $350 payout, at which point you will surely come out ahead.

Maybe not. There is just one chance in 38 that the ball will land on 22,
while there are 37 chances that the ball will land on some other spot. So,
if you bet $10 on 22, then your average payout is equal to $350 X 1 + 38
minus $10 X 37 + 38. This works out to (you guessed it)—$0.526. Once
again, if you repeatedly make this bet, in the long run you will lose about
52 cents for every bet that you make.

Table 3.1 Probabilities and Payouts for $10 Roulette Bet

Bet Prohabhility Payout  Expected Loss
Red/Black/Even/0dd 18/38 $10 $0.526
Dozen 12/38 $20 $0.526
Single 1/38 - $350 $0.526

Darn, those roulette-wheel designers are pretty clever. They have
designed every game so that, overall, the odds are in the casino’s favour.
They’re not too much in the casino’ favour, or no one would ever bother
to bet. But they are just enough in the casino’s favour to guarantee a
long-run prdﬁt margin, typically between 1% and 3% of the total
amount of money bet. And their success is all due to the Law of Large
Numbers. With such a huge amount being bet over the course of a year,
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this small profit margin really adds up: worldwide annual gambling
revenues amount to hundreds of billions of dollars.

Of course, you might get lucky. The ball might land on 22 on the first
spin. Or perhaps on the second or third spin. If so, then hurry up and
cash in your chips, and leave! But don’t count on this occurring. Over the
long run, casino gamblers will lose more money than they will win. Some

gamblers will come out ahead, but on average the casino will make

money. It has to be that way. It’s the law.

Slowly but Surely?
In Aesop’s fable “The Tortoise and the Hare,” those two animals have a
race. Although the hare is much faster, he is also careless: part way
through the race, he decides (given his substantial lead) to have a quick
nap. While he is sleeping, the tortoise rumbles by, slow and steady, and
chugs ahead to victory.

It is customary, when recounting this tale, to blame the hare for being
too inconsistent, too unpredictable, too random. By contrast, the slow-
and-steady tortoise is portrayed as a model of hard work and discipline,
proving that we'can all succeed in life if only we focus steadily and seri-
ously on our task.

The Probability Perspective provides a more precise understanding.
The Law of Large Numbers tells us that the real issue here isn’t which of
the tortoise or hare is more reliable, or more consistent, or a better role
model. The issue is which of them goes faster oz average. Whoever goes
faster on average is guaranteed to win races in the long run,

Suppose that the tortoise always goes along at a steady pace of 1 kilo-
metre per hour. The hare, on the other hand, can run 4 kilometres per
hour when he isn’t napping. Who will win the race?

If the hare is very lazy and naps for four out of every five hours (on
average), he is in trouble. In this case, in every five-hour period the hare
will only run for one hour and thus only cover 4 kilometres. By contrast;

the slow-and-steady tortoise will progress § kilometres every five hours.
Victory for the tortoise!
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On the other hand, if the hare naps in just half of the available hours
(on average), then in every two-hour period he will still run for one hour
and advance 4 kilometres. Meanwhile, the tortoise will advance just 2
kilometres. Victory for the hare!

So, from a Probability Perspective, the story of the tortoise and the
hare is about balancing fast speeds and nap times, by carefully comput-
ing the average values to determine who will win the race. It isn’t about
a steady work ethic or the evils of an unreliable lifestyle. Such an inter-
pretation amounts to blatant, hurtful, unfair discrimination—against

randomness itself.

Another casino game is keno. In the 80-ball version, a player might
select 10 of the numbers between 1 and 80. Twenty balls numbered
between 1 and 80 are then chosen at random by a “blower” machine,
and the player’s payout depends on how many of those 20 numbers she
selected, or her number of matches. In one version of the game, if you bet
$10, you receive nothing for three or fewer matches, but you receive $10

for four matches, $20 for five matches,-$200 for six matches, $1,050 for -

seven matches, $5,000 for eight matches, $50,000 for nine matches, and
a whopping $120,000 for matching all 10 of your choices.

A potential payout of $120,000 for a mere $10 bet sounds very tempt-
ing, and helps to draw in customers. Unfortunately, the number of dif-
ferent possible choices of 20 balls out of 80 that the blower can make is
nearly 4 followed by 18 zeros, a huge number. And each choice is equally
likely to occur. The number of these choices that include all 10 of your
selections is nearly 4 followed by 11 zeros—still a huge number, but
much smaller. The probability of matching all 10 numbers in keno is the
second number divided by the first, which works out to about one
chance in 9 million—virtually impossible. I'm sorry to say that you just
won’t match all 10 numbers anytime soon.

Now, matching four numbers is more likely. The number of choices
that match just four of your selected numbers is equal to 521 million bil-
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lion, and dividing that number by the total number of choices works out
to a probability of nearly 15%. On the other hand, matching four num-
bers just gets you your $10 bet back, nothing more. The probability of

- getting five matches, and thus making a $10 profit, is about 5%; and for

six matches the probability is just over 1%.

Table 3.2 indicates the expected return (the payout multiplied by
your probability of winning it) from all the different numbers of
matches. Adding them all up tells us the overall expected payout from
betting $10 on keno, namely $7.49. This means that, on average, for
every $10 that you bet at keno, you will get back about $7.49. Or, to

put it differently, on average you will lose $2.51. Once again, the odds
are stacked against you.

Table 3.2 Probabilities and Payouts for a $10 Keno Bet

# Matches Probability - Payout Expected Return
0 4.58% $0 $0
1 17.96% $0 © %0
2 29.53% $0 $0
3 26.74% $0 $0
4 14.73% $10 $1.47
5. 5.14% $20 $1.03
6 1.15% $200 $2.30
7 0.16% $1,050 $1.69
8 0.014% $5,000 $0.68
9 0.00061% $50,000 $0.31
10 0.000011% $120,000 $0.01
Total: 100% $7.49

More money is bet on slot machines than on any other casino game;
some 60% of casino profits come from the slots. I find this surprising,
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since slot machines operate on hidden mechanisms. There are no spin-
ning wheels, bouncing balls, or rolling dice, and no way to directly check
the probabilities. Whether it’s a traditional machine of gears and levers
or a modern, computer-controlled video lottery terminal, playing a slot
machine requires a certain level of trust that the casino operator isn’t
cheating.

Manufacturers of slot machines do make claims about the probabili-
ties of payouts. The probabilities vary from one type of machine to the
next, but typically they claim that the customer will recover between
88% and 95% of their bet, on average. Or, to put it differently, for every
$10 you bet in slot machines, you can expect to get between $8.80 and
$9.50 back, and to lose between $0.50 and $1.20.

Rolling the Dice

Many games involve rolling dice. While no one can say for sure what the
dice will show, we can still improve our chances by considering proba-
bilities. If you roll one ordinary six-sided die, it is equally likely to show
any of the numbers 1, 2, 3, 4, 5, 6. But in many games, two dice are
rolled, and the two numbers are added together. The result could be any-
thing from 2 (if you roll a pair of 1s) to 12 (if you roll a pair of 6%). But
are all possibilities equally likely?

No, they are not. When rolling two dice, there are a total of 36 pos-
sibilities for the pair of numbers that you get, on die #1 and die #2

respectively, as shown in Table 3.3.
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Table 3.3 Possible Numher Pairs for Twe Dice

(1,1 (1,2 1,3 (L4 (1,5 (1,6
(21) (22 (23) (2,4 (2,5 (2,6
(31) (32) (33) (3,4 (3,5 (3,6
4,1 (4,2) (4,3 (44 (45 (46)
(51) (52) (53) (54) (55 (56)
(6,1) (6,2 (6,3) (6,4) (6,5 (6,6)

These 36 pairs are all equally likely. A quick count shows that just one
9f them, (1,1}, has a sum of 2. This means that the probability of obtain-
ing a sum of 2 is just one chance in 36. On the other hand, six of them
h.ave asum of 7: (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1). So, the proba-
bility of a 7 is 6/36. Table 3.4 shows the probabilities for every sum that
can be rolled with a pair of dice. :

Table 3.4 Probabhilities When Rolling Two Dice

Sum # Pairs Prohabhility Percentage
2 1 1/36 2.78%
3 2 2/36 5.56%
4 3 3/36 8.33%
5 4 4/36 11.1%
6 5 5/36 13.9%
7 6 6/36 16.7%
8 5 5/36 13.9%
9 4 4/36 11.1%

10 3 3/36 8.33%

11 2 2/36 5.56%

12 1 1/36 2.78%

Total: 36 36/36 100%
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So, if you roll two dice, the most likely value of the sum is 7, which will
occur one time in six, or about 17% of the time. Next most likely are 6
and 8, each of which will occur five times in 36, or about 14% of the
time. Five and 9 will each occur about 11% of the time, with other num-
bers less likely. At the extremes, 2 and 12 will each occur just one time in
36, or less than 3% of the time.

Here is a more intuitive way of seeing why 7 is the most likely result.
No matter what number the first die shows, the second die always has
some choice that will make the sum be 7. If the first die is 1, then the sec-
ond die could be 6. If the first die is 2, then the second die could be 5. And
so on. So, no matter what the first die shows, there is always one chance
in six for the sum to equal 7. All other sums are less likely. For example,
if the first die is 1, it is impossible for the sum to equal 8. Or, if the first die
is 6, it is impossible for the sum to equal 6. That is why 7 is the most
likely outcome.

An even better way to see why 7 is the most likely result is to use, once
again, the Law of Large Numbers. The average value when rolling one die
is the average of all of the numbers from 1 to 6. This is equal to the num-
ber exactly halfway between 1 and 6, which is 3.5 (not 3, as some people
think). So, the average when rolling two dice is twice 3.5, or 7. The Law
of Large Numbers tells us that the result is most likely to be close to its
average, or close to 7 in the case of two dice. If you roll more dice, the
result will be even more likely to be near its average: If you roll 10 dice, the
result could be anything between 10 and 60; however, the most likely sum
is 35, with sums close to 35 much more likely than sums that are much
higher or much lower.

This basic understanding of dice can help us to make better decisions
in games of chance and increase our probability of winning. For exam-
ple, suppose you are playing Monopoly and decide that now is the time
to build hotels for one of your monopolies. Then when opponents land
on your hotel, they will have to pay you lots of money.

Suppose you own two monopolies, one yellow and one orange, each
consisting of three properties. One opponent is within striking range of
the yellow monopoly, and he will land there if he rolls a 2, 3, or 5 on his
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next turn. Another opponent is approaching the orange monopoly, and
she will land there if she rolls a 6, 8, or 9. On which monopoly should
you build?

. The numbers 6, 8, and 9 are all close to 7, which is the most likely roll.
By contrast, the numbers 2, 3, and 5 are on average much farther away,
and therefore much less likely. The orange monopoly is considerably
more likely to get visited on the next turn, so the smart move is to build
there. This probability won’t guarantee you success every single time,
but it will help you win more games over the long run.

Similar reasoning applies to virtually every game involving dice. In the
recently popular game Settlers of Catan, the playing area consists of
regions with numbers printed on them. Resources are distributed by
rolling two dice and giving resource cards to those players who are adja-
cent to areas with the corresponding number. Good Catan players always
crowd around the areas with numbers like 6 and 8. They know these
numbers are the most probable outcomes of the dice rolls, and thus the
regions likely to provide the most resources over the long run.

Suppose now that you repeatedly roll dice, and want a certain number
to appear at least once. What are the odds? For example, if you roll a die
once, the probability of getting a 3 (or any other number between 1 and
6) is one chance in six. But suppose you roll a die four times. What is the
probability of getting at least one 3 in the four rolls?

Many people think the answer must be 4/6, or 67%. They reason that
the probability of getting a 3 after four rolls must be four times as great
as the probability after just one roll. But this can’t be. By that logic, if you
rolled a die six times, the probability of getting at least one 3 would be
6/6, or 100%—and we all know that isn’t true (even after six rolls, you
are not guaranteed to get a 3). The problem is that this reasoning
involves overcounting; if you get 3 on four different rolls, you are still
effectively adding in a 1/6 probability for each of the four 3’s that you
got, even though you should really just count it once.

Here is the correct way to calculate the probability of getting at least one
3 when rolling a die four times. Fach time, the probability of 70t getting a
3 isequal to 5/6. So, on four rolls, the probability of not getting a 3 all four
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times is 'equal to four copies of 5/6 all multiplied together, which equals
48.2%. So the probability of getting at least one 3 is equal to 100% minus
48.2%, or 51.8%. This is just barely more than 50%, and is far less than
the 67% that many people think the answer should be. .
Remarkably, this very problem is what began the modern mathematical
theory of probability. In seventeenth-century France, a shrewd gambler
named Antoine Gombaud, Chevalier de Méré, was making a handsome
profit by betting people that at least one 6 would come up if a die was
rolled four times. (We now know that his probability of victory was
51.8%, which is more than 50%, so his long-run profit was guaranteed by
the Law of Large Numbers.) He then tried modifying the bet to say that a
pair of 6’ would appear at least once, if a pair of dice was rolled 24 times.
He reasoned that since each pair of 6’ has probability 1/36, and since
24/36 is equal to 4/6, the probabilities of the two games would be the
~ same, and his winning ways would continue. However, the true probabil-
ity of winning this second bet is equal to 100% minus 24 copies of 35/36
all multiplied together, which works out to 49.1%. This is a little bit less
than 50%, and the poor chevalier started losing money. He became a vic-
tim of the very Law of Large Numbers from which he had earlier profited.
Puzzled, de Méré contacted French mathematician and philosopher
Blaise Pascal. Pascaln turn corresponded about this and related ques-
tions with the brilliant mathematician Pierre de Fermat, a Toulouse gov-
ernment official and lawyer who later on would propose the infamous
Fermat’s last theorem. Their letters are now regarded as the first serious
attempt to study probability and uncertainty in mathematical terms.

The Curious Case of Craps

There is another casino game that is curious both for its complicated
rules and for its interesting probabilities: the game of craps. Craps is
played by repeatedly rolling a pair of ordinary six-sided dice and consid-
ering the sum each time. If the sum is equal to 2, 3, or 12, the player loses
immediately. If the sum is equal to 7 or 11, the player wins immediately.
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If the sum is any other value (say, 4), that value becomes the player’s
“point.” The player then repeatedly rolls the pair of dice until such time
as the sum either equals the point—in which case the player wins—or
equals 7, in which case the player loses. :

To summarize, on the first roll, 2, 3, and 12 are bad, while 7 and 11 are
good. Any other sum sets off a race to repeat that sum before rolling a 7.
If, for example, the player has bet $10 and wins, he receives another $10;
if he loses, he forfeits the $10 bet.

Most people’s reaction upon first hearing these rules is that craps is a
strange, complicated game. Where did these rules come from? Craps
originated in a French variant of an older English dice-rolling game, and
it was gradually refined to its present form on American riverboats and
in gambling houses. (It is believed that the name craps was a mispronun-
ciation by the French of the English word crabs, which was slang for
rolling a pair of 1’s.) But why these particular rules?

To answer this question, we have to consider—you guessed it—proba-
bilities. From the Law of Large Numbers, we already know the basic

principle of casinos: every game should be weighted in the casino’s

favour, to guarantee long-run profits. But it shouldn’t be zoo heavily
weighted, or no one will play. So, how does the game of craps stack up?

From Table 3.4, we know that the probability of rolling a 7 or 11 on
the first roll (and thus winning immediately) is equal to eight chances in
36, or about 22.2%. On the other hand, the probability of rolling a 2, 3,
or 12 on the first roll (and thus losing immediately) is equal to four
chances in 36, or about 11.1%. Thus, on the first roll, you are twice as
likely to win as to lose.

So far so good. But what about the other 66.7% of the time, when you
roll some other value on the first roll? Here things get complicated,
because the value on the first roll becomes your “point,” and the proba-
bility of winning depends on what your point equals. Calculating the
probability of winning now requires computing a complicated sum of
different probabilities of obtaining the various point values, multiplied
by the probabilities of winning once you know your point.
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When all the fractions have been multiplied and sums have been com-
puted, it turns out that the overall probability of winning at craps is
equal to 244 chances in 495, or 49.2929%. In other words, the proba-
bility of winning at craps is just barely less than a fair 50-50 bet.

This means that if you bet $10 on craps, then 49.2929% of the time you
will win $10, while the other 50.7071% of the time you will lose $10. Your
average winning works out to $10 X 49.2929% minus $10 x 50.7071%.
This is equal to —$0.141. Thus, if you play craps over and over again, in
the long run you will lose about 14 cents for every $10 bet that you make.
The odds are just barely weighted against you, but the Law of Large Num-
bers says that s still good enough that in the long run the casino will win—
and all of its gamblers, taken together, will lose—a lot of money.

We see now how the rules for craps developed. If the odds were
weighted towards the player, the casinos would lose money and eventu-
ally have to change the rules. But if the odds were weighted too heavily
towards the casino, players would get frustrated and stop playing, and
the casino would also eventually have to change the rules. Finally, with
enough tweaking, the rules were fixed so that the player’s probability of
winning was just under 50%, thus guaranteeing good fun for the player
and steady profits for the casino.

The game of craps has another interesting aspect: spectators can get
involved, too. Other gamblers, while watching the main player roll the
dice, can make various kinds of “side bets” on the game. The results of
the side bets depend on what the player rolls. (That is why one often
hears a big cheer from a craps table in a casino. The spectators are not
expressing any great affection for the player; rather, they are cheering
because their own side bet has paid off.)

One kind of side bet is particularly intriguing (at least to probabilists).
‘A gambler can bet that the player throwing the dice will lose. Officially,
this is referred to as betting on the “Don’t Pass Line.” The rule is, if you
bet $10 on the Don’t Pass Line, and the player loses at craps, you receive
$10. If the player wins, you forfeit your $10 bet.

Betting that a player will lose may seem rude or even hostile, but it

LAYING DOWN THE LAW

seems to provide an opportunity for patrons to cash in on the casino’s
guaranteed profits. If you bet against a player, you are effectively
adopting the casino’s position in the game. And since the casino is
guaranteed to win money in the long run, won’t you benefit from this
same guarantee? ’

Don’t drop this book and rush out to the nearest casino just yet. As
you might suspect, there is a catch. There is one little, subtle additional
rule for betting on the Don’t Pass Line. If the player rolls a 12 on the very
first roll, the player loses (of course). However, in that one special case,
even though the player loses, you don’t win your Don’t Pass Line bet.
Instead, your bet is considered a tie: your $10 is refunded but you don’t
receive another $10.

Big deal, you might think. After all, there is only one chance in 36 that
a player will roll a 12 on the first bet. And, even if he does, you don’t
actually lose, you just get a refund and get to bet again. What is the harm
in that?

Unfortunately, this one special rule is just enough to change the Don’t
Pass Line bet from being weighted in your favour to being weighted in
the casino’s favour. This rule change means that one time in 36 you will
miss out on $10 that you would otherwise have won. So, this reduces
your average winnings by $10 X 1 + 36, or $0.278.

Now, 27.8 cents isn’t much. But remember that when playing craps,
the player will lose 14.1 cents on average and the casino will win 14.1
cents on average. So, with a $10 bet on the Don’t Pass Line, on average
you will win 14.1 cents minus the 27.8 cents for the rule change. Overall,
on average you will lose 13.7 cents.

So even the Don’t Pass Line bet is weighted against you. That one little
rule change was just enough to ensure that, whether you bet to win or bet
on the Don’t Pass Line, on average you will lose money. No matter the
game, the odds are always against you.

39



STRUCK BY LIGHTNING

Tahle 3.5 Average Loss When Betting $10 at Various Casino Games

Game Average Loss
Roulette $0.526
Keno* $2.51

Slot Machines $0.50to $1.20
Craps $0.141
Don‘t Pass Line $0.137

*Specifically, the version of keno described above; others may vary.

Of course, various other side bets are allowed in craps. They have
exotic names like Don’t Come bets, Proposition bets, and Hardways.
Some of them are complicated, and computing their probabilities isn’t
always easy.

But even without computing any probabilities, you can rest assured
that with each of these bets, on average the gambler will lose money.
After all, the casinos aren’t stupid: they hire consultants to make sure
that each and every bet is weighted slightly in their favour. This is what
guarantees them steady profits in the long run.

Betting Temptations

“Step right up,” the barker barks. “Make your fortune using the won-
ders of gambling. What do you say to a little roulette, mister? Why, just
last week one roulette player made a $10,000 profit!”

Politely you decline, explaining that in roulette the odds are stacked
against the customer in the long run.

“How about keno, then? Or craps?” You explain that you know the
odds are against the customer in those games, as well.

“Qkay, then,” the barker continues. “I see you’re too smart for simple
games like those. Why don’t you play our brand-new game, Spin-Roll-

Flip-Blow? It combines a roulette wheel, dice, coins, and a blower
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machine in such a complicated way that you could never figure out the
odds. What do you say to that, then?”

You look around the casino to see the glittering gold trim, the plush car-
pet, the free drinks, and the hundreds of well-paid employees. You know
that the owners are making a steady profit. This must mean that the odds
in all of their games are stacked against the customer, at least a little.

“I don’t think so,” you reply, exiting the casino to go swing dancing

instead.

A Life of Large Numbers

Once we understand the Law of Large Numbers-—the principle that in
the long run randomness cancels out—we notice this law appearing in
many different aspects of our lives.

For example, most of us like to get a second opinion (whether from
doctors or from friends), read more than one newspaper, and get advice
from more than one stockbroker. Why? The answer is simple: any one
doctor {or friend or newspaper or broker) might be wrong or biased or
stupid or eccentric or just be having a bad day. The more ideas or events
or outcomes we average together, the more such randomness tends to
cancel out, and the more certain we can be about the conclusions we
reach. Thus, every time you seek a second opinion, you are employing a
version of the Law of Large Numbers.

The Law of Large Numbers similarly explains why, if you play Scrabble
once, anyone might win; but if you play over and over again the best
player will come out ahead. If you flip a few coins you might get any
result, but if you flip lots of coins you will get about half heads and half
tails. If you invest in one stock, you may win or lose a tremendous
amount, but if you invest in many stocks, your fortunes will follow the
overall market trend. At any one intersection you might get stuck at a
red light, but over time traffic lights treat every driver equally. If you
sprinkle just one grain of salt on your pasta it might land anywhere, but
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if you keep sprinkling randomly the salt grains will spread out nicely on
your plate. And each time you take a breath, you can rest assured that of
the trillion trillion or so molecules of oxygen in the room with you,
plenty of them are close enough to breathe, and not all of them are hid-
ing under the bed. In every case, the randomness of each individual
game or coin flip or stock fluctuation tends to cancel out as we take
bigger and bigger averages.

It is difficult to escape from the Law of Large Numbers, even if you try.
On a recent vacation my wife and I stayed at a winter resort, and I tried
to unwind from my life as a probabilist. While relaxing in a steaming
outdoor hot tub surrounded by snow, I noticed a chemical dispenser
floating lazily in the tub, dispensing disinfectant and who knows what
else. At any one moment, the dispenser could be anywhere. But over
time, with enough random pushes and pulls and disturbances, the dis-
penser would travel all around the tub, and the Law of Large Numbers
would ensure that the tub is equally disinfected on all sides. Even on
vacation, I found probability theory floating beside me.

The principle of long-run averaging also applies in many other areas.
We shall see that it explains why small differences in poker strategy can
have a big effect over a long night of playing. It explains why medical
studies can sometimes demonstrate the superiority of one treatment over

another. It also explains how opinion pollsters can conclude that “these

results are considered accurate within four percentage points, 19 times
out of 20.”

So, does the Law of Large Numbers solve every problem in probabil-
ity? No, not quite. Indeed, the celebrated economist John Maynard
Keynes had this to say about relying too much on long-run calculations:
“This long run is a misleading guide to current affairs. In the long run we
are all dead. Economists set themselves too easy, too useless a task if in
tempestuous seasons they can only tell us that when the storm is long
past the ocean is flat again.”

Keynes has a point. Just as it is not sufficient for athletes “usually” to
perform well—they have to perform well specifically at the Super Bowl
or the Olympics, where it counts the most—it is also not sufficient to
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know that the economy will improve “in the long run”; what will hap-
pen over the short term is also important. But despite this limitation,
there is still enormous benefit and power in long-run probability calcu-
lations. From casinos to evolution, from polling to poker, the Law of
Large Numbers provides a deep understanding of the long-term effects
of randomness. ‘
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Dealing the Cards

Bridge, Poker, and Blackjack

It seems that many people just can’t get enough randomness. Even
though our lives are already filled with uncertainty, we love to pile it on
by playing games of chance. Cards, dice, and spinning wheels are used to
inject uncertainty into competitions, to make them more exciting and
fun. But what if you also enjoy winning games? How can you apply skill
and logic to the randomness of a game of chance?

The Law of Large Numbers provides a partial answer. It tells us that

over the long run, the player who will win the most is the one who has
the highesic probability of winning each game. So, when playing games of
chance, your goal should always be to make decisions and adopt strate-
gies that will increase the probability that you will win. You might not
win every game, but over the long run you will get your just rewards.
Even non-random games are often won because of probabilities. For
example, Boston Celtics basketball great Larry Bird was famous for,
among other things, his excellent free-throw shooting. Now, Bird some-
times scored his free throws and sometimes missed. Meanwhile, I, play-
ing on low-level student intramural basketball teams, sometimes scored
my free throws and sometimes missed. So what was the difference
between Bird and me? Probabilities! Bird made 88.6% of his free throws
over his career, including an astounding 71 in a row during the 1989-90
NBA season. I, on the other hand, didn’t score more than 50% of my
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own free throws (actually it was probably even less, but let’s not dwell on
that). So both Bird and I shot free throws in the 1980s, and for both of us
the outcome was random. However, Bird had a much higher probability
of success than I did. ‘

Or, consider bowling. Championship bowlers get strikes about two
thirds of the time, whereas mediocre bowlers like me get strikes less than
one third of the time. There are no other game aspects like passing or
defence or head-to-head competition; each player bowls separately. So in
bowling, as with basketball free throws, the difference over the long run
between winners and losers is simply a question of probabilities.

Building a Bridge

Bridge is a complicated card game with many different aspects, including
sophisticated bidding systems that take years to master. However, bridge
also uses a tremendous amount of probability. Good players know the
odds of success of various alternatives, and they are always choosing the
most promising options, to increase their probability of winning,.

When playing bridge, the bidding determines which player becomes
the “declarer.” This player gets to see her own 13 cards (of course), plus
all 13 cards of her partner. However, the 26 remaining cards are not visi-
ble, and are divided among the two opponents in a random way. The
declarer must decide which cards to play when, without knowing which
opponent has which cards.

A typical situation might involve the declarer wondering which oppo-
nent has the King of Spades {Kings rank second only to Aces in bridge).
If she guesses correctly, then she can win an extra trick using a bridge
manoeuvre called a finesse (by which she lures the correct opponent into
playing his King and tops it with her Ace), and succeed in making her
contract. But if she guesses wrong, she will lose the trick and the con-
tract. What should she do?

A novice player might just guess at random, and have a 50% chance of
success. However, an expert will be more careful, looking for clues about
where the missing King of Spades lies. If one opponent has previously
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bid and indicated that he has lots of high cards, that opponent is more
likely to have the King. On the other hand, if one opponent is seen to
have lots of Hearts, that suggests he has fewer Spades, so is less likely to
have the King. A clever player, looking carefully for clues, might be
able to increase her chance of success from 50% to 60%, or 70%, or
even higher. Such improvements have only a small effect on any one
hand of bridge, but over the long run, they separate the strong players
from the weak. :

While a good bridge player can improve the probabilities, she still has
a lot of randomness to overcome. The total number of different ways in
which a deck of 52 cards can be divided into four hands of 13 cards each
is unimaginably huge—larger than the number written as a 1 followed
by 28 zeros. Some of those deals will be favourable to the player, and
some will be unfavourable. Over the long run, by the Law of Large Num-
bers, the better players will win more often. However, even with the
greatest of skill, it might still take a long time for the randomness of the
different deals to cancel out. '

To overcome this problem, serious players often play a version of
bridge called duplicate bridge. The cards are carefully managed (by a
tournament director) so that all players who are playing the same position
(North, South, East, or West) play the exact same hands over the course
of a session. So, if in one round you, as North, get the Ace and Queen of
Spades, and the Ten of Diamonds, and so on, then in another round], also
as North, would play with those exact same cards, against another pair of
opponents. When you and I later compare our results, we can see who
performed better with exactly the same cards. Much of the randomness is
eliminated, and the players’ skill more easily shines through. Serious
bridge players prefer this version; their bridge abilities are measured more
precisely because the additional “luck factor” of the quality of the cards
they are dealt is eliminated. But novice players often find duplicate bridge
more stressful because they cannot blame bad cards when they lose.

So is duplicate bridge completely free of luck? No. Even if different
players use the same cards, some playing strategies will happen to work
out better than others, just by luck, since the opponents’ cards remain
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unknown. However, in duplicate bridge randomness is greatly reduced.
In either conventional or duplicate bridge, the Law of Large Numbers
guarantees that the best players will win the most often in the long run.
But with duplicate bridge, the Law of Large Numbers kicks in a lot
faster, and the better players rise to the top more quickly.

Bridge Bickéring (A True Story)
1 once commented to a fairly serious bridge player that although dupli-
cate bridge is mostly based on skill, it still involves some luck. He vigor-
ously disputed this. “There is no luck in duplicate bridge!” he exclaimed.

“Oh, come now,” I pressed on. “Suppose a certain finesse has just a
35% chance of success, so you do not try it. But some other, weaker
player tries it anyway, and he happens to succeed.”

The serious player scoffed. “If someone succeeds with a 35% finesse,
then that shows nothing. It’s completely meaningless. He just got
lucky!”

I smiled and paused, while the serious player slowly realized that he

had just proved my point.

Poker Power

No game of chance has captured the popular imagination quite like
poker. Poker showdowns feature in numerous movies about the Wild
West, from Butch Cassidy and the Sundance Kid to Maverick. Psycho-
logical manipulation, macho posturing, tough talk, and the occasional
six-shooter all combine to give poker its entertainment value. Such
depictions of poker emphasize the competitive, psychological, and finan-
cial aspects of the game, all of which are significant. Unfortunately, they
leave out the most important part: probabilities.

In many a movie scene, the final hand is won by the hero when he is
dealt a Royal Flush: the 10, Jack, Queen, King, and Ace all of the same
suit. Is this really a plausible outcome? In reality, there are nearly 2.6 million
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different five-card hands that can be dealt. Of these, just four are Royal
Flushes (one for each suit). So, the probability of the hero’s actually
being dealt a Royal Flush on the final hand is four chances in 2.6 million,
or about one chance in 650,000. It is extremely rare. And, popular enter-
tainment aside, no amount of tough talk or intimidation (short of out-
right cheating) will change this probability. From the strongest cowboy
to the cleverest card shark to the greenest novice, we all have exactly the
same chance of being dealt a Royal Flush in five cards.

Of course, there are many different versions of poker, including some
with wild cards, extra cards to choose from, opportunities to exchange
cards, and so on. Each of these modifications changes all the probabili-
ties and, with enough wild cards, even a Royal Flush isn’t so unlikely.
Nevertheless, the probabilities are the same for everyone. And the way to
succeed at poker is not by magically getting a Royal Flush every time, but
rather by understanding probabilities and making good decisions once
the cards are dealt.

Suppose you're playing five-card stud poker, where each player is dealt
a total of five cards (with no extra or wild cards). Suppose you have been
dealt four Spades, with the fifth card still to come. If the fifth card ends
up being a Spade, then you will have a Flush (all five cards of the same
suit), which is a very good hand that will likely win the pot. On the other
hand, if the fifth card is not a Spade, then your hand will be very weak (at
best, one pair) and will probably lose. Everything comes down to
whether or not your fifth card will be a Spade.

What is your probability of success? If the deck is well shuffled and
nobody cheats, every unseen card is equally likely to be dealt next. You
have already seen four cards, all Spades. So, there are 48 cards remain-
ing, of which nine are Spades. This means that the probability that the
next card will be a Spade is equal to 9/48, or about 19%. Those odds are
pretty low, so perhaps you should fold at this point (though that decision
also depends on the pot odds, discussed below).

Is that all there is to it? No. In many poker games, some of the cards
are dealt face up, for everyone to see. For example, in the usual version of
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five-card stud, all but the first of each player’s cards are viewable by all.
Consider again the Flush example, where you have been dealt four
Spades and are waiting for a fifth. Suppose you are at a table with nine
opponents, each of whom already has three face-up cards showing. That
makes an extra 27 cards that you already know about, leaving just 21
unseen. If none of your opponents’ face-up cards are Spades, then there
are still nine unseen Spades. So, in this case, the probability that your
fifth card will be a Spade increases to 9/21, or 43%-—far more than the
19% it was before. By contrast, if seven of those other 27 cards are
Spades, then there are only two Spades left, so your probability reduces
to 2/21, or 9.5%, which is far worse.

For another example, suppose you have been dealta 5,a 6, an 8, and a
9. If your next card is a 7, then you will have a Straight (five cards in suc-
cession}, a good hand that will probably win. What is the probability
that your fifth card will be a 7? Well, there are only four 7’s in the deck.
So, if you haven’t seen any other cards, then your chances are 4/48, or
about 8%, quite small. Even if you have seen 27 other cards, and none of
them are 7’, then your chances are still just 4/21, or 19%. You are
“drawing to an Inside Straight,” and your chances are not good.

On the other hand, if you were instead dealt a 5,2 6, a 7, and an 8,
then either a 4 or a 9 would complete your Straight. This time, your
chances of success are twice as good. This is called “drawing to an Out-
side Straight,” which, as all good poker players know, is twice as likely to
succeed as drawing to an Inside Straight.

So, while the poker players in movies are busy snarling and threaten-
ing and chewing tobacco, real poker players are carefully examining
every card they can see, including opponents’ “unimportant” discards.
They are using this information to compute and update their probabili-
ties of success, to make better decisions. It’s true that psychological fac-
tors—things like bluffing and “tells” and keeping a “poker face”—are
important, too. But probability is central to serious poker games, and
players ignore it at their peril.
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Showdown
You’re playing five-card stud, and have three Queens in your first four
cards. Meanwhile, your opponent has two 5’ and one 4 showing, plus
one secret face-down card. He is betting heavily, so you figure his face-
down card might be another $. Even so, three Queens beats three 5%, so
you are not too worried. The only problem is that if his fifth card is
another 5 or another 4, his hand will improve and will beat yours.

Your opponent plunks down $1,000 and challenges you to match it.
What to do? Probably you will beat him, but what if his last card turns
outtobea Sora4?

You begin using probabilities. Even granting that your opponent’s face-
down card is a 5 (which it might not be), that still leaves 44 unseen cards
(52 - 8). Of these, just four of them—the final 5, plus the three unseen
4s—will improve your opponent’s hand. Right away that gives 'your
opponent odds of just four out of 44, or 9.1%. Nothing to be too afraid ‘of.

Furthermore, you notice that your “unimportant” fourth card (aside
from your three Queens) is actually a 4! That reduces the number of
unseen cards that can help your opponent from four to three. So, now
there are just three chances out of 44, or 6.8% probability, that y.our

opponent can beat you. (And, even if he does geta 5 or a 4, there is a
small chance that your last card will be a Queen or 4 to improve your
hand as well, in which case you would still win.) It’s practically in the bag.
Your opponent is glowering at you, trying to intimidate you into fold-
ing. But you cheerfully smile back and match his $1,000 bet (and per-
haps even raise it). His final card turns out to be an 8, and you laugh all

the way to the bank.

‘Once you understand the poker probabilities, what do you Vdo Wit‘h
them? How do you decide whether to fold or call or raise the bet? T}gs
question is quite subtle, and entire books could be (and have been) writ-
ten about the best decisions to make. However, a basic principle is that of

pot odds.
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Here’s how it works. Suppose you have determined, as in the first
Flush example above, that you have a 19% probability of winning. (This
assumes that if you get your Flush you will win for sure, which isn’t nec-
essarily true, but let’s assume it for now.) Suppose further that the bet is
$10, and there is $300 already in the pot. (Of course, some of that $300
was originally your money, but that means nothing; at this point it
belongs to the pot, not to you.) The question is, should you match the
$10 bet or fold? '

If you fold, you will neither spend that extra $10 nor get your hands on
any of the $300 in the pot. End of story. If you stay in, then you must pay
$10 right away. However, 19% of the time, you will win the entire $300
in the pot, plus the $10 you’re adding. Since 19% of $310 is $5 8.90, this
means that on average, by matching the bet, you will take in $58.90.
Since $58.90 is a lot more than $10, it is in your interest to match the $10
bet and stay in the game. Of course, 81% of the time you will lose your
$10. But the other 19% of the time, you will win such a large pot that
overall it is worth the risk for you to stay in. In the long run, you will
make more profit at poker by staying in when such situations arise than
you will by folding.

By contrast, suppose instead that there is only $30 in the pot. In that
case, on average you will win 19% of just $40, or $7.60, which is less
than the $10 it would cost you to stay in. So, in that case, you should fold
instead. It’s all a question of pot odds.

If you keep track of probabilities and pot odds, you will make wiser
decisions and will do well at poker over the long run. On the other hand,
in certain poker games—from movie showdowns to World Poker
Tour—players bet huge amounts on a single hand. Often they will go
“all in,” betting their entire holdings—perhaps a million dollars or
more—on a single hand. Some people are impressed by such large bets,
feeling that they show courage and strength and confidence, but not me.
I figure anyone who bets all his money at once is trying to avoid the long

run, and thereby avoid having the Law of Large Numbers reckon his
true level of skill.
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iKnow When to Hold 'em

One currently popular version of poker is Texas Hold’em. Each player is
dealt two face-down cards. Over the course of the hand, five additional
cards are placed face-up in the middle of the table, for all the players to
share together. The sequence is that there are first three face-up cards {the
flop), then one more (the turn), and then a final one (the river), with a
round of betting each time. Once the betting s all done, players who
have not folded may choose any five cards from the seven they see (their
two face-down cards, plus the five shared face-up cards). Occasionally,
the five face-up cards will be best for everyone, resulting in a giant tie.
But most of the time, the winning player will combine his own two cards
with three well-chosen face-up cards.

Texas Hold’em is intriguing because, aside from the shared cards, all
the other cards are face-down and secret. That makes it very difficult to
guess what your opponents are up to, and whether or not they have a
good hand. This encourages lots of bluffing and guessing and psycholog-
ical games and so on—in fact, many serious players wear sunglasses in
an effort to avoid being “read” or giving anything away. But even in
Texas Hold’em, probabilities are crucial to long-term success.

As soon as the first two cards are dealt, good players begin assessing
their odds. Higher cards (especially Aces and Kings) are better than
lower ones; cards of the same suit (which might later combine to create a
Flush) are better than cards of different suits; pairs are better than mis-
matched cards. It is too early to be confident, but already a sense of the
probabilities can be gleaned.

Those who watch World Poker Tour will notice that even at this early
stage, when each player has just two cards, the winning probability of
each player is sometimes displayed on the screen. In other words, the
television stations are able, upon seeing everyone’s first two cards, to
compute the precise probability of each player eventually winning the
hand (assuming that no one folds).

How are these probabilities computed? It’s not hard. All that is required
is to run a computer program that considers every single possible deal of
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the remaining five face-up cards, and counts what fraction result in a win
for each player. This may seem an impossible task, but actually it isn’t. The
total number of possible choices of five cards from a 52-card deck is 2.6
million; that sounds like a lot but a fast computer can cycle through the
possibilities very quickly. Furthermore, once two players have each been
dealt two cards already, there are only 48 cards left in the deck, and the
total number of five-card hands is down to 1.7 million. So, in a matter of
minutes or even seconds, tables can be generated showing the probability
of victory for different combinations of two-card hands. And the probabil-
ities in those tables are what gets displayed on the television screen.

Even without computers or tables or televisions, you can get a sense of
your probability of victory. For example, suppose you are dealt two small
Hearts. Since your cards are small, you might well be defeated by higher
cards, or higher pairs, later on. However, if the five face-up cards contain
three or more additional Hearts, you will get a Heart Flush and will prob-
ably win. So, what is the probability that you will get a Heart Flush?

You can see only your own two cards, and this leaves 50 unseen cards
in the deck, of which 11 are Hearts and 39 are not. The total number of
different combinations of five cards from 50 is 2,118,760, and each com-
bination is equally likely. Different combinations include different num-
bers of Hearts, as shown in Table 4.1.

Table 4.1 Probabilities for Hearts on Table When You Have Two Hearts

# Hearts # Combinations Probahility
0 575,757 27.2%
1 904,761 42 7%
2 502,645 23.7%
3 122,265 5.77%
4 12,870 0.61%
5 462 0.02%
Total 2,118,760 100%
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To connect for a Heart Flush, you need three more Hearts. So, your
chance of success is equal to the sum of the probabilities of the table being
dealt three, four, or five more Hearts, which works out to 6.4%. Not very
likely, and not worth fighting for if your opponents are betting high.

On the other hand, suppose you manage to stay in there long enough.
to see the first three shared face-up cards, and to your joy the flop. has
two Hearts out of three. Now things are more promising; you just need
one more Heart in the last two face-up cards. What are your chances?
You have now seen a total of five cards (two in your hand, plus three in
the flop), of which four are Hearts. This leaves 47 unseen cards, of which
nine are Hearts. The total number of possible two-card selections from a
deck of 47 cards is 1,081. Of these, 36 consist of two Hearts, and a fur-
ther 342 consist of one Heart. So, the total number of combinations that
will give you a Heart Flush is 378, for a probability of 378/1,081, or
35%. Now you’re talking! So, if you have four Hearts, and there are still
two cards to come, your probability of getting a Heart Flush is 35%. If
the pot odds are at all reasonable, you should stay in.

In this example, suppose the turn (the fourth face-up card) is not a
Heart. Now you have just one chance left to connect for your Heart
Flush. Of the 46 unseen cards, nine are Hearts. So at this point your
chance of success is just 9/46, or 19.6%, a fair bit lower. You may wish to
fold or you may not, depending on how the betting has gone, how many
opponents are left, and how good you think your opponents’ cards are.

Of course, it’s difficult to compute all of these probabilities while sit-
ting at a poker table. However, you can still use various rules of thumb to
approximate the probabilities. Suppose again that you have four Hearts,
and are hoping for at least one more Heart in the final two face-up cards
(the turn and river). You know that there are 47 unseen cards, of which
nine are Hearts. So, the probability of a Heart on the next card is 9/47.
Since there are two more cards to come, the probability of getting at least
one Heart is roughly twice as high, or about 18/47. (In fact, 18/47 equals
38.3%, which is indeed close to the trué probability of 35.0%. The error
comes from double-counting the case where both cards are Hearts,
which has a probability of 36/1,081, or 3.3%.) Now, 18/47 is less than
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one half but more than one third, So, your probability of getting another
Heart is reasonably high, but is still less than a 5050 proposition. By
combining this observation about probabilities with a look at the pot
odds, and an appropriate level of psychological gamesmanship, you can
decide your next move (fold, call, or raise) with added confidence.

Simple probability calculations and a few rules of thumb can give you
an idea of your hand’s chance of success. Together with a consideration
of pot odds, this thinking can significantly improve the poker decisions
that you make. Probability theory cannot completely replace the bluffing
and psychology of poker, but it sure can help.

A Big Blackjack Attack

Another popular casino game is blackjack, also called 21. The player
repeatedly decides whether to take another card (“hit”) or not
{(“stand”). Once the player stands, then the dealer also takes cards one
at a time. At the end, the sum of the cards of the player and the dealer
are compared (counting face cards as 10, and Aces as either one or 11 as
apPropriate). The winner is whoever’s total sum is closest to 21, without
going over. For example, if you have a King, a 6, a 3, and an Ace, your
total is 20. If the dealer has a Queen, a 5, and a 4, then his total is 19

You win the round. .

. Blackjack rules vary slightly from casino to casino, but they usually
include the following:

® You get to see the dealer’s first card, even before making your deci-
sions about hitting or standing,

e If neither you nor the dealer goes above 21, whoever has a higher
sum wins the bet.

° Atieisa tie; if you and the dealer have the same point total, your bet
is refunded.

° Ifyou get blackjack (a sum of 21 on your first two cards, e.g., an Ace
and a Queen), you are paid 1.5 times your bet, regardless of the
dealer’s cards (unless the dealer also gets blackjack)
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s You may avail yourself of various other betting options, if you wish,
such as: splitting pairs (if your frst two cards are the same, you can
separate them and play two different hands), doubling down (after
your first two cards, you can double your bet and receive just one
more card), insurance (if the dealer starts with an Ace, you can then
make a side bet that their next card will be a 10 or face card), and
surrender (where you give up right away and lose only half your bet).

o The dealer, meanwhile, has no choice at all, and must keep taking
cards until the sum is 17 or higher, at which point he must stand. (In
some casinos, the dealer still takes another card if he has a “soft 177
like Ace—6, or Ace-4-2.)

At first glance, these rules seem eminently fair. Whoever has the higher
total sum (without going over 21) wins, and ties are treated fairly. Fur-
thermore the player gets certain special advantages, like a special payout
for blackjack, and extra betting possibilities (which are optional), while
the dealer has no choice whatsoever and must play according to a pre-
specified strategy. All in all, it sounds like an advantage for the player,
not the dealer. Yet casinos everywhere make a pretty penny from dealing
out blackjack. How is this possible? ,

The catch, of course, is that if the player goes bust by exceeding 21, he
loses regardless of the dealer’s cards. To put it differently, if both sides go
bust (or would have gone bust had the game continued), the dealer wins.
That is the only rule in the casino’s favour, but it is sufficient to keep the
money rolling in.

While blackjack offers the player a number of choices, the main one is
when to hit and when to stand. Obviously, if your sum is 11 or less, you
want to hit. Or if it is 20 or 21, you want to stand. But what if your sum
is, say, 152 In that case, if you hit, you might geta 5 or 6 and end up with
a great hand. On the other hand, you might get a 7 through King and go
bust. What should you do?

The basic principle is the same as in all other card games: all unseen
cards are equally likely to appear next. However, there is one difference;
casinos normally deal blackjack by shuffling many decks, six or more, all
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together and reshuffling often. Therefore, having seen a few previous
cards will make almost no difference to the probabilities for what hap-
pens next. Furthermore, most casinos explicitly forbid the player to couit
card's that have passed by so far, and will expel players if they are caught
ma.kmg notes. (It is possible to use memory tricks to get a sense of the
ratio of high to low cards remaining, and some experienced players do
have some success this way, but it is less and less effective the more decks
that are in use, and the more often they are reshuffled.) So for now we
assume that in blackjack any card from Ace through King is equally likely
to come up next, regardless of what cards have already been played.
Suppose you are playing blackjack in a casino (with many decks of
cards), and you are dealt a Jack and an 8 (for a sum of 18). For your next
card, of the 13 possibilities from Ace through King, 10 of them (all the 4’
and above) will make you go bust. So, your probability of busting is
10/13, or 77%, which is far too high. It is best to stand at that point :
If you stand with a sum of 18, how will you do? The dealer mus‘t hit
until he reaches 17 or more, regardless of your cards. Overall, the long-

run probabilities for the dealer’s final result (wh i :
en pla th
decks) are shown in Table 4.2: playing with many

Table 4.2 Long-Run Prohabhilities for Blackjack Dealer

Dealer’s Final Resuit Prohabhility

17 15.47%
18 14.76%
19 14.00%
20 18.50%
21 9.55%
Bust 27.73%

So, if you hav'e a sum of 18, you will win if the dealer ends up with 17
or goes bust, with a total probability of about 43%. You will tie if the
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dealer also gets 18, with probability about 15%. And, you will lose if the
dealer gets 19, 20, or 21, with total probability of about 42%. So, by
stopping with a sum of 18, you have made the game virtually even; in
fact, it is nOW ever so slightly weighted in your favour. This is certainly
better than if you had hit with a 77% chance of immediately going bust.

In addition to these considerations, there is one other card that you
should note carefully. That is the dealer’s first (face-up) card, which hasa
big effect on the dealer’s likely final result. In terms of this first card, the
long-run probabilities for the dealer’s final total (when playing with

many decks) are shown in Table 4.3.

Table 4.3 Prohabhilities of Blackjack Dealer Results, Based on First Card

First Card 17 18 19 20 21 Bust
Ace 13.41% 13.41% 13.41% 13.41% 36.48% 9.89%
14.64% 14.03% 13.37% 12.66% 11.90% 33.41%
14.16% 13.59% 12.98% 12.32% 11.61% 35.33%
13.68% 13.15% 12.60% 11.97% 11.31% 37.32%
13.19% 12.70% 12.17% 11.61% 10.99% 39.33%
12.48% 12.03% 11.54% 11.01% 10.44% 42.50%
38.50% 9.51% 9.05% 8.56% 8.03% 26.34%
14.31% 37.39% B8.39% 7.94% 7.45% 24.52%
9 13.28% 13.28% 36.36% 7.36% 6.91% 22.82%
10/Face 12.31% 12.31% 12.31% 35.39%  6.39% 21.28%

o ~N oW

Table 4.3 shows that the dealer’s probabilities depend greatly on the
first card. An Ace provides so much flexibility (since it can count as either
one or 11) that the probability of going bust is reduced to less than 10%,
and there is a good shot at 21 (since a 10 or face card might appear next).
On the other hand, starting with a 6 gives the dealer a whopping 42.5%
probability of going bust (if a 6 is followed by a 10 or face card, the
dealer has 16, which is likely to go bust). By contrast, starting with a7
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gives a good shot at 17, starting with a 9 gives a good shot at 19, and so
on, because getting a 10 or face card next is so likely. ’

How can we put this knowledge to use? Suppose you are dealt a Jack
and a 3 (for a sum of 13), and the dealer’s first card is a 5. Should you hit
or stand? Well, if you hit, then you will go bust (and lose) if you gét a9
19, Jack, Queen, or King, for a probability of 5/13, or 38.5%. Otherj
wise, you will improve your hand somewhat, but not necessarily enough
to beat the dealer. Overall, if you hit just one more time, then your prob-
ability of winning depends on your next card, as shown in Table 4.4.

Table 4.4 Probhabilities in ““Jack-3 vs. Dealer’s 5 If Hit Once

Next Card  Probability Total Prob.ofWin Proh.ofTie

Ace 1/13 14 39.33% 0%
2 1/13 15 39.33% 0%
3 1/13 16 39.33% 0%
4 1/13 17 39.33% 13.19%
5 1/13 18 52.52% 12.70%
6 1/13 19 65.22% 12.17%
7 1/13 20 77.39% 11.61%
8 1/13 21 89.01% - 10.99%
9 1/13 22 0% 0%
10/Face 4/13 23 0% 0%
Qverall: 33.96% 4.67%

' Table 4.4 tells us that when the probabilities of winning based on var-
ious cards. are all combined together, the overall probability of winning if
you hit once is 33.96 %, with a further 4.67% chance of a tie.
Meanwhile, the dealer started with a 5, which is not a good first card
We know from Table 4.3 that he now has a 39.33% probability of going.

bL.lst, so if you stand you have a good chance (39.33%) of winning even
with your paltry sum of 13.
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This 39.33% chance of winning by standing is more than the 33.96%
chance of winning (or even the 38.63% chance of winning or tying) by
hitting once more. Thus, if you have a Jack and a 3, and the dealer’s first
card is a 5, overall you are better off standing than trying to improve
your hand with a hit.

Serious blackjack players have done calculations such as these in great
detail, ‘running computer simulations and calculating many different
probabilities. They have come up with a “basic strategy” to maximize
the probability of success in various situations. This strategy has detailed
rules for when to split, when to double down, when to hit, and when to
stand. {Playing with this basic strategy reduces the house advantage to
just over 0.5%, but even then you will still lose money in the long run.)
The basic strategy includes the rule that if your sum is between 13 and 16
without any Aces counting as 11, and the dealer’s first card is between 2
and 6, you should always stand. It’s just like our Jack—3 example: if you
hit you might improve your hand, but you might also go bust, and over-

all it is best to stand and hope that the dealer goes bust instead.

Patience, Patience

An understanding of randomness can increase your probability of vic-
tory at games of chance. However, the final requirement to becoming
truly a winner is patience. ’

The Law of Large Numbers says that the person with the highest prob-
ability of winning will win the most in the long run. This doesn’t mean
you will win every time, just that you will win more than others if you
play the game over and over again. Once you have figured out how to
increase your probability of winning, you may need to play a lot before
your winning ways click in. (Similar considerations apply to investing in
the stock market: to be successful, it is not necessary that all of your
stocks go up all of the time, just that they go up on average.)

Unfortunately, sometimes repetition is ot an option, in which case all
you can do is make your probability of winning as large as possible and

take your chances.
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The Portuguese Postal Puzzle (A True Story)
Last year, a researcher I had supervised moved back to his native Portugal.
Shortly before he left, he hosted a delightful farewell party, complete with
delicious Portuguese food.

As part of the festivities, he and his partner organized a simple con-
test: guess the postal code of their new address in Portugal. We were told
that the postal code was somewhere between 1000 and 9999. Whoever
guessed the closest would win a small prize.‘ '

A sign-up sheet was circulated, and guests wrote down their favourite
number, or a number in the middle of the range, or some other arbitrary
choice. But I vowed that, using the Probability Perspective, I could do
something cleverer,

I decided to stand back and let the other guests choose their guesses
first. Finally it was my turn. Looking over the list of guesses, [ saw that
there were none at all between 5000 and 7440, Aha, I thought, a nice
large gap. By centring my guess on this gap, I would be far away from all
the other guesses, thereby increasing my chance of winning. So I chose
the number 6220, right in the middle of the gap.

I'sat back, feeling smug. There were 20 guests at the party, so if ’'d
chosen my number arbitrarily, I would have just one chance in 20, or
5%, of winning the prize. But with my clever choice in the middle of a
gap, I would win if the answer was anywhere between 5611 and 6829,
Assuming all numbers between 1000 and 9999 to be equally likely, I
now had a 13% probability of winning the contest—over twice as good
tas the 5% I started with. I had used the Probability Perspective to
improve my odds. ' '

After much delay, the results were announced. And ... I lost! The
prize was claimed instead by someone who had guessed on a purely
arbitrary basis. In my crushing defeat, I consoled myself with the
knowledge that if similar contests were held 100 times in a row, and I
employed the same strategy each time, the Law of Large Numbers

would kick in and I would win about 13 of the 100 contests—more
than any other competitor,
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Ever since that party, I have been desperately searching for 99 more

Portuguese researchers, each holding a similar postal-code guessing

game. If you know of any, please let me know.

To emerge victorious in games of chance requires three ingredients.

First, you have to study the game carefully, to find a strategy that will win
Von average. Second, you have to repeat your strategy over and over
again. Third, you have to wait patiently for the Law of Large Numbers

to eventually carry you to victory.
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Murder Most Foul

Measuring Trends

No event attracts as much public attention as killings. The more grue-
some the act, and the more innocent-seeming the victim, the more atten-
tion we pay to what Shakespeare described as “murder most foul.” More
so than traffic accidents, disease, starvation, or even airplane crashes,
murders strike a chord with people and make them fear that “it could
have happened to me.”

Our fascination with murder is not lost on the media, which con-
stantly put homicide-related stories on their front pages—not just on the
day of the event, but for weeks afterwards, whenever there is an arrest or
a n1ew eyewitness or court appearance or other (perhaps minor) develop-
ment. Nor is it lost on the entertainment industry, which features murder
in a large percentage of movies and television programs.

Our interest is also not lost on the police themselves, who aren’t shy
about emphasizing violent crime in our communities, along with their
need for additional resources to fight against it. “Gun-crazed gangsters
terrorize at will,” declared Toronto’s police chief recently. “We’re having
difficulties coping with this gun-crazed, drugs-and-gangs mentality that
prevails in our community.”

Politicians sometimes stoke fear of crime for electoral success. The
winning election platform in Ontario’s 1995 election emphasized “the
increasing incidence of violent crime,” and opposition politicians chimed
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right in by declaring that the incidence of violent crime was increasing,
and the level of violence was becoming almost indescribable.

So it seems that the media, the police, the politicians, and the citizenry
all agree that violent crime is on the rise. But is it really so?

The Facts, the Counts, and the Rates

From a Probability Perspective, saying it is so doesm’t make it so. Evern
if the media and politicians are playing up crime, that does not neces-
sarily mean crime is on the rise. The only way to know for sure is to
check the facts.

Data about homicide and other criminal activity are available from a
variety of sources, including government agencies, police records, and
public health bodies. In fact, the data from these different sources do
not precisely agree; for example, some deaths are considered accidental
at the time (and are recorded as such in health records) but later are
ruled to be homicides. However, even a rough knowledge of actual data
about criminal activities is still far more indicative of the true state of
affairs than all the world’s screaming headlines and blustering politi-
cians and frightening feature films.

As with any data, it is important to use crime statistics correctly, and to
understand the difference between counts and rates. For example, in the
year 2000, there were 1,051 homicides in France and just 370 homicides
in Lithuania. Aha, you might conclude, when it comes to homicides,
Lithuania is a very safe country, while France is a more dangerous coun-
try. Right?

Actually, wrong. In the year 2000, the population of France was
59,225,683, while the population of Lithuania was just 3,620,756, over
16 times smaller. So the rate of homicides in France in 2000 was 1,051
homicides per 59,225,683 people, or one homicide for every 56,352
people. Meanwhile, the rate of homicides in Lithuania in 2000 was
370 homicides per 3,620,756 people, or one homicide for every 9,786
people, a much higher figure.

In other words: In 2000, a (randomly chosen) person living in Lithuania
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was nearly six times as likely to be a victim of homicide, as was a (ran-
'domly chosen) person living in France. What this example shows is that
it is not meaningful to consider total numbers of homicides. Rather, we
must consider the rate; that is, we must divide the number of rnurder’s by
the population involved.

Such rates are usually written as the number per 100,000 people
Thus, France’s homicide rate in 2000 is equal to 1,051 homicides divideci
by 59,225,683 people multiplied by 100,000 (1,051 + 59,225,683 X
100,000), which works out to 1.78. By contrast, the correspondi’ng rate
for Lithuania is 10.22. Figures for a few other countries are shown in
Table 5.1; note that the countries with the largest number of homicides
do not necessarily have the highest rate of homicide.

Table 5.1 Homicide Counts and Rates for Selected Countries,Year 2000

Country Population # Homicides Rate per 100,000
Lithuania 3,620,756 370 10.22
Estonia 1,431,471 143 9.99
United States 281,421,906 15,980 5.53
Scotlaljd 5,062,900 104 2.05
Australia 19,360,618 363 1.87
Canada 30,689,035 546 1.78
France 59,225,683 1,051 1.78
England & Wales 52,140,200 679 1.30
Germany 82,797,000 961 1.16
Japan 126,550,000 1,391 1.10

. The same is true when we compare cities or states or any other jurisdic-
thl’lS.. For example, in the three-year period 1998-2000, there were 538
hprmmdes in London, England, and just 89 in Amsterdam, Netherlands
I%ut tbe population of London is over 7 million, while fewer than 750 OO(;
live in Amsterdam. When these homicide counts are converted ’into

65



STRUCK BY LIGHTNING

annual rates per 100,000 people, this corresponds to 4.09 for Amsterdam
and just 2.38 for the safer city, London. Similarly, during the period
1998-2002, New York state averaged 930 homicides per year, while
South Carolina averaged just 282. However, nearly 19 million people live
in New York state, while just under 4 million live in South Carolina. So
the corresponding homicide rates per 100,000 are 4.97 for New York
state and 7.07 for South Carolina. For Massachusetts, it’s 2.19. In other
words, if homicide is your greatest fear, you’re significantly safer in New
York than in South Carolina, and over three times safer in Massachusetts.
Many people find this statement surprising. We have been conditioned to
think that high-population regions are unsafe, and that more total homi-
cides mean more danger. But it ain’t necessarily so.

The lesson here is that when we compare quantities for different pop-
ulations—whether homicides, or the amount of beer consumed, or the
number of automobile accidents, millionaires, leisure suits, or Nobel
Prizes—the only meaningful way to make an evaluation is to calculate a
rate. Comparing the total counts among entities with different popula-
tions is completely misleading.

Homicide Trends

People’s greatest fears often involve a perceived increase in the crime
rate. We tend to accept things the way they are, but we hate the thought
that they might be getting worse. How can we tell if the homicide rate is
increasing or decreasing?

Let’s begin by considering the number of homicides in the United
States, by year, from 1960 to 2002 (using raw data from the U.S. Depart-
merit of Justice). One strategy is simply to make a list of the homicide
counts, by vear, as follows: 9110, 8740, 8530, 8640, 9360, 9960, 11040,
12240, 13800, 14760, 16000, 17780, 18670, 19640, 20710, 20510,
18780, 19120, 19560, 21460, 23040, 22520, 21010, 19310, 18690,
18980, 20610, 20100, 20680, 21500, 23440, 24700, 23760, 24530,
23330, 21610, 19650, 18210, 16974, 15522, 15586, 15980, 16204.

Such a list purely of numbers is hard to interpret. However, we can
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already notice a few trends. The number of homicides starts relatively
small (fewer than 10,000) in the 1960s, climbs up towards a peak of over
24,000, and gradually decreases towards the end.

It is much more informative to view the same figures in a graph, as in
Figure 5.1. This graph appears to confirm our original suspicion, namely
that there was a significant increase in the homicide counts until the mid-
1970s, and then a gradual levelling off followed by a slight decline.

Figure 5.1 Homicide Count: United States (by year)
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But wait. We have already seen that what really matters is the rate of
homicides per 100,000 people (say), not the pure counts. Indeed, the
population of the United States increased from about 180 million in 1961
to about 210 million in 1975 to over 280 million in 2002. Figure 5.2
shows a graph of American homicide rates 1960-2002. This graph is
similar to the previous one, and confirms our earlier impression. The
increase from 1960 to the mid-1970s is still there, as is the later decrease.
However, the rate of decrease from the mid-1970s onward is now larger

because the increase in population during that time period has been
accounted for.
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Figure 5.2 Homicide Rate per 100,000: United States (by year)
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On the other hand, there are a few years around 1980, and a few more
around 1990, which do noét appear to fit into the general trend. What are
we to make of them? Do they change the entire analysis, or do they just
signify temporary, random fluctuations? How can we really tell whether
or not the homicide rate shows a decreasing trend from the mid-1970s
until today and, if it does, how large is the decline?

Measuring Trends: Regression

It is all too easy to draw false conclusions about trends based on just a
few observations. To measure trends more accurately, statisticians use a
technique called regression. In its simplest (linear) form, regression pro-
vides a simple rule for determining the “line of best fit,” which is the line
that best approximates the increasing or decreasing trend of the values
being considered. It describes a mathematical formula for determining
the line that comes closest to the observed data values. (More precisely,
the line minimizes the sum of the squares of the distances between the
line and the data.) The formula is specific and unambiguous, thus avoid-
ing any bias or subjectivity that might arise from drawing “as good a line
as you can” just by looking. v
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Weight Gain, Weight Loss ,

This year you’re really going to lose some weight! You’ve got a new diet
and a new exercise program. Oh sure, you don’t always stick to your
goals, but still you are feeling hopeful. v

The first day you weigh yourself: 170 pounds. Too heavy. But you
remain confident. ,

The second day you weigh yourself again: 172 pounds. Not a good
start. Hang in there.

The third day you’re up to 174 pounds. Rats!

But the fourth day, that glorious fourth day, you weigh in at 173
pounds. Aha, your diet is really working now. You’re losing one pound a

day. At this rate, in one month yowll be down to 143 pounds, and as slim
and healthy as can be.

' Let us again examine the U.S. homicide rate per 100,000 people, this
time just for the years 1975-2002 (the period of apparent decrease),
together with a linear regression line of best fit: '

Figure 5.3 Homicide Rate per 100,000: United States,
1975-2002 Only, with Line
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This line has a downward slope of 0.126. This means that, on average
over this time period, the annual U.S. homicide rate was decreasing by
about 0.126 homicides per 100,000 people per year. Of course, that is
not a very large decrease, but it is definitely a decrease. In short, the
homicide rate in the United States was not going up between 1975 and
2002. In fact, since the mid 1970s, this rate has most definitely being
going down slightly.

This trend is most pronounced in the years since 1990. For that time
period, the U.S. homicide rate was decreasing quite significantly, with a
downward slope of 0.454 per year, as is evident in Figure 5.4. In.other
words, since 1990, the U.S. homicide rate has definitely been going
down, at the same time as many U.S. media outlets and politicians were
hyping fears of murderers everywhere.

Figure 5.4 Hemicide Rate per 100,000: United States,
1991-2002 Only, with Line
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The fact that the U.S. homicide rate was decreasing throughout the
1990s runs counter to many people’s impressions. So perhaps other vio-
lent crime increased during the same period? Hardly. In fact, U.S.
Department of Justice data show that the annual rate of violent crime per
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100,000 people in the U.S. since 1990 has been decreasing quite signifi-
cantly, by about 28.7 per year:

Figure 5.5 Violent Crime Rate per 100,000:
United States, 1991-2002, with Line
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So what have we learned?

o To determine trends, it is best to use a regression, such as a line of
best fit, rather than to focus on just a few individual yearly totals that
could be deceptive.

e The trend that you determine depends on how you analyze the num-
bers (for example, counts versus rates, what geographic region you
include, which years you include, etc.) When you see any statistical
analysis, always read the fine print.

e In the case of the homicide rate for the United States, no matter how
you do the statistical analysis, the only possible conclusion is that the
homicide rate in recent years has been decreasing, not increasing.
Absolutely 100% for sure.

e Just because the media, the politicians, and the police all say the
same thing, it isn’t necessarily true. As the rap group Public Enemy
would put it, “Don’t believe the hype.”
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Murders the World Over

What about other countries? The Canadian _homicide ratc.*, is a.bout one
third that of the United States, and it has also been decreasing slightly (.at
about 0.042 per year) since the mid-1970s (using raw data from Statis-

tics Canada):

Figure 5.6 Homicide Rate per 100,000: Canada, 1975-2002, with Line
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Once again the effect is most pronounced in more recent years, where

it is decreasing at a rate of about 0.074 per year:

Figure 5.7 Homicide Rate per 100,000: Canada, 1991-2002, with Line
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For Australia since 1990, the homicide rate has increased some years
and decreased others, but overall stayed almost exactly constant, with a

tiny downward slope of just 0.0006 (using raw data from the Australian
Institute of Criminology):

Figure 5.8 Homicide Rate per 100,000: Australia, 1991-2002, with Line
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As for Great Britain (England, Scotland, and Wales), the homicide rate
is lower than that in the U.S., Canada, or Australia, but since 1990 it has
actually gone up slightly, increasing by about 0.025 per year (using raw
data from the British Home Office and the Scottish Executive):

Figure 5.9 Homicide Rate per 100,000: Great Britain,
1991-2002, with Line
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Table 5.2 is a summary of trends in these four countries between 1991
and 2002.

Table 5.2 Homicide Rates (per 100,000) and Trends, 1991-2002

Country Average Rate Teend per Year
United States 7.40 Decreasing by 0.454

Canada ’ 2.05 Decreasing by 0.074

Australia 1.87 Decreasing by 0.0006
Great Britain 1.34 Increasing by 0.025

It is perhaps heartening to note that the highest homicide rate (for the
United States) is also decreasing the fastest, while the only homicide rate
that is increasing at all (Great Britain’s) is very low to begin with. In any
case, the numbers make clear that in contrast to popular impressions and
media hype, murder rates are quite low and are generally decreasing.

Furthermore, rates are not the only issue in which reality differs from
media portrayals; another concerns victim~offender relationships. When
people fear murder, they generally fear being killed randomly by a
stranger. But most murders do not occur that way. According to a Statis-
tics Canada study of 15,163 homicides between 1974 and 2002, in only
15.6% of the solved homicides was the perpetrator unknown to the vic-
tim, a figure that has also been decreasing slightly since 1975. By con-
trast, over 18% of solved homicides were committed by the victim’s
spouse. Similar numbers were obtained by an Australian Institute of
Criminology study of 2,757 homicides in Australia between 1989 and
1996, and (with some differences) by an FBI study of 14,408 homicides
in the United States in 2003. The figures are shown in Table 5.3.
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Tahle 5.3 Victim—0ffender Relationship Percentages (Solved Homicides)

Relationship Australia Canada United States

Spouse 22.8%* 18.4% 8.7%
Other Family 16.5% 19.3% 13.9%
Other Intimate * 3.5% 7.8%
Acquaintance 42.7% 43.2% 47.2%
Stranger 18.0% 15.6% 22.4%

* The Australian study includes Other Intimate with Spouse.

These figures provide a Probability Perspective on high-profile, terrible
events like the abduction and decapitation of a defenceless child by a
psychopath. Such horrors remain in the front-page headlines for months
not only because they are so shocking, but also because they are very,
very rare.

While the precise numbers vary somewhat from country to country,
the conclusion is always the same. Contrary to the impressions created
by the news media and by the movies, murder is very rare, and far more
murders are committed by acquaintances and family members than by
strangers. The next time you start worrying about crazy killers lurking
behind every lamppost, perhaps you should check up on your spouse’s
recent movements instead!

Playing with Numbers?

These modest homicide rates do not square with the extreme statements
of certain politicians and media representatives. So how do these people
respond when they are directly confronted by the facts? Often with pure
denial. A municipal politician in Toronto simply declared, “I don’t agree
that crime is down right across the board.” And the police chief insisted,
“The business of crime being down is really a facade. It’s how you play
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with numbers. The people that are talking about crime [being] down
must be reporting on some other community, not this one.”

When pressed, these same people will point to people’s fear of crime,
as if to prove the validity of their point. I recently saw a television host
ask a panel what should be done about the increasing crime rate. When

several panellists responded that the crime rate is actually decreasing, .

not increasing, the host retorted, “Oh, come on now. Are you denying

that there is an increasing fear of crime?” Or, as one politician frankly

put it, “Don’t just look at the statistics, look at the fear factor.”

A politician once insisted that “people can feel that crime is increas-
ing.” Hardly. What people can “feel” is the extent to which fear of crime
is played up by the media and the politicians. The true facts must be
researched carefully and analyzed statistically, not felt.

The sad fact is that because so many people benefit from the public’s
fear of crime, it will not disappear easily. Media need this fear to sell
newspapers; the entertainment industry needs it to market movies;
politicians need it to get elected; and police need it to increase their fund-
ing. So I was proud of Toronto Mayor David Miller when he declared
during a recent election campaign, “The truth is that Toronto is a safe
city. Leaders don’t go out and scare people to get elected.” I was equally
pleased when local journalist Joseph Hall systematically debunked the
hype about increasing crime, concluding that “despite recent dire warn-
ings . . . crime is falling.” Or when columnist Doug Saunders noted that
“by almost any gauge, the danger of terrorism, of crime, even of acci-
dents is at a lower ebb than at almost any point in the last generation.
What is dangerous about these times, in truth, is our fear.” Hear, hear.

Does the decreasing crime rate mean that we should no longer worry
about crime? That we no longer need police officers? Of course not. As
long as there is any crime at all {(which surely means forever), we need a
strong and professional police force to protect us from harm. In addi-
tion, I have no doubt that our justice system could do with improve-
ments to better serve crime’s victims, keep guns off the street, and keep us
safe from hardened criminals. On a personal level, if ever I or a loved one
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were a victim of violence, then of course [ would want all the police pro-
tection and assistance I could get.

Furthermore, just because the crime rate has been decreasing in recent
years, there is no guarantee that this decrease will continue. In the decade
ahead, crime rates just might rise again.

On the flip side, even if it turned out that crime were increasing (which
it isn’t), we should still remember that violent crime is much less likely to
harm us than, say, traffic accidents or disease. Thus, even while we
remain vigilant, we should keep our fear in check—regardless of the
crime trends. ,

So, in some sense, the decrease in the crime rate really isn’t that impor-
tant. Regardless of the numbers, there are no easy answers to the questions

‘of how to balance control of crime with personal freedom, or police serv-

ices with limited city budgets. It is not up to statistics or statisticians to
decide what our priorities should be. What we can say is that such deci-
sions should be made in the context of the true facts, not of exaggerated
fears or misleading claims. If a politician or police spokesperson says that
despite falling crime rates, we should still spend more money on policing,
their argument is worthy of consideration and debate. But if a politician
or police spokesperson claims that because crime is increasing we should
spend more money on policing, he or she is simply not telling us the truth.
To quote Dragnet’s Sergeant Joe Friday, “Just the facts, ma’am.”
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Utility Functions

How to Make Decisions

Often we are forced to asseéss randomness when making decisions.
Should we take an airplane even though it might crash? Should we buy a
lottery ticket even though we might not win? Should we take out an
insurance policy even though we might never collect? Should we go for a
bike ride even though it might rain?

Of course, there is no magic solution, and some decisions will remain
difficult, come what may. However, a bit of Probability Perspective and a
few rules of thumb can help make many decisions easier. And for the
really tough decisions, a utility function can help to sort out competing
objectives.

Ignore the Extremely Improbable

The first rule when making decisions about randomness is that events of
extremely small probability should generally be ignored. This is a very
simple rule that most people do not follow.

A good example is lottery jackpots. Billions of dollars are spent on lot-
tery tickets worldwide, by optimistic souls hoping to win a huge jackpot
and live happily ever after. Is this a wise decision? Leaving aside the ques-
tion of whether winning a lottery jackpot truly leads to happiness (it
often has the opposite effect), what is the probability that you will win?

78

UTILITY FUNCTIONS

A typical commercial lottery might involve, say, selecting six different
numbers between 1 and 49. If your six numbers match the six numbers
later selected by the lottery company, you win (or share) the big jackpot.
For such a lottery, the probability of winning the jackpot is one chance in
the total number of ways of choosing six different numbers out of 49
choices, which is about one chance in 14 million. (The calculation is sim-
ilar to the case of matching all the balls in a game of keno.) This is an
extremely small probability. To put it in context, you are over 1,000
times more likely to die in a car crash within the year. In fact, you are
more likely to die in a car crash on your way to the store to buy your lot-
tery ticket than you are to win the lottery jackpot. Indeed, if you bought
one ticket a week, on average you would win the jackpot less than once
every 250,000 years. Furthermore, as the number of choices increases,
the probability goes down even further; when picking seven numbers
between 1 and 47, the probability of matching is one chance in 63 mil-
lion. It may be true that someone is going to win the lottery jackpot this
week, but let me assure you: that someone will not be you.

From a practical point of view, this means that when you are deciding
whether or not to buy a lottery ticket, the possibility of winning the jackpot
should not be a factor in your decision. Go ahead and buy lottery tickets if
you find the experience entertaining or interesting or uplifting or fun. But
you simply should not buy them with hopes of a jackpot victory. (I have
never purchased a commercial lottery ticket; I know the odds too well.) |

On occasion, lottery jackpots will grow to enormous size, perhaps
hundreds of millions of dollars. It is tempting to buy a ticket then,
because even though the probability of winning is so small, the payoff is
so large. However, the larger the number of people who buy tickets, the
greater the probability that you will have to share the jackpot even if
you do win it. In such circumstances, it is better to choose unusual lot-
tery numbers (best is a random choice; worst is 1-2-3-4-5-6 or your
child’s birthday), to reduce the risk of sharing. But the jackpot proba-
bilities are so unimaginably small that, as a computer said about
nuclear war in the Matthew Broderick movie War Games, the only way
to win is not to play.
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The principle of ignoring the extremely improbable applies much
more widely. Franklin D. Roosevelt may have exaggerated slightly back
in 1933 when he claimed that “the only thing we have to fear is fear
itself.” But it is certainly true that humans often worry unnecessarily
about events of very small probability, which causes us to make poor
decisions and to suffer stress and unhappiness. ,

For example, some friends of mine travelled to Israel in 2002, shortly
after a series of high-profile terrorist attacks on civilians. Many people
reacted with horror, implying that it was crazy to even consider travel-
ling anywhere so dangerous. One acquaintance declared that going to
Israel was just as foolish as driving the wrong way on a major highway.

I decided to check the facts. I discovered that during the period of
heightened terrorist attacks from October 2000 through April 2002,
there were a total of 319 people killed by terrorist attacks in Israel, about
one person in 20,000. By comparison, about 750 Israelis died in motor
vehicle accidents during this same time period. Thus, an Israeli was over
twice as likely to die in a car crash (even without driving the wrong way
on a highway) as to die in a terrorist attack, even during this period of
increased terrorist activity, I explained these facts to my concerned
acquaintance, but I didn’t manage to convince him.

At about the same time, professional statisticians were making plans
for the July 2004 annual scientific meeting of the Institute of Mathemat-
ical Statistics. This meeting was originally planned for Israel, but they
decided to move it to Spain, out of fear of terrorism. Even among statis-
ticians, the fear of exposing their colleagues to harm overwhelmed their
Probability Perspective.

Overestimating the probability of highly improbable events can have
serious consequences. For example, in the spring of 2003, a number of
people living in the Toronto area contracted Severe Acute Respiratory Syn-
drome (SARS), a serious and potentially fatal viral infection. This outbreak
was heavily publicized by the media, with numerous front-page headlines
and television reports played around the world. But the total number of
Toronto SARS fatalities through the entire duration of the crisis was fewer
than 50. By comparison, about 1,000 Canadians die each year from com-
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mon influenzas. A traveller visiting Toronto, even at the height of the SARS
outbreak, was about as likely to die of influenza as of SARS, but I cannot
recall any front-page headlines about an influenza outbreak, nor do I know
of any tourists who changed their trave!l plans or behaviour patterns to
avoid contracting influenza. The SARS crisis caused the number of tourists
visiting Toronto (and even the rest of Canada) to decrease dramatically,
costing the city and the country billions of dollars, for no logical reason.

Tahle 6.1 Percentage of Deaths from Selected Causes,2001

Cause United States Canada
Total deaths 2,416,425 (100%) 219,114 (100%)
Cardiovascular diseases 922,334 (38.2%) 74,824 (34.1%)
Cancer (all forms) 553,768 (22.9%) 63,774 (29.1%)
Lung cancer 156,058 (6.46%) 16,558 (7.56%)
Respiratory system diseases 230,009 (9.52%) 17,585 (8.03%)
Transportation accidents 47,288 (1.96%) 3,032 (1.38%)
Intentional self-harm 30,622 (1.27%) 3,688 (1.68%)
Fatal falls 15,019 (0.62%) 1,727 (0.79%)
Poisoning 14,078 (0.58%) 955 (0.44%)
Homicides (alh)* 15,980 (0.65%) 553 (0.25%)
Homicide by relative : 3,611 (0.15%) 208 (0.10%)
Homicide by stranger* 3,580 (0.15%) 69 (0.03%)
Homicide by spouse 1,390 (0.06%) 109 (0.05%)
Drowning and submersion 3,281 (0.14%) 278 (0.13%)
Smoke, fire, and flames 3,309 (0.14%) 243 (0.11%)
9/11 terrorist attacks 3,028 (0.13%) —
Commercial aircraft* 275 (0.01%) 2 (0.0009%)
Lightning (year 2000) 50 (0.002%) 3 (0.0014%)

*Excluding 9/11 attacks.
(Figures from National Vital Statistics Reports and from Statistics Canada, and for the last two rows

airdisaster.com and nationmaster.com; unknown victim—perpetrator relationship percentages extrapo-
|ated from known ones.)
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Table 6.1 shows the percentage of deaths that resulted from various
causes, in-Canada and the United States in 2001; similar percentages
apply in most years to most industrialized countries. Clearly, deaths
from naturally occurring diseases (especially cardiovascular, cancer,
and respiratory) are far more common than deaths from external
causes. Even among externally caused deaths, transportation fatalities
are far more common than deaths from homicide, airplane crashes,
drownings, fires, or lightning. For example, the 3,000 people killed in
the horrific 9/11 terrorist attacks represented just 0.13% of all Ameri-
can fatalities that year, corresponding to one of every 94,000 living
Americans. This figure is equivalent to just over three weeks’ worth of
transportation accidents, meaning that the probability of a random
American being killed by terrorism in 2001 (or, for that matter, during
the entire period 2000-04) was about the same as that of being killed in
a car accident in a single three-week period. That fact should not in any
way minimize the outrageousness of these attacks, or the tragedy of the
resulting deaths. However, it does provide a Probability Perspective on
the numbers, and suggests that even the terrible 9/11 attacks did not sig-
nificantly change the probability of sudden, unexpected death in the
Western world.

If you are worried about dying, you should exercise and eat well to
avoid cardiovascular disease, and quit smoking to avoid lung cancer. It
makes far more sense to take care of your health than it does to worry
about being murdered—to say nothing of deaths from terrorism, air-
plane crashes, drowning, burning, or lightning. And even if you do
worry about murder, it makes more sense to fear a family member thana
stranger. Those are the true facts, based upon probabilities. (Of course, it
is true that homicide and transportation accidents and terrorism tend to
strike younger victims than do cancer and cardiovascular disease, which
arguably makes them more tragic, but that fact is still dwarfed by the
huge difference in the raw numbers.)

Despite these facts, the media focus far more on murders from
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unknown “bad guys” than they do on diseases and car accidents. Indeed,
in the aftermath of the 9/11 attacks, North Americans’ consumption of
anxiety medications increased significantly; and everyone was talking
about the fleeting nature of existence, how we have to live for the
moment, and how vulnerable we all are. The equivalent number of
‘deaths that occurs every three weeks in transportation accidents does not
have the same effects. ,

Why do people fear terrorism and SARS so much more than automo-
bile accidents and cardiovascular disease? Because terrorism and SARS
seem new and unknown, and therefore uncertain. Humans can accept
significant danger and loss of numerous lives, provided these happen ina
manner to which they are accustomed. But when unexpected dangers

emerge, they fear these more than is truly justified. The Simpsons got it

right in a show where young Lisa Simpson was hanging out with a
lowlife but harmless saxophone-playing street person, and her mother
Marge drove up and whisked her away, saying to the vagrant, “I’s noth-
ing personal—I just fear the unfamiliar.”

It may seem cruel or heartless to dismiss very small probabilities when
the fear of harm relates to one’s child or loved one. However, such feel-
ings do not stand up to scrutiny. Most of us wouldn’t hesitate to invite
our sister to drive across town for dinner or a movie, yet about one per-
son in 10,000 dies each year on our roads. The average person does the
equivalent of driving across town at most twice a day, so your sister has
at least one chance in 7 million of dying on her trip to see you. Is it heart-
less to issue such an invitation? Of course not. Rather, extremely small
probabilities are, and must be, ignored every day.

The principle of ignoring the extremely improbable can resolve many
other dilemmas as well. On a break from a recent bike ride in down-
town Toronto, I found myself relaxing directly under the imposing 553-
metre-high CN Tower, the world’s tallest free-standing structure.
Looking way up, I could just make out the famous glass-floor section of
the observation deck, 113 stories high. If that floor happened to break
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just now people and glass shards would come hurtling straight towards

me. too fast for me to escape, and would kill me instantly. I started
3

i break elsewhere.
backing away nervously, t0 take my sew '
Suddenty I stopped myself. What was I thinking? This glass floor has

been in place for over 10 years, which is more than 5 million minutes.

Even without taking into account the safety of its eggineering andicon-
struction, the probability that it would Coll.apse in the’ next Ellnute
must be less than one chance in 5 million. IF sunp}y wasn’t wzrt rnov}—1
ing out of the way or altering my plans in any way, klz;as‘,ie | 011 ]S;::Zn
exceptionally small probabilities. (It t.he glass ﬂOf)r a ]u;, e
installed yesterday, I might have recon51derf.:d.) I ﬁmsh'ed m}f rhead )

peace, without moving anywhere, and without getting crushed to

death either.

The Noise in the Night
After a long day at the office, battling traffic, running errands, z{nd coolb<-
ing dinner, finally you lie down in bed. You relax for a few minutes by
reading a fascinating book about probability theory, and then you are
a nice, long sleep.
rei::’ }f(c))thl;:; over gto pupt down your book and switch‘ off your lan}1p,
you hear a sudden creaking noise. What was that? th? is there? Staying
perfectly still, you listen carefully but don’t ‘hear anything further. 1
Now yow're not sure. Was that noise a sign that a burglar has broken
into your house? Should you phone the police? S%lould you grab your
baseball bat? Should you go downstairs and investigate? 4 |
You think quickly. Your house hasn’t been broken into f.or 'many
years. What are the odds that a burglar happened to make a noise justat
the exact momert when you were reaching over to put dO\.JVn your book.?
On the other hand, your house is old, and a shifting welgﬁt on a bed is
just the sort of thing that might cause the floor to creak a little. Perhaps

putting down your book was the cause of the noise, rather than coincid-

ing with it by chance.
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Even in your tired state, you can see that it is far more likely that your
movement caused the floor to creak than that a burglar arrived at pre-
cisely the same moment. Satisfied, you put down your book, switch off
the lamp, and drift off Happily. ‘

Randomness and Indifference

Ignoring the extremely improbable is a sound, rational way to approach
decisions, but if we take it to extremes, we might be tempted into reck-
lessness or negligence.

Should we bother wearing a seatbelt in the car when the probability of
getting into an accident on a 10-minute drive is so small? My answer is
yes: I always wear a seatbelt (and a bicycle helmet), and not just because
they’re legally required. How do I justify this practice, given everything I
have said so far in this chapter?

First, over the course of your life, you will probably take many differ-
ent car and bike trips. The probability of being in some sort of accident—
not. necessarily fatal—over the course of so many trips is not
inconceivable, and hence cannot safely be ignored. Forgetting a seatbelt
once or twice probably isn’t such a big deal, but never using it is asking
for trouble.

Second, wearing a seatbelt or helmet requires little effort. It does not
require cancelling a trip, or avoiding a fun event, or travelling great dis-
tances, or spending lots of money. So, even though an accident on any
one particular excursion is very unlikely, wearing a seatbelt is such a
simple action that it is worth the trouble. From this point of view, we
should wear a seatbelt not because it is wise or moral or proper, but
because it is easy. : ‘

Parents should perform a similar balancing act. On the one hand, it is
fairly unlikely that your child will, say, seriously injure herself with a
pair of scissors. On the other hand, the probability is not so low, espe-
cially if she uses scissors often, and simple precautions can help to prevent
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this risk. So an admonition to your child not to run while holding scis-
sors is definitely worthwhile.

Deciding that a probability is too low to bother responding to can be
harmful on a societal level as well. Should we vote even though it’s
extremely unlikely that our one vote will make the difference? Should
we bother to recycle or to avoid littering when one more piece of
garbage has little impact? Should we bother to conserve energy when it
is inconceivable that our own personal usage will push the planet past
its tolerance?

Of course, if many people vote, we will (we hope) get more represen-
tative government. If many people recycle we will create a cleaner and
greener world. And if many people conserve energy our lifestyle will be
more sustainable. Philosophers refer to this issue as “individual versus

collective rationality”: if many people take an action it benefits us all, but
y Y peop

if just one person takes the same action it inconveniences him or her
without having much chance of benefiting anyone.

So why should we bother? Part of the answer is that we hope that our
actions will inspire others to act similarly, and that many people’s actions
taken together will be significant. Unfortunately, we can’t always be.con-
fident that our actions will inspire others: maybe no one will see us vote
or recycle. Should we persevere with our actions anyway?

I think Jean-Paul Sartre got it right when he said that our choice of
actions dictates the way we want everyone else to act, too. “In creating
the man we want to be,” he wrote, “there is not a single one of our acts
that does not at the same time create an image of man as we think he
should be.” In other words, by our very act of voting or recycling, we are
saying that we think everyone else should vote and recycle, too.

We should ignore extremely unlikely events when it comes to worrying
about murder and terrorism, or to wasting money on lottery tickets, but
we shouldn’t let small probabilities keep us from following simple safety
measures like seatbelts, or from taking positive actions like voting and
recycling, in the hopes that others will follow our lead.
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Maximize Your Average Happiness

Ft is all well and good to talk about ignoring events that are extremely
improbable, but often we are confronted by choices involving random-
ness that is not unlikely at all.

Walk or Ride?
You overslept, and now you’re rushing to a 9:00 a.m. meeting. It’s 8:50,
and your office is still a 15-minute walk away at maximum speed. You’re
going to be five minutes late.

You consider your options. You’ll never get a taxi at this hour. How-
ever, there is a bus that could take you to your office in five minutes flat.
If you wait at the bus stop, and if the bus arrives within five minutes, you
will be on time. Great!

Unfortunately, the bus is erratic. Sometimes it arrives right away, but
sometimes it doesn’t show up for 20 minutes, If you wait for the bus and
are unlucky, you might end up being as much as 15 minutes late for your
meeting, instead of just five. Should you risk it? Should you wait for the
bus, to have some chance of arriving on time, but at the risk of possibly
being much later? Or, should you continue walking and be certain to
arrive precisely five minutes late?

You recall that you are on probation at your job and that your stern
and punctual boss will surely fire you if you are late. You decide to

wait for the bus, since your only hope is that the bus arrives quickly
and gets you to work on time. Fortunately, the bus is waiting, and your
job is saved.

That evening you are meeting a friend for drinks at 9:00 p.M. Once
again, you find yourself running late, and once again you have to choose
between slight but certain tardiness from walking, or a bus with possible
punctuality but possible major delays. Being a few minutes late for
drinks is no big deal, but if you are very late your friend might get con-
cerned or leave. You decide that walking is your best option.
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Making a choice like walking versus taking the bus depends upon your
feelings about the various consequences of your being on time, versus a
little late, versus very late. Probability theory can work with the proba-
bilities of the different outcomes, but to make decisions, you also need to
consider your preferences and your values. Your decision needs to
depend on your own personal rating of the desirability or undesirability
of the various outcomes.

Can we possibly use cold, austere mathematics to discuss such value-
laden concepts as likes and dislikes? Mathematics can never distinguish
right from wrong, or good from bad. However, if we can quantify our
personal good and bad ratings, mathematics can guide us in making
decisions.

To quantify your preferences, you must specify your utility function,
which gives your personal numerical ratings of all of the different out-
comes that may occur, This utility function is positive for good things
{the higher, the better), and negative for bad things (the more negative,
the worse). For example, you might give a utility rating of +10 for seeing
a pretty good movie, or +20 for seeing a really good movie, or
+1,000,000 for winning the lottery jackpot. On the other hand, you
might give a utility rating of —10 for stubbing your toe, —20 for getting
a headache, and —1,000 for getting fired from your job.

Utility functions are a component of game theory, the science of deci-
sion making, which is often applied to economics, political science, and
sociology. These functions were studied in the 1940s by Hungarian
mathematician John von Neumann, one of the original six mathematics
professors (along with Albert Einstein) at the world-famous Institute for
Advanced Study, in Princeton, New Jersey. Utility functions provide a
simple, clear rule for resolving complicated decisions.

For example, suppose you’re busy planning your wedding, and you
need to select the venue. You’ve narrowed it down to two choices: an ele-

gant ballroom in the city or a rustic cabin in the woods. The cabin set-
‘ting, with its swaying trees and shining lake, is incredibly beautiful, but
there is a problem: what if it happens to rain on the day of your wedding?

To deal with this dilemma, you could create a utility function. On a
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sunny day, a wedding at the cabin would bes .

. o delightful that ve
a utility value of +1,000. A wedding in the ballroom L ronenel
would also be lovely,

value of +800.

. However, the cabin on a rainy day would be a mess: guests huddled
;nIdO(.)rs, muddy shoes, a leaky roof, squabbling families, and the beauti-
ul view completely wasted. Your marriage would still be joyous, of
Co.u-rse, but your wedding day would correspond to a big fat zero c;r
utility value of 0. And, based on past weather patterns, you esti e o
25% chance of rain on your wedding day. " s
. ;(c))ons:v y(?ur choi.ce is between a dependable ballroom with a value of
' 2 risky cabin that could have a value of +1,000 in the sun 0
in the rain. Which should you choose? , '
At this Point, you can begin calculating. The cabin would be worth
+1,000 with probability 75%, or worth 0 with probability 25%. Thi
means that if you choose the cabin, the average (or expected) Vol. 1;
your utility function will be 75% of +1,000, plus 25% of 0. Thi o 12
out to +750. So, if you choose the cabin, your avera o valoe il
be +750. But if you choose the ballroom,
regardless of the weather,

Since +800 is more than +750, the ballroom is a better choice than

the cabin. So, .
That way, your (reluctant) choice should be to book the ballroom.

! . (rain or shine)
ut not quite at the same level, you give it a utility

ge utility value will
your utility value will be +800

your wedding will be a success whether it rains or not {And
you can' always drop by the cabin for a risk-free bonus visit on a- sunn :
da;T during your honeymoon.) Utility functions have helped you to mal .
a difficult emotional decision using rational, logical thoughty e

Make That Phone Call
Juan from.the finance department seems so nice—and he doesn’t wear 4
wedding ring. Maybe you should invite him

to see your friend’
band on Saturday. ’ Pl rock

Ne{fvously you reach for the phone. But then you hesitate, What if
Juan isn’t interested? What if he already has-a girlfriend? What if he
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thinks you’re stupid for phoning him? What if he says something mean?
You decide the probability that he will accept your invitation is only
about 10%. Maybe you shouldn’t phone him after all.

Fortunately, you know about utility functions. You decide that if Juan
accepted your invitation, the date would be so much fun and so exciting.
Tt might even change your life. You give it a utility value of +1,000.

If Juan declined your invitation, you would be very disappointed, but
it wouldn’t be so much worse than never phoning at all. Either way,
Juan would forever elude you. All that you would really suffer is the
embarrassment and nervousness of making the call and expréssing your
interest. That would be pretty bad, but not too terrible; you give it a
value of —50.

So, what is your-average utility value from making the calf? Well, 10%
of the time you would score +1,000, which works out to +100. And
90% of the time ydu would score.— 50, which works out to —45. You
conclude that making the call has an average utility of +100—45, which
equals +55, a net positive.

So, on average, you stand to gain from making the call. Satisfied but
terrified, you pick up the phone. Juan answers, you have a nice chat, you
see the rock band together, nature takes its course, and you live happily

ever after, all thanks to utility functions.

Insurance Assurance?

Utility functions are also helpful when deciding whether or not to pur- ‘

chase an insurance policy.

When considering insurance, the first questions to ask yourself are,
“Qver the long run, am I likely to pay more for my insurance than I will
receive back in the form of claims payments? Or, am I likely to receive
more than I pay?” If you receive back more than you pay in, your insur-
ance policy is a wise investment. But, if you pay more to the insurance
company than you receive, your purchase may not be a wise one.

Suppose that your home insurance costs $800 per year. In most years
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you will not have any home insurance claims at all, and yéur net gain
from your insurance policy will be ~$800. On the other hand eier
once in a while you might have a major home problem—fire, ﬂc;odin ,
burglary, a collapsed roof—and you might recover a claim of many thoxfz
sands of dollars. Does this small probability of receiving a large amount
balance out the $800 policy fee or does it fall short?

It is hard to calculate the answer to this question directly. After all, it
depends on such factors as the average frequency of fires or floods; t’he
average amount of damage done by fires or floods; and a calculatic:n of
which other events might also lead to an insurance claim. Furthermore
these averages might depend on precisely where you live, the habits Of’f
your neighbours, and so on. Nevertheless you can make some educated
guesses.

The number one fact about insurance is that insurance companies usu-
ally make very large profits. Indeed, insurance is one of the most reliably
profitable industries around. But we know from the Law of Large Num-
bers that the only way a company can make money over the long run is
to take in more money than it pays out, on average. So, given the prof-
itability of insurance companies, it simply must be true that on average
they take in more than they pay out. What this means is that, on average
customers will pay in more than they will receive back. ’

In other words, without looking up any statistics about fires or dam-
ages or .insurance prices, we can confidently conclude that, on average,
buying insurance is a money-losing proposition. On average, you will
pay more money for your insurance policy than you will ever get back in
the form of claims payments. So does this mean that no one should ever
buy insurance? No, it doesn’t, and utility functions tell us why this is so.

Paying $800 per year for insurance is a modest expense to which we can
assign a negative utility value of, say, —800. However, if you do not have
insurance and experience a major disaster (such as a fire or flood), the
consequences may be devastating. For example, if a disaster forces you to
sell your home, or drives you into permanent financial ruin, it may
destroy your life far more than mere dollars can represent. Even if the
purely monetary value of your loss is only $100,000, your financial status
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and security may be gravely disrupted, your marriage may crumble, and
your kids may have to leave university, causing you a negative utility of
—500,000 or worse. In short, the significance of your difficulties may
affect you above and beyond the purely monetary value of the loss.

Suppose that each year there is one chance in 200 of such a major disas-
ter. Then from a purely monetary perspective, you pay $800 for insurance,
to have one chance in 200 of collecting $100,000. This means that on aver-
age you pay $800, and receive just $500 {or $100,000 divided by 200), for
a net loss to you (and corresponding profit to the insurance company) of
~ $300 per year. But your average utility is actually 2,500 (or 500,000
divided by 200) for possibly avoiding a major disaster, minus 800 for pay-
ing for insurance, which works out to a positive result of +1,700.

Looked at this way, insurance can sometimes be a win-win situation,
with both the insurance company making a profit and the client gaining
in utility on average. But this is only possible when insuring against cata-
strophic losses, for which the perceived value to the client greatly exceeds
the purely monetary value of the company’s payout.

For non-catastrophic losses, it is always better, on average, to “insure
yourself” by not buying insurance and paying any losses out of your own
pocket. Occasionally you will lose a lot of money, but on average you
will save more on insurance costs than you will have to pay out for dam-
ages that you incur. In short, you can keep the insurance company’s
profit margin all for yourself.

Your Utility or Mine?

In one episode of the television sitcom Happy Days, Richie and his
friends, desperate to meet women, conduct a phony beauty contest.
Problems ensue, there is no prize money, the contestants get upset, and
chaos reigns. Richie’s father is furious, and yells at him, “Was it really
worth all this trouble, just to look at some pretty girls?” The episode
ends with a close-up of Richie, who is suitably chagrined from his
father’s scolding, suddenly breaking into a subtle smile. The implication
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is clear: to adolescent Richie, it was worth all the trouble just to look at
some pretty girls. v

Such conflicts between parents and children arise all the time. We typ-
ically dismiss them as a generation gap, or as parents being moré mature
than their children. In fact, these differences of opinion can be explained
by utility functions.

In the above example, Richie was so excited to meet young women
that his utility value might have been +100 or more. Meanwhile
although Richie did feel bad about all the trouble he caused, in his youth-,,
ful exuberance he probably didn’t feel z00 bad, so his utility value for the
negative fallout might have been —50. Since +100 more than compen-
sates ilor =50, Richie secretly felt that his joy was worth all the trouble he
caused.

On the other hand, Richie’s father, if he recognized at all the pleasure

- of meeting attractive women, might have considered it a minor diversion

worth at most +10. But being a responsible citizen in his community, he
would have considered all of the resulting trouble and deception ;nd
anger to be quite serious, perhaps —100. Since —100 is far more serious
than +10, it’s no wonder Richie’s father was S0 angry.

The Naughty Nephew
Your adorable little nephew is over for a visit, and he is playing with his
favourite ball. You told him to be careful, but he is being nothing of the
sort. He has already broken a glass, and after you yelled at him he
knocked down a picture. How can he be so unreasonable? Obviously,
from your point of view, damaging a glass and a picture is far more seri-
ous than a bit of fun with a ball.

You then consider your nephew’s utility function. He loves playing
with the ball, the wilder the better, and might rate the activity at +20.
On the other hand, he only feels a little bit bad when he breaks things
and gets yelled at, perhaps —10. So, from his point of view, his actions
are completely reasonable,
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Part of you feels you should teach your nephew to be responsible by
punishing him or taking away his ball. Then again, perhaps his utility
function isn’t so crazy after all. As a compromise, you carefully remove
all the remaining breakable objects from the room, and allow your
nephew to continue playing. Your belongings are safe, your nephew can
play wildly with his ball, both of your utility functions are respected, and
you are both happy.

Utility functions can also explain the frequent disagreements between
doctors and their patients. Often a doctor will recommend a treatment
that a patient will not appreciate, even though they both have the
patient’s best interests at heart. Sometimes the doctor will simply be
wrong, or the patient will simply be stubborn and unreasonable. But
often the disagreement results from having different utility functions.

For example, suppose a doctor recommends a treatment that reduces
your probability of dying by 1%, but at the expense of causing
headaches and digestive discomfort—that is, of reducing your quality of
life. The doctor feels that the treatment’s benefit is worth the discomfort,
but you are not so sure. Why the difference of opinion?

Doctors are concerned primarily with keeping their patients alive.
Your doctor might give a rating of +10,000 to keeping you alive, and
1% of 10,000 is +100. On the other hand, doctors may be less worried
about quality-of-life issues (which are harder to measure and quantify,
and are less frequently studied). So, your doctor might give only —20 to
the various discomforts that the treatment will cause. Since +100 beats
—20, the doctor recommends the treatment.

You probably share your doctor’s concern about staying alive, so per-
haps you also give a utility value of +100 to a 1% reduction in your
probability of dying. On the other hand, quality of life is also very impor-
tant to you, and you give —200 to the discomfort that the treatment
causes. So to you the ~200 from the discomfort beats out the +100 from
increased probability of living, and the treatment doesn’t seem like a
good idea.
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The next time you find yourself in such a situation, don’t yell and
scream, don’t get in a panic, and don’t threaten to sue. Simply explain
calmly and politely, “I’'m sorry, doctor, but I reject your recommended,
treatment because I have a different utility function than you do.”
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White Lab Coats

What Studies Do and Don’t Show

We are constantly being told just what “studies show.” D-etergent manu-
facturers tell us how white our shirts can be if we use their product. Psy-
chologists tell us how to raise our children. Urban planners tell us how t.o
direct traffic. Pharmaceutical corporations instruct us that buying their
pills will save our lives. Our doctor tells us that a certain c-o‘urse of treat-
ment is unquestionably the best option. Actors in television co'mmer—
cials, complete with white lab coats and file folders and glasses, inform
us of the benefits of sugarless chewing gum. In every case, we are assured
that the conclusions are supported by studies. And there’s tha.t blabber-
mouth down at the local bar who claims that “studies show” just about
every opinion that he cares to enunciate. . 1
Typically, we trust (or quote or simply rnakt.a up.) stud1.es whose conclu-
sions correspond to our own opinion, but dismiss or ignore those that
don’t. But is this rational? Can’t we learn anything concrete from the
studies themselves? 3 .
Yes, we can. Indeed, a little understanding and Probability Perspective

can teach us which studies to trust, and when.

96

WHITE LAB COATS

An Earth-Shattering Conclusion or Just Plain Luck?

A typical medical study might run as follows. A disease (let’s call it
Probalitus) is fatal in 50% of cases. A pharmaceutical company develops
a new drug that they claim reduces the fatality level of Probalitus. But
does it really?

To test this claim, a study is commissioned. A number of patients suf-
fering from Probalitus are collected together and given the drug. The
fraction of fatalities in the study is observed. The question is, how does
this fraction compare with the previous 50% probability of dying from
the disease?

If the fraction of fatalities in the study is more than 50%, this is a bad
sign. The drug is likely a failure. The pharmaceutical company goes back
to the drawing board to improve it. In this case, the study has protected
humanity from a useless (or perhaps even harmful) drug. So far, so good.

But suppose now that the fraction of fatalities in the study is less than
50%. Suppose, say, that just 40% of the patients in the study died, as
compared with §0% who would have died (on average) without thisnew -
drug. In this case, the drug sounds promising; perhaps it really does
reduce the danger of Probalitus.

Or does it? The question is, does the reduction in fatalities prove that
the drug helped, or did we just get lucky? At what point can we accu-
rately conclude that the “study shows™ that the drug helped?.

Lucky Shot?
“I'm so good at basketball,” your boyfriend brags, “that I can score
from the other end of the court, nearly every time!”

Tired of your boyfriend’s bravado, you decide to put him to the test.
You go to the gym together late one night, with a basketball. He stands
at one end, bends his knees, and heaves the ball towards the far basket.

Time stands still while the ball sails through the air on a graceful

parabola. It’s going too far. No, wait, maybe it’s not going far enough.
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Finally the ball descends, gliding towards the waiting mesh. Down it
goes, and then, finally . . . it’s in. He did it!

“Yippee,” your boyfriend cries. “I told youI could do it!”

“Ah, you just got lucky,” you retort. “You can’t prove anything with
one lucky shot. I bet you can’t score again.”

Your boyfriend sighs. “Aw, come on,” he whines. “How many times
will T have to score before you believe it’s not just luck?”

Good question.

Consider a concrete example. Suppose the study involves just three
patients, each of whom suffers from Probalitus. Suppose all three are
given the new drug, and all three survive the disease. Bravo, you might
think. Without the drug, 50% of patients die, but with the drug, it seems
they all survive. Let’s get this drug to market right away!

But can we be sure about this conclusion, or did we just get lucky?
That is, did the drug actually help the three patients survive? Or did all
three patients get better purely by chance, and the drug had no effect
whatsoever?

This question is related to another situation, involving our old
favourite scenario, flipping coins. (Coins have been used as monetary
instruments for about 2,700 years, and have undoubtedly been flipped
for nearly as long, so it is not surprising that probabilists keep referring
to them.) Suppose your friend is dividing up some candies by flipping a
coin. For each candy in the box, he flips the coin. If the coin comes up
heads, he gets to keep the candy; if it’s tails, you get to keep it. Suppose he
gets heads on his first three coin flips. Does that mean he is cheating,
using a two-headed coin or some other trick? Or, is he being perfectly
honest, and he just got lucky? Which is it? How can you tell?

From the point of view of probability theory, the friend counting heads
and the Probalitus study counting survivors are exactly the same situa-
tion. In both cases, the question is, do the results show an actual result (a
beneficial drug or a cheating friend), or did they occur just by luck?
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To separate actual conclusions from “just luck,” we have to consider
what is called the p-value. This is the probability that you would have
observed such a surprising result (such as three patients all surviving, or
getting three heads in a row) just by pure luck, if the drug had no effect
and the friend didn’t cheat.

In the Probalitus study, if the drug had no effect, each patient would
have a 50% chance of surviving. So, the probability that all three
patients survive would be 50% of 50% of 50%, or 12.5%. In reporting
the Probalitus study, we could say that the drug helps reduce the disease’s
fatalities, with a p-value of 12.5%.

Similarly, the probability of getting three heads in a row by just luck is
also 12.5%. So, in either case, we can say that the p-value of the study is
equal to 12.5%.

What is the meaning of p-values? Well, if the p-value is large, then
maybe you just got lucky, and the study proves nothing. But if the p-value
is very small, it is highly unlikely that your results were purely the result of
luck, and therefore quite likely that your drug had a positive impact.

In the Probalitus study, the p-value is 12.5%. Is 12.5% a small enough
p-value that we should recommend this drug to all who suffer from
Probalitus? Or is 12.5% large enough that we can dismiss the results of
this study as being from just luck, and therefore of no significance?

How Unlikely Is Too Unlikely?

We should always be careful not to jump to premature conclusions, and
to avoid doing so, we require a standard for how small a p-value must be
before a study’s result can be considered to represent a true finding. In
medical and psychological testing and elsewhere, the traditional stan-
dard is 5%. That is, any study result that has less than a 5% p-value, or
less than one chance in 20 of happening just by luck, is considered to be
“statistically significant.” On the other hand, if the p-value is more than
5%, the results might be due to pure chance, and they are therefore not
statistically significant.
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The Suspicious Subway Stroller
You’re riding the subway, and something catches your eye. It’s a large
man who is a bit unusual looking. What is it that bothers you so?

That mustache. Red and bushy, just like the KGB agents in all those
spy movies. That’s it, this guy is a leftover KGB spy!

Calm down, you think. It’s possible that a regular, ordinary guy might
have a bushy red mustache. That doesn’t prove a thing.

But those boots. Steel-toed, black, with a thick heel. Surely only a
KGB agent would wear such boots! »

No, no, you remind yourself. It’s conceivable that an honest, law-
abiding citizen might wear heavy, black steel-toed boots.

Hold on, what about that bulge in his overcoat. It must be a gun. He
must be a renegade KGB agent, trying to undermine your way of life!
You have to do something. There is no time to lose.

To keep the world safe for democracy, you leap forward and tackle the
man. Stunned and surprised, he does not resist.

The police arrive, and a careful check reveals that this man is an hon-
est wheat farmer from Saskatchewan who just happens to have a bushy
red mustache, just happens to like heavy black boots, and just happens
to keep his wallet stashed in his coat pocket. He is released, with full
apologies.

You, on the other hand, spend the next six months in prison after

being convicted of unprovoked assault.

What about our Probalitus study? In that case, with just three surviv-
ing patients, the p-value is 12.5%, which is much more than 5%. Thus,
this study does 7ot in any way establish that the drug actually reduced
the fatality of the disease.

On the other hand, if our Probalitus study had five patients, and they
all survived, the p-value would equal 50% multiplied by itself five times,
or 3.1%. This is less than 5% and is thus statistically significant. We
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could then conclude that the result wasn’t just luck, and that the drug
had actually helped to combat the disease.

Similarly, if your friend gets three heads in a row, he might just have
gotten lucky, and you should give him a break. But if the pattern contin-
ues and he gets five heads in a row, you might want to carefully examine
the coin that he’s flipping.

The 5% maximum error probability is very widely used throughout
the sciences. It is viewed as the statistical equivalent of the lawyer’s stan-
dard of “beyond a reasonable doubt.” However, the precise figure of 5%
is actually quite arbitrary. Furthermore, it allows for the possibility that
as many as one medical study in 20 may be wrong. The 5% standard was
first chosen in the 1920s by R.A. Fisher, a British agricultural researcher
and a father of modern statistical inference, who found the figure to be
both appropriately small and mathematically convenient. Some statisti-
cians feel that, to avoid false conclusions, statistical significance should
require the p-value to be less than 1%. (To achieve a p-value less than
1% would require observing seven surviving Probalitus patients—or
seven coins coming up heads in a row—not just five.) Even Fisher
allowed that “if one in twenty does not seem high enough odds, we may,
if we prefer it, draw the line at one in fifty, or one in a hundred.”

The debate continues, but in the meantime, 5% remains the standard
in almost all fields of academic research. Fortunately, many published
studies report the actual p-value obtained, so if you want you can check
it yourself. In some cases, the p-value might be 4.9%, while in other cases
it might be very small (say, 0.5% or less). The study’s p-value is an indi-
cation of how confident you can be in the conclusions reached: the
smaller the p-value, the less probability that the result was really just
luck. So, the next time your doctor quotes a medical study, don’t accept
the conclusion blindly. First, enquire about the study’s p-value.

Remembering that events sometimes occur “just by luck” can also
help us understand some everyday events. The principle of regression to
the mean says that extreme or surprising observations are often caused
by a combination of true differences and plain old luck, so they are likely
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to lessen (i.e., return to more “usual” values) in the future. For example,
if a student does extremely well on a test, she is probably quite smart but
she probably also benefited from a bit of luck. So, on the second test, she
is likely to do pretty well, but not as well as she did on the first test—her
luck may have run out. Meanwhile, a student who did extremely poorly
the first time around might well improve a little on the second test. For
another example, if a man is extremely tall, then his son is most likely to

be taller than average, but less tall than his father. Or if an athlete has an .

outstanding game, probably the next game won’t be quite as good.
Regression to the mean is sometimes used by investors who reason that if
a stock’s price suddenly falls, perhaps it got unlucky and will soon
rebound, so now may be a good time to buy some more shares. (Of
course, there is no guarantee; perhaps there was a reason for the stock’s
decline, which will only get worse.) Regression to the mean is a statistical
version of what all parents tells their children after a really rotten day:
tomorrow will be better. {On the flip side, if today was a really great day,
then tomorrow might be a little worse.)

Beware the Bias

Our rule, now, is quite clear. To test the validity of a claim (that a drug
improves health, or a detergent works better, or anything else), we con-
duct a study, and compute the p-value that the result was just luck. If the
p-value is less than 5% (or, even better, 1%), then the study’s results are
statistically significant, and we can trust the study’s conclusion.

So far so good. However, for a study to be valid, we must ensure that it
is not biased. There are several types of bias to worry about. One occurs
when patients are selected for study based on their condition.

Army Inspection
The drill sergeant greets you with a smile and a handshake. “Hello,
Colonel. I think yow’ll find that my troops all approve of the way I lead
them. Let’s go and ask them.”
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He leads you into the quarters in which his men are assembled.
“Bender,” he calls to one of them, “what do you think of my troop
leadership?”

Bender hesitates. “Uh, well, sir,” he begins cautiously, “you do have a
tendency to—"

“Silence, Bender!” the sergeant screams. “Calder! What do you think
of my troop leadership?”

Calder stands up and begins quietly, “Well, to be perfectly frank, sir, it
is my opinion that—" '

“Shut up, Calder!” the sergeant growls. “Fawler! What do you think
of my troop leadership?”

Fawler gets to his feer. “Why, I like it, sir. I think your tough approach
is just what we need.”

“Thank you, Fawler,” the sergeant replies.

Turning to you, he continues, “See, Colonel, I told you they all

&

approve of my leadership

If the manufacturers of the anti-Probalitus drug are sufficiently desper-
ate to prove their drug’s value, they could resort to a trick. They could
conduct a study in which they give their drug only to patients who seem
to be recovering anyway. That way, most of the patients in the study will
recover—not because of their drug, but because they were doing well in
any case. The p-value for this study would indeed be very low, but only
because they cheated.

This problem is called sampling bias. To avoid it, studies should (and
usually do) assign their patients randomly. For example, for each Probal-
itus patient who volunteers to participate in the study they might flip a
coin, and give the drug only if the coin comes up heads. That way, every
patient has the same probability of getting the drug or of not getting the
drug, regardless of their level of health.

We’ve all seen testimonials on television from famous musicians and
actors about how they came from humble roots, and struggled without
pay for many years, before finally being discovered and striking it rich.
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Many aspiring entertainers are encouraged by such stories to devote all
of their energies to their craft, with expectations of similar glory. The
reality, however, is that tens of thousands of people aspire to be rock
stars and never succeed. It is orﬂy those few who do succeed who are
interviewed on television. The resulting interviews form a biased sample
of struggling musicians, and give a very misleading picture.

The media’s tendency to over-hype murders, discussed earlier, can also
be viewed as a form of bias. Each day, about 99.99998% of people are
not murdered, yet the media focus on those few who are. This may be
reasonable from a news perspective, but it results in newspaper headlines
that give a very biased view of the society they attempt to describe.

A similar problem arises from reporting bias. For example, perhaps
when totalling up the study, a company conveniently “forgets” to report
some of the fatalities among patients taking their drug. Or, perhaps they
conveniently determine that some of the patients have recovered before
they really have. Any such discrepancies skew the results of the study,
thereby rendering them invalid. ,

To avoid such biases, studies should not be conducted by people or
companies with a vested interest in the outcome. Rather, a disinterested,
objective, independent professional organization should conduct the
study and report the results, without playing any favourites. That way,
the sampling can be done fairly, and the reporting can be done accu-
rately, without in any way influencing the results.

Biases can be subtle and they can explain mysterious practices. For
example, in many jurisdictions, adult citizens are randomly selected for
jury duty. Once such citizens have served, they are excused from further
service for a period of a few years. But why are they not excused forever,
or at least until everyone else has already served at least once? The
answer is that such a rule would create bias. Jury selections would grad-
ually become weighted towards the few citizens who have not already
served, namely young adults and new immigrants. The powers that be
have decided that such juries would not be appropriately representative
of the entire population. This is why the exclusions do not last forever,
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and why some people serve three or four times while others never do. It
may not seem fair, but at least it avoids bias.

Reporting bias sometimes takes surprising forms. A student I know
was recently phoned for a survey, conducted by a university student
union, about student debt loads. He explained that he does not have any
student debt as such, but that he has a large mortgage on a condominium
he recently purchased; should he count that debt or not? The surveyor
thought for a moment about this unexpected development. He then
stated that counting this debt would help their cause (which was to illus-
trate the problem of large student debt), and so he counted it. Clearly, if
such decisions are made in the context of what result a study’s sponsors
might want, the entire study is rendered invalid.

The Discouraging Diet

You want to lose some weight, so you read about various popular diet
plans and resolve to follow them. For breakfast you select steak and eggs
with butter and bacon, content with your low-carb diet. For lunch you
devour large portions of white bread with honey, a soft drink, and two
Popsicles, happily following a low-fat diet. For dinner you eat three
slices of whole-grain bread loaded with peanut butter, a large plate of
whole-wheat pasta with tomato sauce, and a big scoop of brown rice,
proud of your high-fibre diet. For an evening snack you have one scoop
of ice cream with chocolate topping, thus carefully following a diet
based on small portions.

The next day you are shocked to discover that your weight is up again,
after you were so careful to follow a diet every time you ate. Only then
does it occur to you that your self-assessment as a careful dieter might be
biased, since you have been choosing which diet to follow based on what
you feel like eating at each moment. From now on, you had better pick
just one diet and stick to it, thus avoiding bias and perhaps even losing
some weight.
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A similar problem arises with movie advertisements that quote review-
ers. Virtually every movie is liked by some reviewers, and excerpts from
those reviews inevitably appear in advertisements for the movie. Movie
watchers with Probability Perspective ignore such ads; they instead pick
one or a few specific reviewers (in my case, it’s usually Roger Ebert), and
base their movie choices on what those reviewers say. It is not that those
reviewers are necessarily wiser or more insightful than all of the others,
but sticking with the same reviewers when comparing different film ads
avoids the bias of movie promoters who select which reviews they use to
publicize their product.

Publication Bias

So now we know that studies should be conducted by independent pro-
fessionals, and that the results should be interpreted in terms of p-values.
So that’s that, right?

Not necessarily.

As children, we learned the trick that if your mom says no, then you ask
your dad, thus nearly doubling your chances of being allowed out to play.
Unfortunately, there is a simple way for large companies to do the same
thing, called “publication bias.” This involves commissioning many stud-
ies and only publishing those whose conclusions are favourable to the
company in question, while burying the rest.

The Happiness Hat Hoax
As the CEO of Happiness Hats, Inc., you are getting concerned. Your
company is very successful, but lately sales are falling. How can you
regain the public’s interest?

You decide to commission a study about the benefits of Happiness
Hats. You hire a leading expert to conduct the study. The expert gathers
together a few hundred subjects and randomly divides them into two
groups—one wearing Happiness Hats, the other not. One month later,

the happiness levels of the two groups are measured and compared.
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At the end of the study, the expert gives you a full report, which you
eagerly read. But your enthusiasm soon turns to despair. The study’s
conclusion is that wearing Happiness Hats made absolutely no differ-
ence to the happiness level of the subjects.

You’re not a quitter, so you try again. This time, you employ 100 dif-
ferent independent experts. You pay each of them to conduct a fresh
Happiness Hat study. For good measure, you put a little clause in their
contract that says that their final reports should be given only to you and
shared with no one else.

Finally the reports come in. Unfortunately, most of them again con-
clude that Happiness Hats make no difference. In fact, a few of them
even conclude that Happiness Hats are harmful. However, in study #57
(oh, glorious #57!), the Happiness Hat wearers happened to have a run
of good luck. The study therefore came to the conclusion that Happiness
Hats increase happiness. The p-value was nice and small, well under
5%. Yippee! ,

You publicize study #57 widely and broadly. You publish it in jour-
nals. You advertise it on television. You quote it on the radio. You plas-
ter it on billboards throughout the land. When skeptics enquire further,
you introduce them to the expert who conducted study #57; he confirms
that he was totally unbiased and that he performed his study carefully
and fairly. Everyone is duly impressed, Happiness Hats enjoy a huge
resurgence, and your corporation gets richer than ever.

What about the other 99 studies? Well, let’s just say that your high-
capacity paper shredder got a lot of use that night.

You might think that no company would ever hide or shred studies
that they had commissioned. In fact, medical-research funding contracts
from pharmaceutical companies (and others) often stipulate that find-
ings may not be published without the company’s consent, so the com-
pany can control which studies are publicized and which are not.
In 1996, Dr. Nancy Olivieri, a researcher at Toronto’s Hospital for
Sick Children and an acknowledged world expert on internal medicine
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and hematology, was commissioned by the pharmaceutical company
Apotex to conduct clinical trials using Apotex’s drug deferiprone to treat
children with the blood disease thalassemia. After some time, Dr.
Olivieri became convinced that deferiprone sometimes caused liver

fibrosis, a potentially fatal form of scarring of the liver. She felt that the

problem was serious enough that it should be brought to public atten-
tion. However, the contract that Dr. Olivieri had signed with Apotex
prohibited publication of her results within three years without Apotex’s
explicit consent (which they withheld).

Dr. Olivieri decided to go public anyway. Her ﬁndmgs were pub-
lished in the New England Journal of Medicine in 1998. In response,
Apotex threatened legal action, and Dr. Olivieri’s research position at
the Hospital for Sick Children was revoked (although later she was
reinstated at the neighbouring Toronto Hospital). The situation caused
a huge controversy throughout the medical research community. Much
of the controversy was caused by the realization that while the Olivieri
case was the most high-profile incident of medical research being influ-
enced by funding agencies, it was far from the only one.

Some of the ensuing debate focused on the validity of Dr. Olivieri’s
findings: did deferiprone cause harm or not? Some experts claimed it did,
while others argued that it did not. From a medical perspective, it is of
course important to evaluate accurately the risks of deferiprone (and of
all other drugs). But from a Probability Perspective, what is at issue is
publication bias. The decision to publish research results should be
based only on the quality of the research itself, not on who may like or
dislike its conclusions. Such censoring serves to bias the results away
from the objective truth, and thus renders p-values and other statistical
conclusions meaningless. )

There have been other, similar examples of publication bias. In 1990,
Dr. Betty Dong, a clinical pharmacist at the University of California at
San Francisco, determined that the thyroid medication Synthroid was no
more effective than cheaper alternatives. The manufacturer of Synthroid,
the Boots Company, was furious. They tried to persuade Dr. Dong to
modify her conclusions, and when she refused they hired consultants to
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discredit her study. When Dr. Dong’s study was about to be published in
the Journal of the American Medical Association in 1994, Boots took
legal action, citing the study’s funding agreement, which said that publi-
cation of results was forbidden without Boots’s consent. The study was
finally published in JAMA in 1997, but only after extensive publicity and
many high-level meetings between company and university officials. (By
then Boots had been dcquired by another, apparently less confronta-
tional, company.)

The recent controversy involving the anti-inflammatory drug Vioxx
can also be viewed as a form of publication bias. In September 2004, this
drug was withdrawn by its manufacturer, Merck & Co., due to accumu-
lating evidence that it significantly increased the risk of heart attacks.
Indeed, a study published in The Lancet in January 2005 estimated that
Vioxx was probably the cause of between 88,000 and 140,000 cases of
serious coronary heart disease. It was reported by the Wall Street Journal
and others that researchers at Merck had suspected this risk years earlier.
Internal company e-mails as far back as 1997 noted that “the possibility

2

of increased CV [cardiovascular] events is of great concern,” and by
March 2000 Merck had acknowledged internally that the cardiovascu-
lar problems associated with Vioxx “are clearly there.” However, the
company kept this information to themselves and continued to assert
that Vioxx was safe, issuing a news release in April 2000 headlined
“Merck Confirms Favorable Cardiovascular Safety Profile of Vioxx.”
One internal training document even instructed Merck marketers to
“dodge” questions about the cardiovascular effects of Vioxx. Addition-
ally, in 2002 Merck sued a Spanish medical researcher, Dr. Joan-Ramon
Laporte, who was critical of Vioxx and of Merck (the suit was eventually
thrown out of court). Professor James Fries of Stanford University Med-
ical School wrote that several medical researchers who were critical of
Vioxx had been phoned and threatened in “a consistent pattern of intim-
idation of investigators by Merck.” While the truth about Vioxx’s dan-
gers eventually became public, it teok years longer than it should have.
We should all worry about which other drugs’ truths still remain hidden.

These and other controversies have put a spotlight on the widespread
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practice whereby corporate funders of medical research, who often have
a vested interest in the results, have the final say over which studies get
published. This practice creates the risk that companies will publish only
those studies that are favourable to their products. If so, the p-values and
other probabilities associated with each individual study are entirely
misleading, since they do not take into account the bigger picture of
selectively published data. As anti-corporate crusader Ralph Nader
might have put it, “Unsafe at any p-value.”

The medical community is finally taking this issue seriously. The Inter-.

national Committee of Medical Journal Editors—a group of editors of 11
leading medical research journals including the Journal of the American
Medical Association, New England Journal of Medicine, The Lancet, and
Canadian Medical Association Journal—declared in 2001 that from now
on, in all studies published in their journals, “the sponsor must impose no
impediment, direct or indirect, on the publication of the study’s full
results, including data perceived to be detrimental to the product.”
Clearly, those editors were using Probability Perspective.

Cause and Effect
: ]

Even if studies are conducted properly and objectively, with accurate use
of p-values and full freedom to publish the results, we must still be care-
ful to interpret the results correctly. Often, results that seem to imply one
thing actually imply another.

The Jumping Frog (An 0ld Joke)
You want to determine the relationship between a frog’s legs and its abil-
ity to jump. So, you find a frog and a measuring stick, place the frog at
one end, and say, “Jump!”
Dutifully, the cooperative frog leaps into the air and lands at the 82-cm
mark. “Aha,” you declare, “frogs with all four legs can jur{xp 82

centimetres.”
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To continue the study, you get out a sharp scalpel and slice off the
frog’s left front leg. (The frog, always eager to push the frontiers of sci-
ence, remains stoic.) You return the frog to the starting point. “Jump!»
you call again.

The frog leaps into the air and this time lands at the 47-cm mark,
“Aha,” you say excitedly, “frogs with three legs can jump 47 centime.-
tres.”

Slicing off the frog’s right front leg, you repeat the experiment again,
with the frog landing this time at the 18-cm mark. “Aha,” you marvel,
“frogs with two legs can jump just 18 centimetres.”

You then slice off the frog’s left back leg. The frog slithers awkwardly k
and lands at the 5-cm mark. “Wow,” you exclaim, “frogs with one leg
can still jump five centimetres.”

Finally you slice off the frog’s remaining leg. “Jump!” you order, but
the frog does not move.

Annoyed, you repeat, “Jump!” Again there is no reaction. “JUMP!”
you shout, but the frog remains motionless.

- “This is fascinating,” you gush. “What an interesting conclusion.”

Picturing yourself accepting next year’s Nobel Prize, you practise
announcing your astounding finding: “Frogs with no legs are deaf!”

To better understand the difficulties of determining causality, consider
a classic (albeit exaggerated) example. It is now well established that
smoking cigarettes significantly increases the risk of contracting lung
cancer, but this connection was once controversial. It also happens to be
true that cigarettes sometimes cause mild (and harmless) yellow stains to

- appear on smokers’ fingers.

Now consider a researcher who didn’t know much about smoking,
but who wanted to determine what causes lung cancer. She might
notice that many of the people with lung cancer also had yellow stains
on their fingers. Of course, this would really be because both factors
are themselves caused by smoking. But if the researcher didn’t know
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that, she might erroneously conclude that yellow finger stains cause
lung cancer.

Imagine the difficulties that such a false conclusion could cause. Par-
ents would refuse to let their children play with yellow crayons, lest they
stain their fingers and get cancer. Smokers might don latex gloves, so that
they could smoke “safely” while avoiding those harmful yellow stains,
all the while filling their fungs with tar and nicotine that they don’t know
could kill them. Family doctors might turn to scrutinizing patients’ fin-
gertips under a microscope and neglect such trivialities as listening to
their wheezing lungs. A simple misunderstanding of what causes what
could have grave consequences.

Statisticians have a saying to deal with this problem: “Correlation
does not imply causation.” Just because two traits (like getting lung can-
cer and having yellow finger stains) tend to go together (i.e. are corre-
lated), that does not necessarily prove that one causes the other. While no

one would seriously conclude that yellow stains cause cancer, the issue of

what causes what arises often and in many contexts. \

The Meditation Medical Miracle
The data seem incontrovertible: Participants in the Million-Minute
Meditation (MMM) program are far healthier than the general public.
For a modest $10,000 annual fee, participants spend two hours a day
engaged in concentrated meditation and spiritual awakening, under the
direction of the experienced meditator Wily Wally. Careful medical
examination has shown that participants in MMM have lower blood
pressure, less body fat, greater muscle strength, lower cholesterol, and
greater lung capacity than the population as a whole.

Now Wily Wally is trying to convince you to join the MMM. “Don’t
you care about your health?” he asks. “Wouldn’t you like to be as
healthy as the other MMM participants?” Furthermore, for a limited
time only, he agrees to knock $10 off of the annual fee.

Before you plunk down the money, your Probability Perspective kicks

in. It is indeed possible that all this meditation is responsible for impres-
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sive health benefits. However, it is equally possible that the MMM par-
ticipants are a self-selected group. That is, anyone who is willing to pay
$10,000 a year and put in two hours a day to improve their health must
care about their well-being a great deal, indeed. Probably they also exer-
cise regularly, eat well, avoid stress, get regular medical checkups, and
otherwise take goad care of themselves.

If so, then rather than the MMM program causing good health, it
may be that healthy habits cause people to join MMM, and that MMM
has little or no direct impact on health improvement. Thus, rather than
join MMM, you might be better off simply exercising regularly and eat-
ingwell. -

“Correlation does not imply causation,” you snap at Wily Wally and

choose to spend your money elsewhere.

Once we recognize the false-cause issue, we see it everywhere. For
example, a recent long-term study of University of Toronto medical stu-
dents concluded that medical-school class presidents lived an average of
2.4 years less than other medical school graduates. At first glance, this
seemed to imply that being a medical school class president is bad for
you. Does this mean that you should avoid being medical-school class
president at all costs?

Probably not. Just because being class president is correlated with
shorter life expectancy does not mean that it causes shorter life
expectancy. In fact, it seems likely that the sort of person who becomes
medical-school class president is, on average, extremely hard-working,
serious, and ambitious. Perhaps this extra stress, and the corresponding
lack of social and relaxation time~—rather than being class president per
se—contributes to lower life expectancy. If so, the real lesson of the study
is that we should all relax a little and not let our work take over our lives.

Or there may be other explanations. One somewhat outlandish one is
that people who come from families where many people died young are
more likely themselves to die young, but are also more likely to try to
make the most out of what time they have available by doing things like
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becoming medical-school class president. The point is, based on this
study alone, we just don’t know why these med students die younger
than their peers. We can be reasonably confident (and surprised) that
people who become medical-school class president have shorter lives on
average (this is the correlation part). However, we cannot be certain of
the causation part: whether being class president causes an earlier death,
or whether fearing earlier death causes one to become class president, or
whether being extremely ambitious causes both, or what.

There are now a number of studies that indicate that people who
watch more television are also, on average, more likely to commit violent
crimes. Aha, we might think, this proves once and for all that television
is evil, and that all the desensitizing violence on TV causes people to
become more violent. But does it? Perhaps people who come from disad-
vantaged backgrounds or dysfunctional families tend on average to be
more violent (due to increased desperation and less parental supervi-
sion); they tend also to watch more TV because they lack money for
other entertainments or are exposed to fewer other, more rewarding pur-
suits. The studies convincingly show a correlation between violence and
television, but they do not establish the underlying causes of the behav-
iour. Once again, correlation does not imply causation.

Randomized Trials

If many studies fail to tell us accurately what causes what, do we have
Lany hope of ever getting reliable information?
Fortunately, the answer is yes. The key is to use a randomized trial.

What this means is that a study’s subjects are assigned at random to one -

of two different groups, without regard to any other factors about their
health or wealth or anything else. The two groups are then given differ-
ent treatments, such as drug versus no drug, or MMM membership ver-
sus no membership. Then, if there is a statistically significant difference
in the results between the two groups, it cannot be due to any other fac-
tors. Instead, the change has to have been caused by the actual difference
in the treatment between the two groups.
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We have already seen that in the Probalitus study, the best method is to
flip a coin for each patient and give the drug only to those whose flip
comes up heads. The patients are thus divided randomly into two
groups, a treatment group that gets the drug, and a control group that
does not get the drug. If the patients in the treatment groﬁp have a much
better survival rate than the patients in the control group, then it must be
true that the drug is making them better.

Consider again the question of lung cancer and yellow finger stains.
Suppose that rather than simply observe who has yellow fingers and who
has lung cancer, we take a more active role. Specifically, we do a study by
flipping a coin for every patient and painting their fingers yellow if the
coin comes up heads (while leaving their fingers alone if the coin is tails),
regardless of whether or not they smoke.

In that case, we would (probably) find that there wasn’t much difference

_ between the rates of lung cancer for the two different groups. We would

then conclude, correctly, that yellow fingers do 720t cause lung cancer after
all. They are indeed correlated with lung cancer, but they do not cause it.

Could we then do a similar study to determine whether smoking
causes lung cancer? Yes, but it would be more difficult. We would have
to flip a coin for every patient and then force them to smoke for many
yearsif the coin came up heads, while not allowing them to smoke at all
if the coin came up tails. Naturally, it would be difficult to get patients to
cooperate in such a study. Instead, more indirect methods must be used.

A similar problem arises when studying the relationship between tele-
vision and violence. To conduct a true randomized trial, we would have
to flip a coin and force half of the subjects to watch lots of television
(every day, for many years), and the other half to watch almost none. If
the randomly chosen television watchers committed more violent crimes,
this would be conclusive proof that watching television causes violent
behaviour, and that restrictions on television content might be called for.
However, it is hard to imagine how such an experiment could be per-
formed in anything resembling a free society.

These imaginary scenarios illustrate why it is difficult to do proper
randomized trials for studies of “lifestyle” factors (like smoking, eating,
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TV viewing, etc.). However, in medical studies, researchers can control
precisely what drugs are provided to each patient, so this is not a problem.

There is one additional factor with medical studies. Patients’ héalth
might sometimes improve not because of the drug’s actual effects, but
because the patient believes that the drug will help, and this very belief is
enough to make them feel better. To avoid this problem, most medical
studies involve giving a placebo (fake pill) to the patients in the non-drug
group. That way, the patients don’t actually know whether they are get-
ting the new drug or not, thus eliminating any related psychological fac-
tors. {In fact, most medical studies are done “double blind,” so that even
the doctor does not know until later which patients received the drug
and which patients received the placebo pills, thus avoiding even subtle
cues from the doctor.)

Randomized drug trials can sometimes lead to ethical issues. For
example, experts believe that an antiretroviral drug regimen helps slow
the spread of HIV/AIDS. Thus, ethical considerations might dictate that
all HIV/AIDS patients be given the most promising antiretroviral driigs.
On the other hand, to get scientific evidence about the effectiveness of
these drugs, researchers need a control group of patients who are not get-
ting the drug.

This conflict between the short-term ethical action (giving the best
drugs to all patients) and the long-term scientific action {doing a con-
trolled study where some patients do not get drugs) is difficult to resolve.
My own reaction to such controversial questions is to feel glad that Tam
not a medical researcher.
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Ain’t Gonna Happen

Very Low Probabilities

It is a truism that from time to time unlikely things happen. They may
strike us as strange and surprising coincidences, though many of those
can be explained by considering “out of how many.” They may be events
that we have previously dismissed as impossible, using the “ignore the
extremely improbable” philosophy. In any case, events of very low prob-
ability are intriguing in a variety of ways.

~ When people think of unlikely events, being struck by lightning comes
to mind. We have all seen lightning flash and heard thunder crash during
many different storms. Still, it is very rare that lightning actually strikes
people, and even more rare that it kills them.

Just how rare? We already saw that there were just 50 deaths from
lightning in the United States in the year 2000. Indeed, this is typical:
the National Lightning Safety Institute reports just 756 deaths from
lightning in the United States during the 14-year period from 1990 to
2003, for an average of 54 lightning deaths per year. Compared with the
total of about 2.5 million deaths per year, only one person in 50,000
will ever die from lightning. In a single year, only about one in 6 million
Americans will be killed by lightning. That’s rare.

The infrequency of lightning deaths was put to good use in a recent
anti-smoking commercial, which showed a woman standing at the top of
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a hill during a lightning storm, holding a tall metal staff, just daring the
lightning to strike. The woman explained that her actions may seem
crazy, but they were nothing compared with the stupidity of smoking.
Since we have seen that lung cancer accounts for about 7% of all deaths,
which is about 3,000 times as many as are caused by lightning, the pro-
ducers of that commercial clearly had Probability Perspective.

On the other hand, lightning is not quite an equal-opportunity killer.
You are more likely to be killed by lightning if you live in an area with
many electrical storms, if you are often outdoors during storms, and if
you live in a flat area without many tall buildings to absorb lightning.
During that 1990 to 2003 period in the United States, there were 126
lightning fatalities in Florida and 52 in Texas, but only two in Massa-
chusetts. Table 8.1 shows the most dangerous states for lightning fatali-
ties, 1990-2003, based on the average annual rate per 100,000 people.

Table 8.1 Most Dangerous States for Lightning Fatalities, 1990-2003

State Population (2000) Total # Annual Rate
Wyoming 493,782 14 0.203
Utah 2,233,169 22 0.070
Colorado 4,301,261 39 0.065
Florida 15,982,378 126 0.056
Montana ’ 902,195 7 0.055
New Mexico 1,819,046 14 0.055

By contrast, heavily populated Massachusetts and California are much
safer when it comes to lightning.
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Tahle 8.2 Safest States for Lightning Fatalities, 1990-2003

State Population (2000)  Total # Annual Rate
Massachusetts 6,349,097 . 2 0.0023
California 33,871,648 8 0.0017
Alaska 626,932 0 0.0
Hawaii 1,211,537 0 0.0
Rhode Island = 1,048,319 0 0.0

What about other countries? The Web site nationmaster.com reports
that the largest number of annual lightning deaths happen in Mexico
(223), Thailand (171), South Africa (150), and Brazil (132). However, as

a rate per 100,000 people, the most dangerous countries for lightning are
as follows:

Tahle 8.3 Countries with Highest Annual Lightning Fatality Rates

Country Population  # Fatalities  Rate per 100,000
Cuba 11,263,429 70 0.621
Panama 2,960,784 17 0.574
Barbados 277,264 1 0.361
South Africa 42,768,678 150 " 0.351

Of course, even for these countries, deaths by lightning represent just a
tiny fraction of the total number of deaths each year. Notice how poor
Barbados, with just one lightning fatality, got ranked as the third most
dangerous country simply because its population is so small that even
one fatality is a lot.

The uneven distribution of lightning can help to explain some other
coincidences. For example, in 2002, Jorge Marquez was struck by
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lightning for an incredible fif¢h time in his life. (He survived uninju.re;d,
though the first time his hair was burned and he lost his fillings.) Given
that lightning strikes are so rare, Marquez’s experience seems to defy
all probabilities. On the other hand, Marquez is a Cuban farm—work.er,
and thus presumably spends a lot of his time outdoors, even in the rain.
Plus, we have just seen that Cuba is one of the most dangerous coun-
tries for lightning strikes. So, Marquez is more likely to be struck by
lightning than is a randomly chosen person. Even so, it must be said
that he is a rather unlucky fellow.

Speaking of bad luck, assistant director Jan Michelini was struck by
lightning twice while in Italy filming Mel Gibson’s movie The Passion of
the Christ (though he wasn’t seriously hurt). It is unknown whether or

not divine intervention was involved.

Unlikely or Not

Some events are so unlikely that they have become clichés. What parent
hasn’t told a child that he has to clean his room unless he wins the lottery,
or that he’s more likely to be struck by lightning than to get an increase in
his allowance? (The phrase “until hell freezes over” also comes to mind,
but I lack the data to compute the probabilities for that one.) Usually such
references are harmless and amusing, even if not very accurate, but one
such comparison became a part of popular culture in a rather harmful way.

In the mid 1980s, researchers at Yale and Harvard began a study about
Americans’ marriage patterns and their relation to the age structure of
the country’s population. They made a preliminary conclusion that a 40-
year-old unmarried woman had just a 1.3% probability of ever getting
married. This figure was mentioned in a small 1986 Valentine’s Day arti-
cle in the Advocate newspaper, published in Stamford, Connecticut. The
story was then picked up by major news organizations throughout the
United States and beyond, leading to widespread talk of a “marriage cri-
sis” among baby-boom women. The topic dovetailed with the anti-
feminist conservatism of the time, and it was implied that women’s
economic equality was to blame for this “man shortage,” because men
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preferred to marry women of lower economic status. Newsweek wrote a
cover story that said, “For years bright young women single-mindedly
pursued their careers, assuming that when it was time for a husband they
could pencil one in. They were wrong.”

And then, in an affront to probabilists everywhere, Newsweek
declared that a 40-year-old single woman was more likely to be killed by
a terrorist than to marry. This “fact” struck a chord and was repeated in
popular media and around the water cooler for years. In addition to
being hurtful towards women, causing unnecessary panic, and implying
that marriage was every woman’s number-one goal, Newsweek’s claim
was completely false. ‘

We know that even in 2001, only about one American in 94,000 was
killed by terrorists, which is equivalent to 0.001%. This is a much, much
smaller figure than even the 1.3% probability of marriage that the study
claims. (And in the years before 2001, when terrorist actions on Ameri-
can soil were practically non-existent, the corresponding probability
would have been even smaller.) So, there was simply no logic nor accu-
racy whatsoever to Newsweek’s claim. (A Newsweek bureau intern later
asserted that the terrorist reference had started out as an office joke.)

It wasn’t long afterwards that even the figure of 1.3% was questioned.
As detailed by Susan Faludi in her book Backlash, demographer Jeanne
Moorman of the U.S. Census Bureau studied the 1980 census data
directly, and determined that the probability of a 40-year-old single
woman getting married was between 17% and 23%. Her colleague, a
statistician named Robert Fay, then re-examined the original, unpub-
lished Harvard-Yale study, which had been based on a questionable sta-
tistical model and had assumed that women would necessarily marry
men who were a few years their senior. Fay found other errors in the
study, and when he corrected for them, he obtained results similar to

Moorman’s. Fay wrote to the study’s authors that he believed that “this
reanalysis points up not only the incorrectness of your results, but also a
necessity to return to the rest of the data to examine your assumptions
more closely.” Despite the huge publicity surrounding the original study,
these corrections and clarifications were mostly ignored.
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What is the probability that a never-married 40-year-old woman will
eventually marry? This question involves projecting into the future, so
there are a variety of conflicting statistical- approaches that could be
takern, and every answer is open to some debate. Furthermore, social cus-
toms and perceptions around aging keep changing, and women who are
40 today may have different life patterns from those who were 40 in the
past. Despite these difficulties, it is possible to attempt to compute a
probability by following the marital status of a fixed group of women as
they age over a period of many years.

For example, the U.S. Census Bureau reported that in 1970, of all
American women between 40-and 44 years old, 4.9% had never mar-
ried. In 2001, it reported that of the 8,851,000 American women who
were over 75 years old, 366,000 (4.1%) had never married. A woman
who was 40 in 1970 turned 70 in the year 2000, so these two statistics
refer to essentially the same group of women. (Of course, they are not
precisely the same group, due to immigration, emigration, and death.
But they constitute the same «cohort” of women.) By this reasoning, we
could say that the fraction of this cohort who were unmarried at 40 but
who were wed by age 75 is about 0.8% divided by 4.9%, which is equal

t0 16.3%. In other words, of those American women in the year 1970
who were between 40 and 44 years of age and who had never married,
about 16.3% eventually married. This is quite a large percentage, espe-
cially if you consider that many of the women might not have wanted to
get married. Furthermore, this figure is over 12 times larger than that
Harvard—Yale study had claimed, and over 15,000 times larger than the
chance of being killed by terrorists, even during the 9/11 attacks. And, a
40-year-old woman today is probably even more likely to marry than
was her 1970 counterpart. ‘

While it is impossible to compute with certainty the probability that a
never-married 40-year-old woman will eventually marry, figures such as
the 17% to 23% reported by Moorman, or the 16.3% computed here,
seem approximately correct. In any case, it is now widely accepted that
the original Harvard-Yale study was flawed, that its figure of 1.3% was
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entirely incorrect, and that Newsweek’s analogy to being killed by ter-
rorists was way offbase.

Little Green Men?

One of the greatest “coincidences” of all is that life exists on this planet.
For humans to have evolved here required, first of all, the formation of an
appropriate star (the Sun). It then required the formation of an appropri-
ate planet (the Earth), having the right amount of water and air and land
at a reasonable temperature. Furthermore, life then had to be created anc;
to evolve—over billions of years—into a species as intelligent as we are.

Everyone agrees that the emergence of intelligent life was extremely
unlikely. But the question is, just how unlikely?

In some ways this is 2 moot point. After all, we are here, no matter
how unlikely that may be. However, the probability that we evolved here
is closely related to the probability that intelligent life has also evolved
somewhere else.

The discovery of intelligent life elsewhere in the universe, if it ever hap-
pened, would be a momentous event. It would directly affect our safety
(if the aliens were hostile), our knowledge (if the aliens taught us), our
technology (if the aliens let us examine their machines), and our philoso-
phy about our place and importance in the universe. Life would never be
the same again. But will such a discovery ever happen?

The organization SETI (Search for Extraterrestrial Intelligence) has
been preoccupied with precisely this question for many years. Their cur-
rent chairman, Dr. Frank Drake, postulated an equation describing this
probability, in 1961. It involves considering the total number of available
stars (which, as Carl Sagan, the late astronomer and SETI board member,
would have told us, is “billions and billions”), and then estimating hov;
many planets will be orbiting them, the probability that each of those
planets will be suitable for life, the probability that each such suitable
planet will actually develop life, the probability that such life will eventu-
ally evolve some form of intelligence, and so on. When the number of
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available planets is multiplied by all of those probabilities together, we get
an idea of how many intelligent species might be waiting for us out there.
The problem is that we don’t actually know any of these probabilities.
What is the chance that a planet will be suitable for life? Or that life will
actually evolve on a given suitable planet? Who can really say? Some
have argued that, given the huge number of stars in the universe, surely
intelligent life must have evolved somewhere else besides Earth. But
what are the probabilities? The harsh reality is that, despite 40 years of
intensive, systematic searching with advanced radio telescopes, no evi-
dence of life elsewhere in the universe has emerged.
There is one slight exception. Recent analysis of fossil samples from
our nearest neighbouring planet, Mars, have indicated that maybe, just
maybe, there was once microscopic life on that planet. It is even conceiv-
able that all life on Earth is descended from early microscopic life on
Mars, which “fell” to Earth in a meteorite. For philosophers, this possi-
bility illustrates the fleeting nature of existence, and the possibility that
we are all immigrants in ways even more profound than previously
known. For science fiction and space buffs, it encourages further explo-
ration of Mars and other planets and illustrates the possibility of truly
alien life forms. But for probabilists, if life is known to have developed
on not one but two different planets in our solar system, Earth may not
be so unique after all. That increases the probability that life will develop
on a given suitable planet, and also enlarges our sense of what planets are
suitable. This, in turn, greatly increases the probability that other planets
in the universe, besides Earth and Mars, can also support the creation of
life. The probability of intelligent life elsewhere in the universe increases
dramatically if it is true that there was once life on Mars. So, perhaps we
are not alone in the universe after all.

The Sammy Sosa Incident

On June 3, 2003, Chicago Cubs baseball great Sammy Sosa broke his bat
while batting in a run against the Tampa Bay Devil Rays. The game’s
umpire noticed a small bit of cork in a piece of the broken bat. The run
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that Sosa had batted in was immediately cancelled, and an in
was launched into the “Sammy Sosa corked bat incident.”
Corking a bat by drilling a small hole and inserting bits of cork cap
make it lighter and more springy, and thus potentially more effective
However, it is strictly against the rules of major league baseball, Sosa;
tully admitted to using the corked bat, but he claimed it was an honest
mistake. He said the corked bat was intended only for batting practice
to entertain the fans with longer hits. In this one game, just this one time’
he had mistakenly taken the wrong bat out during a real game. So th;
question became, was Sosa’s corked bat a simple oversight or a deliber-
.ate attempt to cheat? Was this the only time Sosa had used a corked bat
In a game, or was it something he did on a regular basis?
. In Sosa’s favour, he made no effort to hide or dispose of the corked bat
in the seconds after it broke. Seventy-six other bats found in his locker
later that night, plus several bats he had previously donated to the Base-
ball Hall of Fame, were all X-rayed by investigators and found to be per-
fectly legal, valid bats. On the other hand, Sosa had not been hitting well
that season, which might have caused him to take desperate measures.

The debate raged on, driven by discussions of Sosa’s seemingly hon-
ourable character, of other corked bats in baseball’s history, of the need to
please the fans, and so on. But from a Probability Perspective the question
is, what is the probability that Sosa only used a corked bat this one time?

One way to approach this question is with p-values. The p-value is the
probability that Sosa would have been caught, if he had used a corked
bat only this one time. If this p-value is very small, it casts doubt on
Sosa’s claim that his bat corking was just a single, isolated incident. But
if the p-value is not too small, Sosa’s claim may be plausible. So, what is
the p-value? ,

The key is that bats do not break often. Official statistics ére hard to
come by, but roughly speaking, an average major league baseball game
has a total of about 75 at-bats (for both teams combined), and three or
fewer broken bats. So, on any one at-bat, the probability of breaking a
bat is probably no more than three chances in 75, or one chance in 25. By
this reasoning, the probability of Sosa breaking a bat, and thus getting

Vestigation
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caught, on the one time he used cork, would be about one in 25, or 4%.
This p-value is small enough to be statistically significant. So, by this rea-
soning, there is some statistical (though not completely conclusive) evi-
dence against Sosa’s having used cork just this one time.

Another issue that further reduces the p-value is that even once the bat
breaks, it is not a certainty that the cork will be spotted. Indeed, the
umpire who noticed the cork, Tom McClelland, happened to be the same
umpire who had disallowed a home run by George Brett back in 1983
because of excessive pine tar on his bat (although that decision was later
overturned). So, McClelland probably scrutinized bats and enforced the
rules more strictly than many other umpires. With another umpire, Sosa
might not have been caught. This suggests that the p-value, the probabil-
ity that he would be caught if he used a corked bat just once, is even
smaller than 4%.

There is one more point about p-values that might work in Sosa’s
favour. It is possible that corked bats, having been partially drilled and
hollowed, are less solid than regular bats and therefore more likely to
break. So it is possible that even if Sosa used a corked bat only once, he
still had a high probability of being caught, because a corked bat has a
high probability of breaking. If this is true, and the difference is signifi-
cant, then the p-value might be significantly higher, thus supporting
Sosa’s contention.

It seems unlikely that corked bats are much, much more likely to break
than regular bats; if they were, they wouldn’t even be used during prac-
tice times. But from a Probability Perspective, Sosa’s case all boils down
to one question. If corked bats are, say, three times as likely as regular
bats to break, the p-value could rise from about 4% to about 12%, a sig-
nificant difference and one that would support Sosa’s claim.

Sosa was eventually suspended for seven games, a substantial penalty
but slightly lenient compared with other similar incidents in baseball his-
tory. However, the question of whether Sosa’s actions were deliberate
remains unresolved. All we can say for sure is that either Sosa was delib-
erately and repeatedly cheating or corked bats are much more likely to
break or Sosa was extremely unlucky. It all comes down to probabilities.
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Catching the Bad Guys

Low-probability events have another use: they are sometimes used to
catch bad guys. We have all seen a movie or television detective whose
suspicions are aroused because something “doesn’t add up” or seems too
surprising to be mere coincidence. Perhaps several seemingly unrelated
bystanders all work for the same company, or the amount of money
deposited in a criminal’s bank account is precisely equal to the amount
taken in a recent heist. When surprising or unexpected events occur, they
can cause us to question or investigate further, hoping for the best while
fearing the worst.

Modern companies use high-speed computers to identify exceptions to
the norm in an effort to detect fraud and criminal activity. For example,
telephone companies run computer programs to check if your long-
distance phone charges fall within your “usual pattern.” If suddenly you
make calls totalling $1,000 to Sudan when you have never phoned
Africa before, their suspicions are aroused. They may wonder if your
phone line has been wired into by a black-market agent who is stealing
and selling your long-distance services (apparently not uncommon). The
phone company may inquire further, or in extreme cases, simply discon-
nect your line, in an effort to thwart the criminals.

Credit card companies also scan accounts for deviations from usual
patterns. If you normally never charge more than $100 per month and
then suddenly charge $8,000 worth of high-priced jewellery within a few
hours, the company’s computer programs will show an alert. The comi-
pany might ask you to verify the purchases, or they may even invalidate
your card until you can verify that the charges are legitimate.

Determining when charges should or should not be considered suspi-
cious is a complicated question. If standards are too lax, many fraudu-
lent charges may be logged before any action is taken. But if standards
are too strict, much manpower may be wasted and many customers
inconvenienced, all for nothing. The goal is to devise statistical algo-
rithms that can distinguish between perfectly valid fluctuations in the
spending patterns of honest customers and illegal activity.
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Unfortunately, the algorithms don’t always work perfectly. For exam-
ple, I once needed to make two quick long-distance calls from a pay
phone. I had just moved and my calling card number was not handy, so 1
charged the calls to a credit card instead. Late that evening, I returned
home to a voice mail message from a bank, asking me to phone them
immediately. I was told that there had been some suspicious activity on
my credit card, which they feared might have been fraudulent.

Grimacing, l imagined spending days examining pages of charge sheets,
trying to figure out which charges were really mine, and trying to con-
vince the bank to remove the unwarranted charges. Resigned to my fate, [
asked the bank rep for more details. There was a pause of a few moments
while he accessed my files. Finally he came back on the line, slightly
embarrassed. The computer had alerted him, he explained, because there
were two unexpected phone charges of $5 each. That was the only anom-
aly, one that a human (unlike a computer) could see was hardly worth
investigating. I guess their algorithm wasn’t working so well that day.

Of course, probabilities can never prove that inappropriate activity
was committed. When we arrive at a conclusion of criminality based on
probabilities, the question we must ask ourselves is, what is the proba-
bility that we are mistaken? The justice system is sometimes too quick to
minimize the possibility of mistakes because it uses faulty reasoning to
estimate probabilities.

A Misuse of Multiplication

You're so angry—your flower bed has been trampled again. You assem-
ble your four children and begin hurling accusations.

“One of you has trampled my flowers,” you screech. “And I am going
to figure out who!”

Looking from child to child, your eyes focus on Arthur, the oldest. “I
think you did it,” you accuse.

Arthur protests his innocence, but you silence him and continue your
investigation. “Mrs. Chan from next door caught a glimpse of the act,”
you explain. “She didn’t see who it was, but she was sure it was a boy.
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Furthermore,” you add for dramatic emphasis, still glaring at Arthur,
“you are a boy. Since only two of my four children are boys, the proba-
bility is 50% that the perpetrator just happened to be a boy too, purely
by chance, without you being guilty of anything.”

Arthur feels aggrieved, but figures that 50% is still a pretty large prob-
ability. Maybe he will get off.

“There’s more,” you continue. “Mrs. Chan also said the child had
blond hair. Only three of my four children have blond hair, so the prob-
ability is 75% that the perpetrator just happened to have blond hair too,
purely by chance.” ;

Arthur is getting nervous, but you continue. “Mrs. Chan also saw that
the flower stomper was wearing a blue jacket. Only two of my children
have a blue jacket. That’s another 50%.”

Arthur is fidgeting, but doesn’t dare to run. “And, finally,” you
declare, “the perpetrator had to be able to climb into the garden. Lisa
and Jennifer are both too small to do that. Only 50% of my children
could have pulled off this manoeuvre.”

Arthur starts to reply, but you cut him off. “Don’t interrupt! Pm con-
ducting an investigation here!” You pick up a handy calculator and
begin pressing buttons. “Let’s see, S50% times 75% times 50% times
50% equals...”

The air is thick with silence as you do the calculation. Finally you con-
clude, “Just 9%; there is only a 9% chance that you just happened to fit the
profile of the perpetrator, purely by chance. That’s a small enough proba-
bility for me. Go to your room, and don’t come out for five months!”

Hurt and defeated, Arthur trudges upstairs to his room. Meanwhile,
just out of view, your other son, Jonathan, is smiling. He looks resplendent
in his blond hair and blue jacket. He runs outside to enjoy his freedom.

In fact, it was unfair to multiply all of these probabilities together. The
reality is that both Arthur and Jonathan were agile boys with blond hair
and blue jackets. So, the probability that Arthur fit the description by
pure chance was 50%, not 9%. Without a doubt, Arthur was unfairly

caught in the uncompromising web of over-eager parental justice.
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Similar problems arise when DNA profiling (also called “DNA finger-
printing”) is used in criminal proceedings, such as during the infamous
O.]. Simpson trial. DNA is our personal genetic code, and except for
identical twins, every person’s DNA is unique. However, current DNA
profiling technology does not match the entire DNA sequence. Rather,
only a small number of DNA “markers” are identified and matched. If
samples from the suspect and from the crime scene have the same mark-
ers, this provides evidence of guilt. But how much evidence?

The probabilities associated with DNA profiling were controversial
and frequently debated, especially during the early years of using DNA
in criminal trials (the late 1980s to the mid 1990s). One issue was
whether it was valid to multiply the probabilities corresponding to the
different markers. Are the various markers “independent,” so their
probabilities can be multiplied, or are they “dependent,” so that such
multiplication is invalid? Prominent statisticians supported each side of
that debate while criminal convictions hung in the balance.

A related issue is that DNA profiling attempts to compute the proba-
bility that a randomly chosen person would happen to match a specific
DNA sample, just by chance. But chosen randomly from what popula-
tion? From the world at large? From people who live near the crime
scene? From people of the same race as the suspect? The choice of which
comparison population to use can significantly affect the probability of
a match.

Even if a suspect’s DNA matches, and even if there is a very small prob-
ability that a randomly chosen person’s DNA would match, does that
mean the suspect is guilty? Maybe he is innocent regardless. After all, out
of all the world’s population, it is not surprising that someone’s DNA
would match the suspect’s by pure chance. DNA profiling attempts to
compute the probability that a randomly chosen person’s DNA would
match that taken from the crime scene. But what is really important is
the probability that the suspect is guilty, which is a different matter and
harder to quantify. ‘

The O.]. Simpson murder trial provided an extremely high-profile
" battlefield for this question. Blood samples matching Simpson’s DNA
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had been found near the two victims’ bodies, and blood samples match-
ing the victims’ DNA had been found in Simpson’s car and on a glove
behind his home, evidence that seemed to point strongly to Simpson’s
guilt. Both the prosecution and the defence legal teams called numerous
statisticians to debate such technical matters as likelibood ratios and
frequencies and mixtures, all in an effort to determine the probability
that these blood-sample matchings had occurred by pure chance. One
prosecution witness, Robin Cotton, concluded that the probability was
less than one chance in 170 million that a randomly chosen person’s
DNA would have matched the DNA of a blood splotch found near the
victims® bodies, as Simpson’s did.

Some extra statistical courtroom drama was provided when one of
the prosecution’s statisticians, Dr. Bruce Weir, was forced to admit he
had made a mistake during some last-minute court-mandated extra cal-
culations. Dr. Weir quickly corrected his calculation, and the probabil-
ity of a match by pure chance remained extremely small. However, the
miscalculation may have lessened the credibility of the DNA evidence,
and Weir admitted that “P'm going to have to live with that mistake for
a long time.”

In the end, the DNA evidence against Simpson wasn’t so much dis-
credited as discounted. One of the police investigators who had handled
some of the evidence, Detective Mark Fuhrman, had previously been
recorded using racial epithets. The defence team argued that Fuhrman
was biased against African-Americans, and this led them to suggest that
the police may have planted evidence, which would make all of those
one-in-170-million probabilities completely irrelevant. It seems likely
that this suspicion, more than any one other factor, led to the jury’s ver-
dict of not guilty. One of the jury members said in a post-trial interview,
“I didn’t understand the DNA stuff at all. To me, it was just a waste of
time. It was way out there and carried absolutely no weight with me at
all.” It seems possible that this particular jury member was lacking in
Probability Perspective. ‘

The controversies around DNA profiling continue to this day and
remain an active area of statistical research. Nevertheless, most statisticians
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would agree that if DNA taken from a crime scene is found to match that of

a suspect, it provides fairly strong evidence that the sample came from the

suspect, assuming the sample was analyzed properly and was not planted

or tampered with.

~ For another perspective on using probability to catch bad guys, we
turn to the adventures of Ace Spade, PPL
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Interiude

The Case of the Collapsing Casino

As a balf-time interlude, let’s follou) the fun and adventures of Ace
Spade, PPI. (Warning: Serious, sober-minded readers may wish to skip
this chapter.)
Ll b * b

It was a cold winter day. As cold as the logic of a mathematical proof.
The window rattled in the wind, in time to the clicking of Doris’s type-
writer. “I’ll be in my office, Doris,” I snapped. “Okay, Ace,” Doris
chirped. “Pm almost finished logging the office expenses!”

Doris was chirpy, all right. Too chirpy. She knew as well as I did that
business hadn’t been good. Nobody bothers with the Probability Perspec-
tive anymore. Doris was dependable, but adding up the books would take
less time than it takes an electron to return to its low-energy state.

From inside my office I heard the phone ring. I held my breath; could
this be the client I needed? “Office of Ace Spade, Probabilistic Private
Investigator,” I heard Doris sing out. “How may I help you?” After a
pause, I heard Doris say, “Please hold, I’ll see if he can squeeze you in.”
A meeting was being arranged!

I could squeeze the caller in, all right. Doris knew I had no other
appointments that day. She soon appeared in my office, eyes gleaming
behind her rectangular black glasses, to confirm a meeting with Jenny
Jupiter from the Baker Betting Building,.
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Late that afternoon, I heard someone arriving. Seconds later, Doris
knocked on my office door. “Ace, this is Jenny Jupiter.” In walked Jenny,
and it was everything I could do to keep from falling over. Jenny was a
looker, all right. Bright-blond hair framing deep blue eyes and pouting
lips. Legs as long as a boring calculus class. A sweater stretched out in the
shape of a giant infinity sign. I steadied myself against my desk and tried
to keep my composure.

“Er, uh, sit down,” I stuttered. Jenny quickly sat, but her expression
showed no pleasure. “Oh, Mr. Spade,” she began, “you’ve got to help
me! It’s my husband’s—I mean my fiancé’s—betting parlour. It’s all gone
so wrong! just when things were looking up . . . just when George was
getting back on his feet . . . just when it looked like our wedding might
finally go ahead . . .”

I supposed I should have comforted her, but I didn’t trust myself to get
within a 1.5-metre radius. Instead, I tried to keep things professional.
“My fee is $100 an hour,” I began. It’s always best to settle the fee while
the client feels distraught. When she nodded, I continued, “Now tell me
the details.”

“QOh, Mr. Spade,” she said again, “the Baker Betting Building—that’s
my husband’s place—was doing just swell. The bank balance was climb-
ing, the customers were having fun. George and I went ahead and sched-
uled our wedding for next month. We figured we could afford a big
party, everything included. But now . . .” She dabbed her eyes.

“Go on,” I said as neutrally as I could. She seemed upset, but her
manner was nevertheless focused and earnest, as if she knew just why
she was here. I can respect that; know your equation before you solve it,
I always say.

She composed herself, resting her hands on my desk, showing a big,
flashy diamond ring. “In the last few months, things started turning
around,” she continued. “Customers started winning their bets. The
bank balance went down. And then in the last few days, two high
rollers won big, really big.” She paused for effect, and looked me
straight in the eye before continuing, “It’s just about cleaned us out,
Mr. Spade!”
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I forced my glance away from her sweater and tried to think. It didn’t
add up, see. With casinos, the fix is in. The odds are set. The scales are
tilted in the house’s favour. Sure, a few high betters might score now and
then. But in the long run, the house wins, see. That’s the way it is. It’s the
Law of Large Numbers. It’s in the bag.

Jenny stood up, and reached out her hand to thank me. I found myself
saying, “Why don’t I follow you back now?”

We stepped out into the freezing wind. My car was in the shop, as
usual, so she drove. Her back seat was littered with financial documents,
a makeup kit, half a tuna sandwich wrapped in clear plastic, a cheap
paperback romance novel, and a Greek Islands tour book with an enve-
lope sticking out. Ah, Greece, the birthplace of geometry, the home of
Euclid and Pythagoras and Archimedes and—

Jenny must have seen me staring. Shivering, she said, “You know, in
Athens yesterday, it was a nice, warm 21 degrees Celsius!” Glancing at
her foot on the accelerator, I realized I could use a little warmth myself.

It had snowed a lot the previous day, so driving was slow, but finally
we reached the Baker Betting Building. Jenny walked up the steps, and I
followed closely behind, more distracted than a mathematician finishing
off a proof during a cocktail party.

“This is the place, Mr. Spade,” she indicated, waving her hand around.
I took a good look. It was like a thousand other casinos—bar at the back,
tinny jazz music coming from a lone speaker, smoke as thick as a
trigonometric identity. Customers milled about, playing blackjack,
poker, slot machines, and roulette. Some looked pretty flashy, others as
down on their luck as a lottery addict.

Jenny took me to a back office. “This is my husband, George Baker,”
she 'said, introducing me to a large, square-shouldered fellow with a
crooked nose. “I mean my fiancé,” she corrected herself with a coy smile
at Baker, who smiled back.

“Beautiful, ain’t she?” Baker asked as Jenny left.

“T hadn’t noticed,” I replied coldly.

“We’re gonna get married next month,” he went on. He seemed as
lovestruck as a graduate student who’s just chosen his PhD thesis topic.
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“Down to business,” I snapped. “Jenny says you’ve been losing money
lately. 1 need the details. All of em.”

“It’s true,” Baker sighed. “Why, just last week, two different players
won the three-cherry jackpot on the slot machine—that’s a $20,000 pay-
out! I can’t afford two of those in a row! It’s ruining me! Usually, there
are only about eight three-cherries all year. Something is wrong!”

It sounded bad, all right. “Those two players with the three-cherries,”
I asked, “are they here now?” They were. Baker pointed them out with
more than a little anger in his voice. One, Johnson, still playing the slot
machines, wore a suit as shiny as a two-headed coin. The other, Alberts,
had moved over to the poker table, where he was losing bad to a shifty-
eyed youth named Richards. ‘

“Ah, Shifty Richie,” Baker grumbled. “When you think his hand is
strong, he’s bluffing. When you think he’s bluffing, he’s got the juice. The
kid never loses.” Something about what he said stuck in my craw. Never
loses, huh? Nobody never loses. ‘

I looked around some more. At the roulette table, a nervous-looking
young man was spinning the wheel and collecting the bets. As the wheel

(R

wound down, he would squeal, “No more bets, please!” Baker explained
that normally the roulette wheel was Jenny’s job, but Frankie was work-
ing today because Jenny was off, first visiting me and now balancing the
books in the back room. Around the roulette wheel were a few lonely-
looking losers, including a fidgety middle-aged sad sack with a loosened
tie and a dirty shirt. “Name’s Alpha Beta,” Baker explained. “Comes in
nearly every day and bets just $10 each spin—always on black. Guy’s so
insecure that half the time he backs out and doesn’t bet after all,” he con-
tinued with a chuckle.

At the blackjack table, the dealer was a pretty brunette named Lisa.
She dealt like a real pro, crisp and clean and as fast as a Beowulf com-
puter cluster. Baker said she’d been working there about two years, did a
good job, and earned her large bonus payments, but he didn’t know
much about her past. At the moment, she was cleaning out a tipsy busi-
ness fellow who bet high and split whenever possible, but never seemed
to win. Baker said his name was MacDonald, and he came in twice a
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week, always played blackjack with Lisa, and always left looking sadder
than when he arrived.

A thought occurred to me. “You keep your daily totals for the different
slot machines and tables?” T asked. “Sure!” Baker snorted. “What kind
of a fleabag betting parlour you think I’'m running here? I never read that
stuff myself but, sure, we got it.” We went back to his office, and he
called to Jenny to bring in the books she was working on.

Once we were seated, he asked me, “What is this all about? Do you
have things figured out?” Actually I did have the beginning of an idea.
But just then Jenny arrived, carrying a tray containing the financial
books plus two steaming cups of coffee. She put the books down on
Baker’s desk, then leaning over she carefully placed one cup in front of
Baker and the other in front of me. Her work with the financial figures
hadn’t changed her own, and I lost my train of thought. “Er, uh, thanks
for the coffee,” I offered feebly.

Jenny gave a smile that could warm up absolute zero, and then walked
away. Both Baker and I stared after her. Only once she left the room did
I recover and turn to the books.

“So, what’s your big idea?” Baker asked, taking a sip of his coffee. “I
mean, with what we’re paying you, we need some answers!”

Ilooked over the books. There were totals, day by day, for the amount
won or lost at each slot machine and at each betting table. Sure enough,
it confirmed what I suspected. Things were starting to fall into place. “I
think I’ve got something,” I told Baker.

Excited, Baker stood up. “I just knew you would! Now we’ll get those
bastards!” He stepped out of the office and called, “Johnson! Alberts!
Get in here!” Jenny was just walking past the now empty roulette table,
and Baker said, “Jenny, perhaps you’d better hear this, too.”

As Baker returned to the office, he stumbled a bit and slumped quickly
back into his chair. “Whoa, I don’t feel so great,” he mused. “I'm kinda
dizzy. It’s funny, I felt fine just a minute ago.”

The others quickly arrived. “What’s this all about?” demanded Johnson
in a huffy voice, his suit as shiny as ever. “I’'m up over a grand at that slot

-machine, and I'm not stopping now! Customers have certain rights, you
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know!” Alberts was more sheepish, muttering, “Perhaps a break from
Shifty Richie will do me some good.” A few other customers, including
MacDonald and even Richards, stuck their heads in the door to see what
was going on. But my eyes were on Jenny, sauntering slowly into the
office and leaning against a wall by the door.

Baker’s face looked pale, but he managed to mutter, “Spade, tell them
about . .. about the . . .” before trailing off. Feeble as his direction was,
I took it as my cue.

“Listen up,” I barked. “This joint has been losing money hand over
fist, and it’s time to find out why.” This was met with choruses of “That’s
not my problem” and “Just what are you implying, mister?” but I
ignored them and went on.

“In the past week, two customers,” I looked squarely at Johnson and
Alberts, “have each won a three-cherry $20,000 payout. That should
only happen about eight times a year. What are the odds of two wins in
one week?”

“Damned if I know!” growled Johnson. “Frankly, damned if I care,
too!” He started to walk out the door.

“Not so fast,” I shot back. “T’ll tell you the odds.” My listeners sat
back and sighed, resigned to the lecture. “Eight times a year corresponds
to an average of 0.154 wins per week.” This elicited a few groans about
“how can you have 0.154 of a win?” but I continued. “Since the different
wins are independent of each other, that means the probability of two
wins in any one week is,” I could feel everyone lean in for the answer
“Just over one percent.” Everyone was frozen now, wondering how to
interpret this figure. “Oh, that’s unlikely,” I conceded, “but not so
unlikely that it will never happen. In fact, it should happen about one
week every two years—that’s Poisson clumping for you—so it’s about
time that it did.”

There was a moment’s silence while everyone took in what I had said.
Somebody asked if poisson was French for “fish.” But gradually it
dawned on them all that I was letting the slot players off. This caused
them a brief glimmer of pleasure, but then their annoyance returned.
“You mean you called us in here just to tell us that?” demanded Johnson.
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Even Baker, woozy as he was, still managed enough anger to wail, “Wig,
what we’re paying you, that’s the best you can come up with?”

I tried to regain control. “The three-cherry wins are what threw us a]]
off,” I explained. “I was puzzled, since your slot machines are serviced
regularly and can’t be tampered with. So in the long run, they should be
in favour of the house, as they’re designed to be. But your downfall
didn’t come from the slots. It didn’t fit.” Baker seemed puzzled, so I con-
tinued. “Once I realized that two three-cherries in one week wasn’t that
unlikely after all, I decided to look elsewhere.”

Ihad my listeners entranced, so I went on. “Next [ wondered about the
poker table. How could Richards always win? I figured probably he
cheats.” At this, Richards jumped up, raised his fists, and cried, “How
dare you!”

“Relax,” I told him. “It doesn’t matter. In poker, the house takes a cut
off the top of every hand, so no matter who wins, the house always
comes out ahead.” Richards still looked ugly, so T added, “Seeing as the
house is my client today, I don’t care if Richards pulverizes his competi-
tion like a proof by contradiction.” They were puzzled by this remark—
nobody understands logical proofs these days—but even so, Richards
seemed mollified and dropped his hands to his sides. As he did, I saw the
corner of a King of Diamonds stick out from his left sleeve, But the poker
players weren’t the ones paying for my services, so I said nothing.

“That brings us to the blackjack table,” I announced. “That Lisa is the
smoothest dealer I've ever seen. Bet she was a hustler before working
here. Deals so fast I bet she could lay any card down anytime, and no one
would be the wiser.” Lisa, who had stuck her head in the doorway,
scowled, unsure whether to be offended by my implication or flattered
by my assessment of her abilities.

“Her smoothness didn’t stop at cards, either. At first I was puzzled
about why poor MacDonald kept on betting every day, even though he
was losing. Then I saw it. It was the one thing that probability can’t pre-
dict. Love! He had fallen in love with Lisa!™ At this MacDonald looked
mortified, his head buried in his shoes like an electron in a potential well.
Mixed in with Lisa’s discomfort, I saw a hint of a smile. The other players
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looked at her accusingly. Bizarrely, an image of my secretary Doris flashed
through my mind.

“Again,” I told them, “it doesn’t matter. Whatever Lisa has done in the
past, now she’s working for my client and making lots of money for him,
too. She’s earned her bonuses, friends.” The players stared at Lisa with a
newfound horror, and they variously vowed never to play blackjack
again. Baker, still slumped in his chair, seemed both impressed with
Lisa’s operation and worried that my revelations were driving away his
customers.

“This brings us, finally, to the roulette table. That’s right, the poor, old,
underused, ignored, disparaged roulette table.” Several players scoffed
at my mention of roulette, and even Baker seemed disappointed. But it
was Lisa, still full of contempt, who spoke up. “Oh, come on now,” she
spouted. “We get that roulette table tested and serviced just the same as
the slot machines!” The players murmured agreement.

“That may well be,” I conceded, “but there’s more than one way to
compute a double integral.” Again they looked puzzled, so I went on.
© “At first I dismissed roulette. The players never bet more than $10 at a
time, usually just on red or black so the payouts are just $10 at a time.
Furthermore, the odds are all fixed in favour of the house, so in the long
run no player can ever make money off roulette. No way. Impossible.”
Everyone agreed. “Exactly!” exclaimed one.

“That is,” I spoke up above the din, “no one can make money by play-
ing fairly.” This brought fresh howls of protest. “I already told ya, the
wheel gets tested!” Lisa practically screamed.

“Oh, I'm not thinking about the wheel. I’m thinking about the bets.” I
had their attention now, so I went on. “It all came to me when I heard
Frankie cry out, ‘No more bets please’” This got a bit of a laugh, as
Frankie’s repetition of this line had gotten on everyone’s nerves a little. “I
thought, what if there were no cut-off on bets? What if you could change
your bets after the ball had landed?”

At this Frankie, who had been shyly listening from the other room,
pushed his way in, his face red. “You listen to me, mister!” he wailed. “I
know some people don’t like the way I give instructions. But I do my job
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proper, and I would never, ever let a fella change his bet once the ball had
landed!”

“Hey, hey, Frankie,” I said gently. “Nobody’s accusing you of any-
thing. I know you-did your job properly.” This stopped Frankie in his
tracks, and I swear he started to sob quietly from the built-up emotion.
Fortunately for all of us, he left the room.

“No, not Frankie,” I told the others. “Frankie’s a good kid. But he was
just filling in. You all know who’s the usual roulette spinner.” They cer-
tainly did. At my words, everyone turned to stare at Jenny, at least those
who weren’t eyeing her already.

Jenny played it cool. Too cool. “Why, Mr. Spade,” she said with a
smile, “I sure hope I haven’t done anything wrong. If there’s anything I
can do to help catch whoever’s been doing my husband—I mean my
fiancé—in, then you just give the word, fella!” She looked at me with
those deep blue eyes, her hair falling gently over her cheeks, and I had a
moment of hesitation. But I forced myself to look away and go on.

“Jenny couldn’t mess with the wheel, that would be too obvious. What
she could do is to allow a confederate to withdraw his bet after the ball
landed now and then, if he saw he was going to lose. That way, in the
long run, he would have fewer losses than wins and come out ahead.”

This elicited more howls of protest. Even Baker, who was now listen-
ing with rapt attention, wondered how a few $10 bets could make much
difference either way. “Oh, sure, it wouldn’t make much difference at
first. But let’s say this confederate came in every day, stayed for eight
hours, and bet on black, once every 30 seconds. Then 18 times out of 38
it would come up black and he would win $10. As for the rest of the time,
suppose this confederate was watching for the image of a dark ball on a
red spot. Suppose that even half of the times that it came up red, he man-
aged to withdraw his bet. Then on each roll, instead of averaging a loss
of 53 cents, he would average a win of—> I computed fast “—of $1.84.
After a month, he would be up—Ilet’s see—about 54 grand.”

This last figure really threw them. How could a few puny $10 bets add
up to $54,000 a month? Repetition and quantity, that’s how. Small
changes in the short run, repeated over and over, add up to big changes
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over time. Big enough to bring down Baker. One player had the gall to
question my calculations, but I shot back, “I'm a Probabilistic Private
Investigator, pal. I’'m a professional.”

“By the time I checked Baker’s books,” I continued my narrative, “I
knew what I was looking for. And sure enough, the roulette figures are in
the negative almost every day for the past four months. And that, my
friends, is as rare as the steak down at Chez Jacques.” They were getting
more interested now. “Oh, it’s just a few thousand here and a few thou-
sand there, but it adds up. And the thing is, since Jenny kept Baker’s
books, no one else noticed these odd figures. In fact, Baker himself didn’t
know there was trouble until the unexpected three-cherries run, when
suddenly he couldn’t pay his bills.” People were now looking at Jenny
with a mixture of anger and pity. [ knew they’d find it hard to believe she
was guilty. Unfortunately, I wasn’t done yet.

“The hardest part was identifying Jenny’s confederate. Then it hit me.
She had a Greek Islands tour book in her car, and she knew the tempera-
ture in Athens. She was planning a one-way trip to Greece. The envelope
in her tour book could only be one thing: an airplane ticket. And with
whom would she be travelling? Why, probably a Greek. Someone like
Alpha Beta, who must be Greek because his name is the first two letters
of the Greek alphabet!”

At this Baker tried to get to his feet. “Beta! Beta!” he cried out. “Get in
heret”

“QOh, Beta’s already left,” I explained. “He cleared out from the
roulette table as soon as Jenny gave the signal. Jenny herself was on her
way out when you called her back. They had their escape all planned,
and they were taking Beta’s roulette winnings, plus Jenny’s big diamond
engagement ring, with them. All Jenny’s talk about ‘my husband, I mean
my fiancé’ was designed to throw us off. She was as likely to marry Baker
as a coin was to come up heads 100 times in a row.”

My audience puzzled that one over, and Baker himself looked heart-
broken, but I quickly went on. “When the three-cherries unexpectedly
hit and caused a premature financial crisis, they had to make a quick run.
They probably planned to leave yesterday, but the airports were closed,
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due to the snowstorm. So instead, Jenny followed Baker’s instructions
and called me in. She was just stalling for time, figuring she could escape
before I’d learn anything.” I grinned and looked around. “She got that
part wrong.” ’

The players couldn’t believe that someone as beautiful as Jenny would
run off with someone as strange as Beta. It was time to move on to my
last pronouncement. The home-run hit. The QED. My Ace in the hole.
My Ace of Spades, so to speak.

“There was something else,” I explained. “Just when Baker called you
all in here, he started to feel weak and dizzy.” A quick glance over at Baker
confirmed that he was still in this state. “Yet he’d been alert and energetic
just before. What had changed? Then I figured it out: Jenny had served him
coffee, and he’d had his first sip just before going weak. Coincidence? Not
likely. Out of all the 1,440 minutes in a day, why would he go weak the
very minute he drank Jenny’s coffee? That stacked the odds. That was the
clincher. Jenny had drugged Baker, making him confused so he wouldn
notice her escape. I bet she was trying to drug me, too—that’s why I didn’t
drink anything.” Looking down at the cups on the table, I continued, “I'm
sure the lab boys will find that these coffees have been spiked.”

Actually, I didn’t know any lab boys—I’m a probabilist, not a
chemist—but I figured somebody somewhere would know what to test
for. Jenny must have figured this, too, because she suddenly reached out
to knock the cups over. I saw her in time and grabbed her wrists first.

So there I was, face to face with the prettiest dame I’d ever seen. She
was crying gently, which only made her eyes look more blue, her lashes
longer. I felt more rotten than a discarded ham sandwich in the math stu-
dent lounge. Sometimes I wondered why I'd ever become a PP instead.
of getting a respectable professorship at a nice university some place.

The police rounded up Jenny and Beta without trouble, and they were
sentenced to more years than it takes to do a doctoral dissertation.
Baker’s business thrived again, and he was so grateful that he paid me
double my fee.

As for me, I discovered that it’s not just in mathematics that the sim-
plest ideas are the best. Sometimes what is nearest is also dearest. Doris
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and I fell in love, and we were married in a small, quiet ceremony. Our
PPI business is still hobbling along. Baker attended our wedding, and we
see him now and then. Sometimes, when he’s in a good mood, he invites
us over to his casino to play a little roulette. Every once in a while, with a
wink, he lets me withdraw a losing bet on black, just to show Doris how
it was done.

So ends the tale of Ace Spade, PPIL. Beauty, riches, poison, deception,
resolution—rprobability theory has them all.
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Fifty-one Percent
to Forty-nine Percent

The True Meaning of Polls

A number of national elections were held in 2004, including in Spain on
March 14, in Canada on June 28, in Australia on October 9, and in the
United States on November 2. The run-up to each of these elections fea-
tured large numbers of polls that attempted to gauge the opinions of the
citizenry and predict the upcoming results. Most of those polls asserted
various “margins of error” for their conclusions. For example:

e One month before the Spanish election, the Center for Sociological
Research completed a huge survey, of 24,000 Spanish voters. They
predicted that the governing Popular Party would receive 42.2% of
the vote, while the opposition Socialist Party would receive 35.5%.

" They asserted that their results had a margin of error of 0.64%.

* Two days before the Canadian election, EKOS Research Associates
sampled 5,254 Canadian voters and predicted 32.6% support for
the Liberals, 31.8% for the Conservatives, and 19.0% for the New
Democratic Party (NDP), results they claimed “are consideied accu-
rate to within 1.4 percentage points, 19 times in 20.”

e Two weeks before the Australian election, an ACNielsen poll sur-
veyed 1,397 voters and showed the governing coalition of Prime
Minister John Howard leading the opposition Labor Party by 52%
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to 48%, with “a margin of error of plus or minus 2.6 percentage
points.”

e Eleven days before the United States election, Reuters/Zogby sur-
veyed 1,212 likely voters, giving George W. Bush a lead of 47% to
45% over John Kerry; they said that their margin of error was plus
or minus 2.9 percentage points.

Similar claims are made all the time. What do they mean? Can polls
really predict who will win an election? How closely do their results
reflect the true opinions of the electorate? On what basis do they assert
their accuracy or error levels? Are they really sure?

And why does it matter what the polls say, anyway?

Public opinion polls have a special place in the modern political
process. Decisions are made, policies are introduced, performances are
evaluated, and election campaigns are run, all based on polling results.
Politicians may claim that they “don’t believe in polls” or that “the
only poll that counts is on election day,” but the reality is that they
make rnany of their decisions according to the latest (and perhaps
secret) poll numbers.

It could be argued that polls provide us with more direct democracy
than elections do. In elections, we get to vote only for a party or candi-
date—and often all parties behave similarly on certain issues. But with
polls, our opinion about each particular issue is taken into account,
albeit indirectly, as politicians plot their next move.

At times, polls seem to provide an extra level of communication
among the electorate. For example, Toronto’s 2003 mayoral election fea-
tured 44 different candidates, at least five of whom were well known and
high profile. The candidates held a wide variety of political opinions,
thus creating a jumble of confusing voting possibilities. However, over
‘the course of a long and bruising campaign, during which polls were
published regularly, two candidates emerged from the crowd: a
respected centre-left candidate (who won with 43% of the vote), and a
respected centre-right candidate (who came a close second with 38% of
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the vote). The other candidates (including the original leader in the polls)
each took less than 10% of the vote. Citizens had used the polls to create
a dialogue of sorts, and to narrow down a huge field of mayoral candi-
dates into a clear, compelling choice.

In the British election of 2005, Prime Minister Tony Blair spoke for
most analysts when he concluded that “it is clear that the British people
wanted the return of a Labour government but with a reduced majority.”
However, the choice “reduced Labour majority” did not appear on any
election ballot. Rather, the British voters used poll results to balance out
their votes and achieve their desired election result.

Another example of the same phenomenon was the Quebec sover-
eignty referendum of 1995. The province of Quebec was voting on
whether or not to secede from Canada and form its own sovereign coun-
try. The stakes were high, and many Quebecers were in a quandary. A
clear Yes vote would lead to quick independence, which most Quebecers
did not want. But an overwhelming No vote might weaken Quebec’s
bargaining position, and cause the rest of Canada to discount and ignore
Quebec’s constitutional and financial demands over the following
months. Each individual Quebecer could only vote a simple Yes or No.
But by following the polls carefully, and switching their allegiance as
needed, Quebecers managed to achieve the balanced vote—49.4% Yes
and 50.6% No—that many of them sought. Without polls, such a close
result probably wouldn’t have been achieved.

An on-line survey by Maclean’s magazine in June 2004 found that
fully 91% of respondents answered No when asked if poll results affect
their vote. But I don’t believe them. I think that many voters are indeed
influenced by polls, though they may not realize or admit this fact.

The Meaning of Polis

It seems clear that polls have a significant impact on our society and
political system. But, what exactly do they mean?

Suppose a polling firm samples 1,000 people and asserts that their
results are “accurate within 3.1 percentage points, 19 times out 0f 20.” It
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may seem at first that they are claiming that, 19 times out of 20, the
results of the next election will be within 3.1% of the firm’s numbers.

In fact, making such an incredible claim would require a precise under-
standing of how political opinions change between the poll date and the
election date; the extent to which citizens will say one thing to pollsters
and then vote differently; the probable actions of undecided voters and
of those who refused to respond to the survey; which citizens will or will
not bother to vote; and a host of other intangible factors.

Pundits and analysts work overtime trying to understand these factors,
and statistical modelling is used to try to estimate them. However, voting
intentions are very complicated and subtle, and polling firms do not
make claims of great predictive powers in these areas.

No, what the pollsters are claiming is something far more mundane.
They are claiming that, if they conducted a “comprehensive poll” by
phoning every single eligible voter in the province (rather than just
1,000), then there are 19 chances in 20 that the results of their poll of
1,000 people would be within 3.1% of the results of the comprehensive
poll.

Or, to put it differently: If they did 20 similar polls in a row (i.e., each
time again phoning 1,000 adult residents at random and asking them
about their voting preferences), about 19 of them would be within 3.1%
of the “right” answer (i.e., of the true political preferences that residents
will report to pollsters at that particular time).

In short, polls don’t have any magical powers. They don’t necessarily
predict what people will actually do, or how they will actually vote. They
can only report on how people answer questions on the telephone. And
the poll’s margin of error isn’t directly concerned with who will actually
win the election; it merely describes how accurately the poll is measuring
what all of the eligible voters would say if they were all asked the same
question.

Another difficulty with polls is that the political situation can change,
sometimes very quickly and dramatically. Pollsters try their best to antic-
ipate such turns. For example, they attempt to ascertain the “depth” of a
candidate’s support by asking such supplemental questions as, “Would
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you continue to support your candidate, even if he performed poorly in
the upcoming debate?” or, “even if on some issue, he took a position that
you did not agree with?” But such efforts are of limited value and cannot
always predict the outcome of an election. In any case, such considera-
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tions are not reflected in any poll’s “margin of error.”

The most spectacular example of changing voter opinion was the 1948
election for president of the United States. Early pre-election polls had
predicted an easy win for Republican Thomas Dewey over Democrat
Harry Truman, by an expected margin of victory of between 5% and
15%. The result seemed so clear that polling companies didn’t bother to
do any late polls to check for last-minute shifts in voter preferences. The
result was a narrow victory for Truman, huge embarrassment for the
polling companies (about 30 American newspapers immediately can-
celled their subscriptions to the Gallup polling results), and so much con-
fusion that the Chicago Daily Tribune published a large headline
“Dewey Defeats Truman” just as Truman’s victory was established.

The polling companies have learned their lesson since 1948, and now
routinely conduct polls until just a day or two before the election. But
even this does not completely eliminate surprises. In the 1992 United
Kingdom general election, opinion polls gave Neil Kinnock’s Labour
Party a slim lead over John Major’s Conservative Party. However, when
the votes were finally counted, the Conservatives had eked out a major-
ity (of just 21 ridings, out of 651 total). The Conservatives then contin-
ued to govern until 1997. My British statistician friends were doubly
disappointed by the 1992 election results: they were disappointed that
the Conservatives (who were seen to be unsupportive of universities)
were re-elected, plus they were embarrassed that the opinion polls had
gotten it wrong. Some commentators blamed an election-day anti-
Labour headline in the populist tabloid the Sun for the crucial last-
minute opinion swing.

In the days before the 2004 Canadian election, that EKOS poll and
several others all showed the race to be extremely close, with the Liberal
and Conservative parties each at around 31% or 32%. And yet, on elec-
tion day, the Liberals received 36.7% and the Conservatives 29.6%. The
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Liberals went from being virtually tied with the Conservatives to handily
beating them. What happened? It seems that in the final day before vot-
ing, about 5% of voters, fearful of a Conservative election victory,
shifted their vote to the Liberals, largely from the NDP. (“The Liberal
surge was literally overnight,” lamented a senior NDP adviser.) This shift
was enough to give the Liberals a solid victory instead of a tie. In the
aftermath, many people blamed the polling companies for incompe-
tence, but in reality they were simply the victims of last-minute, unpre-
dicted voter shifts—in other words, of democracy.

The Spanish election of 2004 was more controversial. Three days
before the election, terrorists bombed four commuter trains, killing 191
people. Government officials immediately blamed the Basque separatist
group Euskadi Ta Askatasuna (ETA), although al-Qaeda was later found
to be responsible. The government ended up being blamed for joining the
American invasion of Iraq the previous year, and also for misleading the
public over the train bombings. The result was a large voter shift away
from the government, from a comfortable lead in pre-election polls to a
solid defeat on election day. And once again, no poll’s margin of error
had predicted this dramatic turn of events.

Another difficulty for pollsters is that people don’t always tell the
truth. Some citizens are simply dishonest about their voting intentions. If
dishonesty occurs in a random fashion, without any particular pattern,
the poll’s results remain valid. However, if the respondents’ dishonesty is
weighted in a particular direction, pollsters are in trouble.

One example is votes for African-American electoral candidates in the
United States. Many people do not wish to appear racist, and they will tell
pollsters (and others) that they intend to vote for an African-American
candidate. However, on election day, some of them will switch to another
candidate instead. The net result is that polls tend to slightly overestimate
the support of African-American candidates. Just ask David Dinkins. In
1989 he was predicted by polls to have an easy victory as mayor of New
York City, but in fact he won very narrowly. Then in 1993 he was pre-
dicted to narrowly win re-election, but in fact he lost narrowly to Rudy
Giuliani. Similarly, in 1996, African-American candidate (and former
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Charlotte, NC, mayor) Harvey Gantt was predicted to edge out Senator
Jesse Helms, but in fact he lost by several percentage points.

In every election some voters say they are “undecided.” Usually
undecided voters are simply not counted in the poll’s results, and for
the most part this doesn’t cause any problems. However, if for some
reason undecided voters tend to behave in a particular way, they can
skew the results. An important example is, again, the issue of Quebec
sovereignty. It is now known that, when discussing Quebec sover-
eignty, many Quebecers declare themselves to be “undecided” because
they plan to vote No in a referendum, but they are getting pressure
from their friends and neighbours to vote Yes. (As Jean Chrétien
remarked about the 1980 referendum, “It was easier for the federalists
[No voters] to keep quiet until they got into the voting booth.”) When
polling companies measure support for Quebec independence, they
usually allocate 75% of the undecided vote to the No side, and just
25% to the Yes side. If they didn’t make this correction, their polls
would overestimate support for sovereignty.

Some voters will simply refuse to talk to pollsters. Perhaps they are
private people by nature. Or maybe they are too busy. Perhaps they
object to the very idea of pollsters. Or they are never home to answer
the phone. Or, in the newest twist, they use only a cellphone (which
pollsters are forbidden to call because the cellphone owner may have to
pay for incoming calls), and are thus unreachable in telephone polls. In
any case, if the unreachable voters have the full spectrum of opinions,
without any particular bias towards certain positions or candidates,
inability to poll them will make little difference to a poll’s accuracy.
However, if unreachable people tend to vote a certain way (for example,
perhaps recent immigrants are less likely to confide in pollsters, but are
also more likely to support a particular party), then the poll results can
be skewed. Some pollsters fear that, as more and more people become
fed up with unsolicited phone calls, or switch to using only a cellphone,
this problem will increase.

"Many people who claim to support a particular party will not bother
to vote on election day. Thus, a big part of modern political organizing is
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arranging volunteers to remind supporters that it is election day, escort
supporters to the polling stations, and otherwise “get out the vote.”
Once again, if all parties are equally successful at getting out the vote, a
poll’s accuracy will not be affected. But if one party is significantly more
successful than another, they could end up with a higher percentage of
the actual votes cast than was predicted by pollsters.

The Sad Tale of the Apathy Party
After careful consideration, you decide that the best possible lifestyle is
one of apathy. You dream of a nation of couch potatoes, each constantly
slumped over watching low-quality television programs. To make your
dream a reality, you inaugurate the Apathy Party, dedicated to encour-
aging indifference throughout the land.

Pre-election polls indicate that you have struck a chord. Fully 40% of
citizens tell pollsters that they support your policies. An election victory
seems within reach.

On election day, you are shocked to find that not a single citizen cast a
vote for your party. It seems that all of your supporters stayed home,

watching television.

Pollsters have to be especially careful when conducting surveys about
controversial questions or illegal activities, like drug use. For exar_nple, a
recent survey reported that 14.1% of respondents had used cannabis
within the previous 12 months—nearly double the 1994 figure of 7.4%.
Did this represent a true increase in cannabis use or were respondents
simply less afraid to admit their (illegal) use in 2004 than they had been
in 19942 Based on the survey data alone, there is no way to know.

One method of handling this problem is to conduct a poll with a ran-
domized response. For example, pollsters ask each survey respondent to
first roll a die (in secret). If the die shows 6, they should simply say Yes to
the next question. Otherwise, they should truthfully answer Yes or No.
This way, respondents are less afraid to respond truthfully: even if they
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say Yes, pollsters will never know if they actually used cannabis, or if
they were a non-user who just happened to roll 6.

How can pollsters make use of such a survey? By using probability the-
ory! Suppose 12,000 people were interviewed, and were each asked to
first roll a die and then respond as above. Suppose 3,800 of them replied
Yes, and the rest replied No. Now, on average about one out of six peo-
ple (2,000 people) will roll a 6, and will answer Yes. Subtracting them
from the survey results, we are left with about 10,000 people who truth-
fully answered the question, of whom about 1,800 responded Yes. This
result would indicate that about 18% of the respondents actually used
cannabis within the past year. And this estimate (18%) would probably
be quite accurate, since the randomized-response design allows people to
answer honestly.

Finally, there are times when confusion results simply from how a poll
is designed and interpreted, even if the results themselves are completely
valid. For example, it was widely reported that in exit polls conducted
during the 2004 U.S. presidential election, when voters were asked about
the most important issue affecting their vote, more chose “moral values”
than any other option. Critics of the eventual winner, George W. Bush,
argued that this proved that Bush’s supporters were all extremist Christ-
ian conservatives. Conservatives argued that the poll result indicated a
fundamental shift of American public opinion towards a more religious
and pious perspective. But a closer examination revealed that just 22%
of respondents had selected “moral values.” Furthermore, this phrase
may have meant different things to different people, while the six other
choices offered by the survey (things like “Iraq” and “terrorism” and
“health care”) were more specific. In fact, “terrorism” was chosen by
19% of voters, and “Iraq” by 15%, for a total of 34%. So, if the poll
design had combined these two issues into a single category (“security”
or “foreign policy”), the poll might have concluded instead that “secu-
rity” was voters’ number one concern—quite a different conclusion and
probably a more accurate one.
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Poli Bias

The single biggest potential problem with polls is bias.

We are all familiar with people who draw conclusions about “what
everybody thinks” from asking a “sample” of people who are all close
friends. From the Probability Perspective, we would say that their
polling sample was biased: just because their friends agree with them
doesn’t mean everybody else does, too.

Similarly, people have a tendency to notice only those facts or argu-
ments that support their position and to ignore those that don’t. For
example, a friend of mine who believes much more than I do in inherent
behavioural differences between boys and girls noted that her young son
enjoyed playing with toy trucks, which “proved” his innate masculine
nature. Her son also really likes flowers, but my friend dismissed this
interest as an insignificant and irrelevant aberration, thus reinforcing her
belief in traditional gender stereotypes.

Advertisements are rife with examples of polling bias. For example,
numerous television commercials advertise various exercise or diet plans
to assist with weight loss. These commercials invariably include testimo-
nials from satisfied customers who rave about how many pounds or
dress sizes or inches they have lost using this product. The problem is
that these customers have been selected by the company. There may well
be many customers who did not lose weight (or even gained weight)
using their product, but you won’t see them on television. The testimoni-
als shown form a biased sample and carry no statistical weight (as
opposed to body weight) at all.

For similar reasons, we should never trust any poll conducted directly
by a commercial enterprise or political party that has a stake in the
results. Not only can selective reporting and biased sampling affect the
results, but so can the phrasing of a question or tone of voice in which it is
asked. Consider these two questions: “Do you agree that overbloated
governments should reduce tax rates for our hard-working private sector,
to allow it to be more efficient and to create more jobs, thus benefiting
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everyone?” and “Do you agree that wealthy multinational corporations
should be allowed to keep even more of their huge profits, while con-
tributing even less to society’s basic needs such as health care, education,
and public transit?” These two questions ask essentially the same thing,
but they are likely to get very different answers.

It is fine for corporations or politicians or even eccentric individuals to
commission and fund polls. However, the polling itself should always be
done by an independent, professional, experienced polling company.
Only if its operators can ensure that the poll subjects are chosen ran-
domly from the population as a whole, without any bias or favouritism,
can a poll’s results be considered valid.

The Aging Skater
As a child, you always enjoyed the ice-skating outings organized at your
school. You and your classmates crowded onto yellow buses and were
driven to the local skating rink, where you zipped around the ice. You
were never one of th? best skaters, but you were certainly above average,
and you always had a good time.

Now, years later, you see a sign for a weekly “Adult Skate” at a down-
town rink. For old times’ sake, you buy a pair of second-hand skates,
and glide out onto the ice. Your new skates work fine, the old moves
come back to you, and you’re feeling pretty good.

But then you look around the rink and are shocked to see blistering
speed, graceful turns, backwards manoeuvres, and even leaps and twirls,
from most of the other skaters. Of the 100 or so skaters out on the ice,
you are without doubt one of the worst.

How can this be? Has your skating really worsened that much? You
don’t think so. But if not, how could you have gone from being an
above-average skater to one of the worst? What happened to all those
kids who skated so much more poorly than you did?

And then it hits you: you are a victim of sampling bias. The only
people who attend Adult Skate hour on a regular basis are the people
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who enjoy and excel at skating. And what about all those other people,
the ones who couldn’t skate very well as children? They rarely go skat-
ing anymore, so few of them are here today to make you look good by

comparison.

We see that bias is a real problem with the sort of informal “polls” that
we all conduct, implicitly, on a daily basis. But what about official, for-
mal polls conducted by reputable polling companies? Aren’t they careful
enough to avoid bias in their polls?

Usually the answer is yes. Professional polling companies, with
many years of experience, do indeed avoid injecting bias into their
polls. That is why their predictions are usually very close to the actual
results on election day. However, in certain cases, other forms of bias
can enter.

For example, when a conservative government was elected in Ontario
in 1995, it instituted an aggressive welfare-reform plan which, among
other things, reduced welfare benefits by 21.6% and made the conditions
to qualify for welfare more stringent. The government claimed these
changes would encourage recipients to end their dependency and find
jobs; critics claimed they would cause misery and hardship for society’s
neediest members. In fact, the number of people on welfare quickly
decreased, but there was widespread disagreement about why this
occurred, or what had become of the former welfare recipients.

In ;esponse, the government commissioned a poll. In October 1996, a
private polling company telephoned people who had gone off welfare in
May of that year. The company reported that 62% of these people listed
a new job as their reason for no longer collecting welfare. “The vast
majority are leaving the system for employment-related reasons,”
declared the minister of social services proudly.

But there was a problem. The polling company had attempted to con-
tact all 16,219 people who had gone off welfare in May 1996, but had
managed to track down only 2,100 of them. What happened to the other
14,119? Presumably many of them had been forced to move, or no
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longer had a phone, or were otherwise uncontactable. In short, the 2,100
respondents constituted a biased sample. It was likely that most of the
14,119 uncontacted people, in addition to 38% of the contacted people,
had 7ot found a job and were worse off than ever. Howevery, it took sey-
eral days of public debate—and a careful consideration of sampling
bias—before this conclusion was clearly articulated. ‘

Election-Night Jitters

A different form of bias can occur on election night. Often it takes sev-
eral hours for all the ballots to be counted and reported, and the resﬁlts
come in to media centres in dribs and drabs. You might think that this is
an unbiased way of getting information—after all, the election workers
themselves are scrupulously neutral, and they are all trying to report the
results as quickly as they can. If the delays don’t have any relation to how
people voted, they shouldn’t affect how the results are reported. How-
ever, sometimes there is a connection between the votes and the delays.

The most spectacular example is the night of the Quebec sovereignty
referendum of 1995. Much was at stake, the result was very close, and
millions of Canadians were glued to their television sets that evening,
The referendum voting was scheduled to end at 8:00 P.M., and by 8:30
results started trickling in. Early returns showed the Yes side in the lead.
As more results came in, the Yes side continued to lead slightly. Even a
couple of hours later, with the majority of the votes counted, the Yes side
still had just over 50% of the votes cast. It wasn’t until nearly 11:00 p.m.
that the No side inched ahead, and almost 11:30 until the main national
television network, the CBC, officially declared the No side the winner,

How could this be? How could the Yes side be in the lead with over
half of the votes counted and yet go on to lose? If a poll of just 1,000 cit-
izens is considered accurate, then shouldn’t a sample of over half of the
voters be even more so?

Part of the answer, of course, is that the vote was so close that any lit-
tle change in the count could affect which side was ahead. But a more
fundamental answer is that the delay in counting the votes was not
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purely random. Indeed, the biggest delays happened in the Montreal
urban area. So, by around 10 .M., most of the votes outside of
Montreal had been counted, while a-significant number of the votes
within Montreal had not. Furthermore, Montreal, with its large non-
francophone population and more global outlook, is home to a major-
ity of No supporters. So, the partial vote count at 10 o’clock was a
biased sample; it counted too many non-Montreal Yes votes compared
with not enough Montreal No votes. This bias was just enough so that,
even though overall a majority of Quebecers voted No, a majority of the
votes counted by 10 o’clock were Yes. Such are the perils of biased sam-
pling, even on election night.

Another interesting example was the reporting of the Florida results in
the U.S. presidential election of 2000. These results are now remembered
for protracted post-election arguments about butterfly ballots, hanging
chads, manual recounts, partisan election officials, and Supreme Court
decisions. But even before that debacle, the Florida results provided
additional confusion. At approximately 10 o’clock EST on election
night, most television networks predicted that Al Gore would handily
carry Florida, and several networks even announced that Gore would
therefore win the entire presidential election. They were forced to retract
their predictions about an hour later, as the Florida results suddenly
became “too close to call,” which turned out to be an understatement.

What happened? The networks had forgotten about time zones. The
majority of the state of Florida is in the Eastern time zone. However, the
northwest tip of Florida (the Panhandle) is in the Central time zone.
Since polls closed at 8 r.m. local time everywhere in the state, this meant
that vote counting from the Panhandle began an hour later. And since
Panhandle voters tend to vote mostly Republican, the networks underes-
timated Republican votes in Florida, and incorrectly predicted a solid
Gore victory there. Indeed, the networks were lucky that the Florida
results later became controversial due to the extreme closeness of the
final tally; otherwise their error would have been more heavily criticized.
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Dubya versus Kerry

The 2004 U.S. presidential election that pitted George W. Bush against
John Kerry also provides insights into various polling issues.

Interest in this election was extremely high, due to its expected close-
ness, and also to the polarization that Bush’s first term as president had
provoked (most people either loved him or hated him). Numerous pre-
election polls were conducted. In the weeks before November 2, two
firms ran polls every single day, and virtually every polling company and
media outlet sponsored at least one poll.

The results of these pre-election polls were all found to be so close as to
be “within the margin of error.” Virtually every commentator simply
declared that the race was “too close to call.” One company, Rasmussen
Reports, surveyed between 500 and 1,000 American citizens each day
for many months, and even they determined that either candidate could
win the election, since so many states were considered to be “toss ups.”
Knowing that an election will be very close is important information. It
inspires party volunteers to campaign tirelessly, citizens to cast their bal-
lots, and candidates to pay close attention to voters’ opinions. Unfortu-
nately, it doesn’t help with election polls’ primary function, which is to
figure out who will win. .

Despite the predicted closeness, the vast majority of pre-election polls
showed Bush in the lead, ever so slightly, by just a few percentage
points. Every one of those polls was closer than the margin of error, and
thus a “statistical dead heat.” However, it was possible to combine all
of these different poll results together, to effectively create one single
much larger poll.

How does this help? Well, as we will see in the next chapter, a much
larger poll corresponds to a much smaller margin of error. If a whole
bunch of polls all show Bush slightly ahead, then this is much more con-
vincing than if just a single poll shows the same thing. So, several days
before the election, it seemed clear (to me, anyway) that the polls, when
combined together, were predicting a narrow Bush victory. Although
nearly everyone else was declaring the election “too close to call,” I
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believed that, barring any major and unexpected last-minute opinion
shifts, Bush would win by a few percentage points. j

While most pre-election polls were pretty consistent (showing Bush
ahead by a few percentage points), there were a few that weren’t. In par-
ticular, one poll by Time magazine, and another by Newsweek, showed
Bush ahead by a full 10%. Scott Rasmussen, who was himself conduct-
ing daily tracking polls, analyzed the difference and concluded that the
magazines had sampled too high a fraction of registered Republicans.
That is, those two polls had a sampling bias towards the Republican
Party. When this bias was accounted for, the conclusions were similar to
the other polls: Bush ahead by a few percentage points.

Further excitement came on election night. Going in, it was a virtual
certainty that if Bush won Florida and Ohio, he would win the election.
On the other hand, the voter turnout was higher than expected, which
some thought would favour Kerry. Also, exit polls (where a sample of
voters are asked how they voted, right after they leave the polling booth)
seemed to show Kerry slightly ahead in Ohio, and tied in Florida. Could
he pull off a last-minute upset? :

When the actual vote-counting began, Bush quickly developed a lead
of between 4% and 5% in both Florida and Ohio, contradicting the
exit polls. Were the exit polls wrong, and Bush would win these states
and the election? Or, was this a situation like the vote-counting during
the Quebec referendum, where certain Republican-dominated regions
were counting their ballots more quickly than everybody else and blur-
ring the result? '

The network analysts provided little assistance with this question.
Even after 75% of the Florida vote had been counted, with Bush still up
by about 52% to 47 %, Jeff Greenfield of CNN declared that conclusioris
were premature because “we don’t know where those votes are coming
from.” That was rather an odd statement, since a live, county-by-county
breakdown of the Florida votes was publicly available on CNN’s own
Web site. Examining those counts, I saw that the vote-counting was pro-
ceeding fairly evenly: some counties were done counting, and others
were only about halfway through, but there was no clear pattern of pro-
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Bush regions finishing their counting faster, or pro-Kerry regions finish-
ing their counting more slowly. There was no reason to think the result
would change much with the later vote-counting. Within an hour and a
half of the Florida polls closing, [ knew that Bush had won Florida.

The case of Ohio was more interesting. Early vote-counting there also
showed Bush ahead by about 52% to 47%. However, due to large voter
turnout—and, one suspects, inadequate election infrastructure—many
Ohio voters had to wait in line for four hours or more, and vote-counting
was proceeding very slowly there. Several hours after the polls closed,
still only about one third of the votes had been counted. Would Bush’s
lead hold up? A closer examination of the numbers (again from the CNN
Web site) showed that one particular Ohio county, Cuyahoga (Cleveland
and surroundings), was of particular interest. It contained a huge num-
ber of voters (well over half a million, compared with just 20,000 in
many other Ohio counties). Furthermore, its votes were going to Kerry
by a two-to-one margin, and less than half of its votes had been counted.
Kerry would surely gain votes as the rest of Cuyahoga’s results came in.
However, a quick calculation convinced me that Kerry’s Cuyahoga County
gain would amount to less than half of what he needed to overcome
Bush’s lead.

So, by 10 p.m. Eastern time, I was sure (though not pleased) that Bush
would win both Florida and Ohio, and thus the election. Meanwhile,
most of the television networks, spooked by their erroneous predictions
four years earlier, didn’t come to any conclusions about Florida until
very late that night, nor about Ohio until late the next morning,

What was the final result? Bush won the popular vote by about 51.1%
to 48.0%, very close to the average of the pre-election polls. He won
Florida by 52.1% to 47.1%, just as the early counting had indicated.
And he won Ohio by 51.0% to 48.5%, a somewhat smaller margin than
in the early vote-counting (due to Cuyahoga) but still a clear victory. In
short, despite the network’s caution, the election result really showed
very few surprises given the pre-election polls and initial vote-counts.

The only remaining puzzle is those exit polls. The old Voter News
Service had been dissolved in favour of a new National Election Pool,
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supported by six leading media outlets (ABC, CBS, NBC, CNN, Fox
News, and Associated Press). They conducted extensive exit polls, using
all the latest techniques. Why did these exit polls show a lead for Kerry in
Ohio, and such a close race in Florida?

Well, not all voters are willing to talk to pollsters after casting their
ballots; some are too busy, or in too much of a hurry, or prefer to keep
their votes private. Apparently, in the 2004 presidential election, Kerry
supporters—angry at Bush and proud of it—were more willing to talk to
pollsters than Bush supporters were. So, the exit polls (unlike the other
pre-election polls) showed a higher percentage of support for Kerry than
he really had: in short, the exit polls were biased.

Polls are extremely important and influential, but they must be inter-
preted properly. Biased or misleading polls are worse than useless. Even
high-quality polls cannot predict the future, nor completely overcome
dishonest responses. But at least they can give us a snapshot of current
opinions and a hint of what might lie ahead.
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Nineteen Times
Out of Twenty |

Margins of Error

In the previous chapter, we saw that polls have many limitations. They
do provide a useful snapshot, and even allow for communication and
collaboration among citizens, On the other hand, they cannot account
for future changes. They can be biased if they are not performed prop-
erly, or if certain types of respondents participate at lower rates. They are
vulnerable to misleading responses, or to certain categories of citizens
voting in higher or lower proportions. Indeed, all that a poll’s reported
“margin of error” really measures is how far off the poll’s results are
likely to be from the result that they would have gotten if they surveyed
the entire population instead of merely a sample.

Even so, this margin of error is still an important quantity. If only a few

]

people are surveyed, the results will not be very useful no matter how
professionally the poll is conducted. The more people that are surveyed,
the more likely it is that the results will be close to the responses of the
population as a whole. But how likely? How close? How is a margin of
error such as “accurate within 1.4 percentage points, 19 times out of 20”
actually calculated?
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Flipping Coins

From a probability perspective, surveying citizens is similar to counting
the number of heads when flipping coins. The main difference is that with
coins we know in advance that heads has a probability of 50%, but with
polls we don’t know in advance what fraction of citizens support a partic-
ular position. Indeed, that is the difference in a nutshell between proba-
bility theory and statistical inference: in probability theory we know the
individual probabilities in advance, while in statistical inference we don’t.

So, to understand margins of error, imagine flipping coins, without

knowing in advance that the probability of heads is 50%. Suppose you
flip many coins. How close will the fraction of heads that you observe be
to the true probability of heads, which is 50%?

If you flip just one coin, it will either be heads or tails. Thus, your frac-
tion of heads will either be 100% or 0%, neither of which is close to the
figure of 50%. , <

If you flip two coins, then the probability is 25% that you will get
100% heads, and 50% that you will get 50% heads (one heads out of
two flips), and 25% that you will get 0% heads (both flips will come up
tails). We can plot these probabilities on a graph as shown in Figure 11.1.

Figure 11.1 Probabilities for Percentage of Heads When Flipping Two Coins
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Again, this is not a very reliable way of getting close to the true answer of
50%.
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On the other hand, if you flip 10 coins, there is less than one chance in
1,000 that you will get 100% heads, and similarly less than one chance in
1,000 that you will get 0% heads. In fact, the probability of getting
exactly 50% heads is 25%, while the probability of getting either 40%
or 60% heads is 21% each. We can plot all of these probabilities on
another graph: ' ’

Figure 11.2 Probabilities for Percentage of Heads When Flipping 10 Coins
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What Figure 11.2 shows is that, when flipping 10 coins, you are most
likely to get 50% heads, but you’re also fairly likely to get 40% or 60%
heads, and somewhat likely to get 30% or 70% heads. On the other
hand, you are very unlikely to get 0% or 10% or 90% or 100% heads.

So how do we convert these results into a margin of error? We have to
combine the probabilities for various possible outcomes, to get a total
probability of at least 95%, or “19 times out of 20.” Indeed, if we add up
the probabilities of getting 20% heads or 30% heads or 40% heads or
50% heads or 60% heads or 70% heads or 80% heads, we get a total
probability of 97.9%, which is above 95%. Thus, combining all these
probabilities together gives us a range of heads percentages that will
occur at least 19 times out of 20:
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Figure 11.3 95% Range for Percentage of Heads When Flipping 10 Coins
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Suppose you flip 10 coins as an experiment, and you repeat this exper-
iment 20 times. What will happen? You will get between 20% and 80%
heads, approximately 19 times out of 20. That is, 19 times out of 20 you
will be within 30% of the true (50%) probability of heads. Thus, flipping
10 coins has a margin of error of 30%.

We can translate our understanding about flipping coins into an
understanding of polls. If you poll 10 citizens, your margin of error will
be 30%, just as it is for coins. That is, 19 times out of 20, the percentage
of those polled who support your candidate will be within 30% of your
candidate’s true support among the whole population. To put it another
way, your 10-person poll results will be accurate to within 30%, 19 times
out of 20.

Now, a 30% margin of error is much too large. You might think your
candidate has 65% support, when she really has just 35% support, a
huge discrepancy. To improve matters, you have to survey more people
(or flip more coins). Indeed, the Law of Large Numbers tells us that the
more coins you flip, the more likely it is that'the percentage of heads will
be close to 50%.

If you flip 100 coins and compute a 95% range as before, the resulting
graph looks like Figure 11.4.

166

NINETEEN TIMES OUT OF TWENTY

Figure 11.4 95% Range for Percentage of Heads When Flipping 100 Coins
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That is, when you flip 100 coins, you will get between 40% and 60%
heads, 19 times out of 20. (If you don’t believe me, try it.) Thus, the margin
of error is now 10%, much smaller than the 30% margin of error we had
earlier. So, if you poll 100 citizens, your margin of error will be 10%; that
is, 19 times out of 20, you will be within 10% of the true level of support.

Using the Bell Curve

What if you flip 1,000 coins? Or 10,000 coins? Do you need to keep
graphing the results and adding up probabilities each time?

Fortunately, no. We can use the old mathematical trick of finding a
pattern. Way back in 1733, a French Huguenot named Abraham de
Moivre was the first to notice that the shapes of these graphs get closer
and closer to what we now call the bell curve.

Figure 11.5 The Bell Curve
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This convergence to the bell curve is called the cenzral linit theorem. It
was later studied in more detail by the French mathematician Pierre-
Simon Laplace and the great German mathematician johann Carl
Friedrich Gauss. They showed that the bell curve—also called the normal
(or Gaussian) distribution—arises from many different probability exper-
iments, not just flipping coins. {And the approximation gets more accu-
rate the more coins you flip. If you flip 100 coins, the results look a lot like
the bell curve, but if you flip just 10 coins they don’t look so close.)

Using this bell curve, it is a simple matter to determine a formula for
the margin of error when flipping many coins. All we must do is measure
an area under the bell curve that equals a total of 95% of probability.
(The modern way to do such measuring is by performing numerical inte-
gration on a high-speed computer, but it can also be done with a ruler
and pencil if you are careful and patient.) For a “standard-sized” bell
curve, the 95% region is between —196% and +196%:

Figure 11.6 95% Margin of Error for the Standard-Sized Bell Curve

T T T T T T T T T

-400 -300 -200 -100 0 100 200 300 400

The probabilities when you flip lots of coins are just like the standard-
sized bell curve, except narrower by a factor of two times the square root
of the number of coins, corresponding to the “standard deviation.”
What this means is that when you flip lots of coins, the margin of error is
just like that for a standard-sized bell curve, except divided by two times
the square root of the number of coins.
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Since 196% divided by 2 equals 98 %, this provides a simple ryy], When
you flip lots of coins, your margin of error is equal to 98% divided‘by the
square root of the number of coins flipped. That is, 19 times oyt of 20
your fraction of heads will differ from the true probability of 509 by nc:
more than 98% divided by the square root of the number of coing you
flipped.

For example, suppose you flip 100 coins. The square root of 100 ig 1(
(since 10 times 10 equals 100), and 98 % divided by 10 is equal to 9,89/
So, if you flip 100 coins, your margin of error will be approximately
9.8%. This is very close to the 10% margin of error we found earlier,

Suppose now that you flip 1,000 coins. If we calculate 98% divided
by the square root of 1,000 using a calculator, we find that it is equal to
3.099032%, or about 3.1%. So, if you flip 1,000 coins, your margin of
error will be about 3.1%. This means that if you flip 1,000 coins, 95%
of the time, or 19 times out of 20, you will get between 46.9% and
53.1% heads.

So What About Those Polis?

We now have a simple rule for margin of error when flipping coins:
divide 98% by the square root of the number of coins flipped. Fortu-
nately, the same formula works for polls. That is, to determine a margin
of error for a poll, you can simply take 98% and divide it by the square
root of the number of people surveyed. It really is that simple.

Now, four polls were described at the beginning of the previous
chapter. How do their asserted margins of error mesh with this new-
found formula?

The Spanish poll surveyed 24,000 citizens and claimed a margin of
error of 0.64%. If we compute 98% divided by the square root of
24,000, we obtain the figure 0.6325873 %, which rounds up to 0.64%.

The Canadian poll surveyed 5,254 citizens, and asserted a margin of
error of 1.4%. Indeed, 98% divided by the square root of 5,254 equals
1.352%, which rounds up to 1.4%.

The Australian poll surveyed 1,397 citizens, and claimed a margin of
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error of plus or minus 2.6 percentage points. And indeed, 98% divided
by the square root of 1,397 is 2.622%, very close to 2.6%.

'The U.S. poll surveyed 1,212 citizens, and asserted a margin of error of
plus or minus 2.9 percentage points. And indeed, 98% divided by the
square root of 1,212 is 2.815 %, which they kindly rounded up to 2.9%.

So there you have it. All those fancy claims about margins of error and
accuracy 19 times out of 20 amount to just dividing 98% by the square
root of the number of people surveyed. Now that you know this, you can
compute margins of error of polls all by yourself. (Sometimes polling
companies will use more sophisticated analyses, to derive somewhat
smaller margins of error. This is especially relevant when a proposition
or party has support Véry close to 0% or to 100%. But most of the time,
companies simply divide 98% by the square root of the number of peo-
ple surveyed, just as you can do yourself.)

To obtain an accuracy level (or “confidence level”) of 99 times out of
100, instead of just 19 times out of 20, you need a slightly larger area
under the bell curve. Specifically, you have to replace 98% with 129%,
so now you divide 129% by the square root of the number of people sur-
veyed. With 1,397 people surveyed (as in the Australian poll), this 99%-
confident margin of error works out to 3.5% (instead of 2.6%). So, in
that Australian poll, in addition to saying that their results are “accurate
within 2.6 percentage points, 19 times out of 20,” they could also claim
that their results are “accurate within 3.5 percentage points, 99 times out
of 100.” Both of these are true statements.

If you survey more people, the margin of error gets smaller. Indeed, as
you survey more and more people (or flip more and more coins), the ran-
domness in your sample tends to cancel out, so the uncertainty is
reduced. In colloquial terms, the more people you ask, the more you
know. That is just common sense. But with our new formula for margin
of error, we can quantify this truism in precise mathematical terms.

On the other hand, the poll’s margin of error is different from its accu-
racy. Since those four elections have all passed, we can now judge each of
the four polls on the basis of how closely they predicted the results.

The Australian poll was very accurate. They predicted the incumbent
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prime minister to lead the opposition by 52% to 48%, which v as
extremely close to the final result of 52.8% to 47.2%. No argumen;
there.

The U.S. poll also did well. It predicted George W. Bush with a lead of
47% to 45% over John Kerry. In the actual election, Bush won the pop-
ular vote by about 51.1% to 48.0%. This indicates that votes for other
candidates (besides Bush and Kerry) mostly collapsed, and were signif-
cantly less than predicted. But on the important matter, namely the rel4-
tive strength of Bush versus Kerry, the poll provided a very accurate
election forecast.

The Canadian poll, on the other hand, predicted 32.6% support for
the Liberals, 31.8% for the Conservatives, and 19.0% for the NDP. The
actual election result was Liberals 36.7%, Conservatives 29.6%, and
NDP 15.7% (with the rest of the votes going to other parties). So the
poll’s predictions were rather poor, and indeed outside their margin of
error. As discussed earlier, a last-minute shift of voter intentions was to
blame for this. Polls still have their limitations, even after the margins of
error are carefully computed.

Finally, the Spanish poll was the least accurate of all. It had predicted
42.2% of the vote for the governing Popular Party, and 35.5% for the
opposition Socialist Party. The final result was almost exactly the oppo-
site: 43.27% for the Socialist Party and 37.81% for the Popular Party.
These results indicate the last-minute shift in public opinion caused by
the terrorist train bombings just before the election, and by the perceived
inadequacy of the governing party’s response. Once again, actual events
and changing opinions proved too much for the polling companies, mar-
gins of error notwithstanding.

How Clese Is Close?

Margins of error also provide a new perspective on the closeness of
elections. .

Some elections are a landslide, but many elections are fairly close. For
example, in both the Australian and American elections of 2004, the
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margin of victory was just a few percentage points—close enough that,
even on election day, the outcome was still somewhat in doubt (making
the election returns worth watching). On the other hand, every once in a
while there is a vote that is so close that it defies our every expectation.
Two examples leap to mind: The 1995 Quebec sovereignty refelendum
and the 2000 U.S. presidential election.

When the vote-counting for the 1995 referendum was finally done,
there were 2,308,360 Yes votes, and 2,362,648 No votes (plus 85,501
spoiled ballots). Of the valid ballots, the vote was 49.42% Yes versus
50.58% No. The difference was 54,288 votes, few enough people to fit
- comfortably into a football stadium. Clearly, this was a close vote. But
how close? Compared with what? One mode of comparison is to pretend
that every voting Quebecer simply flipped a coin and voted Yes if the
coin was heads, No if it was tails. If they had done so, how close would
the vote have been?

This is a question we know how to answer. If each of those 4,671,008
valid votes was instead decided by flipping a coin, then on average there
would be 50% heads. However, the margin of error would be equal to
98% divided by the square root of 4,671,008, or 0.045% (equivalent to
just 2,102 votes). This means that, 19 times out of 20, the winning side
would have gotten less than 50.045% of the vote. In fact, the winning
(No) side got 50.58%, which is significantly more. So, although this
Quebec referendum result was extremely close, it was still far less close
than the “margin of error” from a true 50-50 vote. Had Quebecers
voted by flipping a coin, the result would have been far closer.

This brings us to the 2000 U.S. presidential election. There, the popu-
lar vote was actually won by Al Gore (although he lost the election itself,
due to the country’s Electoral College election system). He received a
total of 50,999,897 votes, compared with 50,456,002 for George W.
Bush. So, of the 101,455,899 votes cast for either candidate (ignoring
votes for other candidates), Gore received 50.27% of the vote compared
with just 49.73% for Bush. This is very close, but again outside the cor-
responding margin of error (which would be 98% divided by the square
root of 101,455,899, or 0.0097%, corresponding to a victory of just
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50.0097% to 49.9903%). So, in terms of popular vote alone, Gore was
the undisputed winner.

However, the real interest in this election was the Florida count.
Whichever candidate won the most votes in this state would obtain
enough Electoral College votes to win the election and the presidency
(regardless of the nationwide popular vote). The declared final Florida
vote tally (after much controversy about recounts and hanging chads
and butterfly ballots and Supreme Court decisions and so on) was
2,912,790 votes for George W. Bush and 2,912,253 votes for Al Gore,
for a difference of just 537 votes. Of the 5,825,043 votes cast for either
candidate (again ignoring votes for other candidates), this corresponds
to 50.0046% of the vote for Bush, and 49.9954% of the vote for Gore.
Even accepting this count as accurate (which it may not have been), it is
exceptionally close. Just how close?

Suppose each Florida voter had instead flipped a coin and voted for
Bush if it was heads, or Gore if it was tails. In this case, the margin of
error would have been 98% divided by the square root of 5,825,043, or
0.04%. Thus, 19 times out of 20, such a coin-flipping vote would pro-
duce a result of 50.04% to 49.96% or closer, corresponding to a differ-
ence of 4,730 votes. Such a result would indeed be very close. However,
the actual result was nearly nine times closer.

So, the Florida returns were far closer—about nine times closer—than
we could ever expect them to be, even for an equally divided electorate,
even if each voter was simply flipping a coin. The result was simply outside
the norm of even an exceptionally close election.

In the days before the 2004 U.S. election, there was much discussion of
whether the result would be as close, and as confusing, as that of 2000.
However, I doubted that it would be. No matter how closely divided the
electorate is, the margin of error alone is simply too large to produce
such a narrow victory with any regularity.

On the other hand, out of all of the different U.S. election contests for
senators, representatives, governors, and so on in all 50 states, it was still
likely that some other race, somewhere, would be extremely close.
Indeed, the 2004 election for governor of the state of Washington had,
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after three recounts, a margin of victory for Democrat Christine Gregoire
over Republican Dino Rossi of 1,373,361 votes to 1,373,232—a 129-
vote difference, less than one twenty-fifth as large as the 3,248-vote dif-
ference corresponding to the margin of error. With so many different
electoral races to choose from, there will always be a surprise somewhere
or other. :

Errors and uncertainty are with us on a daily basis. Often we cannot
compute the margin of error with a formula as precise as “98% divided
by the square root of the number of respondents,” but a general under-
standing of the meaning of “margin of error” can still be very helpful.

An Uncertain Day
You drag yourself out of bed and get ready for work. The bus is sup-
posed to pass by at 8:15 a.M., but last week it was 10 minutes late on
Monday and Thursday, and 10 minutes early on Tuesday and Friday.
The bus schedule clearly has a large margin of error. To be on the safe
side, you go to the bus stop at 8 o’clock.

At work, you get a memo from your boss saying that she will come to
your office at 10:30 to pick up your accounting report. Your boss is very
punctual, so the margin of error for her arrival time is virtually zero. You
finish your report at 10:29, and have it waiting for her upon her arrival
at precisely 10:30.

At noon you go to lunch with a few colleagues, although you have to
be back in the office for a meeting at 1 o’clock. You consider going to
Billy’s Deli, which usually has very quick service. However, a few times
Billy has been backed up, and it has taken half an hour or more to get
served. Clearly Billy has a large margin of error. Instead, you eat at
Clare’s Coffee Shop, where every order gets filled in exactly 10 minutes,
with hardly any margin of error at all,

In the afternoon, you have to reformat your report according to your
boss’s instructions. With some careful thought, you figure out just how
this should be done. You consider asking your assistant to carry out your

plan. However, while she sometimes follows your instructions precisely,
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she sometimes gets overly “creative” and does a poor job; her margin of
error is too high. You decide to do the reformatting yourself.

That evening, safely home again, you open your refrigerator. You
reach for a carton of milk, but see that it is two days past its expiration
date. Since milk only lasts for a few weeks anyway, there isn’t too much
margin of error there. You decide to play it safe, and pour the milk down
the drain.

Instead, you reach for some orange juice, and see that it is also two
days past its expiration date. On the other hand, most juice lasts for sev-
eral months, so its expiration date has quite a large margin of error. Two
days before or two days after probably amounts to the same thing. You
decide to drink the juice, and it is fine.

Finally it is time for bed. Your neighbours aren’t making any noise at
the moment. But sometimes in the middle of the night, they come back
from a party and have a loud conversation, or they watch a late-night
movie with the volume turned up, or their baby cries like an opera
singer. Usually not, but the margin of error is just too great. You care-
fully switch on a fan, to drown out any potential noise and allow youa
good night’s sleep.

Margins of error provide a fresh perspective on life’s uncertainty, and
give us a measure of the reliability of what we observe. Often we are hop-
ing to minimize the margin of error by taking more samples or observing
more carefully. But we will see in the next chapter that uncertainty can
sometimes benefit us, too.
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Randomness to the Rescue

When Uncertainty Is Your Friend

In the movie The Sting, a friend worries that the Robert Redford charac-
ter, Johnny Hooker, will be the mob’s next murder victim. Attempting to
prevent this horrible fate, the friend advises Hooker to avoid locations
where the mob might find him. He wants Hooker to go somewhere so
unexpected, so unpredictable, that even the mobsters, with all their hit
men and weapons and connections, will be stumped. He says, “Don’t go
home tonight. Don’t go to your usual bar. Don’t go anyplace you normally
g0.” He might have added, “Go someplace random.”

We are all familiar with the notion of doing something unexpected (or
random), to fool someone or to win a game or to entertain. Random-
ness brings much misfortune and misery, and we often consider it some-

- thing to fear or avoid. But randomness can be very helpful, too. We
make use of it every time we park our car illegally, “just for a minute,”
since it is unlikely that a police officer will happen by just then. And it’s
in the back of our minds every time we make backup copies of a com-
puter file, since it is improbable that two or three different disk drives
will all fail at once (and the more backups, the less likely that they will
all fail). In many ways randomness is the enemy but, in other respects,
randomness is our friend.
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Randoemness and Individuality

I just rolled an ordinary six-sided die 50 times in a row and obtained the

following sequence of numbers:

34663463621632143466334452434226433642631152454334

Are you impressed? Probably not; anyone can roll a die 50 times. But per-
haps you should be. You see, I have just created a sequence that no one has
ever created before, and that the CIA couldn’t reproduce in a million years!

It’s true. In all of human history, there have been about 100 billion peo-
ple. Even if each of them created similar 50-digit sequences, once per
minute, for 100 years each, the odds would still be less than one chance
in a 1 followed by 20 zeros that any one of them, from Julius Caesar to
my neighbourhood butcher, had ever created my special sequence above.
In other words, it is absolutely inconceivable that this ever happened.
My sequence has never appeared in any computer file, or on any Web
page, or anywhere at all.

Suppose the CIA has a million computers, and they can each produce
a billion sequences a second. It would take them 25 trillion years, work-
ing around the clock, to have even a 1% chance of hitting on my special
sequence. In other words, it will never happen. In two minutes, sitting in
my bedroom with a Monopoly game cast-off die, I have stumped the
entire worldwide resources of the CIA.

All the king’s horses
And all the king’s men
Will never produce
That sequence again

‘What power. The power of randomness. The next time you are sitting
with a die, think of the power in your hand. ’

The reason for this power is simple: each die can come up six different
ways. So, the total number of possible 50-digit sequences is equal to 6
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multiplied by itself 50 times, which is approximately equal to the num-
ber written as 8 followed by 38 zeros—an incredibly huge number. And
each of those many sequences has the same probability, making it virtu-
ally impossible to guess which sequence has occurred.

There is an old mathematicians’ tale (first imagined by the French
mathematician Emile Borel in 1913) about letting a million monkeys
each hit typewriter keys at random until the end of time, and how after
typing loads of garbage they would eventually reproduce all the great
works of literature, purely by chance. This is indeed true, if the monkeys
had an infinite amount of time available to them. But we see just how
impracticable this scheme really is. It would take those monkeys over a
trillion, trillion, trillion, trillion years to have even a 1% chance of typing
the sequence “It was the best of times, it was the worst of times.” Human
authors shouldn’t drop their pens just yet.

You might wonder, do we really need to apply randomness? Couldn’t [
instead have just written down whatever 50 digits came to mind, not
bothering to roll a die at all? Perhaps, but perhaps not. When people just
try to make up a random sequence, they inevitably follow certain pat-
terns. Perhaps they never repeat the same digit twice in a row. Perhaps
they repeat certain digits too often. Perhaps they overuse one particular
digit. Or perhaps they try too hard to use all digits equally. (For example,
my sequence above has thirteen 3’ but only four 1’s, which is perfectly
normal in a random sequence, but is unlikely in a made-up sequence.) So
if you try to make up a sequence, you might accidentally choose some-
thing that someone else has already chosen. Or that the CIA might guess.
Only randomness can guarantee that your sequence is unique.

A fun way to test for uniqueness is to use an Internet search engine like
Google. If you do a Web search for a short random sequence of numbers
or letters, like “axzqy” or “325794,” you will doubtless find some Web
pages that have that same sequence, just by chance. But if you search for
a slightly longer sequence, like “axzqytuvb” or “3257948394,” you will
probably not get any hits. Out of all of the hundreds of billions of Web
pages indexed by Google, not one of them contains your own personal
random sequence. That’s individuality.
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And it’s not just sequences. Consider all the choices you make in a ran-
dom way every day, from what you eat for breakfast, to which shoes you
wear, to what you say to the subway attendant on your way to work.
Randomness shows us that we all do unique things all the time, and that
even our daily trivialities involve unique choices that no one has ever
made before.

Randomized Strategies

A popular children’s game is called “Rock Paper Scissors.” On the count
of three, two players each put out one hand either in a fist (Rock), or flat
{(Paper), or with two fingers extended (Scissors). The winner is deter-
mined by the principle that Rock smashes Scissors, Scissors cut Paper,
and Paper covers Rock. If both players choose the same option, no one
wins and the game starts again. This game is sometimes used to decide
contested issues, such as who gets to “go first” or who receives the bigger
piece of pie.

Surprisingly, there are some people who take this game quite seriously.
The Rock Paper Scissors International World Championships are held
each year, and an official RPS champion is crowned.

If ever an RPS champion were to challenge me to a match, I would be
appropriately nervous. Surely, with all of his RPS experience, the cham-
pion would excel at all of the psychology and guesswork required to
intuit my next move. He would probably be an expert at discovering his
opponent’s patterns, such as always doing Scissors after doing Rock, or
always choosing the option that would have defeated his previous
choice. These are the kinds of patterns that we all (including me) tend to
fall into, and ones that an RPS champion could use to his advantage.

Nevertheless, I could still arrange that, in the long run, I would defeat
the champion as often as he would defeat me. I would do this by making
my choices randomly, to avoid any patterns or predictability. Specifically,
I'would roll a die before each selection (the official RPS rules do not pro-
hibit this). I would then choose Rock if the die showed 1 or 2, Paper if the
die showed 3 or 4, and Scissors if the die showed 5 or 6.
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My use of randomness would guarantee that no one could, in any
way, find a pattern or predict my next move (provided the die was
properly balanced and was hidden from my opponent’s view). As a
result, I would be guaranteed to win half the time (on average), no mat-
ter how clever or perceptive my opponent was, no matter what strategy
they employed, and no matter how predictable my usual inclinations
might be.

This perfect strategy, which cannot be defeated by any opponent, is
related to the theory of Nask equilibria, which is named for its inventor,
the brilliant but psychologically troubled mathematician John Nash
(played by Russell Crowe in the movie A Beautiful Mind). Nash equilib-
ria are choices of strategies such that no opponent can do anything to
improve their fate. The mathematical subject of game theory proves that
for any game (or other competition) in which each side has a finite num-
ber of choices to make (such as Rock—Paper—Scissors), you can always
find such a Nash equilibrium, and thus prevent your opponents from
outmanoeuvring you. However, you may need randomness (like rolling a
die) to achieve it.

Without randomness, there may be no way to avoid being outsmarted
by an RPS champion. But with randomness, there always is.

Winning the World Series
It's the moment you’ve always dreamed of. The World Series. The sev-
enth game. The bottom of the ninth inning. Two out. Bases loaded. Full
count. Your team is ahead by one run. And you have just been sent in as
a relief pitcher, to save the game for your team.

Thousands of fans cheer wildly as you trot out to the pitcher’s mound.
And now it all comes down to this, your next pitch. A strike and you win.
A hit and they win. You stare into the batter’s eyes, ready for the confronta-
tion. Your two best pitches are your fastball and your slider. But which to
use? You think long and hard; there won’t be any second guesses here.

Meanwhile, the opposing team’s dugout is a hive of activity. With all

their computer equipment, mathematical models, and expert analysis,
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they have pulled up every bit of information they know about you. Your
pitching record all the way back to Little League. Your pitching style and
patterns. Your likes and dislikes. Your moods. They feverishly signal to
the batter, sending secret messages you can’t decode. Then the batter
gives you a wink. He is anticipating. He knows!

You try to remain calm. You figure that if the batter guesses wrong, he
will almost certainly strike out. However, if the batter guesses right and
anticipates your pitch correctly, you figure he has a good chance of hit-
ting it right out of the park. So now it becomes a guessing game. Can the
opponents outsmart you, ot can you outsmart them? Unfortunately, all
your baseball training over the years hasn’t left much time for mathe-
matical models or battles of wits. ‘ '

Don’t give up so easily, you tell yourself. Probably they think you will
throw a slider. After all, that’s the pitch you used with a full count in the
ninth inning in the game against Cleveland last month. (Or was that the
month before?) So perhaps you should throw a fastball instead, to fool him.
Or is that what they’re expecting you to do? Or perhaps they have deter-
mined that you tend to alternate your pitches, so this time they’re expecting
a fastball and you should throw a slider. Or perhaps that’s what they think
you will think, so you should trick them by throwing a fastball after all.

It all seems so complicated. The pressure is getting to you. Your knees
feel weak. Your palms start to sweat. Yow’ll never be able to pitch like this!

While drying your hand on your baseball uniform, you feel a small
bump—that Canadian $2 coin your crazy uncle gave you earlier that
day. “Take it to the game,” he insisted. “It’ll bring you luck.”

Suddenly you get an idea. Why not let the coin make the decision for
you? Yeah, that’s an idea! With renewed confidence, you pull out the
coin. “Heads fastball, tails slider,” you think. You flip the coin, catch it
against your baseball glove, and peek under your hand (being careful to
hide the coin from the ever-present television cameras). Heads it is.

With renewed confidence, you stand up tall, wind up, and throw a
beautiful fastball right past the surprised batter. Strike three!
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It may seem crazy, or even cowardly, to use a coin toss to determine a
baseball pitch. But in fact, this trick—under the more formal name of
“randomized strategies”—is used all the time. Randomization is used to
decide which manufactured parts to inspect, which employees to moni-
tor, and which citizens to poll, among other things.

In the World Series example above, if you didn’t use the coin, then
maybe, just maybe, your opponents (with their sophisticated computer
models and psychology) would have outsmarted you and guessed the
pitch correctly. If so, they would have had a pretty good chance of hitting
a home run and winning the World Series, let’s say a 60% chance. So,
while you may be skeptical that their computer models could predict so
well, there is at least the possibility that they could.

On the other hand, with your randomized strategy, there is no way for
your opponents to guess your pitch with confidence, no matter how
clever they are and no matter how much they know about you. Rather,
they will have just a 50% chance of guessing correctly, no matter what.
This means that half the time they will guess correctly, and have a 60%
chance of a hit; while the other half the time they will guess incorrectly,
and always strike out. Thus, overall, they have just half of a 60% chance
of getting a hit and winning the game.

So, with the randomized strategy, you have rendered useless all of your
opponents’ knowledge and insight and computer modelling, and given
them just a 30% chance of victory, no matter what strategy they employ.
Using your clever coin flip, you have guaranteed yourself a 70% chance
of victory! Once again, probability saves the day.

Randomness and the Internet

Randomized strategies may be useful in sports, but do they arise in
everyday life? Well, you use one every time you make a purchase over the
Internet.

Computers seem by their very nature to be cold, logical, precise
machines. They respond to precise commands; if you do the same thing
twice, then they will do the same thing twice; if you do something different

182

RANDOMNESS TO THE RESCUE

the second time, they will, too. (Of course, computers break down in
seemingly random ways, but that’s another story.) So it may come as a
surprise to hear that computers in general, and the Internet in particular,
could not get by without randomness.

Computers often need to make what are called “secure connections”
on the Internet, for example to transmit your credit card number to an
on-line shopping Web site, without allowing computer hackers to inter-
cept your message. They do this through the use of randomly coded
messages.

Nighttime Escape
Tonight’s the night: you’re going to sneak out after bedtime and go to the
treehouse with your boyfriend. As he is leaving your house, you start dis-
cussing the plans with him. But just then your mother walks in.

This is terrible, you can’t finalize the plans with your mother listening.
And yet, without proper planning, yow’ll never be able to pull this meet-
ing off. What to do?

After a moment’s panic, the solution comes to you: a secret code. So,
while uttering banalities about how you will see your boyfriend at school
tomorrow, and what a gentleman he is, you casually hold up all 10 fingers

(“Come at 10 o’clock . ..”), put one finger to your lips (... without
making any noise . . .”), then move your hands up and down in a straight
line (“. . . and bring a ladder™).

As your boyfriend leaves, you both smile, knowing your plans are all
set. Unfortunately, your mother is also smiling. She has noticed your
hand movements, too, and she is just as smart as your boyfriend. You

watch broken-hearted as she padlocks your bedroom window.

Tricking your mother is hard enough. But what about foiling hackers
when you use your credit card on the Internet? If your signal is inter-
cepted, a computer hacker (or an international electronic spy agency
like Echelon) might receive all the information that you send about your
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purchase. And, like your mother, they might understand this informa-
tion just as well as the on-line store does. How can we get around this
problem?

We need a way to transmit information that the receiver (like your
boyfriend) can understand, but that the interceptor (like your mother)
cannot. Secure computer connections rely on a protocol called “public
key cryptography.” This requires each computer to pick a random, secret
key to facilitate the secure communication (for example, 128-bit security
requires the equivalent of flipping 128 coins). The computers then use
the theory of prime numbers to communicate in such a way that, by each
using their own secret key, they can decode each other’s messages. A
third-party computer hacker, however, will not be able to break the code,
even if they manage to intercept the entire conversation.

A crucial step in this secure connection is the selection of each com-
puter’s random, secret key. One option is for the shopper and the com-
pany to each flip a bunch of coins every time a purchase is made, and
then type into their computers a long sequence of heads and tails. This
would work fine, but it isn’t very practical. Instead, your computer
automatically picks a random key for you each time, using its built-in
random-number generator. Such secure connections aren’t just used for
credit card numbers. Sophisticated computer users routinely connect to
far-away computers using a “secure shell” to avoid the interception of
passwords and other confidential information, and randomness is
required each time.

The Internet is alive with randomness. Suppose two different people
send you e-mail at precisely the same instant. How does the mail server
computer make sure both messages arrive? It simply tells both e-mail
messages (or, more precisely, all competing ethernet packets) to get lost.
The messages are then assigned random amounts of time to wait before
trying again. Without randomness, the messages might come back at the
same time over and over again, forever after. Randomness is the grease
that allows multiple Internet messages to slide by each other.

Randomness in computers is even more obvious in computer games.
Imagine how boring those games would be if the bad guy always arrived
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at the same time, the space aliens always moved in the same pattern, and
the virtual basketball player always passed in the same direction. It is the
computer’s randomness that makes the games come alive, that gives
them personality, that makes them fun. ‘

In reality, éomputers are unable to create true randomness. Instead,
they just fake randomness through the use of pseudorandom numbers.
These are sequences of numbers obtained through complicated arith-
metic formulas (usually involving multiplying by large numbers, adding
constants, and taking remainders upon dividing by a large power of 2).
The resulting sequences are not truly random, but they are so mixed up
and unpredictable that they appear to be random for all intents and pur-
poses. The design and study of pseudorandom number generators is a
major area of research, and every generator has certain flaws that make
it not quite truly random, but hopefully good enough for the problem at
hand. In short, computer designers work very hard not to avoid ran-
domness, but to create it.

Monte Carlo Magic

During World War II, the Manhattan Project was set up in secret in Los
Alamos, New Mexico, to work on designing and building the world’s first
atomic bomb. One difficult question was how much purified uranium
was required before the bomb would explode. Calculating this critical
mass was crucial to the success of the project. If it was underestimated,
insufficient amounts of uranium would be produced and the bomb
wouldn’t work. Overestimating would be even worse: the bomb might go
off prematurely, before detonation time, killing the wrong people in the
wrong place. ,
The actual mechanics of the atomic-bomb chain reaction—neutrons
causing atoms to split and release energy (according to Finstein’s famous
formula, E = mc?), while in turn producing more neutrons to continue
the process—are extremely complicated. Even the great Manhattan Project
scientists could not calculate the resulting critical mass theoretically.
Instead, they set up some of the world’s first computers, complete with
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punch cards carefully handled by human assistants. These computers
were designed to simulate randomly the chain reaction and the motion of
the neutrons. By repeating these simulations over and over again, the sci-
entists got an increasingly accurate sense of how the neutrons in an
atomic bomb would behave on average, and what fraction would escape.
In the end, the Manhattan Project scientists correctly calculated a critical
mass of about 15 kilograms. Atomic bombs were manufactured based
on this calculation, and they worked just as predicted.

These primitive computer simulations were the world’s first use of the
Monte Carlo sampling method, which consists of repeated randomized
simulations to approximate quantities that are too difficult to compute
directly. (The name “Monte Carlo” was suggested the following year by
the Polish mathematician Stanislaw Ulam, in reference to the famous
casino in Monaco.)

The atomic bomb changed the world forever (and not necessarily for
the better). But in its own way, the introduction of Monte Carlo sam-
pling methods changed the world, too. With modern high-speed com-
puters, randomized simulations can now be easily run from any office,
often in the blink of an eye. They are used routinely by scientists, engi-
neers, medical researchers, and statisticians to estimate the value of
huge and complicated sums, integrals, and probabilities. They are espe-
cially useful in high dimensions, when many different quantities inter-
act and must be handled together. For example, they help us figure out
the likely effects of medical treatments involving many variables, and of
detailed engineering designs for everything from buildings to rocket
ships. Monte Carlo simulations are an essential tool of virtually every
modern science.

Raisins and Chocolate Chips
Marjorie always makes the most delicious raisin chocolate chip cookies.
Your kids always seem to be hanging out at her place, hoping for a free
sample. You start to feel jealous and want to match Marjorie’s culinary

triumph. But you don’t know her recipe, and she isn’t about to tell.
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After some experimentation, you decide that the ratio of raisins to
chocolate chips is the key. Does Marjorie use the same number of raisins as
chocolate chips? Or twice as many raisins? Or three times as many choco-
late chips? If only you knew this one detail, you are confident that you
could fill in the rest of the recipe, and regain your children’s admiration.

Slowly you devise a plan. With a combination of bribes and threats,
you convince your young daughter to bring you a few of Marjorie’s
famous delights. Rather than eat them, you carefully pick them apart
and begin counting.

The first cookie has 11 chocolate chips, and six raisins. The second
cookie has 14 chocolate chips, and eight raisins. The third cookie has
nine chocolate chips, and four raisins. You begin to see the pattern: Each
cookie has just about twice as many chocolate chips as raisins. Your
Monte Carlo experiment has allowed you to estimate the previously elu-
sive ratio: two chocolate chips for every one raisin.

That settles it. Excitedly, you pull out your ingredients, and get to
work. You carefully count out a total of 200 chocolate chips and 100
raisins. You combine them with the other ingredients, bake to perfec-
tion, and serve. Your children’s smiles are all the proof you need that
your Monte Carlo experiment has been a success. You are bursting with
pride, your family honour is restored, and Marjorie doesn’t know what
hit her.

Perhaps the earliest example of a Monte Carlo experiment is a clever
scheme proposed in the eighteenth century by Georges Louis Leclerc,
Comte de Buffon. His Buffon’s needle experiment requires a large sheet
of lined paper (or a striped floor), together with a needle (or pencil) that
is precisely the length between consecutive lines. If you throw the needle
or pencil at random and wait for it to stop moving, what is the probabil-
ity that it will touch one of the lines? The surprising answer is that this
probability is equal to 2 divided by pi (=). Pi is the famous and mysteri-

- ous mathematical constant equal to the ratio of the circumference of a

circle to its diameter.
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This unexpected result means that your needle and paper can be used
to perform a Monte Carlo experiment, for the purposes of estimating .
Simply throw the needle many times. Then, take the total number of
times you threw the needle, multiply that by 2, and divide the result by
the number of times the needle lay across a line. The result should be
pretty close to the true value of m, which is known by high-speed com-
puter calculations to be equal to 3.14159265 . . .

In 1864, an American civil war captain, O.C. Fox, was recovering
from battlefield wounds. As a distraction, he tried the Buffon’s needle
experiment. He threw his needle a total of 1,620 times, and obtained
three different estimates of ;t: 3.1780, 3.1423, and 3.1416. Not bad at all.
Of course, © can be computed much more efficiently with modern com-
puters than with needles and paper. But the early Monte Carlo-spirit of
Buffon and Fox lives on. '

Before moving on, I feel compelled to mention one particular variant
of Monte Carlo experiments, called Markov chain Monte Carlo. In this
form of Monte Carlo (which happens to be my research specialty), the
experiment does not start fresh each time, like throwing the needle anew,
or getting hold of a different cookie. Rather, each new experiment devel-
ops from where the previous experiment left off.

For example, suppose you wanted to measure the average pollution
level in a large wilderness lake system. You might proceed by setting out
in a canoe, and paddling this way and that way, from inlet to inlet and
lake to lake, throughout the park, without any particular destination.
Every five minutes, you might take a water sample and measure the pol-
lutants. Each new sample would be taken just a short distance from the
previous sample, thus continuing from where the previous sample left
off. Still, if you averaged the pollution levels in many different samples,
over many days of paddling, eventually you would get an accurate pic-
ture of the lake system. In fact, you would be running a Markov chain
Monte Carlo algorithm. Modern computer programs use this same basic
idea to do all sorts of calculations, in physics and biology and medicine
and social sciences, that would all be impossible without the randomness
of Markov chain Monte Carlo algorithms.
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Randomness and Fairness

In 2003, the state of California went through a well-publicized and
unprecedented election campaign to recall current governor Gray Davis
and elect a new governor, Arnold Schwarzenegger. There were well over
100 candidates—including several actors—standing for the election,
which many described as a “circus.”

One issue was how to prepare the ballots. With so many candidates,
the order of names was important. It was argued that the traditional
solution of always listing the candidates in alphabetical order was unfair
to those whose names come later in the alphabet. Instead, the California .
elections officials decided to use a randomized alphabet. They wrote the
26 letters on cards and pulled them at random from a revolving canister,
resulting in the following new alphabetical order: R, W, Q, O, ], M, V, A,
H,B,5,G Z,X,N,T,C,LE K, U, P, D, Y, F, L. Lucky for those whose
names began with R; not so lucky for those whose names began with L.
But because the order was determined randomly, it was deemed that
everyone had been treated equally.

Randomness has long been used to achieve fairness, by taking decision
making away from individuals. Coin flips are sometimes used to decide
an election that ends in an exact tie. Beginning in 1970, the military draft
of young American men during the Vietnam War was determined by
where their birthdays fell in a randomly selected ordering of all 366 days
of the year (including February 29). To avoid excessive line-ups, the
Toronto International Film Festival divides all the initial ticket request
forms into a number of large bins (43 of them, in 2004), and chooses
randomly which bin’s requests are considered first (bin #10, in 2004).
Teachers sometimes use randomness to determine the order in which
their students must make class presentations. Paradoxically, randomness
seems very unfair when disease or terrorism strikes, but as a way of set-
tling human affairs, it may be the fairest mechanism we’ve got.

Randomness also sometimes provides fairness in sports. Coin flips are
sometimes used to decide which team gets the ball first, or home-field
advantage in the playoffs, or the first draft pick. Everyone accepts the
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coin flip as a fair solution, whereas no one would accept a non-random
solution (say, the league commissioner making his own personal choice)
in the same way.

An interesting incident related to fairness in sports occurred during the
1996 Olympic Games in Atlanta. The men’s 100-metre sprint that year is
well remembered by Canadians as the race in which Donovan Bailey
won gold, thereby eliminating the shame of Ben Johnson’s 1988 disqual-
ification for drug use. But to British enthusiasts, that same 100-metre
sprint is remembered for an entirely different reason: veteran British
track star Linford Christie was charged with two “false starts” and dis-
qualified from the race, thus ending his sports career in frustration.
(Christie was so upset about his disqualification that he refused to leave
the track for a minute or two.)

A closer investigation reveals some suspicious details. Christie had
not, in fact, left the starting block before the starter gun had sounded (the
traditional meaning of “false start”). Rather, his offence was that he left
the starting block less than one-tenth of one second after the gun had
sounded. Olympics officials had previously decided that no one’s reac-
tion time is ever less than one-tenth of one second, so any runner begin-
ning the race within the first one-tenth of one second must have
“anticipated” the starter gun. Such anticipation is against the rules
because it usually arises when a runner is late getting into position,
thereby delaying the race and controlling, to his or her advantage, just
when the starter gun will sound. Christie had left the starting block just
0.086 seconds after the gun was fired. But if the entire point of the
Olympics is to push humanity’s physical limits, Christie’s supporters
argued, isn’t it possible that somewhere, someday, someone would man-
age to react in less than one-tenth of one second? Just perhaps?

Meanwhile, sports officials (in particular, the International Associa-
tion of Athletics Federations) insisted that the 0.1 second rule was neces-
sary to prevent the “anticipation problem.” And thus the dilemma
remained: How to prevent runners from anticipating the starter gun,
while not penalizing them for extraordinarily fast reaction times?
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To probabilists, the solution was simple: create a simple mechanical
device that fires the starter gun at a random time. The referee would
wait until all runners are ready, then activate the device. At that point,
the device would beep once (to indicate to all that it had been activated),
then wait a random amount of time (say, between two and six seconds)
before automatically firing the gun. (Even better would be a random
wait time chosen from an exponential distribution, which is a kind of
randomness that is completely impossible to anticipate.) That way, no
one could hope to anticipate the (random) start time. The anticipation
problem would be gone, and there would be no need to have a 0.1-second
rule at all. Leaving the starter block before the gun sounded would still
be a false start, of course, but leaving any time ‘after the gun had
sounded—even just 0.086 seconds after—would be perfectly legal.
Unfortunately, Olympic officials didn’t ask probabilists for advice, and
the rule still stands.

In competitions where randomness cannot be controlled, it is desirable
to make sure that randomness affects everyone equally. In a sailing race,
the direction and speed of the wind are huge and unpredictable factors,
but if all teams race simultaneously (rather than in sequence), at least
everyone has to deal with the same conditions. In duplicate bridge (as
opposed to rubber bridge), everyone plays the exact same hands of cards,
so that no partnership can benefit from simply getting lucky and being
dealt more Aces. The cards are as random as ever, but the randomness is
applied equally to all, resulting in perfect fairness.

Randomness can also be used to divide costs or benefits fairly in cases
where they cannot feasibly be divided concretely. The story of King
Solomon illustrates the absurdity of dividing a baby in half to settle a
custody dispute. However, the method of flipping a coin to decide who
gets a baby is at least plausible as a solution {though still not such a
great idea!). In less extreme situations, a coin flip often provides an
elegant resolution.
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Dividing the Restaurant Bill
Lunch was good, but the service was slow, and now you’re running late.
Finally the bill arrives, $17.76. You and your associate agree that with
tip $20 sounds right. You agree to split the bill 50-50 and pay $10 each.
The only problem is, you each just have a $20 bill.

You try to ask for change, but the waiter is too busy for you to get his
attention. Now you’re getting edgy. You have a meeting at the office in
10 minutes.

You consider offering to pay this time, and your associate can pay
next time. Unfortunately, your associate is about to embark on a five-year
assignment in Antarctica, so there won’t be any “next time” to collect on
for quite a while. '

Then you have an idea. You offer to flip a coin: heads you pay the full
$20, tails your associate pays. Your associate agrees, fairness prevails,

and you make your meeting on time.

The next time you’re out with a group, try dividing the restaurant bill
using randomness and coin {lips, rather than waiting for change. It’s just
one more way that randomness and uncertainty, when used properly, can
sometimes be to your advantage.
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Evolution, Genes, and Viruses

Randomness in Biology

There is surely no greater wonder in the solar system than the fact that
human beings exist. It is incredible that matter, following the basic laws
of physics over a period of billions of years, could evolve from simple
chemicals, to living cells, to primitive fish and reptiles, to larger mammals,
to primates, and finally to human beings with all their sophistication and
intelligence (well, most of the time). It almost defies comprehension. And
without this amazing process of evolution, we wouldn’t be here today.

Evolution requires genetic mutation and recombination. In this way,
living creatures create offspring of slightly different varieties at each gen-
eration. Then, through a process of natural selection (sometimes called
survival of the fittest), those offspring best suited to survive and repro-
duce themselves create additional, similar creatures. Over millions of
years new species or subspecies develop.

The process of mutation and recombination, which produces the
required diversity of offspring at each generation, is essentially a
process of randomization. This randomness creates a wide variety of
potential offspring, who then either survive and flourish, or (more
often) fail and die.

Insufficient randomness in genetic reproduction results in stagnation
of the species and failure to evolve. On the other hand, too much ran-
domness prevents a species from developing in a stable manner. So, for a
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species to successfully evolve and thrive, the amount of randomness has
to be just right. Fortunately for us, this has indeed been the case, allow-
ing humanity to evolve, very gradually, from the basic building blocks of
the universe.

But how is this possible? Human DNA consists of about 3 billion
chemical-base pairs. Each pair can be one of four kinds (denoted A, C, T,
and G). Thus, the total number of possible DNA strands is 4 multiplied
by itself 3 billion times—which equals the number formed by writing a 1
followed by 1,800,000,000 zeros. This number is so huge that it defies
comprehension. Now, some of the human DNA base pairs are redun-
dant, and could be of any type without affecting the human being at all.
Many others vary from individual to individual, and thereby distinguish
one human from another. However, a significant fraction of these base
pairs have to be “just so” in order to create human life; any mistakes and
we simply don’t end up with a human being,.

Purely random mutation could eventually produce a large sample of
possible DNA strands. But it is mind-bogglingly unlikely, even over bil-
lions of years, that human DNA would be created suddenly, purely
through random chance. So, how is it that humans are here at all?

The process of natural selection provides the answer. This process
ensures that less fit offspring do not survive and reproduce. Thus, surviv-
ing offspring are weighted towards being more fit, more advanced, better
able to live and flourish. In practical terms, this means that surviving off-
spring are weighted towards being more intelligent, more adaptable, and
more cunning—in short, more like humans.

Consider an early, primitive life form, such as an amoeba, which
reproduces over and over again. The Law of Large Numbers ensures that
in the long run, each generation of this life form will, on average, be a lit-
tle more advanced than the previous generation. Naturally, early genera-
tions will still be rather amoeba-like, and it will be a long time before
anything more interesting emerges. However, over billions of years, and
hundreds of millions of generations, the long-run march towards
humanity (or some other sophisticated, intelligent life form) seems
almost inevitable. At some point, higher-order life (like us) will emerge.
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So, in some sense, the reason that humans rule the Earth is the same
reason that casinos get rich. In each case, the odds are weighted slightly
in their favour, so they are bound to thrive in the long run. (Of course,
how the first self-replicating life form arose on Earth is a whole other
question. But once life appeared, natural selection took over.)

Processes similar to evolution can also be seen in quite different areas.
For example, consider cuisine and diet. Over the years different styles of
food become popular or unpopular. New foods are created or intro-
duced to a society, and sometimes catch on and other times do not. This
is a different form of “survival of the fittest,” where food is “fit” if peo-
ple like to eat it. It is even believed that many new foods are first created
by accident; someone spills one food on another and is pleased at the
unexpected combination. Once again, randomness is helping to produce
new possibilities (whether species or foods), which can then be tested for
fitness to survive. Without randomness, foods—like species—would be
far less advanced and diverse.

Designer Blue Genes

“Like father, like son” is a simple expression of the fact that genetic
information is handed down from parents to children. Predicting what a
child will be like is very complicated, since different genes in different
combinations affect different attributes. Furthermore, to some extent a
child’s traits and abilities are shaped by their environment and not by
their genes. Still, the basic rule by which children acquire each specific
gene is simplicity itself, and is based entirely on probabilities.

People’s genes come in pairs {(with a few exceptions). For example,
there is essentially a single gene-pair that controls whether your eye
colour is Light (blue, or green, or hazel, or grey) or Dark (some shade of
brown or black). (Recent evidence suggests that the situation is more
complicated, and more than one gene may affect Light/Dark eye colour.
But for now let’s assume it’s a single gene-pair.)

If a person has a Light-Light gene-pair, then her eyes will be a Light
colour. O, if she has a Dark-Dark gene-pair, then her eyes will be a
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Dark colour. But suppose she has a Light-Dark mixed pair. In that case,-

her eyes will be a Dark colour, because the Dark gene is dominant, while
the Light gene is recessive.

If you see a Light-eyed person on the street, you can be sure that he has
a pair of Light eye-colour genes. But if you see a Dark-eyed person, he
may have either a pure Dark-Dark pair, or a mixed Light-Dark pair;
there is no way to tell which.

How do these genes get passed down to a child? Simple: the child takes
one gene from each parent. And, the child has an equal probability of
selecting either one of each parent’s two genes, for a total of four equally
likely possibilities. For example, if each parent has a Light-Dark pair,
then one time in four the child will end up with a Light-Light pair, one
time in four a Dark—Dark pair, and two times in four a Light-Dark pair.
A chart called a Punnett square shows this pattern:

Mother’s Gene:
Light Dark
Light | Light-Light Light-Dark
Dark | Light-Dark Dark—Dark

Father's Gene:

Suppose now that two Light-eyed people have a child together. Since
they are each Light-eyed, they must each have a Light-Light gene-pair.
Their child then has no choice but to select one Light gene from each
parent. The child will thus also have a Light—Light pair, and hence also
have Light-coloured eyes. In this model, if both parents have Light eyes,
then so will their child.

On the other hand, suppose a Light-eyed mother and a Dark-eyed
father have a child together. Then the mother must have a Light—Light
pair, while the father could have either a Light-Dark or a Dark-Dark
pair. If the father has a Dark-Dark pair, then the child has no choice: he
will get a Light gene from the mother, and a Dark gene from the father, so
he will end up with a Light-Dark pair, and thus Dark-coloured eyes. On
the other hand, if the father has a Light~Dark pair, half the time the child
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will get a Light gene from the father and end up with a Light—Light pair,
and hence Light-coloured eyes. So, if one parent has Light eyes, and the
other Dark eyes, their child has probability between 0 and 1/2 of having
Light eyes, and probability at least 1/2 of having Dark eyes.

Finally, suppose two Dark-eyed people have a child. In that case, each
parent could be either Dark-Dark or Light-Dark, and we don’t know
which. If either parent is Dark-Dark, then the child must select at least
one Dark gene, so the child will have Dark eyes. But if both parents are
Light-Dark, there is one chance in four that the child will select the Light
gene from both parents. So, if both parents have Dark eyes, then their
child has probability at most 1/4 of having Light eyes, and probability at
least 3/4 of having Dark eyes.

Sorting out the genes in a family involves some detective work. In my
case, I have brown (Dark) eyes, as do both of my parents. So, on that basis
alone, each of my parents could be either Light-Dark or Dark-Dark.

On the other hand, one of my brothers has hazel (Light) eyes. So, he
must have a Light-Light gene-pair. How could this be? The only expla-
nation is that my parents each have a Light-Dark pair, and my brother
happened to get the Light gene from both parents. Now the pieces of the
puzzle are falling into place.

Since my parents each have a Light-Dark pair, that means that each of
their children will have probability 1/4 of having a Light-Light pair, and
hence Light eyes. (In fact, one of their three children has Light eyes,
which is about right.) They will also have probability 1/4 of having a
Dark-Dark pair, and probability 1/4 + 1/4 = 1/2 of having a Light-Dark
pair (since they could have gotten the Light gene from their mother and
the Dark gene from their father, or the other way around).

What about me? Since my eyes are brown (Dark), [ know I do not have
a Light-Light pair. I could either have a Light—Dark pair or a Dark-Dark
pair. A Light-Dark pair is twice as likely because I could have gotten that
in two different ways (either a Light gene from my mother and a Dark
gene from my father, or vice versa). It follows that T have a 2/3 probabil-
ity of having a Light-Dark pair, and a 1/3 probability of having a
Dark-Dark pair—but I don’t know which I actually have.
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It all gets pretty complicated. But whether tracing the genetics of eye
colour, or of other, more complex traits like diseases and deformities,
predictions and understanding all amount to computing probabilities.

Bye Bye, Blue Eyes
You see her gazing at you from the bar. Magnetic baby-blue eyes that
hold you transfixed. A night of dancing, a few drinks, and you are hope-
lessly in love.

“Let’s get married,” she gasps, between swigs of cognac and passionate
kisses. “We’ll have six children. All strikingly beautiful, just like [ am!”

It sounds tempting. A boatload of brats with that same baby-blue eye
colour sure would take the world by storm. Such magnetism, such
beauty—there would be nothing your children couldn’t accomplish.

But then you remember. Your eyes are brown, as are all the eyes in
your entire extended family, for many generations. You’re virtually pos-
itive that you haven’t got any Light eye genes inside you. And, since
Dark eye genes are dominant, your children will all have Dark eyes, too.
You might one day have grandchildren with blue eyes, but as far as your
kids go, there won’t be a blue eye—either wet or dry—in sight.

“Sorry, sweetheart,” you say coldly. “It wouldn’t work out. It’s no
good between us.” Leaving her broken-hearted, you stagger home, to
sleep it off.

Infectious Disease

Viral infections are a major concern to all of us. From the latest flu, to the

worldwide spread of AIDS, viruses cause much pain, suffering, and -

death. The origins of new viruses are somewhat mysterious, perhaps
involving genetic mutation, or transmission from animals, or even labo-
ratory experimentation gone awry. But-once a virus is upon us, the con-
cerns focus on how widely it will spread and how many people it will
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affect. Epidemiology, the study of disease transmission, is at heart a
study of probabilities.

Each person who is infected by a virus will eventually either be cured
or die from the disease. From the patient’s point of view, being cured and
dying are polar opposites. But from the virus’s point of view, these two
eventualities amount to the same thing, Bither way, the individual is no
longer contagious, and thus no longer able to infect others. Thg virus, if
it is to survive, must move on to other hosts.

So, from the virus’s point of view, the only way to thrive is to keep
infecting new people. Each time a new person is infected, the number of
virus hosts increases by one. However, each time an infected person gets
cured or dies, the number of virus hosts decreases by one. (Probabilists
refer to such a system as a “branching process.” It can be represented
visually as a sort of tree, with the branches pointing from each individual
to the people they infect.) This is the virus’s eternal battle: trying to
increase the number of people infected and decrease the number of people
cured.

Viruses are clever; they know the Law of Large Numbers. They know
that in the long run, the only important question is whether the number
of virus hosts is increasing or decreasing on average. The virus will thrive
only if this number is increasing on average.

How can a virus ensure this? Simple. It has to ensure that, on average,
each infected individual in turn infects more than one other individual
before being cured or dying. (If God told humanity to “go forth and mul-
tiply,” then apparently He instructed viruses the same way.) So, the ques-
tion of whether a virus will spread quickly or will die out boils down to
one simple question: is the virus’s reproductive number—the average
number of people who are in turn infected by each individual carrying
the virus—more or less than one?
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Spread the Word
You have just heard that your brother Louie is in town tonight, and has
agreed to come to dinner. How exciting! You’ll have to gather the whole
extended family together—the cousins, in-laws, and grandparents will
all want to see Louie.

“Hey, Billy,” you tell your son, “Uncle Louie is coming over for dinner
tonight. Everyone is invited. Spread the word!”

Lazily Billy wanders outside and runs into your daughter, Sue. “Sue,”
he begins, “tell everyone to come for dinner tonight with Uncle Louie.”

Billy wanders off looking for other people. However, he soon sees a
salamander dart through the bushes, and he runs to catch it, completely
forgetting his earlier mission.

Meanwhile, Sue is off to the library and doesn’t give dinner or poor
Uncle Louie a second thought. She tells no one.

Finally, it is dinnertime. Where you were expecting a huge crowd to
greet your dear brother, you find no one other than your two children. It
seems that the news of Louie’s arrival didn’t spread very far. Billy told
just one person and Sue told no one, for an average of one half of one
transmission per person. One half is much less than one, so the news
quickly died out.

When it comes to the spread of infectious diseases, we are all tied
together. Whether or not you get sick depends not just on how suscepti-
ble you are to infection, but also on how susceptible are all of those
around you. For example, you might attempt to avoid colds by such
practices as washing your hands often, minimizing contact with others
and with shared objects like banisters and doorknobs, avoiding touching
your own eyes or mouth, getting plenty of sleep, and so on. Such personal
efforts may have a modest impact on your probability of catching a cold.
On the other hand, if everyone in your neighbourhood follows these
same practices, fewer of your neighbours will get sick and you will be
much better protected. And, if everyone in the world is similarly careful,
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each infected individual will, on average, infect less than one other indi-
vidual. The virus will quickly die out and many people will be spared the
discomfort and inconvenience of catching it.

Being protected from disease simply because those around you are
protected is sometimes referred to as “herd immunity,” and it is a pow-
erful force in preventing the spread of illness. However, the idea of herd
immunity sometimes tricks individuals into unwisely lowering their
guard. A tragic example is the spread of HIV/AIDS, where many people
assume they don’t need to practise safe sex because their sexual partners
“must be safe.” This over-reliance on herd immunity has had disastrous
consequences worldwide.

A similar issue arises with vaccines. If a vaccine is effective and every-
one gets it, the disease will quickly die out. However, if everyone else
besides you gets the vaccine, the disease will almost certainly die out any-
way. Since vaccines are inconvenient at best, and potentially painful or
harmful at worst, there is a temptation to let everyone else get the vaccine
while you avoid the trouble.

A major vaccine controversy erupted in the United Kingdom when the
government asked that all children be given an MMR (measles, mumps,
and rubella) vaccine. A team of medical researchers led by Dr. Andrew
Wakefield published a paper in The Lancet in 1998, alleging that this
vaccine might contribute to autism. Central to their argument were eight
cases of children developing symptoms of autism just a few days after
being vaccinated. As a result, some parents stopped getting their children
immunized, while others accused them of selfishly relying on herd immu-
nity and compromising the overall effectiveness of the vaccine program.
There was pressure to provide three separate vaccines (one each for
measles, mumps, and rubella) to allow parents to select only the vaccines
they wanted. The government refused, arguing that, for the sake of pub-
lic health, all children should get all three components of the vaccine.
Matters were not helped when Prime Minister Tony Blair refused to dis-
close whether or not his own son had received the MMR vaccine.

Subsequent studies did not confirm any link between the MMR vac-
cine and autism, and most researchers believe the MMR vaccine to be
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completely safe. Nevertheless, in the years following that 1998 paper,
approximately 20% of parents in the UK. did not get their children
immunized, giving rise to fears that the diseases would spread widely.
Indeed there is some evidence that incidence of measles in the U.K. has
recently increased. The MMR crisis was a difficult situation that pitted
personal freedom against herd immunity, parental love against trust of
the medical profession, and individual caution against the collective
good.

The most extreme method of controlling diseases is to completely iso-
late infected people from everyone else. Such methods have been applied
to many diseases from leprosy to the bubonic plague (as potently
described in Albert Camus’s La Peste) to the SARS outbreak in China,
Toronto, and elsewhere in 2003. Such isolation tries to prevent non-
infected people from becoming infected. If it is successful, the number of
new infections eventually decreases to zero, thus ending the disease.

Proper precautions and vaccines can greatly diminish the threat of dis-
ease; however, the fact remains that if a new virus emerges that is
extremely contagious and also extremely fatal—like the one dramatized
in the Dustin Hoffman movie Outbreak—it could wipe out a huge por-
tion of humanity in a very short time. It happened with bubonic plague
in the fourteenth century (which killed 25 million people in one five-year
period); it happened with the influenza pandemic of 191819 (which
killed 25 million people in just one year); and for all we know it could
happen again.

Replenish, Replenish, Replenish

Viruses aren’t alone in worrying about replenishing their numbers;
humans confront the same challenge. Each person produces a certain
number of children before he or she dies—whether it is zero or one or
two or some other number. In the long run, will the human population
Increase or decrease? Since two parents are required to create a child, the
question is whether or not humans on average produce more or less than
two children each. If they produce more than two, the population will
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increase; if they produce fewer than two, it will decrease. If each woman
gives birth to precisely two children on average, in the long run the pop-
ulation will not change. (The United Nations defines the replacement
rate as 2.1 children per woman; the extra 0.1 comes from not counting
those women who die before adulthood.)

The answer is that the human population is increasing. Indeed, the
world average is that each woman gives birth to about 2.65 children over
the course of her lifetime. This tozal fertility rate is significantly more
than 2, and it explains the huge increase in the world’s population, from
2.6 billion in 1950 to about 6.3 billion today. (The United Nations now
expects the total fertility rate to drop eventually to the replacement rate,
so that the world’s population will stabilize at around 9 billion in
approximately the year 2300; in 300 years we will see if they are correct.)

On the other hand, many countries (especially industrialized ones)
have a much lower total fertility rate. According to the CIA World Fact-
book, the average woman in Canada gives birth to just 1.61 children; in
the United Kingdom, 1.66; in Australia, 1.76; and in France, 1.85. All of
these countries require immigration in order to keep their populations
from decreasing in the long run. The United States, with 2.07 children
per woman, is close to maintaining its total population without immi-
gration (though they accept many immigrants, as well). In each case, the
population increase involves the same mathematical principles as a virus -
spreading disease.

In addition to viruses and humans, all species of animals and plants are
self-replicating, and similarly will either increase or decrease in popula-
tion, depending on their average rate of reproduction. But the analogy
doesn’t end there. Computer viruses are also self-replicating (which is
why they are named after viruses in the first place). Just like biological
viruses, computer viruses need to be passed on to more than one other
recipient, on average, if they are to continue. Computer viruses take this
lesson to heart: they are programmed to vigorously search e-mail address

books, and send out virus copies to every address they can find. That
way, even if only a small minority of computer users are foolish enough
to run the virus program (usually by unwittingly clicking on an e-mail
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attachment), this minority will cause virus copies to be sent to so many
others that, on average, more than one new user is infected each time.

Chain letters are also self-replicating: they attempt to copy themselves
to another host and start over again. Like viruses, chain letters are bound
by the Law of Large Numbers. A chain letter thrives if, on average, each
recipient sends out more than one copy; if recipients send fewer than one
copy, on average, the letter will quickly die out. This is why most chain
letters request that you send on five or eight or 10 copies. If they request
too many copies, the task will be too burdensome, and virtually no one
will comply. On the other hand, if they request too few copies, even a
moderately high response rate will be insufficient to keep the letter going.
For example, suppose that a chain letter asks for two copies to be sent,
and one recipient in three complies with this request. That works out to
an average of only 2/3 copies per recipient. Since 2/3 is less than one, the
letter will quickly die out. Or for a more extreme example, suppose a
chain letter requests that just one copy be passed along. Even if only a
few recipients do not comply, the average will be less than one, and the
letter will not continue. I am willing to bet that you have never, in your
life, received a chain letter requesting that just one copy be sent on.

The night before the 2004 U.S. presidential election, the Republican
Party sent out a mass e-mail, in the name of George W. Bush, urging the
president’s supporters to vote the next day. Recipients were also
requested to forward the e-mail to five people. The Republicans knew
that if their chain letter was to be successful, it would have to replicate
more than one copy on average. If they requested that just one or two
copies be forwarded, many recipients would fail to comply and the letter
would soon die out. By requesting that five copies be sent out, the Repub-
licans created a chain letter that survived and flourished in those pre-
election hours.

Even word-of-mouth news is governed by the Law of Large Numbers.
There is an old television commercial featuring a woman who is so
pleased with her choice of shampoo that she tells two friends, who each
tell two more friends, “and so on, and so on.” I don’t remember what
brand of shampoo they were advertising (nor have I ever felt a need to
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exclaim to others about my hair care products). But the commercial
does indicate how even neighbourhood rumours are spread through
self-replication. If a rumour is interesting enough that a listener repeats
it to more than one other person on average, the rumour will spread
rapidly. If not, then it will languish. Since two is more than one, that
shampoo euphoria was guaranteed to be carried from friend to friend,
forever more.

From evolution to genetics, from viruses to chain letters, self-replication
shows that a little randomness can go a long way. The development of a
new species and the spread of information can be accomplished quite
efficiently, with a few simple rules and an awful lot of probabilities.
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That Wily Monty Hall

Finding Probabilities from Clues

In daily life we are always assessing various probabilities: What are the
odds that I will be killed if I cross the road? That I will pass my examina-
 tion at school? That the woman of my dreams returns my feelings?

Sometimes we get additional information that causes us to reassess our
probabilities: we read in the newspaper that a certain street has lots of
traffic accidents; we hear that our teacher is a tough grader; the woman
of our dreams smiles back at us. Each new piece of information causes an
immediate re-evaluation of our assessed probabilities: maybe the road is
more dangerous than I thought; I have no chance of passing my exami-
nation; perhaps she loves me after all.

Unfortunately, we don’t always re-evaluate our probabilities correctly.
For example, suppose your quaint little town has been shaken to the core.
After years of utter tranquility, suddenly there has been a rash of murders.
Police have identified five crazy homicidal maniacs on the loose. Further
investigation brings a new detail to light: of the five murderers on the
loose, four of them are men with beards. This, in a town of 10,000 people,
of whom just 400 are men with beards. “Beware of Bearded Men,”
scream the newspaper headlines. You were always suspicious of men with
beards and this confirms it: men with beards are dangerous!

You try to remain calm and to go about your daily business. However,
the next night you are walking home on your dark, deserted road, and
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you hear a noise behind you. Someone is there! Your heart beats a little
faster. In desperation, you remember your Probability Perspective. There

‘are 10,000 people in this town, only five of whom are murderers. So that

random person behind you has only five chances in 10,000 of being a’
murderer, which is just 0.05%. You relax a little. But then you pass a
streetlight, and get a good look at him. You are utterly shocked to see
that he has a beard. Now you’re really done for. Since four murderers out
of five have beards, there must be four chances in five, or 80%, that this
person is a murderer, right?

No, not right. If there is a total of 400 men with beards, of whom four
are murderers, the probability that a randomly chosen man with a beard
is a murderer is just four chances in 400, or 1%. This is a far cry from the
80% chance you originally estimated. So, yes, having a beard does
increase the probability that he is a murderer; however, it only increases
the probability from 0.05% to 1%, which is still a very small probability.

This example is representative of the misjudgements that we all make
from time to time when we assess groups of individuals. Consider how
frequently we observe some characteristic (positive or negative) in a few
members of some particular racial, ethnic, national, religious, or gender
group, and immediately assume that most of this group shares the same
characteristics.

In the foregoing example, seeing that the mysterious stranger had a
beard did indeed change the probability that he was a murderer. It just
didn’t change it very much. So the question is, when you get new evidence,
how much should your estimation of probabilities change? The science of
re-evaluating probabilities based on new evidence is called conditional
probability. Tt is often quite subtle, yet it arises in many different contexts.

My Lupus Scare (A True Story)
1 once had to do a conditional probability calculation that was extremely
personal and intense. As a healthy 25-year-old, [ went for a routine but
thorough medical examination. A week later, I received a letter in the

mail. It was three lines long. It said, “The test for lupus indicates that
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you may have it. However, about 5% of the normal population tests
positive. Please contact our office to arrange a follow-up appointment.”
I was shocked; until that moment, I had always taken my good health
for granted.

I had to wait three days for the follow-up appointment. I was then
told that the doctor could send my blood for a more sophisticated,
DNA-based analysis, to determine whether I actually had lupus. The
problem was, they might not get around to performing the test for a cou-
ple of weeks.

I was terrified and had to find some way to cope with my anxiety. I
turned to probability theory. I needed to know, was I one of the 5% of
the normal population who tests positive even though they are perfectly
healthy? Or was [ one of the nearly 1% who actually has lupus?

I saw that this was a question about conditional probability. The
question was, conditional on knowing that I tested positive for the lupus
test, what was the conditional probability that I actually had lupus?

Stated this way, the answer was simple. The total fraction of the pop-
ulation which would test positive was the sum of the 1% with lupus, and
the 5% without lupus who still test positive, for a total of 6%. Yet only
1% of the population actually has lupus. So the conditional probability
that I had lupus, given that I had tested positive, was equal to 1%
divided by 6%, or 1/6, or about 17%.

That’s not so large. Naturally, I did not want to have even a 17%
chance of having a serious disease like lupus, but 17% was much better
than 100%. It was enough to convert my total panic into something
more like great fear and worry—a big improvement.

Finally I received a phone message from my doctor. The DNA-based
test had come back negative: I did not have lupus. In the meantime,

probability theory had helped me to cope with a very difficult situation.

Sometimes confusion about conditional probability is easy to see. For
example, Myla Goldberg’s novel Bee Season describes a spelling bee with
151 contestants, numbered from 1 to 151. The mother of one contestant
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hopes for a two-digit number, because most years a two-digit number
wins. Of course, in this example any number is equally likely to win.

. Since there are 90 two-digit numbers (all the numbers between 10 and

99), the probability is 90/151, or 59.6%, that a contestant with a two-
digit number will win. However, even if you have a two-digit number,
and even if you’re sure that a two-digit number will win, your probabil-
ity of winning is still just 1/90, or 1.1%. So, your overall probability of
winning is the probability 90/151 that some two-digit number will win
multiplied by the probability 1/90 that you will win if a two-digit num-
ber wins. This works out to one chance in 151—the same probability as
for any other contestant. ;

Another example is airplane accidents versus automobile accidents.
We have seen that many more people die in automobile accidents than in
airplane accidents. So, even taking into account that many more people
drive than fly, it is still much safer to travel by airplane than by automo-
bile. However, in addition to all the fatal automobile accidents that
occur, there are also a lot of non-fatal ones, whereas most plane crashes
result in most of the passengers dying. What this means is that, to avoid
fatalities overall, it is safer to travel by airplane than by automobile.
However, if somehow you knew for sure that you were going to be in an
accident, it would be safer to be in an automobile accident than an air-
plane accident. In other words, planes are safer than cars (they have
fewer fatalities), but plane crashes are more dangerous than car crashes.
That’s conditional probability for you.

The Proportionality Principle

Often we are confronted by situations in which two different possibili-
ties are a priori equally likely, but then we receive new information in
favour of one of them. For example, suppose you are waiting for the
shower, and your sister has been in there for 15 minutes. You feel your
blood boiling over, and your hatred of your sister—never small to begin
with—keeps increasing. There’s just one problem. You actually have two
sisters, Alice and Brenda, and you’re not sure which one is showering,.
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This isn’t good-—if you’re going to hate a sister, you at least want to
know whom to hate.

Suppose both your sisters’ bedroom doors are closed, and you can’t
call out because your other sister (whichever one that is) may be asleep.
In short, there is no evidence either way about which sister is in the
shower. You decide it is equally likely that Alice or Brenda is ruining your
morning,.

Then you hear a noise over the din of the shower. It’s vaguely melodic,
and you realize that whoever is in the shower is singing. Her joy only
makes you angrier. But at the same time, it gives you an idea. Perhaps

| you can update your probabilities based on this new information (the
singing), and get a better idea of which sister should bear your anger. You
know that Alice loves to sing, and virtually always sings when she’s in the
shower. Brenda, on the other hand, is only a moderately enthusiastic
singer, and sings during perhaps one quarter of her showers. So, once
you hear the singing, you figure it is more likely that Alice is in the
shower, rather than Brenda.

But how much more likely? You think again. If Alice is four times as
likely as Brenda to sing, then a singing showerer must be four times as
likely to be Alice as to be Brenda. Aha, you declare. The odds of Alice
versus Brenda are now 4 to 1. Hence, there is a 4/5 chance that you
should be angry at Alice, and just a 1/5 chance that you should be angry
at Brenda. Fresh thoughts of how to ruin Alice’s life fill your mind.

This example illustrates an important idea, which I call the propor-
tionality principle (it’s a special case of Bayes’ rule). If different possibili-
ties (like Alice or Brenda being in the shower) are equally likely to begin
with, and new evidence (like the singing) arrives, you should update your
probabilities in proportion to the corresponding chances (in this case, in
proportion to the chances of Alice or Brenda singing).

Once we understand this principle, it is easy to apply. For example,
suppose a sly operator named Quick-Hand Charlie calls out, “Say, mis-
ter. Step right up. Play the three-card thriller!” As you cautiously
approach, he continues, “Look at these three cards. One is red on both
sides, one is black on both sides, and one is red on one side and black on
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the other. Right?” You agree, and he goes on. “Now mix the cards all up
in this giant bag here. Pick one card at random, and plunk it down on the
table with a random side up.”

Hesitantly, you swish the cards around in the bag, grab one of them,
and put it quietly in front of him. The side you see is bright red. “Okay,
that side is red, right?” Charlie says. “So I guess you didn’t get the
black—black card, eh? You got either the red—red card, or the red-black
card—and it must be 50-50 whether or not the other side is red or black,
right?”

Charlie is angling for a wager, and you’re getting scared. Quickly you
remember your Probability Perspective. Originally all three cards were
equally likely to be selected. Your new evidence is that a randomly cho-
sen side of the selected card is red. Aha, this is conditional probability.

You decide to use the proportionality principle. You reason that if
you’d selected the red—red card, then a randomly chosen side would
always be red. But if you’d selected the red-black card, then a randomly
chosen side would only be red half the time. Since the red-red card is
twice as likely to show red as the red-black card, the probability must
now be two to one that you’ve selected the red-red card. That is, there is
a 2/3 chance that the other side of the card is also red.

“Sorry, Charlie,” you reply. “It’s not 50-50 at all. The other side is red
with probability two out of three.” To illustrate your point, you flip over
the card, revealing another red side on the back. Charlie starts to reply,
but he realizes you are too smart for him. He moves on to the next
sucker.

In this example, many people just don’t believe that the probability of
the other side being red is 2/3. If you’re not convinced by the proportion-
ality principle, here are two other ways to get the same answer. (Mathe-
maticians are always happy when they can get the same answer by
different methods—then it must be correct.)

One way is as follows. At the beginning of the game, you had one
chance in three of selecting the red-black card. Seeing a red side changes
many things, but it doesn’t change this chance. No matter what colour
you see, you still have one chance'in three of having chosen the red~black
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card. So, the probability is 1/3 that the other side is black, and 2/3 that
the other side is red.

Still don’t believe me? Then try the following explanation for the
three-card thriller. There are three cards, each with two sides, for a total
of six sides. What you do in the beginning is pick one of the six sides at
random. Since it’s red, it must be one of the three red sides, all equally
likely. But two of those three red sides (the two sides of the red-red card)
have a red side opposite, while just one of those three red sides (the red
side of the red-black card) has a black side opposite. So, there are two
chances in three that the opposite side is also red.

So there you have it. By the proportionality principle, or by remember-
ing the chances at the beginning, or by counting sides instead of cards,
we see that in Quick-Hand Charlie’s three-card thriller, once you see that
one side is red, there is a 2/3 chance that the other side is also red.

Easy, right? So now you’re ready for the most famous (or infamous) of
all conditional probability problems, the Monty Hall Problem.

The Monty Hall Prohlem

On September 9, 1990, Marilyn vos Savant presented a probability
problem in her “Ask Marilyn” column of Parade magazine. The problem
was the “Monty Hall problem,” named after the host of the television
program Let’s Make a Deal.

The Monty Hall problem supposes that a new car is behind one of
three doors. You pick one door (say, Door #1). The host then opens some
other door (say, Door #3), showing no car (in fact, showing a goat
instead). You are then given a choice: you can either stick with your orig-
inal door (#1), or switch to the other unopened door (#2). If the car is
behind the door you end up choosing, then you win the car, otherwise
you don’t. i

The question is, should you open your original door, or should you
switch? Is the car more likely to be behind Door #1 or behind Door #2?
Most people assume that you are equally likely to win whether you
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switch or not, but vos Savant asserted that you were twice as likely to
win if you switched.

Unexpectedly, vos Savant’s column about this problem ignited a storm
of controversy, and thousands of letters were received. Mathematicians
from such institutions as George Mason University, the University of
Florida, the University of Michigan, and Georgetown University wrote
in to complain that vos Savant’s answer was incorrect, saying that she
“blew it big,” that her “logic is in error,” and that she is “utterly incor-
rect.” One intemperate academic even wrote that vos Savant herself was
the goat! .

In response, vos Savant issued a challenge to “math classes across the
country,” asking them to try out the game as an experiment. She asked
that they try not switching for 200 trials, and then try switching for the
next 200 trials, to see which way they won more often. Many elementary-
school math teachers took her up on this challenge, and their letters indi-
cate great delight. “Our class, with unbridled enthusiasm, is proud to
announce that our data support your position,” said one. “Their joy is
what makes teaching worthwhile,” gushed another. “The results were
thrilling!” exclaimed a third. (On the other hand, one student expressed
pleasure merely because the experiment “got me out of fractions for two
days.”)

This Monty Hall problem struck a nerve with mathematicians, teach-
ers, students, and the general public alike. So how can we solve this
tricky little puzzle?

The first thing to note is that the answer depends on the behaviour pat-
tern of the host. For example, suppose the host doesn’t like you, and
therefore offers you a chance to switch only when your original guess
was correct. In that case, of course you should never switch, since the
host allows you to switch only when switching would be a bad idea.
Conversely, suppose the host really does like you, and therefore offers
you a chance to switch only when your original guess was ot correct,
and switching is thus a good idea. In that case, of course you should
always switch.
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To remove these ambiguities, we will state our assumptions clearly. We
assume that originally, before you made your selection, each of the three
doors was equally likely to contain the car. We also assume that, whether
your original selection was right or wrong, the host will always open a
door that is different from your selected door, and that does not contain
the car. The host will then always offer you a chance to switch to the
other unopened door. Furthermore, if your original selection happens to
be correct, the host is equally likely to choose either of the two other
doors (neither of which contains a car in this case).

Now that the assumptions are clear, it is time to use some conditional
probability. Originally, all three doors were equally likely to lead to the
car. We now have some new evidence—namely, the host has opened
Door #3, which has no car. We then ask, what is the updated probability
that the car is behind Door #2?

The proportionality principle tells us that the conditional probability
that Door #2 (say) contains the car is proportional to the probability of
seeing the new evidence (i.e., of seeing the host open Door #3) if the car
1s actually behind Door #2. Now, if Door #2 actually contains the car,
then after we guess Door #1, the host has no choice but to open Door
#3—the only remaining door with no car. So, the host will always open
Door #3. The probability is 1/1 (certainty) that the host will open Door
#3 in this case.

On the other hand, if Door #1 actually contains the car (that is, if our
original selection happened to be correct), then the host has a choice.
Half the time he will open Door #2, and half the time he will open Door
#3. So, in this case, only half the time will the host show us Door #3. The
probability is 1/2 that the host will open Door #3 in this case.

We conclude that the chance of seeing the new evidence (the host open-
ing Door #3) is twice as great if the car is behind Door #2, than if the car
is behind Door #1. So, by the proportionality principle, if we guess Door
#1 and then the host opens Door #3, it is twice as likely that the car is
behind Door #2 as Door #1. In other words, if we switch from Door #1

to Door #2, we will increase our probability of winning the car to 2/3.
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So, vos Savant was exactly right, and her mathematician critics were
exactly wrong.

If you understand why there is a 2/3 chance that the car is behind Door
#2, then you are ahead of most of the mathematicians who wrote in to
Parade magazine. But if you don’t, then take heart. Once again, there are
other ways to get the same answer.

When you first begin the game, you have no idea where the car is.
Thus, your original selection of Door #1 is purely random, and it has just
1/3 chance of being correct. You know that the host is then going to open
some other door which contains no car, so when he does so, it doesn’t
stirprise you at all. In particular, the host’s action has no effect at all on
the probability that your original selection was correct. That is, the
chance that Door #1 is correct is the same as it was originally, namely
1/3. So, there is a 1/3 chance the car is behind Door #1, and therefore (by
process of elimination) a 2/3 chance the car is behind Door #2. Oncg
again, we see that vos Savant was correct.

If you’re still not convinced, try this. Suppose that when the host has a
choice of which door to open, he decides by flipping a coin. And pretend
that even when he has no choice, he flips the coin anyway, even though it
means nothing. In that case, we can write a table of all the possibilities,
as shown in Table 14.1. The six rows in this table are all equally likely.
Three of them (the second, third, and fourth rows) correspond to the
host opening Door #3. And, in two of those three rows, the car is actu-
ally behind Door #2. This means that if the host opens Door #3, then
there are two chances in three that the car is actually behind Door #2. So
the probability of winning by switching is 2/3, just as vos Savant said.
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Table 14.1 Possible Monty Hall Qutcomes
(Where Your First Choice Is Door #1)

Your Choice  Car Location Coin Host Gpens

#1 #1 Heads #2
#1 #1 Tails #3
#1 #2 Heads #3
#1 #2 Tails #3
#1 #3 Heads #2
#1 #3 Tails #2

So ends our tale of conditional probability. In summary, the pro'por—
tionality principle tells us that if two possibilities start out ?qually likely
and new evidence arrives, we should adjust our probabilities t9 be.prc.)-
portional to their probability of causing this new evidence. So.lf Alice is
four times as likely as Brenda to sing, then it is four times as likely (and
hence has probability 4/5) that she is in the shower. Or, if a rfedl—red. card
is twice as likely as a red-black card to show a red face, then it is th-CE as
likely (and hence has probability 2/3) that the card is‘ red-red. Qr, if Fhe
host opening Door #3 is twice as likely to happen if tl‘le car is behind
Door #2 than if it is behind Door #1, then it is twice as likely (and hence

has probability 2/3) that the car is behind Door #2. o
" If you're still not convinced that the Monty Hall probability is %/3,
then remember that neither were many mathematicians the first time
they heard this question. More important than this probler.n., or even the
proportionality principle, is the fundamental fact of conditional pr.c?b'a-
bility: When new evidence arrives, you should update your prf)bab111t1es
accordingly—neither too much (as in the bearded-men scenario) nor too
little (as for three-card thriller or the Monty Hall problem). If you keep
that thinking in mind as you travel through life, you will make the appro-
priate inferences based on what you see and hear, and thereby end up a

WiSCl‘ person.
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Scrappy Statisticians

Conditional probability is at the root of a serious, and at times heated,
debate among statisticians. There are some statisticians who feel that
many of the concepts of traditional statistical inference—p-values and
margins of error and “19 times out of 20” and so on—are meaningless.
These are statisticians who are “Bayesian”—pronounced BAY-zee-in,
and named for Thomas Bayes (1702-61), an English Nonconformist
minister who developed many of the early rules of conditional probabil-
ity. (Bayes died long before the debates in his name about statistical pro-
cedures, but Bayesian statisticians still regard him as a hero. He is
buried in Bunhill Fields in downtown London, and the following
inscription was added to his tomb 200 years after his death: “In recog-
nition of Thomas Bayes’s important works in probability this vault was
restored in 1960 with contributions received from statisticians through-
out the world.”)

Bayesian statisticians believe that all uncertainties should be viewed in
terms of conditional probability. For example, if they were testing a new
medical drug, they wouldn’t be content to know that the probability was
less than 5% that the drug’s benefits were the result of pure chance.
Rather, they would want to know, given the results of the drug trial,
what is the conditional probability that the drug is actually beneficial?
Or, if presented with a poll, they wouldn’t want to know the size of the
margin of error. Rather, they would want to know, given the results of
the poll, what is the conditional probability that their candidate will
actually win the election?

To be more specific, consider the fictional Probalitus disease intro-
duced earlier. This disease was normally fatal in 50% of cases, but a new
drug has been given to, say, five patients and saved every one of them.
Are these results sufficient to prove that the new drug is beneficial?

We have seen that classical (or “frequentist”) statistics would have us
compute the p-value—the probability of five patients in a row surviving
by pure chance. This p-value equals 50% multiplied by itself five times,
which is one chance in 32, or 3.1%. Since this p-value is less than 5%,
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classical statistics would conclude that those five patient recoveries could
not have happened purely by chance, so the drug must be beneficial.

A Bayesian statistics analysis proceeds differently. It begins by assign-
ing prior probabilities for the effect of the drug, representing what we
think before we conduct the drug trial or see any evidence at all. Because
we’re not sure which is true, and because we want to be open-minded,
we might declare our initial (prior) probabilities to be 50% that the drug
is a miracle cure (and will save all patients), and 50% that the drug is use-
less (and does not change the disease’s 50% survival rate at all).

Once these prior probabilities have been assigned, we next have to
compute the conditional (or posterior) probability that the drug is bene-
ficial, given that it saved five patients in a row.

What is this conditional probability? If the drug is a miracle cure, then
any five patients will always survive. However, if the drug is useless, then
the probability is just 1/32 of this happy event. Furthermore, we are
assuming that according to our prior probabilities, the two possibilities
{miracle cure or useless) were equally likely. So we can use the propor-
tionality principle. It says that if five patients in a row survive, then itis 32
times more likely that the drug is a miracle cure than that it is useless. This
means that the posterior probability that the drug is a miracle cure is
32/33 (96.97%), while the probability that it is useless is 1/33 (3.03%).

So, while a classical statistician would say that the p-value is 3.1% and
thus conclude that the drug must be beneficial, a Bayesian statistician
would instead declare that given the evidence, there is a 96.97% proba-
bility that the drug is beneficial. These two conclusions amount to pretty
much the same thing;: in both cases, there is strong evidence that the drug
is beneficial. But whereas classical statistics would decide that the drug is
helpful because the p-value is less than 5%, Bayesian statistics instead
uses conditional probability to assign a final, “posterior™ probability of
96.97% that the drug is helpful (and 3.03% that it is useless).

This dichotomy between classical and Bayesian statistics might sound
like just a minor, technical difference, and in many ways it is. But to some
statisticians, this difference is crucial to their philosophy of randomness.
Most interesting is how passionately and personally certain statisticians
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take the distinction. Rather than refer to classical and Bayesian statistics
as topics, they identify individual researchers as frequentists or Bayesians

and then criticize each other’s approaches. Bayesians attack frequentist;
for the “contortions” of their “logically inconsistent” ideas, arguing that
what we really care about isn’t p-values or margins of error, but the
actual probability that the drug is beneficial or that the candidate will
win the election, conditional on the observed data. Frequentists couﬁter
that Bayesian statistics requires specifying your prior probability about
what you believe before the experiment has even begun, and that there is
no clear justification for how this prior probability is selected, thus ren-
dering Bayesian statistics meaningless. This Bayesian versus frequentist
debate was most passionate in the second half of the twentieth century,

with each side publishing detailed attacks on the other, but it continue;
to this day.

I have learned the hard way that there are heated emotions on both
sides of this debate, especially among the older generation of statisticians.
I choose my words carefully in statistics department lounges whenever I
am in “mixed” (Bayesian and frequentist) company, to avoid starting
arguments. But if you ever find yourself with a large group of statisticians,
and you want to cause a bit of trouble, ask them if they are Bayesian or
frequentist. If your group happens to include a few passionate supporters
of each side, then sit back and watch the fireworks.

219



15

Spam, Spam,
Probability, and Spavm

Blocking Unwanted E-mail

Conditional probability and Bayesian statistics have applications to rflany
different areas of science and life. One that is becoming increasingly
important is the blocking of unwanted commercial e-mail, or spam.
Spam (from “spiced ham™) was originally a canned-meat produ?t
developed by the Hormel corporation in 1937, a follow-up to their
“Hormel Flavor-Sealed Ham” product of 1926. During the fresh-meat
shortages of World War II, Spam was distributed widely and consumed
by soldiers and civilians alike in the United States, Ca'na.tda, Great
Britain, Russia, and elsewhere. It is estimated that over § billion cans of

Spam have been consumed worldwide.

The 1970s British comedy group Monty Python later mocked the

widespread availability of Spam. Their famous skit about a restaurant
that offers such breakfast delicacies as “Spam, sausage, Spam, Spam,
bacon, Spam, tomato, and Spam” helped to make the word sparm syn-
onymous with any item that is overly abundant.

So it was perhaps inevitable that, in the electronic age, spam wo.uld be
used to describe the unwanted, unsolicited, commercial mass e-mail mes-
sages that we all receive and delete every day. These messages try .to con-
vince us to buy products, send money, visit commercial Web sites, or

otherwise profit the sender.

SPAM, SPAM, PROBABILITY, AND SPAM

Where once these spam messages were infrequent and possibly even
amusing, they are now so widespread that they have become a significant
drain on the productivity of everyone who uses e-mail in their daily lives.
Indeed, it has been estimated that currently over 50% of all e-mail is
spam, and many expect this figure to keep on rising. The total amount of
effort spent worldwide to sift through and delete all those spam mes-
sages, while being careful not to accidentally delete any real e-mail, costs
many billions of dollars—not to mention huge amounts of frustration
and annoyance.

Most people now agree that spam e-mails are a serious problem and
must be stopped. But how? The anti-spam battle is being waged on many
fronts, from legislation to technology to individual habits. But it appears
that the most promising anti-spam measures involve probability theory.

When inundated with spam e-mails, everyone’s first reaction is, “Let’s
get these guys!” Many people would be quite happy if the police rounded
up the senders of spam, and threw them into jail (with no Internet access)
for many years. Unfortunately, this is not as easy as it sounds.

One problem with the “get the spammers!” approach is that not every-
one agrees on precisely what does or does not constitute spam. Some-
times it’s simple to draw the line: a loving note from your mother is not
spam, but an unsolicited and unexpected invitation to visit a pornogra-
phy Web site is. But what about, say, an e-mail from that nice Mr. Jones
at the local hardware store, announcing to the neighbourhood a dis-
count on hammers this week? Or, an e-mail from an on-line store where
you purchased a sweater last month, telling you about an even better
sweater available this month? (Or, for professors like me, yet another
mass e-mail announcement about some upcoming research conference
that I have no interest in attending?) Sometimes the lines can get blurred.

A more fundamental problem is that most spammers remain hidden,
sending their spam from various anonymous Internet accounts, often
switching in a hurry between different Internet Service Providers (ISPs).
Complaining directly to the ISP results, at best, in termination of the
computer account in question, but it is easy enough for the spammers to
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open up another one. (Even determining which I.SP i's invo.lved isn’t 50
simple, since spammefs often forge that information in their messages.)
Furthermore, the international nature of the Internet means that spam e-
mails can originate from any country, and apprehenc?gg spaminers
requires knowledge and enforcement of complex extradition and other
international treaties.

Lawmakers have introduced legislation against sending spam. In the
United States, New York Senator Chuck Schumer and other lawmakers
have introduced a “CAN-SPAM Act,” which came into effect on Janu-
ary 1, 2004, This act provides for jail terms of up to five years for those
who, among other things, use multiple computer ac.count‘s under falsi
identities to transmit “multiple commercial electronic mail mes§a1.g'es.
(Apparently, this careful wording was chosen to. aHO\'iv. the poht1.c1ans
themselves to continue to use mass e-mail to solicit political donations.)
This is a promising development, but will it be enforceable and ma-ke a
significant dent in the amount of spam sent? Many people are skeptical.

In short, catching spammers can be very difficult. To make real head-
way in the anti-spam fight, we must use other methods.

It is worth asking why spammers bother to send spam. Some 'of them are
just cranks. Others have been duped into paying spam-sending .compa—
nies to send out spam for them, in the mistaken belief that they 'wﬂl rnal-ce
a quick buck. However, the majority of spammers send out their spam 1n
a sincere effort to make a profit. o

Spam solicitations typically receive something like 15 responses per
1 million spam messages sent. This is equivalent to a response rate of
0.0015 % —extremely low by any standard. So how do spammers make
any money? . '

The answer, of course, is that the cost of sending out spam is incredibly
low. Indeed, the current “street price” of hiring a company to. send out
spam e-mails for you is approximately $1 per 10,000 fe—maxls sen?—
much, much lower than the cost of sending out paper mail. B'y spending
about $100, spammers can send out 1 million spam e-mails, and get
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approximately 15 responses. Even if they make just, say, a $10 profit
from each response, this still earns them $150, for a net profit of $50.

Of course, if no one ever responded to spam e-mail, the response rate
would go down to zero. In this case, sending spam would never be prof-
itable, and eventually the spammers would stop bothering. So, the sim-
plest thing we can do to stamp out spam is to never make purchases in
response to spam. Just say no!

Unfortunately, even though most people never respond to spam, it
seems there will always be some tiny fraction of e-mail users who will do
so. Thus, non-response alone will not be enough to stop the problem of
spam.

A related issue is how spammers get your e-mail address in the first
place. If they don’t know your e-mail address, they can’t bother you. So
another method of avoiding spam is to try to keep your e-mail address
secret. Some ISPs and on-line sales companies actually sell your e-mail
addresses to spammers; obviously, you should never knowingly do busi-
ness with (or in any way provide your e-mail address to) such companies.

Also, some spammers simply “guess” various e-mail addresses, by
sending messages to common-sounding names at popular e-mail domains.
So, it is best to use a hard-to-guess account name.

In addition, many computer viruses, once they successfully attack one
computer, automatically find (and send e-mail to) all of the e-mail
addresses stored in that computer’s address list. The only way to avoid
this problem is to avoid having any e-mail correspondents (or at least
none who will ever accidentally allow a computer virus to take over their
computer), a virtually impossible proposition.

But most spammers get their e-mail addresses through the use of
“spam harvesters,” which are computer programs that automatically
search Web sites and Web directories all over the world looking for
new e-mail addresses. The only way to foil such harvesters is to keep
your e-mail address off of all public Web sites (except perhaps as an
image, which computer programs can’t read).

Unfortunately, it is virtually impossible to keep your e-mail address off
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of every Web site, every directory, and every commercial list, all the while
avoiding any correspondents who will ever be attacked by a co'mputer
virus. Thus, address secrecy, while generally a good idea, is again not a
perfect solution to the ever-growing spam problem.

Block That Spam

If we can’t catch the spammers, can’t put them out of business, and can’t
hide from them, then what is left? Recent efforts have focused on turning
the power of the computer back on the spammers, by using tthnology
to prevent spam e-mail messages from ever reaching your e-mail inbox.

The Dastardly Spammity Spam
You're relaxing at home, finally getting a moment’s peace, when the
doorbell rings. You open it to see a shifty-eyed man with a waxed mus-
tache and thin black tie, carrying some large hoops.

«Pleased ta meet va,” he begins smoothly. “Spammity Spam’s my
name, Hula Hoops are my game. What d’ya say, mister? I've got fat
ones, thin ones, green ones, blue ones—"

“Sorry, not interested,” you interrupt, closing the door and returning
to your couch.

A minute later the door opens, and Spammity Spam sticks his head in.
«T don’t think you’ve really considered all the benefits of Hula Hoops,”
he begins.

Outraged, you jump up, and slam and lock the door. At least zow he
can’t come back.

A minute later the doorbell rings again, repeatedly, over and over.
Frustrated, you cut the wire to disable the bell. Phew.

Then there is a knocking at the doox. First quiet, then louder. Argh!
Rushing down to your basement, you find a few old mattresses and lean
them against your front door, thus drowning out the knocking. Taking a

deep breath, you try to relax.

What's that noise upstairs? It’s Spammity Spam coming in through the
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bedroom window. “Hula Hoops are a great stress reliever,” he contin-
ues, as if he hadn’t been interrupted. “Fun and entertaining, too!”
Furious, you rush upstairs, push Spammity Spam back out onto the
balcony, and nail thick wooden boards over all of your house’s windows.
Then you slump down onto the floor, in a fortified, lonely house with no
sunlight. Your depression only deepens when you hear a noise from the
roof, and realize that Spammity Spam is trying to get in through the attic.
Meanwhile, your kindly neighbour has just brought over some flow-
ers from her garden. She is at your front door, getting frustrated as she

presses the doorbell and knocks on the door without success.

In theory, we should be able to use the power of the computer to block
spam. That is, every time a new e-mail address arrives, it should be auto-
matically sent to a computer program that determines whether it is a
legitimate e-mail (and lets it through), or a spam message (which is then
deleted, or returned to the sender, or stored in a special separate “spam
mailbox™ for later inspection). Indeed, many ISPs have already set up
such programs for their users. But how do they work and how successful
are they?

The problem of blocking spam may be rephrased as a classification
problem: How can we write a computer program to decide whether a
new e-mail message is spam or not? In recent years, many researchers
have taken this problem quite seriously, and have worked hard at finding
good solutions. Perhaps inevitably, e-mail messages that are not spam
have come to be known as bam. So, the question is, can we create a com-
puter program (called a “spam filter”) which is clever enough to decide
which e-mail messages are spam and which are ham?

As a first attempt, we might set up a computer program that scans each
e-mail message for various words and patterns, and classifies as spam any
message in which they occur. For example, many spam e-mail messages are
from pharmaceutical resellers, attempting to sell the drug Viagra. (The
manufacturer of Viagra, Pfizer Inc., is in no way responsible for these
messages.) Aha, you think. To deal with this problem, I will program my
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computer to automatically block any e-mail message that contains the
word Viagra. Victory is at hand.

However, several problems may arise. One is that your computer might
create “false positive” spam identifications. This means that some perfectly
legitimate e-mail messages might mistakenly be classified as spam. For
example, perhaps a work colleague ends an otherwise serious and impor-
tant message with a comment like “Sorry to be slow in sending you this

information. First I had to delete seven spam e-mail messages trying to sell’

me Viagra,” or a joke like “Apologies if this e-mail was too boring—at least
it’s better than another advertisement for Viagra,” or advice like “Check
out that new probability book; it has a fascinating discussion about e-mails
that contain the word Viagra.” Unfortunately, your spam filter—a com-
puter program and therefore not very smart—would see the word Viagra
appearing in the message and automatically classify the message as spam.
This would prevent you from reading your colleague’s entire message.

A second problem is that the spammers will attempt to get around
your spam-blocking program. For example, they might decide to misspell
the word Viagra slightly. Indeed, in the past month I have received spam
messages urging me to purchase such products as “Via.gra,” “viagara,”
“Viagkra,” “V*iagra,” “VI@gra,” “Vl@gra,” “Vi@gra,” “V-1-A-G-R-A,”
and even “Via<alt=3DIlkfrujv>gra” (this last one because HTML-
format mail readers won’t display the part between angle-brackets). All
of these spellings are easily recognized by a human as meaning “Viagra,”
but your spam-blocking computer program will probably miss them.
More sophisticated spammers might not even use the word Viagra at all;
they might instead just rename their product, and describe its supposedly
wonderful effects in other ways, again fooling your computer program.

Even if you do somehow manage to stamp out all of the Viagra adver-
tisements, there are still so many other types of spam. You can easily
spend your whole day adding different words and different spellings to
your computer program’s list, while also worrying about false positives
causing your real e-mail not to reach you.

It all seems pretty hopeless. However, once again, probability theory
saves the day.
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Spam Prohabilities

Rather than trying to figure out all the words that spam e-mail might
contain, and hoping that no legitimate e-mail messages contain them, a

new approach is to get the computer to estimate the probability that each
new e-mail message is spam.

Spammity Spam Revisited
Depressed at missing the neighbour’s visit and longing for sunshine, you
try a different approach. You take down all the wooden boards and mat-
tresses, and reconnect your doorbell. Next to your couch you connect
two buttons, one labelled “Spam” and the other labelled “Ham.”

A few minutes later, the doorbell rings. You hope that it is your nice
neighbour, so you reach towards the “Ham” button, to automatically
open the door and let her in.

“Not so fast,” you decide. Without rising from the couch, you start to
think. Your visitor rang the doorbell twice, just the way Spammity Spam
used to. Hmmm.

Just before the bell, you heard a clickety-clack very similar to the noise
Spammity Spam’s boots made climbing up your porch steps. Hmmmm.

Out the window, you can see a shadow, and while it’s blurry and hard
to make out, you think you might see a large circle mixed into the image,
kind of like the shadow that a Hula Hoop might make. Hmmmmm.

Combining all of this evidence together, you compute that there is a
97% probability that your visitor is the dastardly Spammity Spam.
That’s a very high probability. Thus, without getting up, you press the
“Spam” button. Immediately, a giant spring is released from under your
porch, sending your visitor hurtling across the street.

“Phew,” you think, relaxing comfortably on your couch.

At the same time, you feel just a little nervous. “Isure hope that wasn’t
my neighbour!”
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Many of the newest spam-filtering computer programs operate, at
least partially, by automatically estimating a probability that the incom-
ing e-mail message is spam. If this probability is large enough (say, larger
than 90%), the message is classified as spam.

At the beginning of their use, these programs require human beings to
classify a large collection of spam e-mail messages as spam, and another
large collection of real e-mail messages as ham. The programs first train
themselves on these two collections. They do this simply by counting how
many times each word appears in the spam messages, and how many
times in the ham messages. For example, perhaps the word Viagra
appears in 52 spam messages and in just one ham message. The computer
program will then assign the word Viagra a high spam probability, per-
haps around 98 %. (The precise rules vary from program to program.)

The computer program has thus determined that if the word Viagra
appears in an e-mail message, there is a 98% probability that the mes-
sage is spam. Does this mean that any message containing Viagra must
be spam? No. The program must also consider all the other words in the
message.

Suppose that in addition to Viagra, the message contains lots of
words appropriate to your company and/or to your typical e-mail usage
(in my case, words like statistics and research and lecture; in some of my
students’ cases, perhaps beer and grunge and party). These words
would occur often in the ham collection, and not so often in the spam
collection. They would thus have very low spam probabilities, perhaps
around 1%.

So what does the computer do? Faced with a message containing some
words of high spam probability {like Viagra) and others of low spam
probability (like research), the computer combines all of these probabil-
ities into one “grand spam probability” that the message overall is spam
rather than ham (sometimes referred to as the message’s “spamicity” or
“spam score”). It does this by conditional probability, using the Bayesian
statistics approach. The computer assumes initially that each message
has 50% prior probability of being either spam or ham. It then uses con-
ditional probability to compute the message’s true spam probability
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(spamicity), conditional on the words appearing in the message. In other
words, a message’s sparmnicity is simply the Bayesian posterior probability
that the message is spam.

Finally, once the spamicity has been computed, the computer must
decide whether to classify the message as spam or as ham. Typically this
step is simplicity itself. If the spamicity is more than 90%, for example,
the message is classified as spam, otherwise it is classified as ham. (Of
course, the 90% threshold could be modified, perhaps to 80% [riskier]
or 95% [safer]. However, the lower the threshold, the greater the risk of
false positives, which should be avoided at all cost.)

There are, of course, many variations on this approach. And, some fil-
ters, such as SpamAssassin, combine word-based probability calcula-
tions with other factors, such as whether entire lines of the message are in
capital letters (a perennial spammer favourite). But, in essence, the above
description applies to the design of many of the new spam-filtering com-
puter programs.

How well do spam filters work? For probability-based spam filters,
everything depends on the collections of spam and ham e-mails that are
used to train the programs and to assign spam probabilities to the vari-
ous words. But if the collections are large enough, the computer pro-
gram, which makes up in speed what it lacks in smarts, can discover
patterns that humans might miss.

For example, Paul Graham writes in his oft-cited article “A Plan for
Spam” that his probability-based spam filter has identified as having
very high spam probability not only such obvious words as promotion,
guarantee, and sexy, but also certain less obvious words like republic
(from all the scam e-mails asking you to send money to faraway places
like Nigeria), madam (from all those “Dear Sir or Madam” salutations),
and per (from quoting prices like “$6 per package of 10”). Perhaps least
obvious of all was ff0000, HTML code for the colour “bright red,”
which turns out to have a very high spam probability, because spammers
often use this code to give their messages extra emphasis.

Thus, an automatic probability-based program can discover patterns

229



STRUCK BY LIGHTNING

that a human might not have guessed. Even better, it is all done automat-
ically, so that no one has to spend all day sifting through every word of
every spam message that comes along.

An added side bonus concerns computer viruses that are spread
through e-mail. From a filtering perspective, these virus e-mail messages
are just like spam; they too can be added to your spam collection, so that
your spam filter recognizes patterns in the computer viruses too, and
learns to block the viruses along with spam. ’

Once your spam filter is working, it can continue to learn. For exam-
ple, whenever the filter lets in a spam message, you can add that message
to the spam collection yourself, thereby “telling” the computer program
about a new kind of spam.

Over time, the computer should thus determine that, for example,
Vi@gra should also have a high spam probability (even though the com-
puter does not “understand” the connection between Vi@gra and Viagra).
With luck, the computer should get better and better at figuring out
which messages are spam, and which ones are ham. Indeed, Graham
claims that he has developed a system for his own personal e-mail that
filters out 99.5% of all spam messages, with less than 0.03% false posi-
tives, which is very impressive. (My own spam filtering isn’t that success-
ful, but over 80% of my spam is filtered out, which saves me a large
amount of time and frustration.)

Procedures such as these, in which computers update their probabilities
based on new examples, are sometimes referred to as “machine learning”
or “artificial intelligence,” and they are related to “Bayesian networks,”
or “neural networks.” Indeed, such procedures are now being used for
everything from detecting financial fraud, to identifying incoming mis-
siles from military sensors, to improving search algorithms on the World
Wide Web, to providing context-sensitive help to personal computer
users. However, the computers aren’t really “learning” anything, at least
not in the sense that you or I learn. All they are doing is counting words
and patterns, and computing the associated probabilities.
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Your Spam or Mine?

One interesting question that arises with spam filters is whether the spam
and ham collections should be developed jointly by everyone, or whether
each individual user should develop his or her own collections.

At first glance, it seems that the collections should be joint. All for one
and one for all. After all, if I want to avoid most messages containing the
word Viagra, then probably you do, too.

But wait. Suppose you happen to be a biomedical researcher specializ-
ing in the physiology of reproduction. For you, the effects of Viagra
might provide important evidence for your research. Thus, many of your
ordinary e-mail messages might include the word Viagra, with no need
for them to be filtered as spam.

Similarly, in my e-mail the word probability occurs often. If an e-mail
to me contains that word, it is probably ham, with perhaps a spam prob-
ability of just 1%. However, that same word may occur less frequently in
e-mails to a person who is less interested in probability theory. That
doesn’t mean that any e-mail to them containing the word probability
must be spam, but it does mean that, in e-mails to them, this word is not
as relevant to the spam versus ham decision. Just as one man’s meat is
another man’s poison, and one man’s terrorist is another man’s freedom
fighter, it seems that at times one person’s spam is another person’s ham.

Some modern spam filters (such as bogofilter) are designed to let each
user develop his or her own collection of spam and ham e-mail messages,
and to use different spam probabilities, depending on which user is
receiving the e-mail. Others (such as SpamAssassin) instead use the same
probabilities for everyone.

Each approach has its advantages and disadvantages. But I have
noticed that using my own spam collection gives me a great psychologi-
cal boost. When new spam arrives and gets through my spam filter, my
annoyance is eclipsed by a feeling of power, as I transfer the message to
my spam collection and update my spam probabilities. I can almost hear
myself saying to the message, in a tough-guy police-officer voice, “You
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have been identified as spam. Anything you contain can and will be used
against you, to update my spam probabilities and to block any further
transmissions from you or your partners.”

Let the Battie Begin

Spammers and spam filterers are in the midst of a fierce battle over the
future of spam. If the spammers win, a larger and larger fraction of e-
mail will be spam, to the point where one day e-mail might become vir-
tually unusable, or else be restricted to our close associates who need a
special password to send messages to us. If the filterers win, virtually all
spam will be blocked, e-mail will work efficiently, and the spammers will
give up in frustration. The theatre for this epic battle is nothing more nor
less than the spam probabilities as calculated by the various spam filters.

In an effort to subvert these probabilities, spammers—in addition to
using more and more misspellings—are also adding more and more ordi-
nary words to their spam. Indeed, in the past week I have received spam
beginning with a random and incoherent assortment of such words as
petition, equatorial, decease, and obstinacy. These words had absolutely
nothing to do with the product being sold. However, they did manage to
trick my spam filter into classifying the messages as ham.

Spammers are also trying to avoid using typical spam words. Rather
than asking you to buy their product, and telling you how cheap it is, or
how sexy their models are, spammers now sometimes use blander mes-
sages like “Hi, there, check out the following great Web site,” followed
by the URL to buy their product. These spam messages presumably
have even lower response rates, but they are chosen in an effort to avoid
spam filters.

Meanwhile, the filterers fight back by training with larger and larger
collections of spam; by parsing the incoming messages more carefully
(such as by distinguishing between words in the e-mail headers and
words in the body of the message); by considering more and more fea-
tures of the message (blank lines, non-standard punctuation, no name in
the “From:” header, etc.). Eventually I suspect they will have to consider
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all the pairs of words; for example, unique opportunity sounds more
spam-like than either unique or opportunity on its own. This adds an
extra layer of complication, which some spam filters (such as Spa-
Probe) are already trying to overcome.

And so the battle rages. Who will win? It’s too early to say. However,
understanding the battle at least makes it easier to figure out why spam
messages look the way they do. In our worst moments of despair, as we
delete spam after spam with no end in sight, at least we can take solace in
the fact that this battle centres around our old friend, probability theory. '
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Ignorance, Chaos,
and Quantum Mechanics

Causes of Randomness

Randomness is central to so many different aspects of our life—from bad
things like cancer and terrorism, to good things like profitable invest-
ments, to fun things like rolling dice and dealing cards. But where does
randomness come from? Are the individual components—the dice, the
stock markets, the terrorists—actually random? Or do we just think of
them as random, because we don’t know any better?

For the most part, the randomness we experience is based on our own
ignorance. If we just had enough facts and insights, randomness would
disappear and we would be left with certainty. If we knew exactly how
the dice were thrown, we would know how they will land. If we could
read the mind of the terrorist, we would know where he plans to strike
next. If we could see the planning documents of all the investors, we
would know which stock prices will rise tomorrow.

The Restless Restaurateur
Your restaurant business is off to a rough start. The first Saturday, full of
optimism, you hired four waiters and two cooks, but hardly any cus-
tomers came and you wasted lots of money. The following Saturaay,

feeling more pessimistic, you hired just one waiter and one cook, and the
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place was so packed that you were unable to provide adequate service.
Tomorrow is your third Saturday, and you need to make your hiring
decisions now. What should you do? It all seems so random.

Discouraged, you go for a walk. A young couple is pointing at your
restaurant, saying, “That place looks nice; let’s take the kids there
tomorrow.” Further down the street, a busload of tourists is checking
into a large hotel and promising to explore the neighbourhood tomor-
row. On a lamppost, you see a sign announcing a meeting of a dining
club tomorrow—at your restaurant. Then, in the newspaper, you are
delighted to see that your restaurant has just received a positive review.

The pieces of the puzzle are falling into place. A few minutes earlier,
your ignorance had caused your restaurant’s prospects to seem so uncer-
tain, so random. But with your newfound knowledge, there is much less
randomness involved. You are virtually certain to have a full house
tOmOrrow.

Pleased and confident, you hire a full staff complement. The next day,
your restaurant is packed, your customers are satisfied, and the money

keeps rolling in.

Randomness from Chaos

If randomness arises from ignorance, then where does ignorance arise

. from? Sometimes this is obvious. Who can possibly say where all the

individuals in a city are planning to dine, or what the world’s terrorists
have up their sleeves, or what your child will be when she grows up.
There are too many factors, too many unknowns, to do more than esti-
mate probabilities and brace for randomness.

However, randomness also arises in situations that seem far less mys-
terious. Consider flipping a coin. The coin is of standard issue, it is right
in front of you, you toss it in the air yourself, and then you catch it. There
is no cloak and dagger, no hidden causes, no scheming enemies, nothing
up your sleeve. What is not to know? And yet, when we flip a coin, all we
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can say for sure is that there is 50% probability of heads and 50% prob-
ability of tails.

The reason is that flipping a coin is an example of a chaotic system.
This means that a very small change in how you flip the coin—pushing it
a tiny bit harder or spinning it a fraction less—can have a large effect on
the final outcome and change heads to tails. To know to a certainty
whether the coin will come up heads or tails, you would have to know
extremely precisely how hard you had pushed the coin, and how hard
you had spun it. If you had a sophisticated laser-based measuring system,
maybe, just maybe, you might be able to accurately predict the coin. But
human eyesight is not that precise. We can see approximately how hard
the coin was pushed, how fast it is moving, and so on, but our vision is
not precise enough to make accurate predictions. Our ignorance about
the coin, small though it may be, is still sufficient to make the final out-
come completely random.

On the other hand, suppose you roll a ball along the floor towards a
wall. In this case, based on the angle at which you initially pushed the
ball, you can pretty much tell where it will strike the wall. If you change
the ball’s direction a tiny bit, the collision spot will move just a little bit.
So rolling a ball on the floor is not a chaotic system. It is easy to predict,
and a small amount of ignorance does not cause a large amount of
randomness.

Physical systems can largely be divided into two groups. On one side
are systems that are regular and unsurprising, not overly sensitive or
chaotic, and that exhibit little randomness. These include everything
from rolling a ball on the floor, to dropping a rock over a cliff, to the
motion of the planets around the Sun. On the other side are systems that
are very sensitive and therefore chaotic, and are correspondingly unpre-
dictable and random. These include flipping coins, rolling dice, shuffling
cards, and causing billiard balls to repeatedly collide and bounce off each
other on a pool table. So, the next time you play poker, you can thank
chaos theory for the fact that your opponent doesn’t know what cards
you hold.
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The Chaotic Boyfriend

After eight months, you think you finally have your boyfriend figured
out. He is happy when his work is going well, when he eats beef and
drinks imported beer, and when the Red Sox win. He gets grouchy when
he has problems at work, when he is served fish or milk, and when the
Red Sox lose. It’s all very simple.

One day, your boyfriend closes a big contract at work. That evening,

* you buy a case of German ale, cook up a pile of hamburgers, invite your

boyfriend over, and settle down to watch the game. The Red Sox win
8-1. You look forward to a delightful, relaxing night together.

However, your boyfriend is still upset. It seems that the Yankees have
also won tonight, so the Red Sox are still struggling to qualify for the
playoffs. This one small fact has completely changed your boyfriend’s
mood, from relaxation and joy to anger and irritability.

Your boyfriend is definitely a chaotic system.

Chaos theory is also essential to the sequences of pseudorandom num-
bers that are used to simulate randomness on computers. In fact, these
sequences are not random at all, but are based upon cold, hard, pre-
dictable equations. However, these equations are so chaotic—so sensi-
tive to small changes—that the pseudorandom numbers jump around
without apparent pattern, and thus seem to be random. Without chaos
theory, there wouldn’t be any Monte Carlo computer simulations, nor
any random-seeming bad guys in computer games.

Our entire lives are governed by chaos, since small changes in the pres-
ent can have a huge impact on the future. This property was nicely illus-
trated by the 1998 British movie Sliding Doors, starring Gwyneth
Paltrow. Her character, Helen, is rushing to catch a subway train when a
child briefly blocks her path. The movie presents two possible realities.
In the first one, the child is quickly moved aside. The result is that Helen
catches the train, meets a fellow passenger, returns home, and catches her
boyfriend having an affair. In the second reality, Helen is delayed for a
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few extra seconds, misses the train, is stranded when subway service is
later cancelled, gets mugged, and ends up in the hospital. Two com-
pletely different realities, and which one comes to pass depends solely on
the triviality of how quickly a child is snatched out of way on a subway
station staircase. That’s chaos theory in action. (In a nod to romance,
Helen ultimately falls in love with the same fellow passenger in both real-
ities. Oh well, no movie is perfect.)

Chaos theory provides a strong argument against the science-fiction
concept of travelling backwards in time. For example, in one of the origi-
nal Star Trek stories, Dr. McCoy travels back to the 1930s and saves a
woman from a car accident, thus ultimately allowing the Nazis to win
World War II, which changes history and wipes out everything that we
know as real. In response, Captain Kirk follows McCoy back and fixes
things so the woman dies on schedule, thereby restoring everything to the
way it was before. The problem is that, in the course of their escapades,
Kirk and McCoy have interacted with many people, rented an apartment,
worked for pay, made friends, taken up space, caused others to change
their plans, and so on. (McCoy even caused the unintentional death of a
homeless man.) Just as in the Sliding Doors example, any one of these
small interactions would probably have a tremendous effect on subse-
quent events. With so many small changes having occurred, it is incon-
ceivable that the world would be even remotely similar—much less
identical—years after all those 1930s changes had taken place.

In Back to the Future, Michael J. Fox goes back in time and helps his
dad to re-win his mother’s heart. In the course of doing so, the dad
acquires extra confidence. Then, in the present day, the family becomes

more confident and successful than they were before. In It’s a Wonderful .

Life, when James Stewart wishes he had never been born, his guardian
angel shows him how different (and, as it happens, worse) the lives of his
family and associates would have been without him. And, in the classic
Ray Bradbury story “A Sound of Thunder, ” a dinosaur hunter travels 60
million years into the past and accidentally steps on a butterfly. The but-
terfly’s future descendants—billions of them—are wiped out, leading to
lack of food for other animals, and so on. After all that, what is the net
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change for modern society? A different person is elected president of the
United States! So, in these stories, changes in the past do have a (slight)
effect on the present. However, these effects are still not nearly as sub-
stantial as chaos theory tells us they would be, were such time travel pos-
sible. (I enjoy stories about travelling backwards through time, but T am
unable to completely suspend my disbelief, all because of chaos theory.)

Weather or Not

The most dramatic example of a chaotic system is the weather. Weather
prediction can be something of an embarrassment to probabilists.
Nearly everyone hears weather forecasts, complete with probabilities
and percentages and satellite images, and nearly everyone observes that
those weather forecasts are sometimes wrong. If meteorologists are
ambassadors of probability, they are ambassadors that probabilists
could sometimes live without,

There are many causes of this sad state of affairs. One is observational
bias: people notice and remember incorrect forecasts much more than
correct ones. In fact, weather forecasters get it right significantly more
often than they get it wrong, with little gratitude in return. But the fact
remains that, even with all of our modern computer models and satellite
tracking and worldwide networks, humans are imperfect at predicting
tomorrow’s weather, and totally incapable of predicting anything more
than a week ahead.

The reason is that, like coins and cards, weather is a chaotic system;
very small changes today can cause significant differences tomorrow. We
have all heard the tale of the “butterfly effect,” originally proposed by
American meteorologist Edward Lorenz (and later the basis for a 2004
Hollywood movie of the same name), whereby a butterfly flapping its
wings in Brazil might cause, a few days later, a tornado in Texas. While
some have claimed that this tale is an exaggeration, it nevertheless illus-
trates the fact that weather is the result of numerous reactions and colli-
sions of unimaginable numbers of air molecules, water droplets, and
other factors. It is completely impossible to keep track of them all, even
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with modern computers. These collisions do not run in simple patterns;
rather they cause further collisions after further collisions, in highly
unpredictable ways. Slight variations in current weather conditions can
therefore lead to huge weather variations in the days ahead. So, even if
our sensing equipment is extremely accurate, tiny errors or misjudge-
ments will later lead to wildly inaccurate weather forecasts. The result of
this chaos is that accurate weather prediction is simply too difficult a
problem for our current science and technology to conquer.

Even judging weather prediction is complicated. If a forecaster says
. there is a 30% chance of rain tomorrow, and then it rains, does that
mean he was wrong? Or 30% right? Or what? The fairest way to judge
this is with what is called a Brier score: penalize the forecaster 30% times
30%, or 9%, if it doesn’t rain tomorrow; penalize him 70% times 70%,
or 49%, if it does rain. A typical forecaster might average a Brier penalty
of 15% to 20%. This isn’t too bad, but it isn’t so great either. By com-
parison, a forecaster who predicted a 50% chance of rain every single
day (regardless of the true weather) would receive a 25% Brier penalty,
which is only a little bit worse. In fact, most weather prediction services
don’t share their prediction histories, so the public can’t easily keep track
of their accuracy (or lack thereof). And all the judging in the world will
only confirm what we already know: weather forecasting is a very diffi-
cult science that is often right but is also often wrong. »

So, the next time you are sitting in your car in the pouring rain while
the radio is assuring you that the probability of precipitation is zero
(ves, this has actually happened to me), try not to get angry. Try not to
swear. Above all, don’t blame the probabilists. It’s not our fault—chaos
is to blame!

True Randomness?

A core belief of traditional science was that randomness is caused purely
by ignorance. From the time of Isaac Newton in the seventeenth century,
physics has been governed by simple mathematical laws that tell us, in
principle, precisely what will happen next. Based on the current position
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and velocity of a baseball, these laws can predict precisely how far it will
sail and where it will land. These very same laws can predict the movement
of Mars or Venus, days, months, or even years in advance.

Even for chaotic systems like the weather, where predictions are so
difficult due to the system’s extreme sensitivity, classical physics tells us
that if we could measure exactly where each molecule of air and water is,
and precisely how quickly it is moving; and if we had an infinite number
of computers running for as long as we needed, then in principle we
could predict the weather perfectly, too. Such predictions may be far
beyond our current technology, but in theory they are just more compli-
cated versions of flying baseballs and orbiting planets. A classical physi-
cist’s credo could be summed up as, “If we knew everything, then in
principle we could predict the future precisely.”

However, quantum mechanics changed all that. According to quantum
mechanics, the universe works, on the most fundamental level, in terms
not of fixed scientific certainties, but of probabilities and uncertainties.
Quantum mechanics was developed in the early part of the twentieth
century by such physicists as Max Born, Werner Heisenberg, Niels Bohr,
and Erwin Schrodinger. This theory said, incredibly, that physics could
no longer predict precisely what was going to happen; rather, all physics
could determine were the probabilities that various outcomes would
occur. For example, an electron orbiting an atomic nucleus could be in any
of several different energy states, each with a certain specific probability.

The probabilities of quantum mechanics are given by a certain formula—
the absolute square of the Schrédinger wave function—and this formula
can be computed scientifically and accurately. But no matter how care-
fully you compute, no matter how many computers you have, and no
matter how precisely you measure the current state of the electron (and
of the rest of the universe, for that matter), you still cannot predict with
certainty what will happen next—just the various probabilities. '

Quantum mechanics goes even further. It provides a mathematical for-
mula, the Heisenberg uncertainty principle, for how much uncertainty
there will always be. The theory says that no matter how finely you
measure a system, and no matter how much our technology advances,
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there will always be a certain pre-specified minimum level of uncertainty
and randomness in everything that you observe or predict. Most mad-
deningly, it says that ignorance is not to blame. Even if you could repeat
the exact same experiment, on the exact same materials, under the exact
same conditions, nature’s inherent randomness might cause an entirely
different result. J

These ideas shook science to its very core. For hundreds of years, sci-
ence had been on a slow but steady march to understanding and predict-
ing the universe more and more precisely. Where once we could only
guess at how quickly sound travelled, or when the next eclipse would
darken the sky, science had learned to calculate such matters with
extreme accuracy. Quantum mechanics seemed to be putting on the
brakes, to be telling science that its quest for precision was coming to a
premature and unsatisfactory ending.

The idea that nature, at its most fundamental level, is inherently random
goes entirely against our common sense. We are used to large, simple
objects—like balls rolling across the floor—that follow clear patterns,
continuing on in the direction they are rolling and bouncing off of walls
in unsurprising ways. There is nothing random in their motions.

Quantum mechanics tells us that this is only because of the Law of
Large Numbers. It says that a ball consists of billions of billions of mole-
cules, each of which behaves randomly, but which taken together are
entirely predictable. So, nature’s randomness is not significant at sizes
which we can see and experience, but it is fundamental at the unimagin-
ably small scale of atoms and molecules. (Quantum mechanics also turns
out to be important in certain large-scale astronomical phenomena,
including the formation of black holes.)

Even if nature’s randomness is confined, essentially, to the incredibly
small, the question remains: How is this randomness generated? For
example, suppose an electron has, according to quantum mechanics,
probability 2/3 of being in a low-energy state, and probability 1/3 of
being in a high-energy state. This means that if you use extremely pow-
erful technology to measure the electron’s orbit, there is a 2/3 probability
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of finding it in the first state, and a 1/3 probability of finding it in the sec-
ond state. But who decides what state it is in? Does an all-powerful being
watch over each electron, flipping coins and rolling dice to make choices
with the right probability? Does the choice happen by magic?

The honest answer is that we do not know, despite nearly a century of
using quantum mechanics. Indeed, the results of quantum mechanics are
now used in much of modern technology, from microwave ovens to com-
puter transistors to the futuristic-sounding idea of “quantum comput-
ing” (computers that actually make use of the laws of quantum
mechanics to do faster computations). However, the mechanism of how
quantum mechanics actually works remains mysterious.

The many worlds theory, first proposed by Princeton graduate student
Hugh Everett, holds that each time quantum mechanics makes a decision
involving randomness—for example, whether the electron is in its lov-
energy or high-energy state—it actually makes both choices, and creates
two different universes, one for each of the two possible outcomes.
According to this theory, rather than saying there is a 2/3 probability of
the low-energy state, we should say that there is a 2/3 probability that
you will end up in the universe corresponding to the low-energy state.
Nature doesn’t actually choose one of two possibilities; it chooses them
both, in two different universes. Because other universes can’t be
detected by science, this theory can’t be proved or disproved. However, it
doesn’t really solve the problem of who decides which outcome occurs—
or alternatively, which of the multiple universes you end up in.

The inherent randomness of quantum mechanics is so counter to clas-
sical science that even many great scientists could not accept it. Albert
Einstein himself—no stranger to revolutionary new ideas after propos-
ing the theory of relativity, which revolutionized our understanding of
time and space and gravity—disputed whether nature was truly ran-
dom. In a letter to Born in 1926, Einstein wrote the famous words,
“Jedenfalls bin ich iiberzeugt, dass der nicht wiirfelt” (I am convinced

that He [God] does not play dice with the universe). Einstein (who was
not religious) was indicating that the laws of nature must be described
by precise, deterministic mathematics, which leaves no room for choice,
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uncertainty, or randomness. These laws may be very complex, and we
may never understand them completely, but they should avoid any men-
tion of probabilities or unknown factors. While Einstein did agree with
many of the conclusions of quantum theory (and in fact, his explanation
in 1905 of the photoelectric effect in some wdys marked the beginnings
of quantum mechanics), he never accepted its inherent randomness, its

rolling of the dice.

, The Grating Grader
You are disappointed to see that your essay about Shakespeare received
a grade of C. Meanwhile, your best friend, Amy, who wrote a similar
essay for the same teacher, got a B+. How could this be? Why did Mrs.
Lane give Amy a better grade than you?

In desperation, you hire the detective Shady Shane to find out more.
Shady quietly follows Mrs. Lane home, peeks in her window after dark,
and watches her grade the next batch of essays. He then comes to you to
report.

Here’s what I saw, Shady explains. After glancing at each essay, Mrs.
Lane picked up a six-sided die and rolled it on the coffee table. Upon
viewing the result, she wrote a grade on the essay with a big red pen and
set the paper aside. She repeated this exercise with all the essays, and she
finished her grading remarkably quickly. .

You start crying softly. You feel shocked, hurt, and betrayed. It cannot
be, you insist. Shady Shane must be wrong, you wail. Mrs. Lane does not

play dice with the grades!

Einstein’s claim about God not playing dice became a rallying cry for
those who opposed the philosophical underpinnings of quantum
mechanics. These people insisted that there must be some “hidden vari-
ables”—tiny little instructions in the physical particles that told nature
what choices to make. Perhaps these tiny instructions have not yet been
found, they admitted, but someday they will be, and then nature’s
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choices will be explained. The probabilities of quantum mechanics, like
all other uncertainty, come from our ignorance—in this case, our igno-
rance about these tiny hidden instructions that we cannot see.

At a conference the following year, Bohr asserted that Einstein should
stop telling God what to do. The dispute raged on, with great passion
on both sides. A resolution of sorts came from the Irish physicist John
Bell in the mid-1960s. Bell proved a mathematical theorem that demon-
strated that the experimentally observed properties of elementary parti-
cles were inconsistent with the existence of local hidden variables—of
tiny instructions telling nature what choices to make. Bell’s theorem
does not rule out the possibility of non-local hidden variables—that
nature makes its choices based not on randomness, but on clearly
defined rules based on other, faraway objects, somewhere else in the
universe—but such an explanation seems even more counterintuitive
than true randomness does.

Bell’s work, combined with various physical experiments, has convinced
most physicists that the randomness of quantum mechanics must be real,
and that there are no hidden instructions. The debate still continues, and
some scientists still hope for a non-random explanation of nature’s
behaviour. But for the most part, science has accepted that nature, some-
how, really does use randomness in making its fundamental choices.

Life in a Truly Random Universe

As a scientist, [ am as uncomfortable as anyone with the randomness of
quantum mechanics. But as a probabilist, I like it just fine. Above all,
quantum mechanics says that probability theory isn’t just a measure of
our level of ignorance, it is also a fundamental law of nature. This makes
understanding probability and uncertainty more important than ever.
The randomness of quantum mechanics also has some more practical
benefits. Computer programmers need random numbers for everything
from computer games to Monte Carlo experiments; however, they usually
have to settle for pseudorandom numbers, which only fake randomness.
But quantum mechanics allows us to use numbers which are truly random,
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straight from nature’s own random choices. Indeed, there are various
Web sites, such as HotBits, that provide free sequences of truly randor.n
numbers, as collected by Geiger counters measuring quantum mechani-
cal radiation phenomena.

The use of such truly random number sequences in computer simula-
tions is not yet widespread. The rate of generating randomness is too
slow, and the probabilities of the resulting numbers are not always clear.
However, these sequences do provide an exciting alternative to pseuFlo-
random numbers. They also provide a connection to the true, genuine,
indisputable randomness that is apparently a basic part of nature’s inner

workings.
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Final Exam

Do You Have Probability Perspective?

Now that you are an expert at the Probability Perspective, you are ready
to take your final exam.

1. You play tennis with your friend Dave. You know that he is
not as good a player as you. However, today everything goes
wrong: You slip in a puddle, several of your best shots go
just inches long, two of his backhands dribble over the net,
the sun is in your eyes, and you have a headache. As a result,
you lose the match. Do you

(a) throw in the towel, and never play tennis again,

(b) despair that you have been cursed and will have rotten
luck for the rest of your life.

(c) arrange for Dave to have an “accident,” ‘which is the
only way you will ever beat him.

(d) suggest to Dave that you play tennis 10 more times, on
10 different days, because over the long run “luck factors”
will cancel each other out.
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2. You and your husband go out to dinner. Your husband brags
that he can distinguish between Coke and Pepsi, and cor-
rectly identifies his current beverage as Pepsi. Do you

(a) agree that your husband can distinguish between the two
beverages. 4

(h) admire your husband for his refined sense of taste.

(c) suggest that your husband become a professional wine
taster.

(d) pour five glasses each of Coke and Pepsi, arrange them
randomly, and see if your husband can correctly identify
them all, thus making his p-value (the likelihood that he
just got lucky) less than 5%, at which point you will
finally believe in his special talent.

. A salesman for Incredible Insurance, Inc. offers to insure
your ukulele for you. He tells you that his company’s insu.r-
ance policies have such generous terms that it is always in
the customer’s interest to buy them. Do you

(a) buy quickly, before he changes his mind.

(b) give him a hug for being such a generous individual.

(c) consider carefully and then decide that you should buy
because insurance is the prudent choice.

(d) note the company’s huge profit margin, conclude that the
company takes in more money than it pays out, and
decide that you should buy the insurance only if the loss of
your ukulele would cause you serious financial hardship.
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4. Your shady dealings have caught up with you, and the head
mobster issues his punishment. “One year from today, I will
roll these 10 dice. If they each show a 5, we’ll hunt you down
and blast you to smithereens. Otherwise, we’ll let you off.”
Do you

(a) spend the next year crying and quivering, with no hope
for the future.

(b) kill yourself now, rather than postpone the inevitable.

(c) sign up for the space program, hoping you can hide from
the mob on Mars.

(d) realize that the probability that 10 dice will all come up 5
is equal to one chance in six multiplied by itself 10 times,
which is less than one chance in 60 million, so you really
have nothing to worry about.

5. You’re at a crowded party, with a plate of food in one hand

and a glass of red wine in the other. A friendly businessman
says hello and reaches to shake your hand. Your only hope is
to balance your wine glass on a nearby windowsill, where
you estimate it will have just a 5% chance of falling. Do you

(a) go ahead and balance the glass, satisfied that 95% of the
time you will be fine.

(b) tempt fate further by leaving your glass on the win-
dowsill for the next hour.

(c) for extra measure, bravely declare, “There ain’t no way
that baby is going to fall!”

(d) note that the carpet is white, so if your wine does spill it
will have an extremely negative utility value, which even
at 5% probability would more than cancel out the slight
pleasure of shaking the businessman’s hand, and decide
instead to hold onto your glass and just smile.
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6. The politician Sly Slade says you should support him because
only he can combat the recent terrible rise in clogged kitchen

sinks. Do you

(a) vote early and often for Mr. Slade.

(b) donate thousands of dollars to Mr. Slade’s campaign.

(c) devote the rest of your life to railing against the evils of
sink gunk.

(d) ask to first see an official list of the yearly rates of clogs
per sink in your community, to determine whether or not
they are truly increasing.

7. You buy a colourful new jacket and wear it for the first time.
During the day you see numerous work colleagues and
friends. Three of them comment on how nice your new
jacket looks. Do you

(a) congratulate yourself on your great new purchase.

(b) buy several other similar jackets.

(¢) go into business as a fashion consultant.

(d) reason that people usually keep negative reactions to
themselves, so those three compliments are a biased sam-
ple, and that perhaps some of the other people who saw
you had a more negative opinion.

8. Your husband said he’d be home for dinner by 6 o’clock and
now it’s nearly 6:30. Where could he be? Do you
(a) phone the police to put out a missing person’s report.

(b) gather some friends together for a quiet commermoration
of your husband’s life and positive qualities.
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(¢) assume that your husband has been murdered and
organize a posse to avenge his death by any means
necessary.

(d) realize that the most likely explanation is that your hus-
band is simply stuck in traffic, and watch a little televi-
sion while you keep dinner warm.

9. You’re playing poker, and determine that the only way for
you to win is if your next card is the Ace of Spades. Do you

(a) close your eyes, click your heels, and think three times,
“Ace of Spades please!”

(b) growl, glare, adjust your cowboy hat, and puff your
cigar, to force the Ace of Spades to appear.

(¢) make a list of all the Hollywood movies that ended with
the hero being dealt an Ace of Spades when he needed it
most.

(d) realize that all unseen cards are equally likely to appear
next (so the probability of any one particular card is very
low) and fold your hand before you lose your shirt.

10. You are hosting a dinner party scheduled to begin at 7 o’clock,
and you are making a special cream sauce that needs to cook

for exactly seven minutes and be served immediately.
Do you

(a) start cooking the sauce at precisely 6:53.

(b) solemnly swear that you will serve dinner right at 7
o’clock, come what may. '

(c) offer to commit hara-kiri if any guest’s sauce is not
cooked to perfection.
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(d) recall that dinner-party arrival times have a large margin
of error, so you had better delay and serve appetizers
while waiting for the latecomers, and not cook the sauce
until everyone is present.

11. You pick up a bunch of grapes and begin eating. You know

that most of the grapes are delicious, but a few of them are
sour and taste horrible. On the other hand, eating a sour
grape together with some good grapes is not so bad. Do you

(a) hope that your bunch contains no sour grapes.

(b) throw the grapes out, because you can’t bear the thought
of eating a sour one.

(c) eat the grapes, slowly, one by one, vowing that if you hit
a sour grape you will “take it like 2 man.”

(d) eat the grapes three at a time, reasoning that the slight
negative utility of one sour grape marring two good
grapes pales in comparison to the large positive utility of
not eating any sour grapes on their own.

12. In one year, the price of cars goes up by 8%, and the price of
chocolate cake also goes up by 8%. Do you

(a) express astonishment that these prices are so closely
related.

(b) launch an investigation into the underworld links
between the car industry and the cake industry.

(c) speculate that cars are actually made out of cake.

(d) recall that correlation does not imply causation, and in
fact neither of the two price increases causes the other;
rather, both are caused by inflation.
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13. A mutual fund advertises that their stock market invest-

14,

ments made a tremendous profit three years ago. Do you

(a) salute the fund manager as a financial genius.

(b) immediately invest your life savings in the fund.

(c) reach between your sofa cushions, to scrape up addi-
tional change to invest.

(d) remember that any one year’s profit might be just luck
and demand information about the fund’s performance

in all recent years, to get a more accurate indicator of its
true potential,

You see a performance by a self-declared psychic. He says he
is feeling a supernatural connection, and asks if anyorne on
the first balcony has recently had a fight with an acquain-
tance whose name begins with J. A middle-aged woman puts
up her hand, astonished, and admits that she had a serious
argument with her son Jerome just last week. Do you

(a) marvel at the psychic’ incredible powers.
(b) go out and buy all of the psychic’s books.

| (c) hire the psychic to help you resolve all the conflict and

confusion in your sordid life.

(d) figure that out of the hundreds of spectators on the first
balcony, and the many people that each of them knows,
and the popularity of the initial ], and the propensity of
humans to fight, it is not at all surprising that the psychic’s

prediction was true by pure chance alone, proving
nothing,
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15. Four months before your special day, you send out 300 wed-
ding invitations to relatives and friends, near and far. You
assume that about 150 to 200 people will accept. In the first
week, you receive 27 responses, all in the affirmative. Do you

(a) congratulate yourself on your universal appeal.

(b) assume that all 300 invitees will accept and book a larger
hall.

(c) anticipate throngs of admirers waiting outside, hoping
to catch a glimpse of you as you leave the ceremony.

(d) realize that the responses so far are coming mostly from
people who live nearby, and who are thus more likely to
attend. So, these early responses constitute a biased sam-
ple, and the percentage of acceptances will surely
decrease as more responses arrive from farther away.

As you have probably realized, the answer (d) is correct in every case.
(Warning: The tests I give at university are not so simple.) Only answer
(d) shows a true understanding of the principles and insights of proba-
bility theory.

If you answered (d) to all questions, then you, my friend, now have the
knowledge. You have the power. You have the Probability Perspective.
Use it well. Use it to understand the world more deeply. Use it to avoid
fear. Use it to have fun. Use it to make better decisions.

The Probability Perspective will never replace all of your other critical
thinking skills and decision-making methods—things like intuition and
compassion and determination and honour and just plain common
sense. But it will provide you with one more tool to better understand the
world’s randomness and your place within it.
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“If You Write It, They
Will Come”
by Jeffrey S. Rosenthal

When Struck by Lightning was first published,
I had no idea what to expect. Although I had
previously written textbooks and research
articles for mathematicians and statisticians,
this was my first book for the general public.
‘Would people read it and enjoy it? Would it
help them to develop Probability Perspective?
Or would my book pass in and out of print
with barely a whimper? And how would writ-
ing a book for the general public affect my
academic career?

Tam very pleased that the book has enjoyed
wide success, with multiple printings, appear-
ances on bestseller lists, publication in nine
countries and six languages, and enthusiastic
reviews. The book’s message, that probabil-
ity and uncertainty are an important and
unavoidable part of our lives, and that a basic
understanding of their workings can go along
way, seems to have really reached people.

Struck by Lightning garnered a lot of media
attention: in just the first four months after
publication, I did 39 radio interviews, 13
television interviews, 4 interviews for print
media, and a number of live readings and
events. I have discussed probability and
uncertainty with all kinds of people at all
hours of the day, from quick sound bites to
in-depth interviews, from phone-in shows to
interactive science skits, from early-morning
entertainment to late-night presentations, in
front of affectionate audiences and aggressive
inquisitors alike.

Being in the public eye is quite a change
for me. My previous decade as a professor
was spent on quiet research and dutiful
teaching. My professional interactions were
limited primarily to a handful of specialists in
Markov chain Monte Catlo algorithms, and
to distracted undergraduates who seemed to
notice me most when they wished to dispute
their course grade (though, fortunately, there
were a few appreciative students, too).

Since the publication of Struck by Lightning,
e-mails from readers far and wide keep arriv-
ing bearing compliments, questions, objec-
tions, impressions, and anecdotes. I've received
numerous speaking invitations, and friends I
haven't seen in years mention that they saw me
in a magazine or on TV. It’s been an interesting
and exciting ride.

Being noticed by the “outside world” has
in turn brought me to the attention of my
own university in a new way. [ have gone
from anonymous statistician to convenient
spokesperson, being asked to appear at
many university events. I was even invited to
address a council headed by the president of
the University of Toronto (where I joked that
if my talk didn’t go well, I might get fired).

Of course, my fifteen minutes of fame will
soon pass, and I will return to my earlier
surroundings of specialists and scowling
students. But what precisely will T return to?
Will academics, always skeptical of attempts
to popularize scholarly material, feel that
this book trivialized the subject and took too
much time away from my research activities,
thus reducing my professional credibility?
Fortunately, those who feel that way have
kept their opinions to themselves. In fact, »

... Individuals
vary, but
percentages
remain constant.
So says the

statistician.

—Sir Arthur
Conan Doyle
(1859~1930),
author of Sherlock

Holmes mysteries




“If You Write It, They Will Come” (continued)

a surprising number of statisticians have
expressed appreciation for my efforts to reach
out to a broader public.

Recently, I was awarded the 2006 CRM—
SSC Prize in Statistics from the Centre de
recherches mathématiques and the Statistical
Society of Canada, given “in recognition of a
statistical scientist’s professional accomplish-
ments in research during the first fifteen years
after earning a doctorate.” The prize’s citation
referred positively to this book, saying that it
“makes statistics and probability accessible
to the general audience in entertaining ways.”
So, perhaps Struck by Lightning didn’t harm
my academic career after all.

5%

“The Probabilities Just

Keep Flowing”
by Jeffrey S. Rosenthal

Since the publication of this book, the world
of probabilities has continued full speed
ahead. Here are some recent updates.

Lotteries and Airplanes

Interest in lotteries surged on October 26,

20035, when the jackpot for one of

Canada’s national lotteries, Lotto 6/49,

was announced as at least $40 million.

Ticket lineups stretched around the block. I

did eight lottery-related television and radio

interviews in a single 24-hour period. : o
Surprisingly to me, many people seriousty i .{. A pinch of

thought they had a good shot at winning big.

Some of them had heard that their odds of : probability is

winning were one chance in about 14 million ! worth a pound

(actually 13,983,816), but they didn’t appreci- | of p erhap S,

ate—on a gut level—just how unlikely the

odds really were. i —James Thurber
Fear of flying is similar. Most people have (1894-1961),

heard something about airplane travel being | American humorist

safe. But many are skeptical that statistics can
actually be helpful when you're up in the air
experiencing turbulence and feeling scared.
The fact that only about one commercial
flight in 2.5 million ends in a fatal accident
fails to impress them. This raises a question:
how can people be convinced that airplane

* fatalities, like lottery jackpots, are so incred-

ibly unlikely that they shouldn’t even be
considered?

Analogies are helpful. For example, it is
about as likely that there will be fatalities B
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“The Probabilities Just Keep Flowing” (continued)

on your next airplane flight as that a ran-
domly chosen adult woman in Canada will
give birth within the next eight minutes. And
if you fly once a week, you’ll take a fatal flight
about once every 50,000 years.

Similarly, compared to the probability
that a single Lotto 6/49 ticket will win the
jackpot, it is about three times as likely that
you will be killed by a lightning bolt within
the next year; about four times as likely that
arandomly chosen Canadian will one day be
prime minister; about twice as likely that you
will die in an automobile accident while driv-
ing across town to purchase your ticket; and
more likely that a randomly chosen woman
will give birth either this minute or next.

Do these analogies drive home just how
unlikely airplane crashes and jackpot victo-
ries really are? In my own case, yes: fatality
statistics have converted me from a nervous
flyer to a confident one. (Of course, I still
worry about arriving late, but that’s another
matter.) And I am so certain that I won’t win
the lottery jackpot that I never even bother to
buy a ticket.

However, for statistics to truly alleviate
your fears and affect your behaviour, it is not
enough to know the figures in your brain.
You have to feel them in your heart, too.

And Higher and Higher We Flu

In October and November 2005, fear of an
avian flu pandemic reached fever pitch. It
seemed that every headline warned that we
were headed for doom; it was just a question
of when, and the feeling was that we should

enjoy our remaining time while we could.
One medical doctor sombrely told me that
within the next five years, one quarter of all
urban Canadians would die from avian flu.

By January 2006, this pandemic of news
stories about pandemics had largely died
down. This wasn’t because the threat had
diminished; in fact, it had increased some-
what with the flu’s migration from Asia
to Europe. Rather, the media had simply
become bored and moved on to other mat-
ters. As usual, frequency of headlines was no
indication at all of the true probability of
trouble. :

So, just what is the probability that human- )
ity will be ravaged by a deadly virus within i ! Statisticsisa
the next few ye.a¥s? It is difficult to give a 5 bo dy of methods
precise probability. But there are at least two . .
reasonable probabilistic approaches to this : for making wise
question. : " decisions in
. The first approach is l}lstoncal. Tl.lert?. have the face of
indeed been some genuine pandemics in the .
past, like the killer flu of 1918-19, and bubonic | Uncertainty.
plague in the fourteenth century. But there :
have been many other front-page illnesses : —W. Allen Wallis
that newspapers claimed would be the next (1912-1998),
global kille—SARS, West Nile, Ebola, etc. former U.S. Under
And most of these turned out not to kill very ! Secretary of State
widely after all. That reasoning alone suggests ~ :
that avian flu isn’t so likely to be the next big
killer.

A second approach is to remember that,
as explained in this book, diseases typically
spread by becoming self-replicating systems
with reproductive numbers greater than one.
Such diseases can pass from a few people, to
more and more people, and finally to nearly
everyone. b
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“The Probabilities Just Keep Flowing” (continued)

But as of this writing, the deadly avian flu
strand F5N1 has spread primarily from birds
to people, and hardly at all from people to
other people. That means it is essentially not
a self-replicating system, much less one with
a large reproductive number. If this remains
the case, then we may well have to protect
ourselves from birds, and that could, of
course, be difficult. But we needn’t fear each
other, nor a global self-replicating pandemic.

This is why epidemiologists spend their
time worrying that #5N1 might mutate into
another flu strain that is equally deadly, but
which is directly and easily infectious from
person to person. Such a disease would
indeed be a self-replicating system. And its
reproductive number might, perhaps, exceed
one. If so, a pandemic could result. This sce-
nario is indeed possible; just as it is possible
that AIDS will one day mutate into an air-
borne virus that spreads as easily as the com-
mon cold. But this hasn’t happened yet, nor
is there strong evidence that there is a high
probability it will. Even if m5n1 did mutate
into a human-to-human disease, appropriate
emergency response and isolation proce-
dures might manage to keep its reproductive
number below one anyway (which is what/
ultimately happened with SARS).

So, 'm not too worried about avian flu. I
think the probability that it will mutate into
a strain that’s easily transmitted between
human beings and kill millions in short order
is rather small. Of course, I could be wrong.
Fortunately, if I am, then everyone will be too
busy fighting a horrible pandemic to remem-
ber one probabilist’s predictions!

Monty or No Monty?

On December 19, 2005, a popular new game
show, Deal or No Deal, debuted on American
television. This game involved 26 briefcases,
each containing a certificate for amounts of
money ranging from one penny to one mil-
lion dollars. The contestant selected one case
without opening it. Various other cases were
then opened in turn, revealing the amounts
inside them. Periodically, the contestant would
be offered a payment, which he or she could
accept and thus leave the show. If the contes-
tant declined all offers until all of the other
cases had been opened, then he or she would
get the amount in the original case instead.

This game has much in common with the
Monty Hall problem I discuss in Struck by
Lightning. In each scenario, the contestant
selects one unknown (a case or door), various
other unknowns are revealed, and the con-
testant must decide whether to stick with the
original choice or make a trade. But does this
superficial similarity also extend to the prob-
abilities involved?

Suppose 24 briefcases have already been
opened, and all that remains is the one-dollar
prize and the one-million-dollar prize. What
is the probability that the contestant holds
the million-dollar case?

If you're familiar with the Monty Hall
problem, you might think that this probabil-
ity is only 1/26, with a 25/26 chance that the
remaining briefcase has the million dollars.
That would indeed be true if, as in the Monty
Hall problem, the host knew the location of
the million-dollar prize and was careful to
avoid opening it prematurely.

Fortunately for Deal or No Deal »

to baseball what
a flaky crust is
to Mom’s apple
pie.

—Harry Reasoner
(1923-1991),
American journalist
on 60 Minutes
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“The Probabilities Just Keep Flowing” (continted)

contestants, this isn’t so. Rather, the host does
not know which case contains which amount,
and anyway, it is the contestant who chooses
which case to reveal next. So, Deal or No Deal
may be many things, but it is no Monty Hall.
(For a more mathematical discussion of this
distinction, see my article “Monty Hall, Monty
Fall, Monty Crawl,” at www.probability.ca.)

What this means is that in Deal or No Deal,
even after some cases have been opened,
every unopened case is equally likely to con-
tain every unrevealed value. All decisions
should be made on that basis.

So, if only the one-dollar case and the one-
million-dollar case are left, then the probability
is 50% that the contestant’s case contains the
million dollars. On average, the case contains
$500,000.50. If the payment offered is far below
$500,000, the contestant should grasp the case
tightly, smile, and spit out a hearty“No Deall”

Murder: Still Most Foul

Rates of violent crime, including homicide,
have been decreasing significantly over the
past 15 years or so (even as many people
claimed the opposite). However, 2005
brought one exception to this rule: homi-
cides in the City of Toronto increased com-
pared to previous years.

The media had previously railed about
mythical “increasing” crime rates even when
this wasm’t true, and now the reports became
still more despairing. Toronto had “lost its
innocence” due to this “huge” murder increase
and the “guns used to bathe Toronto in blood.”
But what did the numbers really say?

We gain a little perspective from noting
that there were far fewer murders in Toronto
in 2005 than in 1991, and that every year
motor vehicle accidents kill far more people
than homicides do. Furthermore, Toronto’s
homicide rate remained lower than that of
most U.S. cities and was even lower than
many Canadian cities, including Winnipeg,
Edmonton, and Regina.

As for recent Toronto trends, it is indeed
true that the number of gun-related homi-
cides in Toronto jumped significantly from
2004 to 2005, from 27 to 52 (a 93% increase,
apparently mostly due to increased inter-
gang warfare). It is also true that the total
number of homicides (of all types) jumped
from 64 to 78, an increase of 22%.

So, one could be alarmist and say that
the increased gun use heralds a terrible new

' Lifeis

age. Or, one could be incurably optimistic a school of )
and emphasize that non-gun-related homi- probability.
cides went way down (from 37 to 26). But

the fairest option is to concentrate on the —Walter Bagehot

total number of homicides and their 22%

(1826-1877),

increase. English author

Is this enough to warrant concern for the
increase in these horrible crimes? Absolutely.

Is it enough to justify a crackdown on guns
and crime, a firm justice system, better social
services, and other reasonable responses?
Absolutely.

But does it represent the sudden, fun-
damental, irreversible change in the city’s
character that some headlines would have us
believe? Absolutely not.

As of this writing, Toronto is on track
(if present trends continue} to suffer fewer :
homicides in 2006 than in 2005, and indeed »

13
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“The Probabilities Just Keep Flowing” (continued)

fewer than in any year since 1999. And
how many headlines have there been
about Toronto’s decreasing homicide rate
this year? Zero.

As always, the true numbers tell the true
story.

Election Inspection

The Canadian federal election of January
23, 2006, brought out all the p’s: politicians,
partisans, pundits, pollsters, and at least one

- probabilist. Three leading polling companies

(Strategic Counsel, EKOS Research Associ-
ates, and SES Research) provided nearly daily
poll results, with several others (Decima
Research, Ipsos-Reid, Léger Marketing)
chiming in from time to time. In total, well
over a hundred election polls were published
during the eight-week campaign.

For the most part, these polls all agreed
with each other and told the same story.
During the first half of the campaign, voter
opinion was virtually unchanged from the
previous (2004) election, leading to predic-
tions that the Liberals would again capture
about 37% of the vote compared to about
30% for the Conservatives. Then, some time

¢ . around New Year’s Day, voter opinion shifted

significantly, and the Conservatives estab-
lished a moderate lead from which they never
looked back. End of story.

However, there was one anomaly. Seven
days before the vote, the Strategic Counsel
published a poll giving the Conservatives
42% support, compared to 24% for the
Liberals, an eighteen-point lead. “These

numbers would deliver a majority govern-
ment,” they declared.

Meanwhile, other polls published that day
or the previous day were all finding much
smaller Conservative leads: EKOS had the
Conservatives ahead 36—30, SES claimed
37-30, Decima had it 37-27, and Ipsos-Reid
suggested 38—26. How could that be? How
could one poll find an eighteen-point lead
while another (EKOS) found a six-point lead,
a discrepancy of 12%, especially since each
claimed a margin of error of only about 3%?

The usual limitations of polls—that
some respondents don’t answer the phone,
or refuse to answer the questions, or don’t
tell the truth, or later change their mind, or
don’t vote—apply equally to all of the polling
results. They can perhaps explain why a poll But to us,
differs from the true election results, but not probability is
why it differs from another poll. :

So if these limitations don’t explain the

the very guide of

discrepancy, then what does? - life.
The reporters wanted an answer. So,1
came up with four: 5 —Joseph Butler
(1692-1752),
1. A margin of error in an election poll refers English bishop
to the support level for an individual party, of Durham

not one party’s lead over another. Thus,
rather than comparing an eighteen-point
lead to a six-point lead, we should be com-
paring 42% Conservative support in one poll
to 36% in another poll (or, comparing 24%
Liberal support to 30%). This immediately
reduces the poll discrepancy from 12% to 6%.

2. Discrepancies between polls may repre-

sent the sum of their individual errors. For
example, if the Conservative Party’s true b
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support was 39%, then the Strategic Counsel
estimate of 42%, and the EKOS estimate of
36%, would each have errors not of 6% but of
only 3%, roughly equal to their stated mar-
gins of error.

3.In any case, margins of error apply just “19
times out of 20.” This means that about one
time in 20, polls will miss the mark by more
than their margin of error. With so many
polls being published, this “one time in 20”
was bound to show up at some point, just by
bad luck. It’s not surprising at all.

4. Despite all of the above, it was still theo-
retically possible that there was some sys-
tematic bias in the way the different polls
conducted their surveys. Perhaps they
phoned at different times of the day and
thus reached a different cross-section of
Canadians; perhaps they got their phone
lists from different sources; perhaps they used
different methods of factoring in undecided
voters; or perhaps they had researchers who
supported a particular party and accidentally
let that show when asking the questions.

I doubted that the last reason could be
true. The leading pollsters are all so profes-
sional that such controllable biases are virtu-
ally eliminated. So, I put my money on the
other explanations. The errors were not as
great as they first appeared, and what differ-
ences remained were caused by obtaining
unusual samples of the population through
bad luck.

I know by the Law of Large Numbers that
the best way to reduce poll error is to average
different polls all together, thus effectively
creating a larger sample. The polls from that
two-day period averaged to about 38—27 in
favour of the Conservatives. This strongly
suggested that the EKOS poll was quite accu-
rate, while the Strategic Counsel poll suffered
from “one time in 20” bad luck.

Unfortunately, polling companies and
news media focus exclusively on their own
poll results. The Globe and Mail (which,
together with CTV, sponsored the Strate-
gic Counsel polls) confidently announced
the surprising 42—24 prediction, hinting i when itisnot
at a majority Conservative victory, while :
ignoring all the other polls. Allan Gregg, .
chairman of the Strategic Counsel, and determine what
one of the greatest pollsters in Canadian |  is true, we ought
history, simply declared, “Needless to say, fto follow what
we stand by our numbers.” No poll averag-

Ttisatruth
very certain that,

in our power to

ing for them. 1 mOSt prob-
In the actual election, the Conservatives able

took 36.3% of the vote and the Liberals \

took 30.2%—extremely close to that EKOS —René Descartes

poll, and much further from the Strategic (1596-1650),

Counsel numbers. They won a minority vic- French philosopher

tory, not a majority. The average of the pre- | and mathematician

election polls was indeed a highly accurate
predictor, as I expected (though the Liberal
Party’s increase from 27% to 30.2% did
apparently indicate a very slight last-minute
shift).

Two days after that 4224 prediction, a
new Strategic Counsel poll pegged the lead at
3728, similar to the other polling companies.
To me, this simply demonstrated that their
earlier poll was a “one time in 20” error. p
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. Statistics,
the most impor-
tant science

in the whole
world: for upon
it depends the
practical appli-
cation of every
other science and
of every art.
—Florence Nightingale

(1820-1910),

pioneering British nurse

“The Probabilities Just Keep Flowing” (continued)

However, the Globe and Mail saw things differ-
ently, trumpeting that Conservative support
“takes a hit” and was “waning.”

They even had an explanation for the
drop. The Conservative leader had “strayed
from his carefully scripted campaign,” they
explained.

Well, perhaps. But probability had some-
thing to do with it, too.

-3



“Writing in funny, easily understandable
language, [Rosenthall shows how understanding
the odds can . . . help us make better
decisions about our lives.”

THE GLOBE AND MAIL

From lotteries, opinion polls and insurance policies to worries about murder
rates, natural disasters and terrorism, probability plays a major part in our
everyday lives—a part that is frequently and needlessly misunderstood.
Jeffrey S. Rosenthal, a math professor and improvisational comedian, comes to
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