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+Chapter 1+

WHAT IS STATISTICS?

WE MUDDLE THROUGH LIFE MAKING CHOICES
BASED ON INCOMPLETE INFORMATION...

SHOULD T HAVE THE 50UP?
27 OUT OF THE 28 TIMES
I'VE HAD IT, IT WAS PRETTY
G00P... BUT 15 MONDAY THE
REGULAR CHEF'S NIGHT
OFF? AND WHAT IF ALL THE
AIR MOLECULES IN THE
ROOM SUUDENLY FLY UP TO
THE CEILING?

SUOULP I UAVE THE S0UP?
EVERYTHING ELSE 15 50
N> EXPENSIVE, AND T DON'T

o

KNOW WHO'S PAYING... ARE
STATISTICIANS $TINGY? T'VE
NEVER GONE OUT WITH
ONE BEFORE.. THOUGH I
ONCE KNEW A VERY
GENEROUS ALLOUNTANT...




MOST OF U5 LIVE
COMFORTABLY WITH SOME
LEVEL OF UNCERTAINTY.

VP parra.. COULD You
fl JU5T BRNG me A}
N\ CALCULATOR ? @

WHAT MAKES STATISTICS UNIQUE 15 (TS ABILITY TO QUANTIFY UNCERTAINTY,
TO MAKE IT PRECISE. THIS ALLOWS STATISTICIANS TO MAKE CATEGORICAL
STATEMENTS, WITH COMPLETE ASSURANCE—ABOUT THEIR LEVEL OF
UNCERTAINTY!

GO0OP CUOICE! TM 95%
CONFIDENT THAT TONIGHT'S
SOUP HAS PROBABILITY

BETWEEN 73% AND 77% OF
BEING REALLY DELICIOUS!

rTHI‘B 15 NOT JUST A MATTER OR
ORDERING S0OUP! STATISTICS ALSO
INVOLVES MATTERS OF LIFE AND
PEATH...

W vEY-WAVE You Evgr  YHIM
HAD THE SOUP HERE ON [l
AN OFF NIGHT? N

FOR EXMMPLE, IN 1986, THE SPACE SHUTTLE CHALLENGER EXPLOVED, KILLING
SEVEN ASTRONAUTS. THE DECISION TO LAUNCH IN 29-DEGREE WEATHER HAD
BEEN MADE WITHOUT DOING A SIMPLE ANALYSIS OF PERFORMANCE DATA AT

LOW TEMPERATURE. '

O THAT
PART OF THE
CoRUE

A MORE POSITIVE EXAMPLE 15 THE SALK FOLIO VALCINE. TN 1954, VALLINE
TRIALS WERE PERFORMED ON SOME 400,000 CHILDREN, WITH STRICT CONTROLS
TO ELIMINATE BIASED RESULTS. 600D STATISTICAL ANALYSIS OF THE RESULTS
FIRMLY ESTABLISHED THE VALLINE'S EFFECTIVENESS, AND TODAY POLIO 15
ALMOST UNKNOWN.




TO ACLOMPLISH THEIR FEATS OF MATHEMATICAL
LEGERDEMAIN, STATISTICIANS RELY ON THREE
RELATED DISCIPLINES:

—
Data ARE You
® RepPy FOR
analysis THe?

THE GATHERING, DISPLAY, AND
SUMMARY OF DATA;

Probability

THE LAWS OF CHANCE, IN
AND OUT OF THE CASING;

Statistical
inference

THE SCIENCE OF DRAWING
STATISTICAL CONCLUSIONS
FROM SPELIFIC DATA, USING A
KNOWLEDGE OF PROBABILITY.

L

| IN CHAPTER 2, WE'LL LOOK AT A

SIMPLE DATA SET, THE REPORTED
WEIGHTS OF A BUNCH OF COLLEGE
STUPENTS.
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IN CHAPTER 3, WE STUDY THE LAWS OF
PROBABILITY IN THEIR BIRTHPLACE, THE
GAMEBLING DEN.

/

' RIETY OF
IN THIS BOOK, WE'LL LOOK AT ALL THREE, AS APPLIED TO A WIDE VA
SITUATIONS WHERE STATISTICS PLAYS A (RUCIAL ROLE IN THE MODERN WORLD.

e,

LIKE—
WHAT ARE
THE CHANCES
OF GETTING
A TaXt N -
THIS WEATHER®

CHAFPTERS 4 AND & SHOW HOW TO
PESCRIBE THE WORLDP WITH
PROBABILITY MOPELS, USING THE
CONCEPT OF THE RANDPOM VARIABLE.

CHAPTER & INTROPUCES ONE OF THE
STATISTICIAN'S ESSENTIAL PRO-
LEDPURES, TAKING SAMPLES OF A
LARGE FOFULATION.

IN CHAPTER 7 AND
BEYOND, WE PESCRIBE
HOW TO MAKE
STATISTICAL INFERENCES
IN SUCH COMMON REAL-
WORLD ARENAS AS
ELECTION FPOLLING,
MANUFACTURING QUALITY
CONTROL, MEDICAL
TESTING,
ENVIRONMENTAL
MONITORING, RACIAL
BIAS, AND THE LAW.

IN SHORT;
EVERYWHERE!




(EINALLY, IN DISCUSSING
STATISTICS, IT'S WARD TO
AVOID MENTIONING ONE
OTHER THING: THE
WIDESPREAD MISTRUST OF
STATISTICS IN THE WORLD
TODAY. EVERYONE KNOWS
ABOUT "LYING WITH
STATISTICS, WHILE 6000
STATISTICAL ANALYSIS 15
NEARLY IMPOSSIBLE TO FIND
IN DAILY LIFE. WHAT'S ONE

3 OUT oF 4 DolToRS

RECOMMEND NOT BELIEVING
ANY STATEMENT BEGINMING .
WITR “2 00T OF 4 DOCTORS. ..

e e

\ TO PO?

OUR HUMBLE OPINION 15 THAT LEARNING A LITTLE MORE ABOUT THE
SUBJECT MIGHT NOT BE SUCH A BAD IDEA.. AND THAT'S WHY WE WROTE THIS
BOOK!

("IN WHAT FOLLOWS, WE TRY TO PRESENT THE CLEMENTS OF STATISTICS AS )

GRAPHICALLY AND INTUITIVELY AS POSSIBLE. ALL YOU NEED TO GET THROUGH
IT 1% A LITTLE PATIENCE, SOME THOUGHT, AND A CERTAIN TOLERANCE FOR
ALGEBRA-OR, IF NOT THAT, THEN MAYBE A COURSE REQUIREMENT!!

|

ENLIGRTENMERT

{i
DIYLomp

[

+CHAPTER 2+

DATA DESCRIPTION




DATA ARE THE STATISTICIAN'S
RAW MATERIAL, THE NUMBERS WE
VSE TO INTERPRET REALITY. ALL
STATISTICAL PROBLEMS INVOLVE
EITHER THE COLLELTION,
PESCRIPTION, ANP ANALYSIS OF
DATA, OR THINKING ABOUT THE
COLLECTION, DESCRIPTION, AND
ANALYSIS OF PATA.

CHBNCES ARE 61%
THAT t CAN MAKE
SENSE OF TH &

PATA IN USEFUL WAYS? HOW CAN WE SEE UNDERLYING PATTERNS IN A HEAP OF
NAKED NUMBERS? HOW CAN WE SUMMARIZE THE DATA'S BASIC SHAPE?

How PO
Wg GET T
BEFORE |T
Gite 157

WELL, TO DESCRIBE DATA, THE FIRST THING YOU NEED 15 SOME ACTUAL DATA
TO DESCRIBE... 50 LET'S COLLELT SOME DATA!

N
rTHI‘5 CHAPTER LONCENTRATES ON DATA DESCRIPTION. HOW CAN WE REPRESENT

FORGET TUE SCALE,

SMITH .. JUST “Take M
WORD R IT.. 4

(HERE 16 SOME REAL DATA:
AS PART OF A (LASSROOM -
EXPERIMENT, 92 PENN STATE G“}
STUPENTS REPORTED THEIR \
WEIGHT, WITH THESE
RESULTS:

RALES

140 145 160 190 155 165 150 190 195 138 160 155 153 145 170 175 175 170 180 135
170 157 130 185 190 155 170 155 215 150 145 155 155 150 155 150 180 160 135 1460
130 155 150 148 155 150 140 180 190 145 150 164 140 142 136 123 155

FEMALES
140 120 130 138 121 125 116 145 150 12 125 130 120 130 131 120 ¢ 125 135 125
18 122 115 102 115 150 N0 116 108 95 125 133 110 150 108

_ J

GETTING RIGHT POWN TO BUSINESS, WE PRAW A POT FLOT: ONE POT PER
STUDENT 60ES OVER EACH STUDENT'S REPORTED WEIGHT,

Weight in Pounds

YOU MAY SEC A PROBLEM MWERE:
THE CLUMPS AT 152 AND 155
POUNDS. THE STUDENTS TENDED
TO REPORT THEIR WEIGHT IN
FIVE-POUND INCREMENTS. TN
REAL-LIFE SITUATIONS LIKE THIS
ONE, SUCH ROUNDING OFF (AN
OBSCURE GENERAL PATTERNS IN
DATA.. BUT FOR NOW, WE'LL JUST
WORK AROUND IT.




LINE INTO INTERVALS AND COUNT THE NUMBER OF STURENT WEIGHTS WITHIN
EACH INTERVAL. THE FREQUENCY 15 THE COUNT IN ANY GIVEN INTERVAL. THE
RELATIVE FREQUENCY 15 THE PROPORTION OF WEIGHTS IN EACH INTERVAL,
LE. IT'S THE FREQUENCY DIVIDED BY THE TOTAL NUMBER OF STUDENTS.

CLASS INTERVAL MPPOINT FREQUENCY RELATIVE FREQUENCY
87.5-102.4 95 2 022
102.5-1115 i1tc 9 D98
N75-132.4 125 19 206
132.5-1474 140 17 185
147.5-162.4 155 27 293
162.5-177.4 170 g 287
1775-192.4 185 8 087
192.5-2075 200 i ON
2075-222.4 15 i DN
TOTAL 92 1.000

NOTE: WE KEPT THE INTERVAL BOUNDARIES AWAY FROM THOSE TROUBLESOME
k‘)’—F‘OUI‘MJ’ MULTIPLES. THIS GETS AROUND THE STUDENTS' REPORTING BIA%.

~
WE CAN SUMMARIZE THE DATA WITH A FREQUENCY TABLE. DIVIDE THE NUMBER

J

GUIPELINES FOR FORMING THE (LASS INTERVALS:
USE INTERVALS OF
1)

EQUAL LENGTH WITH s Y
MIDPOINTS AT 15 92 I'M 968% 5UR’E\
CONVENIENT ROUND LARGE OR s SORT OF
NUMBERS. SMALL? LARGE,. .

2’ FOR A SMALL DATA
SET, USE A SMALL
NUMBER OF
INTERVALS.

3’ FOR A LARGE DATA
SET, USE MORE
INTERVALS!

10

IN THE FREQUENCY TABLE, WE ARE SHOWING HOW MANY DATA POINTS ARE

‘AROUND” EACH VALUE. WE (AN GRAPH THIS INFORMATION, TOO. THE RESULTING
BAR GRAPH 5 CALLEV A HISTOGRAM. EACH BAR COVERS AN INTERVAL AND 16

CENTERED AT THE MIDPOINT. THE BAR'S MEIGHT 15 THE NUMBER OF DATA

POINTS IN THE INTERVAL.

1 1 ¥ I 1 I T ¥ T

150 200
Weight in Pounds

WE CAN ALSO DRAW A RELATIVE FREQUENCY HISTOGRAM, PLOTTING THE
RELATIVE FREQUENCY AGAINST THE WEIGHT. IT LOOKS EXALTLY THE SAME,
EXCEPT FOR THE VERTICAL SCALE.

0.1

0.0-

F T L 1 ] i J 1

150 200
Weight in Pounds

11



THE STATISTICIAN JOHN TUKEY
INVENTED A QUICK WAY TO
SUMMARIZE DATA ANP STILL KEEP
THE INDIVIDUAL DATA POINTS. TIT5
(ALLED THE STEM-AND-LEAF
PIAGRAM.

FOR THE WEIGHT DATA, THE STEM (5 A
COLUMN OF NUMBERS, CONSISTING OF
THE WEIGHT DATA COUNTEV BY TENS
{1.E., WE LEAYE OFF THE LAST RIGIT).

9

10
1 LE. 90 POUNDS,
g— 100 POUNDS, ETL.
14
5
16
1”7
18
19
20

21

NOW AU THE FINAL PIGIT OF EACH
WEIGHT IN THE APPROPRIATE ROW:

STEM : LEAVES MEANING
9 : THERE ARE
}f : 26 WEIGHTS OF
12 : O155005 116, 112, 18,
13 : 080015 120, ETL.
14 : 05
15 : @
16 :
17 =
18 :
19 =
0

2t

-
600D GRAPHIC DISPLAY 15 PART

ART AND PART SCIENCE

AND SOMETIMES, PART

POLITICS!

FILLEPR IN, IT LOOKS LIKE THI%:

g : 5

10 : 268

11 : L2BE55060

12 : 01553005525
13 : g500950600153
14 : D5505580502
16 BORITOSS05505 050500500
16 : p50004

17 : D55000

18 : o500

19 : DOROC

20

2M:5

AND FINALLY, PUT THE “LEAVES™ IN
ORPER.

9:5

10 : 288

11 : 001556588

12 + DODI12355555
13 : DECOOI3555686
14 : 000D2555558 -
15 1 QOPOOODODOISESE5555557 N 2
16 : OOOD4S
17 + POOO%5
18 : o005
19 < 0O0CO5
20:

21: 56

ALL THOSE ZEROES AND FIVES CLEARLY
SHOW THE $TURENTS' REPORTING BIAS!

1z

CRUSADING NURSE FLORENCE NIGHTINGALE
COMPILED MORTALITY STATISTIZS EROM

BRITISK MILITARY HOSPITALS, PRODUCING
SHOCKING HISTOGRMS LIKE THIS ONE:
THE RADIAL AXIS
INDICATES DEATHS—IN
HOSPITALS AS WELL AS
ON THE BATTLEFIELD—
OF BRITISH SOLDIERS
IN THE CRIMEAN WAR.

HER STATISTICAL EFFORTS LED
PIRECTLY TO IMPROVED HOSPITAL

CONDITIONS AND A REPULTION IN THE
VEATH RATE.




SUMMARY STATISTICS

NOW WE MOVE FROM PICTURES TO FORMULAS. OUR OBJECT 15 TO GET SOME
SIMPLE MEASUREMENTS OF THE CRUDEST CHARACTERISTICS OF A SET OF DATA...

ﬁSymbolic
=< Movers

"fram one side of the
cquatian to il other”

ANY 5ET OF MEASUREMENTS WIDE ;- CENTER NEAR HERE
HAS TWO IMPORTANT ZOREAD 3

PROPERTIES: THE CENTRAL ’
OR TYPICAL VALUE, AND
THE SPREAD ABOUT THAT !

VALUE. YOU (AN SEE THE (

IDEA IN THESE NARROW
HYPOTHETICAL WISTOGRAMS. SPREMD _l_]ﬂ

— ~
7
WE CAN 60 A LONG WAY WITH A LITTLE NOTATION. SUPPOSE WE'RE MAKING A

SERIES OF OBSERVATIONS.. 17 OF THEM, TO BE EXACT.. THEN WE WRITE

z;- xg’ x;: . xn | RELD Ag .
"X.OHE] X-Two}
A5 THE VALUES WE OBSERVE. THUS, 77 15 ETC.

THE TOTAL NUMBER OF DATA POINTS, AND
Z4 (5AY) 15 THE VALUE OF THE FOURTH
DATA POINT.

AN ARRAY 15 A TABLE OF DATA:
OBSERVATION 1 2 3 4 . n

4

A SMALL SET OF 72 =5 DATA POINTS MAKES THE BOOKKEEPING EASY.
SUPPOSE, FOR EXAMPLE, WE ASK FIVE PEOPLE HOW MANY HOURS OF
TELEVISION THEY WATCH IN A WEEK.. AND 6ET THE FOLLOWING ARRAY:

OBSERVATION 1 2 3 4 5
DATA VALUE 5 7 3 38 7

THEN ;v",=5: %z=7, 25;-13: x.;=‘38: AND Z,—=7-

WHAT'S THE "CENTER” OF
THESE DATA? THERE ARE
ACTUALLY SEVERAL
PIFFERENT WAYS TO
MEASURE IT. WE'LL LOOK AT
JUST TWO OF THEM,

. MEAN"
THE (OR “AVERAGE™)

TI-IE__J“EAN OR AVERAGE VALUE 15 REPRESENTED
BY Z.. IT’5 OBTAINED BY ADDING ALL THE DATA AND
PIVIPING BY THE NUMBER OF OBSERVATIONS:

SUM OF DATA
n

zZ =

Xy ¥yt ¥ 2y
n

—

FOR OUR EXAMPLE,

P ASEEEE RN,
5 5

PATAVALUE 2, %, #3 %,  Zn

14

= 12 nours




WE HAVE A SHORTHAND FOR THAT FOR THE SUM %, + %, + = T Zpn WE
Z, + Zq ¥+ Zp USING THE GREEK WRITE
ZAPITAL LETTER SI6MA, FOR SUMMATION:

AND READ IT AS

“THE UM OF Z;

% { A5 i6OES FROM
170 N’

M E D I AN 16 ANOTHER KIND OF CENTER: THE
THE “MIDPOINT” OF THE DATA, LIKE THE

"MEVIAN STRIP” IN A ROAPD.

ALL RIGHT! NOW
WE LOOKIN' LIKE
A STATISTICS
BOOK!

40... TO REPEAT, THE AVERAGE, OR MEAN, OF A SET OF DATA 2; 15

M
E Zi Zi

Z — =7 OR n

n i=1
IN THE CASE OF OUR 92 PENN STATE STUDENTS, THE MEAN WEIGHT I3
9%
S
' 2 7
eyl 9

‘mth
—l

145.15 POUNDS

TO FIND THE MEPDIAN

VALUE OF A DATA 5ET,

WE ARRANGE THE DATA 3 5 7 7 39
IN ORVER FROM

SMALLEST TO LARGEST. /‘

THE MEDIAN 15 THE

VALUE IN THE MIDOULE. THE MEDIAN

IF THE NUMBER OF POINTS 15 EVEN—IN WHICH CASE THERE 15 NO MIDULE, WE
AVERAGE THE TWO VALVES AROUND THE MIDRLE.. SO IF THE DATA ARE

3 5‘ 7 7 WE AVERAGE 5 5 4+ 7 =6
b

AND 7 TO GET 2

MIDPLE
SPME

THIS GIVES VS A GENERAL RULE: ORDER THE DATA FROM SMALLEST TO LARGEST.

IF THE NUMBER OF DATA
POINTS 15 OPP, THE MEDIAN
15 THE MIPDLE PATA POINT.

JUST AS THE MEDIAN
STIR'S POSITION |5
THERE, 80T NOT
THE STRIP--
IF THE NUMBER OF POINTS 15
EVEN, THE MEDIAN 19 THE

AVERAGE OF THE TWO DATA

POINTS NEAREST THE MIPPLE.

7



FOR THE 77=92 STUDENT WEIGHTS, 9: 5

WE CAN FINP THE MEDIAN FROM THE 10 288

ORVERED STEM-AND-LEAF DIAGRAM: 11 : DO2556668
TUST COUNT TO THE 4™ 12 : 00012355555
OBSERVATION. THE MEDIAN 15 12 : POOOD13555488

14 : oODD255555 g
15 : DOODOOOO0D355555555557

Rgg ¥ Xy 145 + 145 16 : 000045
= 17 : ODOO5%
2 2 18 : 0005
19 < 00005
= 146 POUNDS 20:
21: 5

~
WHY MORE THAN ONE MEASURE OF THE (ENTER? EACH HAS ADVANTAGES. FOR
EXAMPLE, THE MEDIAN 15 NOT SENSITIVE TO OUTLIERS, OR EXTREME VALUES
NOT TYPICAL OF THE REST OF THE DATA. SUPPOSE IN OUR SMALL TV-
WATCHING GROUP, ONE PERSON WATCHES 200 MOURS PER WEEK. THEN OUR
DATA ARE 3, 5, 7, 7, 200. THE MEDIAN, 7, 15 UNCHANGED, BUT THE MEAN 15
NOW Z = 45.6/

DD You're
MSTOR TN
THE MEDN
HEIGHT,
ToO!

IN 1984 THE UNIVERSITY OF VIRGINIA ANNOUNCED
THAT ITS DEPARTMENT OF RHETORIC AND COM-
MUNICATIONS GRADUATES' MEAN STARTING SALARY
WAS $56,000. THE OUTLIER, THE SALARY OF N.BA,
CENTER RALFH SAMPSON, DID NOT REPRESENT THE
EARNING POWER OF A BA. IN $PEECH FROM U. OF V.

MEASURES OF

S P RE A D \

BESIDES KNOWING THE
CENTRAL POINT OF A DATA m
5ET, WE'D ALSO LIKE TO ( IPENTICAL!

DESCRIBE THE DATA'S

SPREAD, OR HOW FAR

FROM THE CENTER THE

DATA TEND TO RANGE.

FOR INSTANCE, IF THE

STUPENTS ALL WEIGHED —

EXACTLY 145 POUNDS, %
THERE WOULD BE NO

SPREAD AT ALL.

NUMERIZALLY, THE 5PREAD

WOULD BE ZERO, AND THE

HISTOGRAM WOULD 86 S —

k(‘!'I-!E MEDIAN SALARY WASN'T PUBLISHED.)

i8

SKINNY. gy
\

BUT IF MANY OF THE STUVENTS WERE VERY LIGHT ANP/OR VERY HEAVY,
OBVIOUSLY WE'D SEE SOME SPREAD—SAY, IF THE FOOTBALL TEAM WAS PART
OF THE SAMPLE...

THE HISTOGRAM WOULP BE WIDER, SOMETHING LIKE THIS:

| ¥
WIAV/I/' g / i ﬁ/



.

THE PATA INTO FOUR
EQUAL 6ROUPS AND SEE
HOW FAR APART THE
EXTREME GROUPS ARE.

rAéAIN. THERE'S MORE THAN ONE WAY TO MEASURE A SPREAD. ONE WAY 15

INTERQUARTILE RANGE

THE IPEA 15 TO DIVIDE

\

[

[y
&

L \Ir‘t\

L]
S

HERE'S THE RECIPE:

1)

2)

3)

4)

PUT THE DATA IN NUMERICAL
ORPER.

DIVIDE THE DATA INTO TWO
EQUAL HIGH AND LOW G6ROUPS
AT THE MEDIAN. (IF THE
MEDIAN 15 A DATA POINT,
INCLUDE IT IN BOTH THE HIGH
AND LOW GROUPS.)

FIND THE MEDIAN OF THE
LOW GROUP. THIS 15 CALLED
THE FIRST QUARTILE, OR Q.

THE MEDIAN OF THE HIGH
GROUP |15 THE THIRD
QUARTILE, OR Q3.

MEDIAN
b

LoOwWS

{.Ol“

-nd aa

. - MEDIAN OF
: T M GRS

anh

IR L)
L XL

. s of

LX)
LR ]

NOW THE INTERQUARTILE RANGE (IQR) 15 THE DISTANCE (OR DIFFERENCE)
BETWEEN THEM:

IR = Q3 — G

HERE'S THE WEIGHT DATA
WITH THE MIPPOINTS OF
THE HIGH AND LOW GROUPS
EMPHASIZED:

9: 5

10: 289

N Dp2556686 K/
12 : pOOI12355555
13 . POCOOI13555680
14 : QOPPOZ555559
15 : DOODODOCDO355555555557
16 : DOOO4AS

17 : OODPDS5

18 : o005

19 : 0OGEO5
20t

2i: 5

AND WE SEE THAT

IQR = 156 — 125
= 3] POUNDS

AGAIN, THIS 1S THE DIFFERENCE
BETWEEN THE MEVIAN HEAVY

STUPENT AND MEDIAN LIGHT ONE.

" ONLY \F YouRE
Y | A LINEBACKER..

ARE Ypu A
MERN, e
STUDENT?

TOHN TUKEY INVENTED ANOTHER KING OF
DISPLAY TO SHOW OFF THE TQR, CALLED A
BOX AND WHISKERS PLOT. THE BOX'S
ENDS ARE THE QUARTILES @ AND @;. WE
DRAW THE MEDIAN INSIDE THE BOX.

a Qs

|

L T e R

1 r
ipe e 136 (4n NE (50 55

IF A POINT 15 MORE THAN 1.5 IQKR FROM
AN END OF THE BOX, IT'S AN OUTLIER.
DRAW THE OUTLIERS INDIVIDUALLY.

Tl

— T t 1
136 e 158 - Zoo

MEDInK

FINALLY, EXTEND "WHISKERS" OUT TO THE
FARTHEST POINTS THAT ARE NOT OUTLIERS
(L.E., WITHIN 1.5 IQR OF THE QUARTILES).

BOX-AND-
WHISKERS
PLOTS ARE

l 1 espeaaLty
500D FOR
SHOWING OFF
DIEFERENCES
BETWEEN

1 . GROUPS,

L]
L I S

y g1

2



(-T—HE STANDARD MEASURE OF SPREAD 15 THE W

STANDARD DEVIATION

UNLIKE THE IQR, WHICH 15
BASED ON MEDIANS, THE
S5TANDARD DEVIATION MEASURES
THE $PREAD FROM THE MEAN.
YOU ¢AN THINK OF IT,
ROUGHLY SPEAKING, A5 THE
AVERAGE DISTANCE OF THE
DATA FROM THE MEAN Z..

EXCEPT THAT WE USE THE SQUARES OF TUE DISTANCES INSTEAD. THAT 15,
IF THE SQUARED DISTANCE OF POINT z; TO % 15 (#; — %)% THEN

n
! 2 : -
AVERAGE SQUARED DISTANCE = 7 (xi__z)z
i=1
FOR TECHNICAL REASONS, WE USE 1-1 IN

THE DPENOMINATOR RATHER THAN 77, AND
DEFINE THE SAMPLE VARIANCE 5* AS

n
62 = 77{“72(%;""32)2 .

i=1

FOR THE DATA SET {3 5 7 7 38}, WITH Z = 12 AND 77 = 5 WE CALLULATE
THE VARIANCE:

THE LARGE
VARIANCE HERE
REFLECTS THE
WIDE SPREAD IN
THE DATA..,

5t = (3-12)% + (512)* + (7-12)* + (7-12)* + (z8-12)*
- (5-1)

g1+ 49 + 25 + 25 + 676
i 4

- 214

BUT A SPREAD MEASURE SHOULD
HAVE THE SAME UNITS A% THE
ORIGINAL DATA. IN THE
EXAMPLE OF WEIGHTS, THE
VARIANCE %% 15 MEASURED IN
POUNDS SQUARED.. OOOPS!

THE OBVIOUS THING TO PO 14 TO
TAKE THE SQUARE ROOT, AND 50O WE
PO.. TO DEFINE:

r ™y
n
— I =
5TAN VARV 5 =17 = \[n-r (#-2)"
i=1
VEV ' AT, ON WHICH, FOR OUR SIMPLE DATA SET, 15
5 =214 =14.63
WHO THE %@
CArd REMEMEER
HOW TO TAKE
EVEN FOR SMALL DATA SETS,
THE ARITHMETIC ¢AN BE
TERIOUS! 50 NOWADAYS, WE
JUST HIT THE $ BUTTON ON
THE HAND CALLULATOR, OR
CONSULT THE DATA REPORT
GENERATED BY A COMPUTER
SOFTWARE PACKAGE.
7
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¢ - A r ™
Properties of an EMPIRICAL RULE:
iy
_ ._ FOR NEARLY SYMMETRIC MOUND-SHAPED DATA SETS, APPROXIMATELY 68%
77 // _ OF THE DATA 15 WITHIN ONE STANDARD DEVIATION OF THE MEAN AND 95% OF
ﬂl‘ld i IA s 2 THE DATA |5 WITHIN TWO $TANDARD DEVIATIONS OF THE MEAN,
%5 % K4S

THE MEAN AND STANDARD :
PEVIATION ARE VERY 600V
FOR SUMMARIZING THE
PROPERTIES OF FAIRLY
SYMMETRICAL HISTOGRAMS
WITHOUT OUTLIERS—IE.,

KISTOGRAMS SHAPEV LIKE :

kmovuvs. ; ) | ; 7 / /
| HL

17’6 OFTEN VSEFUL TO KNOW HOW MANY STANDARD PEVIATIONS A DATA POINT f
15 FROM THE MEAN. WE DEFINE Z-5CORES, OR STANDARDIZED SCORES, AS :
DISTANCE FROM X PER STANDARD DEVIATION.

A SHAPe
T6 REMEMBER"

o

7
.

AT

AN

FOR THE WEIGHTS, OUR EMPIRICAL RULE HOLDS UP PRETTY WELL: 64%
(=59/92) OF THE WEIGHTS ARE WITHIN ONE STANDARD DEVIATION OF THE

MEAN, AND 97% (= 89/92) OF THE WEIGHTS ARE WITHIN TWO STANDARD
DEVIATIONS OF THE MEAN.

Z;= "% ‘

A Z-5CORE OF +2 MEAN% THAT AN OBSERVATION 15 TWO STANDARD

DEVIATIONS ABOVE THE MEAN. FOR THE WEIGHT DATA (Z=145.2 ANV Weight in pounds
52237), WE (AN PLOT THE DATA ON THE ORIGINAL Z-AXIS IN POUNDS AND ; 100 150 200
THE Z-5CORE AXIS SIMULTANEOUSLY. -. T R S N R R SO S NN R S N @
175 _
Tl \L - 59 paints INE X
A N B B O P F e =T 1 -
[ — B S A | i | AN : &
100 150 200 ' 83 points Cii s . s L
— T T T | . a ."":'L"_I.: P I HERP - :I
-2 -1 0 1 T 2 92 paints AR . .
Z score ' amiia ...:I Elor.d ‘ H l: .t :‘_ . AND NOwW
126 2 y 0 1 5 FOR A REST
FROM NUMBER
A STUDENT WEIGHING 175 POUNDS HAS A Z-5CORE OF 1272 72; ’: 72,126 Z score CRUNCHING!
\ J

% 25



WE'VE COME A LONG WAY IN THIS CHAPTER! STARTING WITH A UNORGANIZED

PILE OF NUMBERS, WE HAVE:

—
1 ) FOUND SEVERAL DIFFERENT
WAYS TO DISPLAY THEM

LOOKED AT TWO DIFFERENT
CONCEPTS OF THE LENTER OF
DATA, THE MEDIAN AND THE
MEAN

3 MEASURED THE SPREAV OF THE
PATA AROUND THE CENTER IN
TWO DIFFERENT WAYS

ENCOUNTERED MOUND-SWAPED
£ ) HISTOCRAMS AND Z, A VARIABLE
THAT INDIZATES HOW MANY
STANDARD DEVIATIONS YOU ARE

FROM THE MEAN.

T
WOW! WE

PIP ALL
THAT?

_
'™ 98%

SURE OF

J

NOW, IN ORPER TO PROBE THE BEHAVIOR OF DATA MORE DEEPLY, WE'RE GOING
TO MAKE A LITTLE PETOUR INTO THE REALM OF RANDOMNESS... A LAND WHERE

THINGS ALWAYS WORK OUT IN THE LONG RUN, AND WHERE THE ONLY LAW i5

THE LAW OF THE AMBLING CASING...

+Chapter 3+
PROBABILITY

w OTHING IN LIFE 15 CERTAIN. IN EVERYTHING WE DO, WE
GAUGE THE CHANCES OF SUCLESSFUL OUTCOMES, FROM
BUSINESS TO MEDIZINE TO THE WEATHER. BUT FOR MOST
OF HUMAN HISTORY, PROBABILITY, THE FORMAL $TUDY OF THE

{« LAWS OF CHANCE, WAS USED FOR ONLY ONE THING: GAMBLING.
<

U3 R P2 2.3
32 DZY




.

[ NOBODY KNOWS WHEN

GAMBLING BEGAN. TT

| GOES BACK AT LEAST A%

FAR AS ANCIENT EGYPT,
WHERE SPORTING MEN
AND WOMEN USED FOUR-
SIDED “ASTRAGALI”
MADE FROM ANIMAL
HEELBONES.

WAS LOST.

RULE T
LET CAESAR
Win IV ouT
OF !

e ——

aury e
WITH My :
ASTRAGAL)...

THE ROMAN EMPEROR ZLAUDIUS (10 BLE-54 CE) WROTE THE FIRST KNOWN
TREATISE ON GAMBLING. UNFORTUNATELY, THIS BOOK, “‘HOW TO WIN AT DICE

THE CHEVALIER REASONED
TRAT THE AVERAGE NUMBECR
OF SULCESSFUL ROLLS waS
THE SAME FOR BOTH GAMBLES:

&
gggpgz Nsl.lMBER W,
0 kA . = =
R (YR
CHANCE OF PousLE
SIK 1IN ONE ROLL = -%g

AVERAGE NUMBER 1N,
WROLLT=24.(5) = 3

WHY, THEN, DID HE LOSE
MORE OFTEN WITH THE
SECOND GAMBLE???

(DE WERE PUT THE QUESTION TO WIS FRIEND, THE CENIDS BLAISE PASCAL

MOPERN DICE GREW POPULAR IN THE MIDDLE AGES, IN TIME FOR A RENAIS-
SANCE RAKE, THE CHEVALIER DE MERE, TO POSE A MATHEMATIZAL PUZZLER:

,__’_____.—.—-—..__\

/ WHAT'S LIKELIER:
ROLLING AT LEAST ONE

|

$IX IN FOUR THROWS OF
A SINGLE PIE, OR
ROLLING AT LEAST ONE
POUBLE SIX IN 24
THROWS OF A PAIR OF
PICE?

CARTOONS.
.

(1623-1644).

(m LAST, A PROBLEM) ALTHOUGH PASCAL WAD EARLIER

TRAT TURNS ME Oyt GIVEN UP MATHEMATIZS AS A FORM
OF SEXVAL INDULGENCE (1), HE

[} ‘ R ‘

AGREED TO TACKLE DE MERE™S
PROBLEM.

DE FERMAT, AND WITHIN TREORY WE couwd
A FEW LETTERS, THE HAVE, 16 ONLY
TWO WAD WORKED OUT OlE OF Us
THE THEORY OF ouLD DRAW.-.
PROBABILITY IN ITS
MODERN FORM—EXCEPT,
OF COURSE, FOR THE

PASCAL WROTE His : IERRE
FELLOW GENIUS PIERRE fﬁﬁf&e{iﬁﬁmu

9



BASIC DEFINITIONS

AS OUR GAMBLER PLAYS A GAME, WE PLAY
SCENTIST, OBSERVING THE OUTCOME:

»random experiment

19 THE PROCESS OF OBSERVING THE
OUTCOME OF A CHANCE EVENT.

e elementary
ovulcomes i ALL ros-
SIBLE RESULTS OF THE RANDOM EX-
PERIMENT.

e sample space
THE SET OR COLLECTION OF ALL THE
ELEMENTARY OUTLOMES.

WUAT,
GAME £

DICE
CHEMIN -DE.

THE SAMPLE SPACE OF THE THROW OF A SINGLE DIE 15 A LITTLE BIGGER.

AND FOR A PAIR OF DICE, THE SAMPLE SPACE LOOKS LIKE TRIS (WE MAKE ONE
PIE WHITE AND ONE BLAZK TO TELL THEM APART):

IF THE EVENT WAS A LOIN TOSS, FOR
EXAMPLE, THE RANDPOM EXPERIMENT
LONSISTS OF RECORPING ITS
OUTCOME...

THE ELEMENTARY OUTCOMES ARE
HEADS AND TAILS..

AND THE SAMPLE SFACE |15 THE SET
WRITTEN

)

40

THIS SAMPLE SPAZE
HAS 36 (6X6)
ELEMENTARY OUT-
COMES. FOR THREE
PICE, TUE SPACE
WOULD HAVE 216
ENTRIES, AS IN THIS
EXEX6 STACK. AND
FOUR DIcE?

)
@)/:)&S(E&oubu! ) AT SOME POINT, WE HAVE TO 4TOP

LISTING, AND START THINKING...

Lt

EL



( NOW LET'S IMAGINE A
RANDOM CXPERIMENT WITH
7 ELEMENTARY OUTLOMES
Oy, Oy, . O, WE WANT TO
ASSIGN A NUMERICAL
WEIGHT, OR PROBABILITY,
TO EACM OUTLOME, WHICH
MEASURES THE LIKELIHOOD
OF IT% OCLURRING. WE
WRITE THE PROBABILITY OF
0; as P(O;).

TO%5, HEADS AND TAILS ARE
EQUALLY LIKELY, AND WE
ASSIGN THEM BOTH THE
PROBABILITY .5.

P(H) =P(T) = .5

EACH OUTLOME LOMES
UP HALF THE TIME.

WHAT IF OUR GAMBLER
CHEATS AND THROWS A

LOADED DIE? FOR TUE SAKE
OF ARGUMENT, SUPPOSE THAT

NOW A ONE COMES UP 259
OF THE TIME (IN THE LONG
RUN).

rmz SAMPLE SPACE 15 THE
SAME AS FOR A FAIR DIC

{1 2,3, 4, 5, ¢}

BUT THE PROBABILITIES ARE
DIFFERENT. Now P(1) =.25
AND THE REMAINING
PROBABILTIES ADD UP TO .75.
IF 2,3, 4, 5, AND & WERE
ALL EQUALLY LIKELY, THEN
EACH ONE WOULD WAVE

ASK ANY FOOTBALL < e
PLAYER! PN
' ™y

IN THE ROLL OF TWO DICE, THERE ARE 36 ELEMENTARY OUTCOMES, ALL
EQUALLY LIKELY, 50 THE PROBABILITY OF EACH 15 ;7

FOR INSTANCE, ()-ue—;mou, 2 HUNDRED
1 MAILLION L RpCk.. \WHEEZE..
¥ 2 = — .
P(BLACK 5, WHITE 2) = wbv :

L o R}

WHICH MEANS: IF YOU ROLLED THE
DICE A VERY LARGE NUMBER OF TIMES,
IN THE LONG RUN THIS QUTLOME

WOULD OCLUR ;17, OF THE TIME.

PROBABILITY .15 = »(75)

)

|15

THE PRORARIL
oF Wif—t?lnr%
% 20%..




(NOW WHAT CAN WE 5AY
ABOUT THE PROBABILITIES
P(0;) IN AN ARBITRARY RAN-
POM CXPERIMENT? FIRST OF
ALL,

P(0)=0

PROBABILITIES ARE NEVER
NEGATIVE. A PROBABILITY OF
ZERO MEANS AN EVENT CAN'T
HAPPEN. LESS THAN ZERO
LW‘OULP BE MEANINGLESS.

WORSE THAN
IMTo<5 1BLE
ISN'T

055 8LE?

¢CCOND, IE AN EVENT 15 CERTAIN TO RAPPEN, WE ASSIGN IT PROBABILI;I'Y 1
(IN THE LONG RUN, THAT'S THE PROPORTION OF TIMES IT WiLL OCLUR!)

. : IN PARTICULAR,

THE TOTAL
PROBABILITY OF
THE SAMPLE
SPACE MUST BE 1. IF WE DO
THE EXPERIMENT, SOMETHING

15 BOUND TO HAPPEN!

(oUT THESE TWO TOGETHER, AND YOU HAVE THE CHARACTERISTIC
PROPERTIES OF PROBABILITY:

P(0;)> O PROBABILITY 15 NON-NEGATIVE
i

P(O) P(O ) P(O )__ 1 TOTAL PROBABILITY OF ALL
Vi 2/ ot W =

ELEMENTARY OUTCOMES 15 ONE.

WBUT ¥
METAPHYSILS
WILL BT BACK
MY SHRT.-

e s AR 28 w15 T

LIKE A CLEVER POLITICIAN, WE
HAVE AVOIPED CERTAIN
UNPLEASANT QUESTIONS,
SUCH AS A) WHAT DOES
PROBABILITY MEAN? AND

B) HOW DO WE AS516N
PROBABILITIES TO OUTLOMES?

o ————————

B-pUN, B-DUH...
LET™S PIsclss
SOMETHING EAZIER,
LIKE &AYS IN THE

MILITARY...

HERE ARE SOME APPROACHES THAT HAVE BEEN TAKEN:

L]
CICISSECCII PROBABILITY:
BASED ON GAMBLING IDEAS, THE
FUNPAMENTAL ASSUMPTION 15 THAT
THE GAME 15 FAIR AND ALL
ELEMENTARY OUTZOMES MAVE THE
SAME PROBABILITY.

i A New
f”’ A\THEOR y!

G

'\\ -
c‘Mou!\
- VADDY NEEDS

Relative Frequency:

WHEN AN EXPERIMENT AN BE REPEATED,
THEM AN EVENT'S FROBABILITY 15 TUE
PROPORTION OF TIMES THE EVENT
OCLURS IN THE LONG RUN.

PQI"SOIICII PROBABILITY: MOST
OF LIFE'S EVENTS ARE NOT
REPEATABLE. PERSONAL PROBABILITY
15 AN INDIVIDUAL'S PERSONAL
ASSESSMENT OF AN OUTCOME'S
LIKELIHOOPD. IF A GAMBLER BELIGVES
THAT A HORSE HAS MORE THAN A 50%
CHANCE OF WINNING, HE'LL TAKE AN
EVEN BET ON THAT HORSE.

DA TRACK. -

HowW Do You Kﬂow‘;\_
VA WiZDOM OF

HOW DO YOU KNOW THEWW

AN OBJECTIVIST U5ES EITHER THE
LLASSICAL OR FREQUENCY DEFINITION
OF PROBABILITY. A SUBJECTIVIST OR
BAYESIAN APPLIES FORMAL LAWS OF
LHANCE TO HIS OWN, OR YOUR,
PERSOMNAL PROBABILITIES,

ELEMENTARY OUTZOMES ff

ARE EQUALLY LIKELY K
WITHOUT ROLLING THE
PICE A BILLION TIMES? )

CBIECTIVIST

35



BASIC OPERATIONS

S0 FAR, WE HAVE DISCUSSED ONLY THE
PROBABILITY OF ELEMENTARY OUTLOMES.
IN THEORY, THAT WOULD BE ENOUGKH TO
PESCRIBE ANY RANDOM EXPERIMENT, BUT
N PRACTICE IT'S PRETTY UNWIELDY. FOR
EXBMPLE, EVEN SULH AN ORDINARY
OCLURRENCE AS ROLLING A SEVEN 15 NOT
AN ELEMENTARY OUTLOME.. 0O WE
INTRODUCE A NEW IDEA:

rAN EVENT 15 A SET OF ELEMENTARY QUTCOMES. THE PROBABILITY OF AN
EVENT 14 THE UM OF THE PROBABILITIES OF THE ELEMENTARY OUTLOMES IN
THE SET. FOR INSTANCE, SOME EVENTS IN THE LIFE OF A TWO-DICEDR ROLLER
ARE:

EVENT DESCRIPTION EVENT'S ELEMENTARY PROBABILITY
. OUTLOMES s
A: DICE ADD TO 3 {(1,2), (20} P(A) = 3g,
B: DICE ADD TO ¢ {(15), (2.4), (32), (42), (5.} P(8)= ‘3'52
€: WHITE DIE SHOWS 1 {11, (12), (13), (1), .
0,5, (1,6} P(C)= %
D: BLACK DIE SHOWS 1 {(11, (20), (3D, (4), A
(5], (6,)} P(D)= 3%

~

AND WHeEN
VO1I GET
My SHIRT
BACK?

THE BEAUTY OF USING )
EVENTS, RATHER THAN '
ELEMENTARY OUTCOMES, 15
THAT WE CAN COMBINE
EVENTS TO MAKE OTHER
EVENTS, USING LOGIZAL
OPERATIONS, THE
RELEVANT WORDS ARE
AND, OR, snp NOT.

JULT 3

LITTLE

WORDS,
CUEVALIER., .

THAT 15, GIVEN EVENTS E AND F, WE CAN MAKE NEW EVENTS:
E e F. Tug cvent £ aND THE BVENT F BOTH OccUR,
EOFF.
not c.

THE EVENT £ OR THE EVENT F OLLURS (OR BOTH PO).

THE EVENT E POES NOT OLLUR.

COMBINING OUR PRIMITIVE - o~
DEFINITIONS OF PROBABILITY WITH | GAMBLE COMPULSINELY
THESE LOGICAL OPERATIONS WILL AND ' L05T MY SuirT

GIVE U5 S0ME POWERFUL AND M PASCAL 16 ST
. \LL
FORMULAS FOR MANIPULATIN
& WORKING ON MY PROBLEM.

PROBABILITIES,
WHAT ARE MY CRANCES
AVECTU, cERIE 7

37



: I

— - IF C 15 THE CVENT, WRITE ) 5 SOMETIMES, THE OVERLAP & AND F 15 EMPTY, AND THE TWO EVENTS HAVE
LET'S RETURN TO THE Z\',Ei-}r H:&WLN;EE{ATP;EEN . NO ELEMENTARY OUTCOMES IN COMMON. TN THAT CASE, WE SAY E AND F ARC

PIE = 1, AND D 15 THE MUTUALLY EXCLUSIVE, MAKING P(E AND F) = 0. HERE WE SEE THE MUTUALLY

EXCLUSIVE EVENTS A, THE DICE ADY TO 3, AND B, THE DICE ADD TO 6.

........ & OR D15 TvE

A L R T GO o e
S R IR TR IR IR one o or e
CHOECECECESE e
.- (.- EE Kl

BEHEHEEH

-
"9

288
ey

.
3
3

LRl 11 ]
amE
' T1]
Py
(112

Z AND P15

WHERE THE ? o
SUADED AREAS »
OVERLAP (BOTH ; °
DICE ARE 1).

\ w, : FOR MUTUALLY EXZLUSIVE EVENTS, WE GET A SPECIAL ADPITION RULE: TF E
: AND F ARE MUTUALLY EXCLUSIVE, THEN

P(E OR F) = P(E) + P(F)

THIS ILLUSTRATES THE APPITION RULE: FOR ANY EVENTS E, F, _

P(E OR F) = P(E) + P(F) - P(E AND F) AND WE CHECK THAT P(A OR B) = = = 2, + 2 = P(A)+ P(B)

ADDING P(E) + P(F) POUBLE COUNTS THE ELEMENTARY OUTCOMES SHARED BY -

F).
E AND E 50 WE HAVE TO SUBTRACT THE EXTRA AMOUNT, WHICH 15 P(E AND F) AND FINALLY, A SUBTRACTION RULE: FOR ANY EVENT E,

\ P(E}) = 1 = P{NOT E)

THIS 15 USEFUL WHEN P(NOT E) 15 EASIER TO COMPUTE THAN P(E). FOR
INSTANCE, LET & BE THE EVENT, A DOUBLE-1 15 NOT THROWN. THE EVENT

NOT-E, A POUBLE-1 145 THROWN, HAS PROBABILITY P(NOT E) = ;

("IN THE ABOVE EXAMPLE,

11
p(c OR D) =

A5 YOU (AN SEE BY
COUNTING ELEMENTARY

6 '

OUTﬁQMEé. LIKEWISE, 50 ;: \EE EEI EE EE] EE
P(C AND D) = — P(E) = 1-P(NOT E) ). Ml el L
1= - RSN (R e

AND WE CONFIRM THE FORMULA: 26
P(C) + P(D) - P(L AND D) . 35 - (R TR ST e £
6.6 1 1 36 [N (RN R 1 £ [
eono B T R R

- __/
. : 35
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THE FORMULAS WE JUST DERIVER
ARE, IN FACT, APEQUATE FOR
ANSWERING DE MERE'S QUESTION—
BUT NOT EASILY! (YOU MIGHT TRY
USING THEM ON A SIMPLER
QUESTION: WHAT’S THE PROBABILITY
OF ROLLING AT LEAST ONE 5tX IN
TWO ROLLS OF A SINGLE DIE?) WE
NEED MORE MACHINERY!

(AN WE
SOLVE N
PROBLEM
NOW ? \T's
CoLb...

e

S0 WE INTRORULE

conditiondal
probability

(AN ESSENTIAL CONZEPT IN
STATISTICS!)

.

SUPPOSE WE ALTER OUR EXPERIMENT SLIGHTLY, AN THROW THE WHITE DIE
BEFORE THE BLALK DIE. WHAT'S THE PROBABILITY THAT THE FACES SUM TO 37

BEFORE THE DICE
ARE THROWN, THE

NOW SUPPOSE THE
WHITE PIE COMES

PROBABILITY 15 UP 1 (BVENT &)
P(A)= 2 WHAT'S THE
26 PROBABILITY
OF A NOwW?
=
S . . . '\;:L

40

(WE ¢ALL IT THE A
CONDITIONAL
PROBABILITY THAT EVENT
A WILL OCLUR, 6IVEN
THE LONDITION THUAT
EVENT £ HAS ALRGADY
OLLURRED. WE WRITE
P(AIC)
AND SAY “THE
PROBABILITY OF A, -
| GIVEN C. )
BEFORE ANY DICE WERE THROWN, THE SAMPLE SPACE HAD 36 OUTCOMES, BUT
NOW THAT THE BEVENT ¢ HAS OCCURRED, THE OUTLOME MUST BELONG TO THE
REDULED SAMPLE SPACE L.
® o ™ o ® ®
IN THE REDUCED SAMPLE SPACE OF $IX ELEMENTARY OUTCOMES, ONLY ONE
OUTCOME (12) SUMS TO 3. 50 THE CONPITIONAL PROBABILITY 15 1/6.
{ Y
IN GENERAL, TO FIND
THE CONDITIONAL
£ How
?§5A31L17|gg PROBABILITY P(EIF),
CHANGE DS WE LOOK AT THE
THE WORLD EVENT E AND F AS
EVoLveS? PART OF THE REDUCED
SAMPLE SPACE F.
. J

!




W WE TRANSLATE THIS
) INTO A FORMAL
DEFINITION: THE ZONDITIONAL
PROBABILITY OF E, GIVEN F, 15

P{E and F)
P{F)

FROM WHICK YOU (AN DIRELTLY
VERIFY SOME INTUITIVE FACTS:

P{EIF) =

PEIE) = 1 (ONCE E OCCURS,

IT'% CERTAIN.)
WHEN E AND F ARE MUTUALLY
EXCLUSIVE,

(ONCE F UAS
P(EIF) = 0 OCCURRED, € 15
IMPOSSIBLE.)

INDEPENDENCE and the

special multiplication rule.

TWO EVENTS E AND F ARE INDEPENDENT OF GCACH OTHER IF THE
OCLURRENCE OF ONE HAS NO INFLUENCE ON THE PROBABILITY OF THE
OTHER. FOR INSTANCE, THE ROLL OF ONE DIE HAS NO EFFECT ON THE ROLL
OF ANOTHER (UNLESS THEY'RE GLUED TOGETHER, MAGNETIC, ETL.!).

g i L]
- h‘*";' 25

7~

REARRANGING THE DEFINITION 6IVES VS THE MULTIPLICATION RULE:
P(E AND F} = P(EIF)P({F)

WHICH WE WOULD LIKE TO REDUCE TO A “SPECIALT MULTIPLICATION RULE,
UNDER THE FAVORABLE CIRCUMSTANCES THAT P(EIF) = P(E). THAT WOULPD BE
EXCELLENT!

—

T

AND WHILE YOU'RE \
WAITING FOR THE

<< NEXT PAGE, NOTE THAT

SWAPPING E AND F
PROVES THAT

P(F) P(E]F) = P(e)P(FIE).
——

4

IN TERMS OF CONDITIONAL PROBABILITY, THIS AMOUNTS TO SAYING
P(E) = P(EIF) or, cQuivALENTLY, P(F) = P(FIE). WHEN E AND F ARE
INDEPENDENT, WE GET A SPECIAL MULTIPLICATION RULE:

P(E AND F) = P(E} P(F)

LET'S VERIFY THE INDEPENDPENCE OF DICE, USING THE FORMULAS. ¢ 15 THE
EVENT WHITE PIE COMES UP 1; P15 THE EVENT BLACZK PIE COMES UP 1, AND
WE HAVE:

pletp) - S22 2 4 - pec)

BUT THE WHITE DIE SHOWING t OBVIOUSLY DOES AFFECT THE CHANCES THAT
THE SUM OF THE TWO DILE 15 3

1
P(A AND ¢} _ P(1,2) D) { 1
P(Ak) = = 2 —t——— o e P(A) = —
PIL) ) -}; b * 18

SO THESE TWO EVENTS ARE NOT INDEPENDENT.
4



BEFORE GOING ON, LET'S SUMMARIZE ALL THE RULES WE'VE ACCUMULATED:

ADPDITION RULE:

P(E GR F) = P(E) + P(F) - P(E AND F)

P(E OR F) = P(E) + P(F)

WASTEFUL

SPECIAL ADPITION RULE: WHEN € AND F ARE T

MUTUALLY EXCLUSIVE, AR, PULE‘-»
TO SAVE U5 FROM

THINK NG !

SUBTRACTION RULE:
P(E) = 1 - P(NOT E)

MULTIPLICATION RULE:

P(E AND F) = P{EIF)P(F)

SPECIAL MULTIPLICATION RULE: WHEN E
AND F ARE INPEPENDENT,

P(E AND F) = P{E)P(F)

AND NOW, PE MERE’S PROBLEM AT LAST.. LET E BE THE EVENT OF GETTING
AT LEAST ONE SIX IN FOUR ROLLS OF A SINGLE DIE. WHAT'S P(E)? THIS 15
ONE OF THOSE EVENTS WHOSE NEGATIVE 15 EASIER TO DESCRIBE: NOT £ 19
THE EVENT OF GETTING NO SIXES IN FOUR THROWS.

IF A; 15 THE EVENT, 6ETTING NO
51X ON THE i™ THROW, WE KNOW
THAT P(A;) = — . WE ALSO KNOW
THAT ROLLS ARE INDEPENDENT, 50

P(NOT E) =
P(A; AND A, AND A, AND A,)
MBLTIPL1CATION
RULE ﬂ""\* -,:(—) = .462,
50

PE) = 1 - P(NOT E) = .518

(
NOW THE SECOND HALF: LET F BE THE EVENT, 6ETTING AT LEAST ONC
DOUBLE $IX IN 24 THROWS. AGAIN, NOT F 15 EASIER TO DESCRIBE. IT'S THE
EVENT OF GETTING NO POUBLE SIXES.

BRAVO! T IF B; 15 THE EVENT, NO DOUBLE

P-N DIE SIX 15 THROWN OM THE i™
AND... B,,. THE PROBABILITY OF
EALH B 15

P(NOT F) = (39)= 509

(BY THE MULTIPLICATION RULE)
AND WE CONCLLUDE THAT

P(F) = 1 - P(NOT F) = 1 — 509
= .491

~\

.

DE MERE TOLD PASCAL HE HAD ALTUALLY OBSERVED THAT EVENT F OCLURRED
LESS OFTEN THAN EVENT E, BUT UE WAS AT A LO55 TO CXPLAIN WHY.. FROM

WHICH WE CONCLUDE THAT DE MERE GAMBLED OFTEN AND KEPT CARGFUL
RECORDS!!

J—
WHAT ARE

MY QUP4 of
GETTING N2

NOW LET’S LEAVE THE
CASINO AND REJOIN THE
REAL WORLPD...

45



BAYES THEOREM and the

case of the false positives...

FOR A MORE SERIOUS APPLICATION OF
CONDITIONAL PROBABILITY, LET'S ENTER
AN ARCNA OF LIFE AND DEATH..

SUPPOSE A RARE DISEASE INFECTS ONE OUT OF EVERY 1000 PEOPLE IN A
POPULATION...

AND SUPPOSE THAT THERE 15 A 600D, BUT NOT PERFELT, TEST FOR THIS
DISEASE: IF A PERSON WAS THE DISEASE, THE TEST COMES BALK POSITIVE 99%
OF THE TIME. ON THE OTHER HAND, THE TEST ALSO PRODULES SOME FALSE
POSITIVES. ABOUT 2% OF UNINFECTED PATIENTS ALSO TEST POSITIVE. AND YOU
JUST TESTED POSITIVE. WHAT ARE YOUR CHANCES OF HAVING THUE DISEASE?

LET'S PUT
T TWe WAY:
SHOULD 1

PRy 1N DONANCE?

WE HAVE TWO EVENTS TO WORK WITH:

WELLG ! P

Tl 16 DR.
PLVRPESLUCQUE. ..
GET ME My
LAWYEE-.

A : PATIENT HAS THE DISEASE
B : PATIENT TESTS POSITIVE.

THE INFORMATION ABOUT THE TEST'S
EFFECTIVENESS (AN BE WRITTEN

P(A) = .001
PEBIA) = .99

(ONE PATIENT IN 1000 UAS THE DISCASE)

(PROBABILITY OF A POSITIVE TEST,
GIVEN INFECTION, 15 .99)

P(BINOT A) = .02 (PROBABILITY OF A FALSE POSITIVE, GIVEN
NO INFECTION, 15 .02}
AND WE ASK

P(AIB) = WHAT?

(PROBABILITY OF HAVING THE DISEASE,
GIVEN A POSITIVE TEST)

r‘blN(SE THE TREATMENT FOR THIS PISEASE HAS SERIOVS SIDE EFFECTS, THE
POLTOR, HER LAWYER, AND HER LAWYER'S LAWYER CALL ON JOE BAYES, (P
(CONSULTING PROBABILIST), FOR AN ANSWER. TOE PERIVES A THEOREM FIRST
PROVED BY Hi5 ANCESTOR, THE REV. THOMAS BAYES (1744-1609).

/-__'-l-
T WARN YOou...
THiS 16 GOING TO
USE —¢ALRLE —
CONDATIONAL
PROBABILATY...

~\
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\
(" TOE BEGINS WITH A 2X2 TABLE, WHICH DIVIDES THE SAMPLE SPACE INTO FOUR
MUTUALLY EXCLUSIVE EVENTS. IT DISPLAYS EVERY POSSIBLE COMBINATION OF
DISEASE STATE AND TEST RESULT.

A NOT A

B A AND B NOT A AND B
NOT B| A AND NOT B NOT A AND NOT 8

LET'S FIND THE PROBABILITIES OF EACH EVENT IN THE TABLE:

THE FINAL TABLE 15:

A NOT A
B 00099 01998 02097 P(®)
NOT 8 00001 27302 97903 P(NOT 8)
o0t 999 1
P& P(NOT A)

FROM WHICH WE PIRECTLY PERIVE

P(AIB) = P(A AND B) _ 00099

P(8) oz097 - "94T2

A NOT A SUM
B P(A AND B) P(NOT A AND 8) P(B)
NOT B! P(A AND NOT B) P(NOT A ANP NOT B} | P(NOT 8)
P(A) P(NOT A) 1

THE PROBABILITIES IN THE MARGINS ARE FOUND BY SUMMING ALRO%S ROWS

AND DOWN COLUMNS. )
o

oY DEFIAITion",

NOW LOMPUTE: W
PCBIAP(A) = (99)(.001) = 00099 7

P(A AND B) =
P(NOT A AND B) = P(BINOT A)P(NOT A) = (.02)(.999) = .01998

ALLOWING U5 TO FILL IN SOME ENTRIES:

rDEﬂ’ITE THE HIGH ALCURACY OF THE TEST, LESS THAN 5% OF THOSE WHO )
TEST POSITIVE ACTUALLY HAVE THE DISEASE! THIS 15 CALLED THE FALSE
POSITIVE PARADOX.

PARADOY
N

A
YAR-A-
LAWYERS...

THIS TABLE. SHOWS
WHAT HAPPENS IN A
6ROUP OF A THOUSAND VISEASE  NO misEasE

A NOT A S5UM
g 00099 01998 02097
NOT 8 | P(A AND NOT B) P(NOT A AND NOT 8) | P(NOT B8)
001 999 1

WE FIND THE REMAINING PROBABILITIES BY SUBTRACTING IN THE COLUMNS, THEN

ADPING ALROSS THE ROWS.

44

PATIENTS. ON AVERASGE,

LARGER UNINFECTED

GROUF.
.

ONLY 21 PEOPLE WILL TesTS 1 20 21

TEST POSITIVE—AND POSITIVE

ONLY ONE OF THEM TESTS 0

WAS THE DISEASE! 20 NEGATIVE ks s
FALSE POSITIVES COME 1 999 1000
FROM THE MUZH




WHAT'S THE PHYSICIAN TO DO? JOE BAYES ADVISES HER NOT TO START
TREATMENT ON THE BASIS OF THIS TEST ALONE. THE TEST POES PROVIDE
INFORMATION, HOWEVER: WITH A POSITIVE TEST THE PATIENT'S CHANCE OF
HAVING THE DISEASE INCREASED FROM 1IN 1000 TO 1IN 23. THE POLTOR
FOLLOWS UP WITH MORE TESTS.

TOE BAYES COLLECTS HIS CONSULTING CHECK BEFORE ADMITTING THAT ALL
THOSE 5TEPS HE WENT THROUGH (AN BE LOMPRESSED INTO THE SINGLE
FORMULA CALLED BAYES THEOREM: -

P(A)P(BIA)
P(A)P(BIA)+P(NOT A)P{BINOT A)

P(AIB) =

WONPER WWAT
THE ANCESTOR
WouLD HAVE

THOUGHT
ABOUT THIS

FEE..

IT COMPUTES P(AIB) FROM P(A) AND THE TWO CONPITIONAL PROBABILITIES
p(BIA} AND P(BINOT A). YOU CAN DERIVE IT BY NOTING THAT THE Bl&6 FRACTION
(AN BE EXPRESSED AS

P{A and B} - P{A and B) = P{AIB)
P{A and B}+P{NOT A and B} P{B}
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IN THIS CHAPTER, WE COVERED THE

BASICS OF PROBABILITY: iT% PEFINITION,
SAMPLE SPACES AND ELEMENTARY
OUTCOMES, CONDITIONAL PROBABILITY,
AND SOME BASIC FORMULAS FOR
COMPUTING PROBABILITIES. WE
ILLUSTRATED THESE IDEAS USING A
2-DICE SAMPLE SPACE. FOR THE MODERN
GAMBLER, PROBABILITY 15 THE POWER
TOOL OF CROICE.

AND FINALLY, IN THE MEDICAL EXAMPLE, WE SHOWED HOW THESE ABSTRACT
IDEAS COULD HELP TO MAKE GOOPD DECISIONS IN THE FACE OF IMPERFELT
INFORMATION AND REAL RISKS—~THE ULTIMATE SOAL OF STATISTICS.

BUT THIS 15 JUST THE BEGINNING. FOR US, PROBABILITY 15 ONLY A TOOL—AN
ESSENTIAL TOOL, TO BE SURE—IN THE STUDY OF STATISTICS. IN THE CHAPTERS
THAT FOLLOW, WE’LL EXPLORE THE SUBTLE RELATIONSHIP BETWEEN

PROBABILITY, VARIATIONS IN STATISTICAL PATA, AND OUR CONFIPENZE N
INTERPRETING THE MEANING OF OUR OBSERVATIONS,
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+Chapter 4+

RANDOM VARIABLES

IN CHAPTER 2, WE SAW THAT OBSERVATIONS OF NUMERICAL
PATA, LIKE STUDENTS WEIGHTS, (AN BE GRAPHER AND
SUMMARIZED IN TERMS OF MIDPOINTS, SPREADS, OUTLIERS, ETC,
IN CRAPTER 3, WE SAW HOW PROBABILITIES (AN BE ASSIGNED

TO THE OUTZOMES OF A RANDOM EXPERIMENT.

IF WE IMAGINE A RANDOM EXPERIMENT REPEATED MANY TIMES,
WE EXPECT THAT THE ACTUAL OUTCOMES OVER TIME WILL BE
GOVERNED BY THEIR PROBABILITIES. THE PROBABILITIES FORM A
MODEL FOR REAL-LIFE EXPERIMENTS... 5O WHY NOT DO FOR THE
MOVEL WHAT WE'VE ALREADY DONE FOR THE DATA IT DESCRIBES?
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L.

—
THE KEY IDEA 15 THE RANDOM VARIABLE, WHICH WE

WRITE AS A LARGE

—

A RANDOM VARIABLE 15 DEFINED AS THE NUMERIZAL OUTCOME OF A
RANDOM EXFERIMENT.

FOR EXAMPLE, IMAGINE DRAWING ONE STUDENT AT RANDOM FROM THE
STUDENT BODY., THAT'S THE RANDOM EXPERIMENT. THE STUDENT'S HEISHT,
WEIGHT, FAMILY INCOME, S.A.T. SCORE, AND 6RADE POINT AVERAGE ARE
ALL NUMERICAL VARIABLES DESCRIBING PROPERTIES OF THE RANDOMLY
SELECTED STUPENT. THEY'RE ALL RANDOM VARIABLES.

\NTO
STATISTICS !

ANOTHER EXAMPLE: TO%5 TWO COINS (THE RANDOM EXPERIMENT) AND RECORD

THE NUMBER OF HEADS: 0, 1, OR 2.
o
rﬂ
L%

NOTE THE NOTATION! THE VARIABLE 15 WRITTEN WITH A CAPITAL X. THE
LOWERCASE x REPRESENTS A $INGLE VALUE OF X, FOR EXAMPLE =2, IF
HEADS COMES UP TWICE,

0
OUTLOME TT HT TH HH
| !

zx -0 ] 2
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ANOTHER EXAMPLE i%
BASED ON THE FAMILIAR
TO%5 OF TWO DICE. LET
Y REPRESENT THE $UM
OF THE POTS ON THE
TWO DICE. FOR THIS
RANDOM VARIABLE, Y
(AN BE ANY NUMBER $
BETWEEN 2 AND 12,

Y =7

-

NOW WE WANT TO LOOK AT THE PROBABILITIES OF THE OUTCOMES. FOR
THE PROBABILITY THAT THE RANDOM VARIABLE X HAS THE VALUE %, WE
WRITE Pr(X = x), OR JUST p(x). FOR THE COIN-FLIPPING RANDOM
VARIABLE X, WE CAN MAKE THE TABLE:

THIS TABLE 15
CALLED THE
FROBABILITY
PISTRIBUTION OF
THE RANPOM
VARIABLE X.

PriX=z)

1
4

FOR THE RANDOM VARIABLE Y (THE $UM OF TWO PICE), THE PROBABILITY
DISTRIBUTION LOOK% LIKE THIS:

YUP! THAT'S
WHY | GAVE
UP DieIn’?

~
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THE KEY IDEA 15 THE RANDOM VARIABLE, WHICH WE
WRITE A% A LARGE

A RANDOM VARIABLE 15 DEFINED A5 THE NUMERICAL OUTCOME OF A
L RANDOM EXFERIMENT.

FOR EXAMPLE, IMAGINE DRAWING ONE STUPENT AT RANDOM FROM THE
STUDENT BODY. THAT'S THE RANDOM EXPERIMENT. THE STUDENT'S HEIGHT,
WEIGHT, FAMILY INCOME, SA.T. SCORE, AND 6RAPE POINT AVERAGE ARE
ALL NUMERIZAL VARIABLES DESCRIBING PROPERTIES OF THE RANDOMLY
SELELTED STUDENT. THEY'RE ALL RANDOM VARIABLES.

THE '
ROMINISTRATION'S
JORB 1& To TURN

ANOTHER EXAMPLE: TO%% TWO COINS (THE RANDOM EXPERIMENT) AND RELORD

THE NUMBER OF WEADS: 0, 1, OR 2.
o &
HH \
| |
2

NOTE THE NOTATION! THE VARIABLE [5 WRITTEN WITH A CAPITAL X. THE
LOWERCASE z REPRESENTS A SINGLE VALUE OF X, FOR EXAMPLE %=2, IF
HEADS COMES UP TWICE.

OUTLOME T HT TH

x 9 1
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ANOTHER EXAMPLE 15
BASED ON THE FAMILIAR
TOS% OF TWO DICE. LET
Y REPRESENT THE SUM
OF THE POTS ON THE
TWO DICE. FOR THIS
RANDOM VARIABLE, Y
CAN BE ANY NUMBER -]
BETWEEN 2 AND 12.

Y =7

”

NOW WE WANT TO LOOK AT THE PROBABILITIES OF THE OUTCOMES. FOR
THE PROBABILITY THAT THE RANDOM VARIABLE X HAS THE VALUE z, WE
WRITE Pr(X = z), OR JUST p(%). FOR THE COIN-FLIPPING RANDOM
VARIABLE X, WE CAN MAKE THE TABLE:

THIS TABLE 15
CALLED THE
2
z ‘ o | ! | PROBABILITY
i ' ) DISTRIBUTION OF
PriX=x) Y ‘ - ‘ s THE RANDOM
VARIABLE X.

FOR THE RANDOM VARIABLE Y (THE SUM OF TWO DILE), THE PROBABILITY
PISTRIBUTION LOOKS LIKE THI%:

g( | 2 2
1 2

Yup! THETS
WHY | GAVE
UP DICIN'?




F
™\ 4
(" NOW LET'S URAW GRAPHS, OR HISTOGRAMS, SHOWING TRESE | | WHY DO WE CALL THESE GRAPHS HISTOGRAMS? YOU'LL RECALL THAT IN
PROBABILITY DISTRIBUTIONS. FOR EAZH VALUE OF X, WE DRAW A BAR - CHAPTCR 2, A HISTOGRAM WAS A GRAPH THAT DISPLAYED HOW MANY DATA
EQUAL IN HEIGHT TO p(). | POINTS LAY IN EACH OF A SERIES OF INTERVALS:
50 — 25 1
/ 20 4
15 4
10 4
5 .
.25 — ’ D - ! T T T T T T T T T T -‘I—r?—|‘
7 100 150 200
Weight in Pounds
/ // FROM THIS FREQUENCY WISTOGRAM, WE DERIVED THE RELATIVE FREQUENCY
‘ I HISTOGRAM, SHOWING THE PROPORTION OF DATA IN EACH INTERVAL:
0 1 2
IT'5 EASY TO SEE THAT THE TOTAL ARGA OF THESE BOXES 15 1 EACH BOX HAS
BASE 1 AND HEIGHT p(%), 0 THE TOTAL AREA 15 THE SUM OF THE 0.0
PROBABILITIES OF ALL OUTCOMES, 1E. 1. ) :
\ ;
0.1
HERE’S THE PROBABILITY HISTOGRAM OF THE RANDOM VARIABLE Y, SHOWING _—
THE PROBABILITY DISTRIBUTION OF THE SUM OF TWO DICE: 0.0+ GHFr—lmrtr—rtrtl L e
: 100 150 200
G Weight in Pounds
516 // L
/. 7
% 7/ % BUT YOU'LL RECALL THAT, BY
4 | / ONE DEFINITION, PROBABILITY
16 v / / 19 THG RELATIVE FREQUENCY
3 / / / ; OF AN EVENT “IN THE
t6 / LONE RUN.” IF WE REPEAT
2 | / / / THE RANDOM CXPERIMENT
6 7 / / / MANY TIMES, THE RELATIVE
Y 7 7 / / FREQUENCY WISTOGRAM OF
16 ,/ / % / 7 | THE OUTCOMES SHOULD COME  DATA
LA A -: TO LOOK VERY MUCH LIKE %
THE RANDOM VARIABLES
b2 3 4 5 6.7 ¢ 9 W0 1t 12 Y PROBABILITY WISTOGRAM! .

5T

T
o«




WE ILLUSTRATE USING THE RANDOM THE TO%%ER BEGINS FLIPPING TWO
VARIABLE X AND A MADP COIN TOSSER.| | COINS REPEATEDLY, KEEPING TRACK
X ' OF THE RESULTS.

WE KNOW X'S PROBABILITY DISTRIBUTION, AND WE ALSO KNOW THAT THE
ACTUAL COIN FLIPS WILL MATCH THE PROBABILITIES APPROXIMATELY. AFTER
1000 TOS5ES, THE MAD TOSSER TALLIES HER DATA:

Pngggim OBSERVED DATA
71,=NUMBER OF %”- = RELATIVE
P * OLLURRENCES FREQUENCY
25 o 260 260
o 1 517 517
25 2 223 223

AND WE SEE THAT THE PROBABILITY HISTOGRAM OF X LOOKS LIKE THE “PURE
FORM™ OR MOVPEL OF THE RELATIVE FREQUENLY HISTOGRAM OF THE DATA.

PROBABILITY
> MORE
REAL THAN

“REALYTY!”
WEE HEE

TO EXTEND THE ANALOGY BETWEEN RELATIVE FREQUENCY AND DATA, WE
SHOULD NOW BE WILLING TO TALK ABOUT THE MEAN AND VARIANCE (OR
STANDARD DEVIATION) OF A PROBABILITY DISTRIBUTION...

ANP JUST TO REMIND
OURSELVES THAT WE'RE IN
THE REALM OF TUE
ABSTRACT, WE BREAK OUT
SO0ME GREEK LETTERS...

( MEAN AND VARIANCE OF
RANDOM VARIABLES

WE USE SPECIAL TERMINOLOGY
AND 5YMBOLS TO PISTINGUISH
BETWEEN THE PROPERTIES OF
PATA SETS AND PROBABILITY
DISTRIBUTIONS:

PROPERTIES OF DATA ARG CALLEV SAMPLE PROPERTIES, WHILE PROPERTICS
OF THE PROBABILITY DISTRIBUTION ARE CALLED MOPEL OR POPULATION
PROPERTIES. WE USE THE 6REEK LETTER i (MU) FOR THE POPULATION
MEAN, AND o (LOWERCASE $I1GMA) FOR THE POPULATION STANDARD
PEVIATION. (FOR DATA, WE USE THE ROMAN SYMBOLS Z AND 4.

BECAISE
ROMMIG WERE
SHORT ON THEOR
BND LONG Of
CENGLT, &N
STUFF LKE
TUKT..-




THE SAMPLE MEAN WAS DEFINED
BY THE EQUATION

GooP! Now LETS
TWIST [T AROUND.

i VAL VALUES. THINK
NOW SOME OF THESE DATA POINTS z; MAY WELL HAVE EQ

OF THE MAD COIN TOSSER: THE ONLY AVAILABLE VALUES WERE 0, 1, AND ?.2;:;
SUE MADE 1000 TOS5ES. THE VALUE 0 WAS TAKEN ON 240 TIMES, 1 HEAD

UP 517 TIMES, AND 2 HEADS, 223 TIMES.

—

BECAUSE EACH
% 15 COUNTED
N TIMES..

Ao WE LET % RANGE OVER
ALL VALUES OF X, CALL 77,
THE NUMBER OF DATA
POINTS WITH THE VALUE x.
THEN WE (AN REWRITE
THAT FORMULA AS

all %

OR
n
)
all z

AW BUT NOW 32 15 THE RELATIVE FREQUENCY... THE *APPROKIMATE

PROBABILITY..” THE NUMBER THAT APPROACHES p(%)..50, BY ANALOGY, WE
FORM THE EAPRESSION

AND DEFINE THAT AS THE
MEAN OF THE FROBABILITY
L DISTRIBUTION.

\
—

-
PEFINITION: Tug

mean or

RANDOM VARIABLE X I5
PEFINED AS

THIS 15 ALSO CALLED THE EXPECTED

L

MEANING :
THE CENTER
OF 15

HISTOGRAN!

—

VALUE OF X, OR E[X]. THINK OF IT AS

THE 5UM OF THE POSSIBLE VALUES, EACH WEIGHTED BY ITS PROBABILITY.

THE MAD COIN TOSSER'S GXPERIMENT
MEAN Z WITH OUR MOVEL MEAN yr

SAMPLE
Nz L7
i 7 X5
0 26 o
1 517 517
2 223 A4b

ALLOWS US TO COMPARE HER SAMPLE

MODEL
z | px)  zplz)
o 25 e
1 5 5
2 27 5

(

NOW LET'S DO THE SAME THING TO
THE VARIANCE. MAYBE YOU
REMEMBER THUE FORMULA

5?2 = ,—7‘_:’.72 (;~Z)?

i=t

IT (ALMOST) MEASURES TUE AVERAGE
SQUARED DISTANCE OF DATA FROM THE

MEAN. AS ABOVE THIS CAN BE REWRITTEN:

5" = z,(x-—z) -1
—

all x

6i




: v OF 71, THIS ALSO N OUR EXAMPLES 50 FAR HAVE BEEN DISCRETE RANDOM VARIABLES. THUCIR
(" EXCEPT FOR THAT ANNOYING DENOMINATOR 72-1 INSTEA R | OUTCOMES ARE A SET OF ISOLATED (“DISCRETE™) VALUES, LIKE THOSE WE SAW
LOOKS LIKE A WEIGHTED SUM OF SQUAREY DISTANCES.. 50 IN CHAPTER 3, BUT THERE ARE ALSO

DEFINITION:

g e T e

[ J
. Confinvous
THe VAFiIGENce PO YOU 4EE R d
OF A RANDOM VARIABLE X THAT o2 15 THE QI! O
15 THE EXPECTED SQUARED SAME A% bl
DISTANCE FROM THE E[(X-]7 Vﬂ Figdpies

POPULATION MEAN:

ot = E (- p(2)

all %

e standard
[ ] " on
deviation o
I5 THE SQUARE ROOT
OF TUE VARIANCZE. )

LET'S IMAGINE A RANDOM EXPERIMENT
IN WHICH ALL OUTZOMES HAVE
PROBABILITY ZERO. THAT'S RIGUT,
P(x) = 0 FOR LVERY x.

4 Y
A SIMPLE EXAMPLE 15 A BALANCED, SPINNING POINTER. IT ZAN STOP ANYWHERE

IN THE CIRCLE. TF X REPRESENTS THE PROPORT. ION OF THE TOTAL

; CIRCUMFERENCE IT LANDS ON, THE RANDOM VARIABLE X CAN TAKE ON ANY

VALUE BETWEEN ¢ AND 1—-AN INFINITE RANGE OF YALUES.

.

WE USE THE TABLE a2
FROM THE LAST 2| PR G PR
PAGE TO FIND THE 0 25 (0-1)*25 = 25
VARIANCE OF TUE ) 5 (1-1*50 = o
TWO-COIN TO%% 2 25 (2-1)*25 = 25 '
(FOR WHICH 1 = 1), — 2 g \— J
TOTAL 50 =0 g
;ﬁ SOME PROBABILITIES ARE EASY TO O
_ - ‘ : FIND, LIKE THE PROBABILITY THAT X
5 = FALLS WITHIN A RANGE: FOR X
; - [ EXMMPLE, Pri2s < X < 75 ) = 5,
S : - BECAUSE IT'S UALF THE CIRCLE. BUT
177 0 WHAT ABOUT PrX = 5)7 siNce X 75 25
R CAN TAKE ON AN INFINITE NUMBER — ° -
‘_ OF VALUES, AND ALL OF THESE M—J
: VALUES ARE EQUALLY LIKELY, THE
TO 5UM UP: i AND o, THE POPULATION MEAN AND STANDARD DEVIATION,ARE | PROBABILITY T?J{:.T X 15 EXBCTLY 5
PROPERTIES WE CAN COMPUTE FROM PROBABILITY DISTRIBUTIONS. THEY ARE i’ (OR EXACTLY ANYTHING) 15
COMPLETELY ANALOGOUS TO THE SAMPLE MEAN Z AND STANDARD DEVIATION 5 PRELISELY o, 5
COMPUTED FROM SAMPLE DATA. ' o .
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HOW (AN WE DRAW A PICTURE OF THIS?
BY ANALOGY WITH THE CASE OF
PISCRETE PROBABILITIES, WE TRY TO
SEE CONTINVOUS PROBABILITIES AS
AREAS UNDER SOMETHING. FOR THE
SPINNING POINTER, THE "SOMETHING”
LOOK% LIKE THIS:

%
%
a b

A(Z) = 0O WHEN % < 0
F(x) =1 WHEN 0 € z & 1
(%) = 0 WHEN % > 1

THE PROBABILITY THAT THE
POINTER POINTS ANYWHERE
BETWEEN @ AND b 15 PREISELY
THE AREA OF THE $HADED RE4ION
UNDER THE CURVE BETWEEN @ AND
b (IN THIS (ASE, b—a).

./

THE PROBABILITY OF AN EXALT
OUTLOME, HOWEVER, 1¢ THE "AREA"
OVER A POINT, WHICH 16 ZERO.
(AND NOTE THAT THE TOTAL AREA
UNDER THE CURVE 15 EXACTLY 1.)

AS WITH THE SPINNING POINTER.

~
THE SAME PICTURE DESCRIBES TUE RANDOM NUMBER GENERATOR FOUND ON

MOST COMPUTERS AND $OME CALLULATORS. PRESS THE BUTTON; OUT POPS A
NUMBER BETWEEN 0 AND 1 AND ALL T

HE NUMBERS ARE EQUALLY LIKELY, JUST

BUT SAPLY, THEY AREN'T
TRULY RANDOM. TUEY'RE
PRODUCED 8Y SOME
ALGORITHM, 50, TO BC
ACCURATE, WE CALL THEM
PSEUDO-RANDOM NUMBERS.

THE CURVE y = A(z) IN THIS
EXAMPLE 15 CALLED THE
PROBABILITY PENSITY OF THE
CONTINUOUS RANDOM VARIABLE X.
EVERY CONTINUOUS RANDOM
VARIABLE HAS TS OWN DENSITY
FUNCTION. THE PROBABILITY
Pria < X< b) 15 THE AREA
UNDER THE CURVE BETWEEN THE
Z-VALUES a AND b,




(" ALTHOUGH THE
NOTATION MAY BE
UNFAMILIAR, ALL IT
MEANS 15 AN AREA..
THE INTEGRAL SIGN
ITSELF 15 A STRETCHED
“s” FOR SUM, WHICH
THE INTEGRAL, IN

IN GENERAL, THE PROBABILITY
DENSITY WON'T BE 50 SIMPLE,
AND COMPUTING THE AREAS CAN
BE FAR FROM TRIVIAL.

SOME SENSE, 15,
7 |
%/ AS A SUMLIKE SOMETRING, THE INTEGRAL SERVES TO PEFINE THE .
=== MEAN AND VARIANCE of a continuous

random variable.
WE HAVE TO UsE CALLULUS

NOTATION TO DESCRIBE THE =

AREA UNDER THE CURVE #(2). u= J;zf(x)d;z By ANALOGY yri :Exp(x)
THI5 $YMBOL 15 READ “THE . Woingeaiea e
INTEGRAL OF # FROM @ TO b DISCRETE

FORMULAS:

ot = J. Zu F 2 dx avzszcz_#)zp(x)
e o

LIKE DISCRETE PROBABILITIES,

CONTINUOUS DENSITIES HAVE

TWO FAMILIAR PROPERTIES:

ALTHOUGH IT MAY NOT BE OBVIOUS FROM THE FORMULAS, THESE DEFINITIONS
OF MEAN AND VARIANCE ARE ENTIRELY CONSISTENT WITH THEIR ROLE AS
CENTER AND AVGRAGE SPREAD OF THE PROBABILITIES GIVEN BY THE DENSITY
£(z). THE PICTURE TO KGEP IN MIND 15 THI%:

F(x) 20

Frdz =1

EXLEPT THAT THERE 15 NO ENDY!)

. N
(TRY NOT TO BE ALARMED BY THOSE 32N ’
INFINITIES.. THEY JUST MEAN WE'RE f‘ % P :, :,
LOOKING AT THE TOTAL AREA UNDER 3 0__% : :
TUE CURVE FROM END TO END, 7 i i

m M—T M Mt :
.mnmll’llitlll_llllllIll'lll“m““““mu NHREIEH _ . l“"” \. : y
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Q¥ -+
TRAT SOUNDS

[ ]
random variables et

ADDING ﬁf
}

ONCE YOU KNOW THE MEAN AND
VARIANCE OF A RANDOM VARIABLE,
WHAT ¢AN YOU DO WITH THEM?
WELL, FOR ONE THING, YOU ¢AN
FIND THE MEAN AND VARIANCE OF
SOME OTHER RANDOM VARIABLES..

o ™y
FOR GXAMPLE, LOOK AT A FAIR COIN TO55. LET X = 1 IF THE COIN COMES UP
HEADS AND O IF IT CLOMES UP TAILS.

z o 1 MZL“‘MEC’
..
pa) | 5 5 NEW HER
BY NOW, YOU SHOULD BE ABLE
TO FIND THE MEAN
E[X] = 0-p(0) = 1-p(1)
=0+ .5
= .5
AND THE VARIANCE
ot = (0-5)"p(0) + (1-5)p(1)
= .25
\. ./

NOW LET'S PLAY A SIMPLE GAMBLING GAME: YOU ANTE UP $6.00 TO PLAY: 1
ELIP A COIN; YOU WIN $1¢ IF THE COIN COMES UP HEADS, ZERO IF TAILS. THEN
YOUR WINNINGS W ARE

W=10X-6

A NEW RANDOM VARIABLE!
WHAT ARE ITS MEAN AND
VARIANCE?

g
A LITTLE THOUGHT SHOULD
CONVINCE YOU THAT E[W]

15 GIVEN BY
p 0 1 1.E., YOUR
E[W] = E[toX - ¢] Eﬁﬁfﬁg@ .
W -4 4 (
= 10E[X] - 6 ARE A

Logs!
WHICH WORKS OUT TO

10(05)-6 = —1

YOU (AN CHECK IT USING
k‘I'I-H‘i TABLE:

J

IN GENERAL, IT 15 NOT HARD
TO SHOW THAT

Elax+b] = aE[X] +4

WHEN @ AND b ARE ANY
NUMBERS AND X 15 ANY RANDOM Elx]
VARIABLE. FOR THE VARIANCE,

THERE'S ALSO A GENERAL

1

o aX+h) = | ata*(X) : !

-

IN THE GAMBLING GAME ABOVE, THE POSSIBLE OUTCOMES ARE -6 AND 4, 50
IT'S CLEAR THAT THE VARIANCE OF W MUST BE GREATER THAN THE VARIANZE
OF X. IN FACT,

(W) = c{(10X+6)

= 100 a%X)
= 25
AND '
odW) = §
.

~




YOU CAN ALSO ADP TWO RANDOM VARIABLES TOGETHER. FOR INSTANCE, SUP- THE VARIANCE OF THE SUM OF RANDOM VARIABLES HAS A SIMPLE FORM IN

POSE WE TO5% A COIN TWIZE. THE NUMBER OF WEADS ON BOTH TOSSES 15 THE SPECIAL CASE WHEN THE VARIABLES X AND Y ARE INDEPENDENT. THC
OF THE FIRST AND SECOND TO55E5. E. PROPERTY P(A AND B) = P(AP(B).. BUT FOR U5, INPEPENPENCE JUST MEANS
- THAT X ANP ¥ ARE GENERATED BY INDEFENDPENT MECHANISMS, SUCH A5

o & FLIPS OF A COIN, ROLLS OF A DIE, ETC.
Z¥ 7, ’ o 1 2 |

OUTSIDE THE
CASING, IT'S HARD
TO FIND LOMPLETE
INPEPENPENCE..,

p(zﬁ—zz)l 25 5 .25

AGAIN, IT'S EASY TO SEE THAT

E[X+X,] = E[X] +E[X,]

WHEN X AND Y ARE INDEPENDENT,

N\ THEIR VARIANCES ADD: -r;i'glﬁg Ei 3
(DON'T ASK ABOUT THE PROBABILITY DISTRIBUTION OF X.+X,, BECAUSE IT ) = oK) TG e
PEPENDS IN A COMPLICATED WAY ON THE TWO ORIGINAL DISTRIBUTIONS. FOR ARk
KAMPLE, IF X, AND X, ARE BOTH THE SPINNING POINTER PISTRIBUTION, THE _.; TS
ﬁlsToeRAms AT LIKE ThiS:) : IN THE CASE OF TWO COIN TO55E5, VERY USEFUL

FACT..
e (X +X,)

u

o (X,)+(X,)
25+ .25
= .5

- A

3

ALL OF THIS (AN BE GENERALIZED TO THE SUM OF MANY RANDOM VARIABLES:

> x] = el

i=1 i=!

AND, WHEN THE X; ARE ALL INDEPENDENT,

o J 1 _‘ 0'2(2)(,-) = 20‘1()(,-)

iz} i = 1
x1+x1, t :

n

-1
<




[ TUESE CALLULATIONS LIE AT THE
WEART OF MOST SAMPLING THEORY
AND STATISTICS. MANY SUMMARICS
OF DATA, SUCH A5 THE SAMPLE
MEAN, ARE LINEAR COMBINATIONS
OF DATA (LE, 5UM5 OF THE TYPE
aX +bY ¥+ cZ + .. )

THE WORLD
1% THE SUM OF
75 PARTS !

A G
e B h""-:""“
\&& = - e J

IN THE NEXT CHAPTER, WE WILL SEE TWO IMPORTANT EXAMPLES OF RANDOM
VARIABLES: ONE, THE BINOMIAL, 15 THE SUM OF MANY REPEATER INDEPENDENT
RANDOM VARIABLES. THE OTHER, THE NORMAL, 15 A CONTINUQUS RANDOM
VARIABLE THAT HAS A SURPRISING RELATIONSHIP TO THE BINOMIAL, AND ANY
OTHER UM OF INPEPENDENT RANDOM VARIABLES AS WELL.

JUST REMEMBER:
RANDOM EXPERIVMENT,
NUMERICAL
OuTcome!

MAL. SoUNDS
LIKE Y LAST
PAYLHELK. ..

+Chapter 5S¢

A TALE OF TWO
DISTRIBUTIONS

NOW WE LOOK AT TWO IMPORTANT EXAMPLES OF
RANDOM VARIABLES, ONE DISCRETE AND ONE CONTINUOUS.
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(WE BEGIN WITH THE DISCRETE ONE, CALLED THE BINOMIAL RANDOM VARIABLE. A
SUPPOSE WE HAVE A RANDOM PROCESS WITH JUST TWO POSSIBLE OUTCOMES:
A HEADS-OR-TAILS COIN TOS5, A WIN-OR-LOSE FOOTBALL GAME, A PAS%-OR-
FAIL AUTOMOTIVE SMOG INSPECTION. WE ARBITRARILY (ALL ONE OF THESE
OUTLOMES A SUCLESS AND THE OTHER A FAILURE.

,-—-—-'_'-'-.._.-—-—-'--_
CONG?ATULATDMS
YOUR sUC<ESS! YOUR @
JUST EAILED THE

5MOG TEST!

STARTING WITH A BERNOULL! TRIAL, WITH PROBABILITY OF SUCCESS p, LET'S
BUILD A NEW RANDOM VARIABLE BY REPEATING THE BERNOULLI TRIAL.

The .

binomial /9wy
rundom n im%@?&sm?
variable

X 15 THE NUMBER OF :
SUCLESSES IN 11 REPEATED
BERNOULLI TRIALS WITH
PROBABILITY o OF $UCCESS.

WHAT WE DO 1% TO REPEAT THIS EXPERIMENT.. WELL, REPEATEDLY. SUCH A
REPEATABLE EXPERIMENT 15 CALLED A '

Bgrnou“i
frial,

PROVIDED IT HAS THESE CRITICAL
PROPERTIES:

1) THE RESULT OF EACH TRIAL
MAY BE EITHER A SULLESS OR
A FAILURE

NO
PICTURE

OF
BERNOULLL..
S0RRY
2) THE PROBABILITY p op '

SUCLESS 15 THE SAME IN
EVERY TRIAL.

3) THE TRIALS ARE INDEPENDENT:
THE OUTLOME OF ONE TRIAL HAS
NO INFLUENCE ON LATER OUTCOMES.

74

AN CXAMPLE OF A BINOMIAL RANDOM VARIABLE 15 THE NUMBER OF HEADS
(SUCLESSES) IN TWO FLIPS OF A COIN. HERE 7222 AND p =.5

b= NUMBER
OF SULLESSES

( )
PriX=4) ’ 25 5 25 \ %

n

—_
[~

it

ANOTHER EXAMPLE 15 DE MERE'S FIRST GAMBLE: TOSSING A SINGLE DIE
FOUR TIMES N A ROW. SUCCESS MEANS ROLLING A 6. THE DISTRIBUTION 15

o ——— .
UM... THE PASTRIBUTION
5w 1907

e

@ WHAT 16 THE
PROBABILITY OF
ROLLING f b'S

N4 RoLLs ?



IN GENEGRAL, WHAT'S THE PROB-
ABILITY DISTRIBUTION OF THE
BINOMIAL FOR ANY PROBABILITY
ANP NUMBER OF TRIALS 717 A
PROBABILITY CALLULATION GIVES
THE ANSWER: THE PROBABILITY
OF OBTAINING £ SUCCESSES IN

7 TRIALS, PriX=4), 15 S s

priX=8 = lpta-prt B,

TIME FOR YouR
MATH TUERAPY!

- : .
HErE (7). READ "1t CHOOSE 4" 15 THE BINOMIAL COEFFIZIENT. IT COUNTS

ALL PO55IBLE WAYS OF GETTING £ SUCCESSES IN 71 TRIALS. EACH INDIVIDUAL

SEQUENCE OF £ SUCLESSES AND n-4 FAILURES HAS PROBABILITY pA(1-p)™4,

g7 THE MULTIPLICATION RULE. THERE ARE () .OF THESE SEQUENCES.

-9 * P G-p) ¥

FOSED...

~\

(" ANOTHER VIEW OF THE BINOMIAL COEFFICIENTS 15 IN PASCAL'S TRIANGLE.
EACH ENTRY 15 THE SUM OF THE TWO NUMBERS JUST ABOVE IT.

s % 2 7
56 70 56 18
1 9 36 84 126 126 64 36
L 10 45 120 210 252 20 1207 45
1 N 55 165 330 462 462 330 15 55 1 i
T 12 66 220 495 7192 924 192 495 220 L6 12 1

ETC.

TO FIND (), JUST COUNT DOWN TO ROW 7 AND OVER TO ENTRY 4

THE FORMULA FOR () 15
ny _ n!
(¢) = Al(n—A)]
WHERE

al = na(n-Dxn-2)x% .. x4

AND 0! 15 TAKEN TO BE 1. FOR INSTANCE,

(3), THE NUMBER OF POSSIBLE WAYS TO
CHOOSE TWO LETTERS FROM A SET OF
FOUR LETTERS, 15

16

(REMEMBERING ALWAYS TO START LOUNTING FROM ZERO).
.

~

WHEN p = 5, THE BINOMIAL'S
PROBABILITY DISTRIBUTION 15
PERFELTLY SYMMETRICAL. FOR
6 COIN FLIPS, FOR INSTANCE, IT'$

£ = #HEADS O 1 2 3 4 5 s
b b L

okt (B @%@ (e @6 (F 6)

WITH THIS

HISTOGRAM:




FOR DL MERE'S ROLL OF FOUR DICE, THE RISTRIBUTION 15 MORE LOPSIDED:

"15/11-% 900/
129b
]90/ 119b 2‘.71 |
A
a2 1 2 3 4

( N
WE NEED OR WIDER
BUT CALCULATING |
THESE THINGS FOR R NEW TooLs. A PAPER...
LARGE VALUES OF 7 ' o /

{

/.—-—\—--"———...‘
WE WON'T BORE
You WITH THE
PERWATION.- -

THE MEAN AND VARIANCE OF THE
BINOMIAL DISTRIBUTION ARE

M = np
ot = np(i-p)

NOTE THAT THE MEAN MAKES
INTUITIVE $ENSE: 1N 7 BERNOULLI
TRIALS, THE EXPECTED NUMBER OF
SULLESSES SHOULD BE np. THE
VARIANCE FOLLOWS FROM THE
FACT THAT THE BINOMIAL 15 THE
UM OF 77 INDEPENDENT BERNOULLI
TRIALS OF VARIANCE p(1-p).

(AN BE A PAIN.. OR AT = T
LEAST, IT WAS BAZK IN ;
THE 18TV LENTURY,
WHEN JAMES
BERNOULL! AND
ABRAHAM DE MOIVRE
WERE TRYING TO PO
IT WITHOUT A

THE PARAMETERS OF THE BINOMIAL DISTRIBUTION ARE 77 AND p. THE
PISTRIBUTION, MEAN, AND VARIANCE DEPEND ONLY ON THESE TWO NUMBERS.
TABLES OF THE BINOMIAL DISTRIBUTION APPEAR IN MOST TEXTBOOKS AND
COMPUTER PROGRAMS. HERE 15 A TABLE FOR n=10.

VALUES OF PriX=£)
k

¢ 1 2 3 4 5 6 7 8 9 10
A 0.349 0.387 0.184 0.057 0.011 0.001 0.000 0.000 0.000 0.000 0.000
.25 0.056 0.188 0.282 0.250 0.146 0.058 0.016 0.003 0.00C C.000 0.000
P .50 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001
.75 0.000 0.000 0.00C 0.003 0.016 0.058 0.146 0.250 0.282 0.188 0.058
.9 0.000 0.000 0.000 0.000 0.000 0.001 0.011 0.057 0.194 0.387 0.349

%

COMPUTER.
.

DEPLOYING A NEWLY
INVENTED WEAPON, THE
CALZULUS, DE MONRE
SHOWED THAN WHEN p =5,
THE BINOMIAL DISTRIBUTION
WAS CLOSELY
APPROXIMATED BY A

¥4 / CONTINUOUS DENSITY
—rﬂﬂmﬂ& FUNCTION WHICH COULD BE

DESCRIBED VERY SIMPLY.
R e
\‘-_--_-

TO SEE HOW THIS WORKS, IMAGINE THE BINOMIAL DISTRIBUTION WITH » = 5
AND 71 VERY LARGE—A MILLION, SAY..

VA

WHAT p

WIDE, LOW
“THING...

i o A g e it e e R T

9



NOW, SAID PEMOIVRE, SLIPE THIS
GRAPH OVER, S0 ITS MEAN 15 ZERC.

ME\\
THE

AS —
ZAM

SQUASH THE CURVE ALONG THE z AKIS
UNTIL THE STANPARD DEVIATION
BELOMES 1, WHILE STRETZHING IT
ALONG THE ¥ MIS TO KEEFP THE AREA
UNDER IT EQUAL TO 1.

("TO SUMMARIZE DE MOIVRE, —— —_

THE RESULT 15 VERY LLOSE TO A SMOOTH, SYMMETRICAL, BELL-SHAPED
CURVE, WHICH DEMOIVRE SHOWED WAS GIVEN BY THE SIMPLE FORMULA:

_ 1
f(Z)"’me

THI% FUNELTION 15 CALLED THE

standard normal
[ ] L 3 [ ]

distribution.

(& 15 A USEFUL MATHEMATICAL

CONSTANT APPROKIMATEL
EQUAL T 2.718.) 1

N

—

——

MAXIMUM AT z = 0.)

THE DISTRIBUTION 15 CALLED THE
STANDARD NORMAL BECAUSE ALL
THAT 5QUASHING AND STRETLHING
WAS SPECIALLY ARRANGED TO 6IVE
IT THESE SIMPLE PROPERTIES,
WHICK WE PRESENT WITHOUT
kP‘ROOF‘-

—
(CONVINCE YOURSELF THAT THIS FUNCTION REALLY WAS A BELL-SHAPED

GRAPH. FOR z FAR FROM ZERO, £(Z) 15 VERY NEARLY ZERO—IT HAS' A BIG
PENOMINATOR; IT’6 SYMMETRIZAL, SINCE #(2) = £(~2), AND IT HAS A

1\

M 0

o

1\

TubT WS ToR
DEMOIVRE,
NoT FoR US-. .

580w N\
WHAT pBouT
e C-C-C-

CALCULLS 7?2

IF YOU “NORMALIZE” THE
BINOMIAL DISTRIBUTION
WITH p = 1/2--1E., CENTER
IT ON ZERO AND MAKE IT5
STANDARD DEVIATION = 1,
THEN IT CLOSELY FITS
THE STANDARD NORMAL
DISTRIBUTION

2

_ 1%
H2) = =€

OTHER NORMALS, WITH DIFFERENT MEANS AND VARIANCES, ARE OBTAINED BY
STRETCHING AND SLIDING THE STANDARD NORMAL. IN GENERAL, WE WRITE THE

FORMULA
THIS GIVES A SYMMETRIC,

j(Zopye  BELL-SWAPED DISTRIBUTON
Az o) = I CENTERED ON THE MEAN
' ozr WITH THE STANDARD

DEVIATION o

HERE ARE TWO DIFFERENT NORMALS WITH THE REGIONS WITHIN THEIR
STANDARD DEVIATIONS SHADED.

£, WITH SMALL o,

£, WITH LARGE o

&1



DE MOIVRE PROVED THAT THE STANDARD NORMAL FITS THE (NORMALIZED)
BINOMIAL WITH p = .5, BUT, IN FACT, IT WORKS FOR ANY YALUE OF p-

GENERALLY: FOR ANY
VALUE OF p, THE
BINOMIAL DISTRIBUTION
OF 7 TRIALS WITH

—"_"‘-.

ALL BANOMIALS
UPN INTO
NORMALS,

PROBABILITY 5
APPROXIMATE{: BY THE EvEHTLALLY
NORMAL CURVE wWITH
A = P AND
o = np(l-p).
/
THIS 15 ACTUALLY A
LITTLE STRANGE. ALL
NORMALS ARE
SYMMETRICAL AND
BELL SHAPED.. BUT, AS
WE AW, BINOMIAL
PISTRIBUTIONS ARE
ll NOT SYMMETRICAL
— WHEN p =5,
I e |
\.
J

BUT IT TURNS OUT THAT AS 7 6ETS LAR
6E, THE BIN '
OVERWHELMED, AS YOU 5EC IN THis Exase, . OMIAL'S ASYMMETRY 15

A N
AL

] | T
-2
- 0 2 0 5 10
nomial: n= 2 andp=0.3 Binomial: n< 20 and p=03
82

IN FACLT, DEMOIVRE'S DISLOVERY ABOUT THE BINOMIAL 15 A SPELIAL CASE OF AN
EVEN MORE GENERAL RESULT, WHICH HELPS EXPLAIN WHY THE NORMAL 15 50O
IMPORTANT AND WIDESPREAD IN NATURE. IT 15 THI%:

“Fuz o e MON DIEL!
Theorem™: ENERYTHING !

DATA THAT ARE
INFLUENCED BY MANY
SMALL AND UNRELATED
RANPOM EFFECTS ARE
APPROKIMATELY NORMALLY
PISTRIBUTED.

THIS EXPLAINS WHY THE NORMAL 15 EVERYWHERE: STOCK MARKET
FLUCTUATIONS, STUPENT WEIGHTS, YEARLY TEMPERATURE AVERAGES, SAT.
SLORES: ALL ARE THE RESULT OF MANY PIFFERENT EFFECTS. FOR EXAMPLE,
A STUDENT'S WEIGHT 16 THE RESULT OF GENETICS, NUTRITION, ILLNESS, AND
LAST NIGHT'S BEER PARTY. WHEN YOU PUT THEM ALL TOGETHER, YOU GET
THE NORMAL! (REMEMBER, THE BINOMIAL 16 THE RESULT OF »1 INDEPENDENT
BERNOULLI TRIALS.)

r—————— N,

82 Bl 0ORG . NEXT TIME N\
¥ you MEN:A Tl—llg ‘.;;l \ | REMIND ME TO 4ToP ¥
15 NOR AL? g . !‘ AFTER 11— 13&59@ b

.&

LS
PR

e, e
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("TUE 2 TRANSFORMATION

TS ANOTHER

Z-p
= — . . SQUISKING
Z e}

d 0 SLIDNG |
CHANGES A NORMAL .,/\ OPERKTION..
RANDOM VARIABLE WITH S
MEAN 1 AND STANDARD por KT o
DEVIATION ¢ INTO A w

STANDARD NORMAL

MEAN 0 AND STANDARD o /\ ﬁ

RANDOM VARIABLE WITH
DEVIATION 1. ot

THE TABLE ALLOWS US TO FIND THE
PROBABILITY OF Z BEING IN ANY INTERVAL
a$z$b IT i5 JUST THE DIFFERENCE
BETWEEN THE AREAS F (b) AND F(a).

20, FOR EXAMPLE,
Pri-1<z<1} = FM-F(-D

B413-.1587

6826

oy

A
~RXE AN
s fn;’:'o?ofO:’:‘r‘:’A.

. Pri(zz2) = 1-F@)
& a o 4

=1-~.9772
' = 0228
v b Pria<z<h) = Fb - F@ /:\vm

/

THEN ALL WE NEEV TO FIND PROBABILITIES FOR ANY NORMAL DISTRIBUTION IS

THE SINGLE TABLE FOR THE STANDARD NORMAL A(zZ).

z 25 -24 23 22 21 20 -19 -8 -1.7 -18
F(z) 0.006 0.008 0.011 0.014 0.018 0.023 0.029 0.036 0.045 0.055
"z 15 -14 13 -12 -1 -10 -08 -08 -0.7 -GB
F(z) 0.067 0.081 0.097 0.115 0.136 0.159 0.184 0.212 0.242 0.274
z 05 -04 -03 -02 -01 00 01 02 03 04

F(z) 0.309 0.345 0.382 0.421 0.460 0500 0.540 0.579 0.618 0.655  (‘\WooF )

z 05 06 07 08 09 10 11 12 13 1.4
F(z) 0.691 0.726 0.758 0.788 0.816 0.841 0.864 0.885 0.903 0.919
z 15 16 17 18 19 20 21 22 23 24 o
F(z) 0.933 0.945 0.955 0.964 0.971 0.977 0.982 0.986 0.98% 0.992 6'/

F(z) 0.994

HERE Fla) = Priz ¢ é), THE AREA UNDER THE PENSITY (URVE TO THE LEFT
OF z=a.

(WE (AN ALSD
&RAPH THE
LURVE

= F(z),
b
CUMULATIVE
FPROBABILITY.
IT LOOKS
LIKE THIS.)

&4

usmezms SUBSTITUTION
z= —03—"5- , WE CAN UsE
THE SAME TABLE TO FIND

PROBABILITIES FOR OTHER
NORMAL PISTRIBUTIONS.

FOR EXAMPLE, SUPPOSE STUPENT WEIGHTS ARE
NORMALLY PISTRIBUTER WITH A MEAN = 150
POUNPS ANP STANPARD DEVIATION o= 20:

THEN WHAT'S THE PROBABILITY OF WEIGHING
MORE THAN 170 POUNDS?

NOW IT'S UUST" ALGEBRA.
Pe(X>170) =
Pef X- \To-\%0\ _
(%4> ~Zo )=

Pr(‘Z)%‘% =

P(Z>1)

THAT'S 1-F (1), WHIZH WE CAN READ FROM THE
TABLE AS 1-.8413 = .15@7

AREA= \GRT

/

50 \70

Fr e

A LITTLE LESS THAN ONE STUDENT IN €IX TiPs
THE SCALES ABOVE 170 POUNDS,

THE GENERAL RULE FOR COMPUTING NORMAL PROBABILITIES 15 THEREFORE:

Pria <X<b) = F(E2) -F(22Y
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s
NOW BACK TO DE MOIVRE

AND HIS BINOMIAL
APPROXIMATION... LET'$
LOOK AT A BINOMIAL
DISTRIBUTION WITH 72 =25
TRIALS AND p=5 (25
COIN FLIPS, SAY). WE ¢AN
COMPUTE (OR LOOK UP IN
A TABLE) ANY PROBABILITY,
FOR EXAMPLE, Pr(x<14).
IT 15 7878 EXACTLY.

..

NOW CALCULATE A NORMAL RANDOM VARIABLE X* WITH THE SAME MEAN
M=Np = (25)(5) =12.5 AND STANDARD DLVIATION ¢ = np(l-p) = 2.5.

= 7257

7878 YERSDS
J2Z577 WHAT KIND
OF APPROXIMATION
12 THAT?

APPROXIMATE

_—
6 8 10 12 14 )
PriX*<14) = Pr(ZaM;;Z'g)
= Pr(Zs<.6)
= 7257
~

UM... AN

AH, BUT WE ¢AN DO BETTER!
IF YOU LOOK CLOSELY AT THE
FIRST HISTOGRAM, YOU SEE
THE BARS ARE £ENTERED ON
THE NUMBERS. THIS MEANS
PreX*s 14) 15 ACTUALLY THE
AREA UNDER THE BARS LESS
THAN x = 14.5. WE NEED TO
ACLOUNT FOR THAT EXTRA .5,
AND IN FACT,

PriX*<145) = Pr(z< @)
= .1881

A VERY 600D APPROXIMATION
TO 7878 INPEED!

\
( THAT LITTLE EXTRA 5 WE -

ASDED 15 CALLED THE U Am

[ ]
confinvity GO To THE
[ ]

correcition. EPGES!

WE HAVE TO INCLUDE IT

TO 6ET A GO0OP

CONTINDOVS

APPROXIMATION TO OUR
PISCRETE BINOMIAL
RANDOM VARIABLE X. IT"S
SUMMARIZED BY THIS ONE O

/ IS
AT

1 z2 3 4
HIDEOUS FORMULA:

o~ a--'i-np<z$ b-l-jz--np
Vr (ﬁéXﬁ b) Plr (_m- WF:F;)

WHEN 5 THIS APPROXIMATION 600D ENOUGH?" FOR STATISTICIANG, THE
RULE OF THUMB 1%: WHENEVER 72 15 BI6 ENOUGH TO MAKE THE NUMBER OF
EXPECTED SUCLESSES AND FAILURES BOTH GREATER THAN FIVE:

np 2 5 and n(l-p) =5

YOU (AN SEE FROM THESE HISTOGRAMS THAT THE FIT WHEN p=o0115
MEPIOCRE OR WORSE UNTIL 77 REACHES 50, MAKING np = 5.

i i




WHAT'S 90 GREAT ABOUT THIS NORMAL APPROXIMATION? THE BINOMIAL

PISTRIBUTION OCCURS COMMONLY IN NATURE, AND IT 1SN'T HARD TO UNPER-
STAND, BUT IT (AN BE TIRESOME TO CALCULATE.

Ve My ~————
= s I THERE'S A NEW ONE
: Q\ 2% FOR EVERY VALUE
OF 11 AND po..
_f_-

N
THE NORMAL WHICH APPROXIMATES IT MAY BE LESS INTUITIVE, BUT IT'S VERY
EASY TO USE. THE Z-TRANSFORM CONVERTS ANY NORMAL TO THE STANDARD
NORMAL, ALLOWING US TO READ PROBABILITIES STRAIGHT OUT OF A SINGLE
NUMERICAL TABLE.
a—————
ﬂn M BOOKN__
OR ON A~
(OMPUTER
SCREEN! =
- L)
3
AND BESIDES, THE NORMAL REALLY 15 THE
THAT'S THE
18U /
MOTHER OF ALL DISTRIBUTIONS Fuzry CENTRAL
LIMIT THEOREM!
Mommy! Mommy!
J

+Chapter 6+
SAMPLING

BY NOW, AFTER A STEADY DIET OF COINS, DICE, AND ABSTRALT
IDEAS, YOU MAY BE WONDERING WHAT ALL THIS STATISTICAL
EQUIPMENT WE'VE BEEN BUILDING HAS TO PO WITH THE REAL
WORLD. WELL, NOW WE'RE FINALLY GOING TO FIND OUT..

IN THI5 CHAPTER, WE BEGIN LOOKING AT THE REAL BUSINESS OF STATISTICS,
WHICH 15, AFTER ALL, TO SAVE PEOPLE TIME AND MONEY. PEOPLE HATE TO
WASTE TIME DOING UNNECESSARY WORK, AND ONE THING STATISTICS CAN PO
19 TELL U5 EXACTLY HOW LAZY WE CAN AFFORD TO BE.
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THE PROBLEM WITH THE WORLD 15 THAT THE COLLELTIONS OF STUFF IN IT
ARE 50 LARGE, IT'S HARD TO GET THE INFORMATION WE WANT:

VOTING POPULATIONS: MANUFALTUREDR 600D%: PICKLES: WHAT'S TUEIR
WHAT PERCENTALE WHAT PROPORTION wWil.l
FAVORS EACH CANDIDATE? BE DEFECTIVE?

o X L2 o
THE PICKLE-IAR MAKERS
NEED TO KMOW!

THE INPUSTRIOUS,
RARD-WORKING,
SIMPLE-MINDED
BEAVERLIKE WAY TO
ANSWER THESE
QUESTIONS wWoULD
BE TO MEASURE
EVERY SINGLE
PICKLE IN THE
WORLD (5AY) AND
PO SOME
ARITHMETIL.

BUT WE AREN'T BEAVERS—WE'RE
STATISTICIANS! WE'RE LOOKING
FOR THE EASY WAY OUT..

OH, WELL., |

| ATE THe
PENCIL,

0

OUR METHOD 15 TO TAKE
A SAMPLE... A
RELATIVELY SMALL
5UBSET OF THE TOTAL
POPULATION, THE WAY
POLLSTERS DO AT
ELECTION TIME.

QUESTION. OME* HOwW
PO You FEEL ABouUT
POLLING?

AN OBVIOUS QUESTION 15: HOW Bl A SAMPLE PO WE HAVE TO TAKE TO G6ET
MEANINGFUL RESULTS? =

( AND THE ANSWER,
WHICH YOU SHOULD
INSCRIBE IN YOUR
BRAIN FOREVERMORE,
WILL TURN OUT TO
BE: IF 72 15 THE
NUMBER OF ITEMS IN
THE SAMPLE, THEN
EVERYTHING 15
GOVERNED BY

!

Vn . <8

GOVF ERNED BY
ﬁ? DIPN'T
EVEN KNOW IT
WAS ON THE
BALLOT!

.




SAMPLING
DESIGN

(_BEFORE POING THE NUMBLRS, WE
SHOULD POINT OUT THAT THE
QUALITY OF THE SAMPLE 1% AS
IMPORTANT AS ITS $IZE. HOW DO
WE ASSURE OURSELVES THAT
WE'RE CHOOSING A
REPRESENTATIVE SAMPLE?

@
® @
e ég?

THUE SELECTION PROCESS
ITSELF 15 (RITICAL. FOR
EXAMPLE, A VOTER SURVEY THAT
SYSTEMATICALLY EXCLUDED BLACK
PEOPLE WOULD BE WORTHLESS,

Q AND THERE ARE A HOST OF
Q OTHER WAYS TO RUIN, OR BIAS, A
L Q A _ SAMPLE.

i

NOT TO PROLONG THE MYSTERY, THE WAY TO GET STATISTICALLY PEPENDABLE
RESULTS 15 TO cHoosE THE savpLe a7 random.

I CAN'T HEAR
You! 15 (T STiLL

92

]
\PLE rRANDOM SAMPLE

SUPPOSE WE HAVE A LARGE
POPULATION OF OBJELTS AND A
PROCEPURE FOR SELECTING n OF
THEM. IF THE PROCEPURE
ENSURES THAT ALL POSSIBLE
SAMPLES OF 1 OBJIECTS ARE
EQUALLY LIKELY, THEN WE CALL

THE PROCEDURE A simpie

random sqmple. Q%

("
THE SI

.

podede

THE SIMPLE RANDOM SAMPLE HAS TWO PROPERTIES THAT MAKE IT THE
STANDARD AGAINST WHICH WE MEASURE ALL OTHER METHORS:

1 ) UNBIASED: EACH UNIT HAS THE SAME
CHANCE OF BEING CHOSEN.

2 INDEPENDENCE: SELECTION OF ONE
UNIT HAS NO INFLUENCE ON THE
\itﬂ SELECTION OF OTHER UNITS.

~
UNFORTUNATELY, IN THE REAL WORLD, CLOMPLETELY UNBIASED, INPEPENDENT )

SAMPLES ARE HARD TO FIND. FOR INSTANCE, SURVEYING VOTERS BY RANDOMLY
PIALING TELEPRONE NUMBERS 15 BIASED: IT IGNORES VOTERS WITHOUT A
TELEPHONE AND OVERSAMPLES PEOPLE WITH MORE THAN ONE NUMBER.

HELLO? PEROT FOR
PRESIDENT HEADQUARTERS!




7

IT'S THEORETICALLY POSSIBLE

el Py

R ( S ified | ST
TO GET A RANDOM SAMPLE 8Y | == tratifie CLES
- = 4 o] e N re— F y )
FRAME: A LIST OF EVERY == y I> EEre Secedy
=3 POPULATION UNITS INTO 2z ] PICLED e 2
UNIT IN THE POPULATION. BY =3 W EE ] PEP PR
== HOMOGENEOUS 6ROUPS { PR e
= (S5TRATA) AND DRAW A e e
GENERATOR, WE CAN PICK n 2E QU] KOSUER Dy g [
ORILLTS AT RANDOM 3, SIMPLE RANDOM SAMPLE [ e o2 2
BJC : 33 FROM EACH GROUP. SREFT e I ST

i i

HAMBURGER

EQUIVALENTLY, WE CAN PUT ALL THE
NAMES ON (ARDS AND PULL 77 OF
THEM OUT OF A PRUM.

FOR EXAMPLE, THE POPULATION OF ALL PicKLES (AN BE STRATIFIED BY
J 3

TYPE OF PICKLE. WITHIN EACH TYPE OR STRATUM, THE $IZE SHOULD BE

LESS :
BUT THIS [$ NOT ALWAYS EASY. MAKING THE FRAME MAY BE PROWIBITIVELY | -E”? VARIABLE

COS5TLY, CONTROVERSIAL, OR EVEN IMPOSSIBLE. FOR EXAMPLE, AN E.PA WATER

QUALITY 5TUDY NEEDED A SAMPLING FRAME OF LAKES IN THE U5, 50 THEN
SOMEBODY WAS TO DELIVE: -

CI“s'er SAMPLING GROUPS THE POPULATION INTO SMALL

| CLUSTERS, PRAWS A SIMPLE RANDOM SAMPLE OF
| CLUSTERS, ANV OBSERVES EVERYTHING IN THE SAMPLED CLUSTERS. THIS AN BE

COST-EFFECTIVE IF TRAVEL CO5TS BETWEEN RANDOMLY SAMPLED UNITS 1% HIGH

WHAT WET 4P0T
15 & LAKER

AN EXAMPLE 15 A (ITY
HOUSING SURVEY WHICH
PIVIDES A CITY INTO
BLOCKS, RANDOMLY
SAMPLES THE BLOCKS,
AND LOOKS AT BVERY

- HOUSING UNIT IN EACH
A= CLUSTER SAMPLED BLOCK.

ARE THERE OTHER WAYS TO $AMPLE THAT ARE MORE EFFICIENT ANV cO5T-
EFFECTIVE THAN A SIMPLE RANDOM SAMPLE? YES—IF YOU ALREADY KNOW
SOMETHING ABOUT THE POPULATION. FOR INSTANCE..

i



SYSI'emallic SAMPLING STARTS WITH A RANDOMLY

CHOSEN UNIT AND THEN SELECTS BVERY £TH
UNIT THEREAFTER. FOR INSTANCE, A HIGHWAY TRAFFIC STUDY MIGHT CHECK
EVERY HUNDREDTH CAR AT A TOLL BOOTH. THIS PLAN 15 EASY TO IMPLEMENT
AND (AN BE