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The fourth edition of Statistics for Engineering and the Sciences is a text for a two-
semester introductory course in statistics for students majoring in engineering or any
of the physical sciences. Inevitably, once these students graduate and are employed,
they will be involved in the analysis of data and will be required to make inferences
from their analyses. Consequently, they need to acquire knowledge of the basic concepts
of statistical inference and familiarity with some of the statistical methods that they
will be required to use in their employment.

Pedagogy

Chapters 1-7 identify the objectives of statistics, explain how we can describe data
sets, and present the basic concepts of probability. Chapters 8 and 9 introduce the two
methods for making inferences about population parameters: estimation and festing
hypotheses. These notions are extended in the remaining chapters to cover other topics
that are useful in analyzing engincering and scientific data, including the analysis
of categorical data (Chapter 10), regression analysis and model building (Chapters
11-13), the analysis of variance for designed experiments (Chapter 14), nonparametric
statistics (Chapter 15), statistical quality control (Chapter 16), and product and system
reliability (Chapter 17).

The assumed mathematical background is a two-semester sequence in calculus—
that is, the course could be taught to students of average mathematical talent and with
a basic understanding of the principles of differential and integral calculus. Presentation
requires the ability to perform one-variable differentiation and integration, but exam-
ples involving topics from multivariable calculus are designated as optional. Thus, the
theoretical concepts are sketched and presented in a one-variable context, but it is
easy for the instructor to delve deeper into the theoretical and mathematical aspects
of statistics using the optional topics, examples, and exercises.

Features
Specific features of the text are the following:

1. Blend of theory and applications. The basic theoretical concepts of mathematical
statistics are integrated with a two-semester presentation of statistical methodology.
Thus, the instructor has the opportunity to present a course with either of two
characteristics—a course stressing basic concepts and applied statistics or a course
that, while still tilted toward application, presents a modest introduction to the
theory underlying statistical inference.

2. Computer applications with instructions on how to use the computer. The
instructor and student have the option of using a computer to perform the statistical
calculations. Printouts from two popular statistical software packages available at

L I I I I A A A I A I A A I R A A )
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most university computing centers, SAS and MINITAB, are fully integrated into
the text. Additionally, we provide the SAS and MINITAB commands required to
generate the printouts in “Computer Lab” sections at the end of most chapters.
These tutorials are designed for the novice user; no prior computer experience is
needed. The instructions on how to use SAS and MINITAB for statistical analysis
of data apply to both large mainframe computers and personal computers (PCs).

3. Broad coverage of topics. To meet the diverse needs of future engineers and
scientists, the text provides coverage of a wide range of data analysis topics. The
material on exploratory data analysis (Chapter 2), regression analysis and model
building (Chapters 11-13), quality control (Chapter 16), and reliability (Chap-
ter 17) sets the text apart from the typical introductory statistics text. The material
often refers to theoretical material covered in earlier chapters, but the presentation
is oriented toward applications.

4. Applied exercises extracted from scientific journals. The text contains a large
number of applied exercises designed to motivate a student and suggest future uses
for the methodology. Most of these exercises require the student to analyze actual
data or interpret experimental results extracted from professional journals in the
engineering and physical sciences.

5. Optional theoretical exercises. Where appropriate, theoretical exercises are pro-
vided to motivate those students who have a stronger desire to understand the
mathematical theory that forms an underpinning for the applications. These exer-
cises are labeled “optional” because they require greater mathematical skill for their
solution.

6. Key concepts highlighted. Definitions, theorems, formulas, steps to follow in
performing a statistical procedure, and wamings (indicating a specific situation
where a student might misuse a statistical technique) are boxed and highlighted to
enable the student to assimilate easily the most important concepts in a chapter.

7. Real data sets. Explanations of basic statistical concepts and methodology are
based on and motivated by the use of real scientific data sets. Four large data sets
are provided in the appendices for use as instructional vehicles:

Appendix ITI.  Length, weight, and DDT measurements for 144 fish of various
species captured from the Tennessee River by the U.S. Army Corps
of Engineers.

Appendix IV.  The central processing unit (CPU) times of 1,000 computer jobs
run by a small statistical consulting firm.

Appendix V.  Percentage iron content for 390 1.5-kilogram specimens of iron
ore selected from a 20,000-ton consignment of Canadian ore.
Appendix VI. Federal Trade Commission rankings of 372 domestic cigarette

brands.

These data sets are also available (in ASCII format) on Aoppy diskette. Consequently,
they can be loaded into computer storage and analyzed with SAS, MINITAB, or
some other statistical software package. For example, the data sets can be used by



the instructor to illustrate the concept of a sampling distribution and the theoretical
interpretation of a “95% confidence interval.”

8. Short answers to exercises provided. To aid the student in working the exercise
sets, short answers (mostly numerical in nature) to all exercises are provided at the
end of the text.

Revisions

Although the scope and coverage remain the same, the fourth edition contains several
substantial changes, additions, and enhancements:

1

More computer printouts. Throughout the text, we have greatly increased the
number of SAS and MINITAB printouts. A printout now accompanies everv sta-
tistical technique presented, allowing the instructor to emphasize interpretations
of the statistical results rather than the calculations required to obtain the results.
Chapter 2: Summary frequency tables. A discussion of how to construct and use

summary frequency tables has been added to the section on describing qualitative
data (Section 2.1).

. Chapter 4: Bernoulli distribution. A new section {Section 4.5) describing Ber-

noulli trials and their importance in binomial experiments is included.

Chapter 5: Descriptive methods for assessing normality. A new section (Section
5.6) on determining whether a data set is approximately normal has been added
to the chapter on continuous probability distributions. In addition to the traditional
graphical methods (histogram, stem-and-leaf display), we present th~ ratio of the
interquartile range to the standard deviation as a check on normality. The emphasis
on these techniques early in the text makes the student aware of the importance
of checking assumptions in later chapters.

Chapter 9: More emphasis on p-values. Throughout the test of hypothesis chap-
ter, we present both the rejection region approach and observed significance level
(p-value) approach to making decisions. Since a computer printout is provided
with nearly each example, it is easy for the instructor to emphasize the p-value
approach to hypothesis testing.

Chapter 13: Comprehensive example on model building. The key ideas and

techniques of the chapter are applied to a practical problem on detecting collusive
bidding in road construction (Section 13.11).

. Chapter 14: Principles of experimental design. Two new sections (Sections 14.4

and 14.5) present an overview of designed experiments and the principles of noise-
reducing and volume-increasing designs.

. Chapter 14: Regression approach to ANOVA. Although we present both the

traditional ANOVA approach and the regression approach to analyzing data from
designed experiments, our emphasis is on the regression approach. For each

design, we give the corresponding regression models and show how to conduct
the ANOVA F tests using the models.



9.

10.

Chapter 16: Total quality management (TQM). A new section on total quality
management (Section 16.1) has been added to the chapter on statistical process
and quality control.

More exercises with real data. Many new “real-life” scientific exercises have
been added throughout the text. All of these are extracted from news articles,
magazines, and professional journals.

Numerous, less obvious changes in details have been made throughout the text in
response to suggestions by current users and reviewers of the text.

Supplements

The text is also accompanied by the following supplementary material:

1.

Student’s solutions manual (by Nancy S. Boudreau). The manual contains the
tull solutions for all the odd-numbered exercises contained in the text. ISBN 0-

02-312718-X.

Instructor’s solutions manual (by Mark Dummeldinger). The manual contains
the full solutions to all the even-numbered exercises contained in the text. ISBN

0-02-380582-X.

. Data sets on diskette. All four large appendix data sets and numerous smaller

data sets (containing 20 or more observations) analyzed in exercises are available

(in ASCII format) on a 3%2" IBM PC diskette. ISBN 0-02-380583-8.

ASP statistical software diskette. New to this edition, the text includes (inside
the back cover) a 3'2” micro disk containing the ASP program, A Statistical Package
for Business, Economics, and the Sciences. ASP, from DMC Software, Inc., is a
user-friendly, totally menu-driven program that contains all of the major statistical
applications covered in the text, plus many more. ASP runs on any IBM-compatible
PC with at least 512K of memory and two disk drives. With ASP, students with
no knowledge of computer programming can create and analyze data sets easily
and quickly. The appendix contains start-up procedures and a short tutorial on the
use of ASP. Full documentation is provided to adopters of the text.

. ASP Tutorial and Student Guide (by George Blackford). Most students have little

trouble learning to use ASP without documentation. Some, however, may want
to purchase the ASP Tutorial and Student Guide. Bookstores can order the tutorial
from DMC Software, Inc., 6169 Pebbleshire Drive, Grand Blanc, MI 48439,
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Statistics: The Science of Data
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According to The Random House College Dictionary, statistics is “the science that
deals with the collection, classification, analysis, and interpretation of numerical facts
or data.” In short, statistics is the science of data.

Definition |.I

Statistics is the science of data. This involves collecting, classifying, summariz-
ing, organizing, analyzing, and interpreting data.

The science of statistics is commonly applied to two types of problems:

1. Summarizing, describing, and exploring data

2. Using sample data to infer the naturc of the data set from which the sample was
selected

As an illustration of the descriptive applications of statistics, consider the United
States census, which involves the collection of a data set that purports to characterize
the socioeconomic characteristics of the approximately 250 million people living in
the United States. Managing this enormous mass of data is a problem for the computer
scientist, and describing the data utilizes the methods of statistics. Similarly, an engineer
uses statistics to describe the data set consisting of the daily emissions of sulfur oxides
of an industrial plant recorded for 365 days last year. The branch of statistics devoted
to these applications is called descriptive statistics.

Definition 1.2

The branch of statistics devoted to the organization, summarization, and descrip-
tion of data sets is called descriptive statistics.

Sometimes the phenomenon of interest is characterized by a data set that is either
physically unobtainable, or too costly or time-consuming to obtain. In such situations,
we sample the data set and use the sample information to infer its nature. To illustrate,
suppose the phenomenon of interest is the waiting time for a data-processing job to
be completed. You might expect the waiting time to depend on such factors as the
size of the job, the computer utilization factor, cte. In fact, if you were to run the
same job over and over again on the computer, the waiting times would vary, even
for the same computer utilization factor. Thus, the phenomenon “waiting time before
job processing” is characterized by a large data set that exists only conceptually (in
our minds). To determine the nature of this data set, we sample it—i.e., we process
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the job a number n of times, record the waiting time for each run, and then use this
sample of n waiting times to infer the nature of the large conceptual data set of interest.
The branch of statistics used to solve this problem is called inferential statistics.

In statistical terminology, the data set that we want to describe, the one that
characterizes a phenomenon of interest to us, is called a population. A sample is a
subset of data selected from a population. Sometimes the words population and sample
are used to represent the objects upon which the measurements are taken. In a
particular situation, the meaning attached to these terms will be clear by the context

in which they are used.

Definition 1.3

A population is a data set that is the target of our interest.

Definition 1.4

A sample is a subset of data selected from a population.

Definition 1.5

................................

The branch of statistics concerned with using sample data to make an inference
about a population is called inferential statistics.

CASE STUDY 1.1 / Contamination of Fish in the Tennessee River
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Chemical and manufacturing plants often discharge
toxic waste materials into nearby rivers and streams.
These toxicants have a detrimental effect on the plant
and animal life inhabiting the river and the river’s bank.
One type of pollutant, commonly known as DDT, is
especially harmful to fish and, indirectly, to people.
The Food and Drug Administration sets the limit for
DDT content in individual fish at 5 parts per million
(ppm). Fish with DDT content exceeding this limit are
considered potentially hazardous to people if con-
sumed. A study was undertaken to examine the DDT

content of fish inhabiting the Tennessee River (in Ala-
bama) and its tributaries.

The Tennessee River flows in a west—east direction
across the northern part of the state of Alabama,
through Wheeler Reservoir, a national wildlife refuge.
Ecologists fear that contaminated fish migrating from
the mouth of the river to the reservoir could endanger
other wildlife that prey on the fish. This concern is
more than academic. A manufacturing plant was once
located along Indian Creek, which enters the Tennessee
River 321 miles upstream from the mouth. Although
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the plant has been inactive for over 10 years, there is
evidence that the plant discharged toxic materials into
the creek, contaminating all the fish in the immediate
area. Have the fish in the Tennessee River and its trib-
utary crecks also been contaminated? And if so, how
far upstream have the contaminated fish migrated? To
answer these and other questions, members of the U.S.
Army Corps of Engineers in the summer of 1980 col-
lected fish specimens at different locations along the
Tennessee River and three tributary creeks: Flint Creek
(which enters the river 309 miles upstream from the
river’s mouth), Limestone Creck (310 miles upstream),
and Spring Creck (282 miles upstream). Each hsh was
first weighed (in grams) and measured (length in cen-
timeters), then the fillet of the fish was extracted and
the DDT concentration (in parts per million) in the
fillet was measured.

Appendix III contains the length, weight, and
DDT measurements for a total of 144 fish specimens. *
Obviously, not all the fish in the Tennessee River and
its tributaries were captured. Consequently, the data are
based on a sample collected from the population of all
fish inhabiting the Tennessee River. Here, the words
population and sample are used to describe the objects

EXERCISES

upon which the measurements are taken, i.e., the fish.
We could also use the terms to represent data sets. For
example, the 144 DDT measurements represent a sam-
ple collected from the population consisting of DDT
measurements for all fish inhabiting the river.

Notice that the data set also contains information
on the location (i.e., where the fish were captured) and
species of the fish. Three species of fish were examined:
channel catfish, largemouth bass, and smallmouth buf-
falo. The different symbols for location are interpreted
as follows. The first two characters represent the river
or creek, and the remaining characters represent the
distance (in miles) from the mouth of the river or creek.
For example, FCMS5 indicates that the fish was captured
in Flint Creek (FC), 5 miles upstream from the mouth
of the creek (M5). Similarly, TRM380 denotes a fish
sample collected from the Tennessee River (TR), 380
miles upstream from the river’s mouth (M380). In sub-
sequent chapters, we will use the data in Appendix III
to compare the DDT contents of fish at different loca-
tions and among the different species, and to determine
the relationship (if any) of length and weight to DDT
content,
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Il Pesticides applied to an extensively grown crop can result in inadvertent ambient air contamination. Envi-
ronmental Science & Technology (Oct. 1993) reported on thion residues of the insecticide chlorpyrifos used
on dormant orchards in the San Joaquin Valley, California. Ambient air specimens were collected daily at
an orchard site during an intensive period of spraying—a total of 13 days—and the thion level (ng/m?®) was

measured each day.

a. ldentify the population of interest to the researchers.

b. Identify the sample.

12 Rescarch engineers with the University of Kentucky Transportation Research Program have collected data
on accidents occurring at intersections in Lexington, Kentucky, over a period of 5 years. One of the goals
of the study was to compare the average number of left-turn accidents at locations with and without left-
turn-only lanes to develop numerical warrants (or guidelines) for the installation of left-turn lanes.

a. What is the population of interest?
b. What is the sample?

c. How can the sample information be used to attain the researchers’ goal?

“Source:  U.S. Army Corps of Engineers, Mobile District, Alabama.
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Electrical engineers recognize that high neutral current in computer power systems is a potential problem.
To determine the extent of the problem, a survey of the computer power system load currents at 146 U.S.
sites was taken (IEEE Transactions on Industry Applications, July/Aug. 1990). The survey revealed that less
than 10% of the sites had high neutral to full-load current ratios.

a. Identify the population of interest.

b. Identify the sample.

c. Use the sample information to make an inference about the population,

Researchers have developed a new precooling method for preparing Florida vegetables for market. The
systern employs an air and water mixture designed to yield effective cooling with a much lower water flow
than conventional hydrocooling. To compare the effectiveness of the two systems, 20 batches of green
tomatoes werc divided into two groups; one group was precooled with the new method, and the other with
the conventional method. The water Aow (in gallons) required to effectively cool each batch was recorded.
a. ldentify the population, the samples, and the type of statistical inference to be made for this problem.
b. How could the sample data be used to compare the cooling effectiveness of the two systems?

Computer tomography (CT) scanners are highly sensitive, visual computer systems designed to aid a phy-
sician’s diagnosis by generating radiographlike images of inner organs and physiological functions. Suppose
you want to estimate the average scan time—that is, the average time required for a CT scanner to project
an image. Describe how you could collect the sample data necessary to make the desired inference. What
is the population of interest?

Checking all manufactured items coming off an assembly line for defectives would be a costly and time-
consuming procedure. One effective and economical method of checking for defectives involves the selection
and examination of a portion of the items by a quality control engineer. The percentage of examined items
that are defective is computed and then used to estimate the percentage of all items manufactured on the
line that are defective. ldentify the population, the sample, and a type of statistical inference to be made
for this problem.

Types of Data
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Data can be one of two types, quantitative or qualitative. Quantitative data are those
that represent the quantity or amount of something, measured on a numerical scale.
For example, the power frequency (measured in megahertz) of a semiconductor is a
quantitative variable, as is the waiting time (measured in seconds) before a computer
job begins processing. In contrast, qualitative (or categorical) data possess no quan-
titative interpretation. They can only be classified. The sct of n occupations corre-
sponding to a group of n engineering graduates is a qualitative data set. A list of the
manufacturers of n minicomputers owned by n small businesses is a set of qualitative
data.”®

*A finer breakdown of data types into nominal, ordinal, interval, and ratio data is possible. Nominal data
are qualitative data with categories that cannot be meaningfully ordered. Ordinal data are also qualitative
data, but a distinet ranking of the groups from high to low exists. Interval and ratio data arc two different
types of quantitative data. For most statistical applications (and all the methods presented in this introductory
text), it is sufficient to classify data as either quantitative or qualitative.
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................................

Quantitative data are those that represent the quantity or amount of something,

Definition 1.7

Qualitative data are those that have no quantitative interpretation, i.e., they
can only be classified into categories.

----- D I R R R A A N A A

EXAMPLE 1.1

Solution

EXERCISES

Refer to the data set in Appendix 1l (see Case Study 1.1). Classify each of the five
variables in the data set (location, species, length, weight, and DDT concentration)
as quantitative or qualitative.

Length (in centimeters), weight (in grams), and DDT concentration (in parts per
million) are all measured on a numerical scale; thus, they represent quantitative data.
In contrast, location and species cannot be measured on a quantitative scale; they can
only be classified (e.g., channel catfish, largemouth bass, and smallmouth buffalo for
species). Consequently, data on location and species are qualitative.

The proper statistical tool used to describe and analyze data will depend on the
type of data. Consequently, it is important to differentiate between quantitative and
qualitative data.

LR R R N N N R

1.7 Refer to the IEEE Transactions on Industry Applications (July/Aug. 1990) survey of computer power system
load currents in Exercise 1.3. In addition to the ratio of neutral current to full-load current, the researchers
also recorded the type of load (line-to-line or line-to-neutral) and the computer system vendor. [dentify the
type of data for each variable recorded.

|8 The Journal of Performance of Constructed Facilities (Feb. 1990) reported on the performance dimensions
of water distribution networks in the Philadelphia area. For one part of the study, the following data were
collected for a sample of water pipe sections. Identify the data as quantitative or qualitative.

Location

oo o

Pipe length (feet)

Pipe diameter (inches)
Pipe material
Age (vear of installation)
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The theory of statistics uses probability to measure the uncertainty associated with
an inference. It enables us to calculate the probabilities of observing specific samples,
under specific assumptions about the population. The statistician then uses these
probabilities to evaluate the uncertainties associated with sample inferences.

Thus, the major contribution of statistics is that it cnables us to make inferences—
estimates of and decisions about population parameters—with a known measure of
uncertainty. It enables us to evaluate the reliability of inferences based on sample data.

Although we will present some useful methads for exploring and describing data
sets (Chapter 2), the major emphasis in this text and in modern statistics is in the area
of infcrential statistics. The flowchart in Figure 1.1 is provided as an outline of the
chapters in this text and as a guide when selecting the statistical method appropriate
for your particular analysis.

Summary
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Statistics—the science of data—is concerned with two types of problems: (1) sum-
marizing and describing data (descriptive statistics), and (2) using sample data to make
inferences about a large sct of data—a population—from which the sample has been
selected (inferential statistics).

The appropriate statistical method for describing and analyzing the data will
depend on whether the data are quantitative or qualitative. These methods allow us
to make inferences about a population and also provide a measure of reliability for
the inference.

Descriptive statistics is the topic of Chapter 2. The remaining chapters are devoted
to inferential statistics.

SUPPLEMENTARY EXERCISES
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1.12

The reliability of a computer system is measured in terms of the lifelength of a specified hardware component
(for example, the disk drive). To estimate the reliability of a particular system, 100 computer components
arc tested until they fail, and their lifclengths are recorded.

a. What is the population of interest?

b. What is the samplc?

c. Arc the data quantitative or qualitative?

d. How could the sample information be used to estimate the reliability of the computer system?

Hundreds of sea turtle hatchlings, instinetively following the bright lights of condominiums, wandered to
their deaths across a coastal highway in Florida (Tampa Tribune, Sept. 16, 1990). This incident led rescarchers
to begin experimenting with special low-pressure sodium lights. One night, 60 turtle hatchlings were released
on a dark beach and their direction of travel noted. The next night, the special lights were installed and
the same 60 hatchlings were released. Finally, on the third night, tar paper was placed over the sodium
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lights. Consequently, the direction of travel was recorded for each hatchling under three experimental
conditions—darkness, sodium lights, and sodium lights covered with tar paper.

a. ldentify the population of interest to the researchers.

b. Identify the sample.

c. What type of data were collected, quantitative or qualitative?

[.I3  Every S years the Mechanics Division of the American Society of Engineering Education (ASEE) conducts
a nationwide survey on undergraduate mechanics education at colleges and universities. In the latest survey,
66 out of the 100 colleges sampled covered fluid statics in their undergraduate engineering program (Engi-
neering Education, April 1986).
a. What is the population of interest to the ASEE? The sample?
b. What type of data, quantitative or qualitative, are collected?
c. Usc the sample information to make an inference about the population.

[.14  State whether cach of the following data sets is quantitative or qualitative.
Arrival times of 16 reflected seismic waves

Types of computer software used in a database management system

Brands of calculator used by 100 engineering students on campus

Ash contents in pieces of coal from three different mines

Mileages attained by 12 automobiles powered by alcohol

Numbers of print characters per line of computer output for 20 line printers
Shift supervisors in charge of computer operations at an airline company
Accident rates at 46 machine shops
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I.I5  The data in the accompanying table were obtained from the Environmental Protection Agency (EPA) 1993
Gas Mileage Guide for new automobiles. State whether each of the variables measured is quantitative or

qualitative.
Engine Number Estimated Estimated
Model Size of City Highway
Name Manufacturer ~ Transmission (liters) Cylinders ~ Miles/Gallon Miles/Gallon
NSX Acura Automatic 3.0 6 18 23
Colt Dodge Manual I35 4 32 40
318i BMW Automatic 1.8 4 22 30
Acrostar Ford Automatic 4.0 6 16 22
Camry Toyota Manual 2.2 4 22 30

Source: 1993 Cas Mileage Cuide, EPA Fuel Economy Estimates, Oct. 1992,

COMPUTER LAB:  Entering and Listing Data

In the Computer Lab sections of this text, we give the commands necessary to conduct a statistical analysis of data
using one of two statistical software packages—SAS or MINITAB. These two packages were selected because of
their current popularity, case of use, and availability at most university computing centers. In addition, both packages
have versions available for large mainframe computers and for personal computers (PCs).

Both software packages utilize the following three basic types of instructions:
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1. Data entry commands: Instructions on how the data will be entered
2. Input data values: The values of the variables in the data set

3, Statistical analysis commands: Instructions on what type of analysis is to be conducted on the data

In this section we give the data entry commands for each package. That is, we give the commands that will
enable you to create a data set ready for analysis. (The appropriate statistical analysis commands are provided in
the relevant sections of the text.) The data set of interest from Appendix 1l consists of location, species, length,
weight, and DDT levels of a sample of five fish. The data are listed in Table 1.1.

Note: With few exceptions, the commands provided in the following sections are appropriate for the large
mainframe and PC versions of both software packages. When a mainframe computer is being used, however,
these statements must be preceded by the job control language (JCL) commands required at your institution.

TABLE 1.1 Five Measurements Selected from Appendix Il

Observation Location Species Length ~ Weight ~ DDT Concentration
1 FCM5 Cathfish o 732 10,00
8 LCM3 Catfish 48.0 1,151 7.70
31 TRM280 Buffalo 49.0 1,763 4.50
43 TRM285 Bass 28.5 778 48
73 TRM300 Buffalo 35.5 1,300 1.30
SAS
Command
line
| DATA FISH3;
2 INPUT LDCATION $ SPECIES $ LENGTH WEIGHT DDT; | Data entry
3 LWRATIO = LENGTH/KWEIGHT instructions
4 CARDS;
5 FCMS  CATFISH 42,5 732 10,00
6 LCM3  CATFISH 48,0 1151 7,70 | |0 00
7 TRM280 BUFFALO 49,0 1763 4.50 {Ipb et -
8 TRM2B5 BASS 28.5 778 0.48 cbservation per fine
9 TRM300 BUFFALD 35.5 1300 1,30
10

PROC PRINTS Print instruction

(OMMAND |  FISH is an arbitrarily chosen name used to identify the data set. (Data set names are restricted to a
maximum length of eight characters.)

(OMMAND2 LOCATION, SPECIES, LENGTH, WEIGHT, and DDT are arbitrarily chosen names for the varia-
bles in the data set. (Variable names are also restricted to a maximum length of eight characters.) A dollar sign
($) must follow the name of any nonnumeric variable in the data set.

(OMMAND 3 LWRATIO (length-to-weight ratio) is calculated by dividing LENGTH by WEIGHT. (The standard
arithmetic operations symbols, +, —, *, and /, are used for addition, subtraction, multiplication, and division,
respectively.)
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(OMMAND4 CARDS signals SAS that the input data values are to follow.

(OMMANDS 5-9  Each data line gives the values of the variables in the data set for a single observation (fish) in the
order in which the variables arce listed in the INPUT command. Input data values must be separated by at least
one blank space; commas are not permitted in numeric values.

COMMAND 10 The PRINT procedure (PROC) will produce a listing of the entire data set (see Figure 1.2). In
addition to the INPUT variables, the data sct will contain any variables created using the standard arithmetic
operations (c.g., LWRATIO) in command line 3.

GENERAL  All SAS commands must end with a semicolon; the only exceptions to this rule are the input data values.

FIGURE 1.2 ’ . . oBS LOCATION SPECIES LENGTH WEIGHT DDT LWRATIO
SAS output: Listing of the data in
Table 1.l 1 fem5 catfish 42.5 732 10.00 0.058060
: 2 lcm3 catfish 48.0 1151 7.70 0.041703
3 trm280 buffalo 49.0 1763 4.50 0.027794
4 trm285 bass 28.5 778 0.48 0.036632
5 trm300 buffalo 35.5 1300 1.30 0.027308
MINITAB
Command
line
| READ C1 C2 C3 C4 CS Data entry instructions
2 1 1 42,5 732 10.00
3 21 48,0 1151 7,70 Input data values
4 3 2 49,0 1763 4,50 (1 observation per line)
5 4 3 28,5 778 0.48B
6 5 2 35.5 1300 1,30
7 DIVIDE £3 BY C4 PUT INTO CB
8 NAME C1 = ‘LOCATION’ CZ = ‘SPECIES’ Data entry instructions
9 NAME C3="LENGTH' C4="WEIGHT' C5='DDT’ CB='LWRATID’
10 PRINT C1-CB Print instruction
11 STOP

COMMAND | The five variables to be read onto the MINITAB “worksheet” are identified by the “columns” into
which they are placed: Cl, C2, C3, C4, and C5. (MINITAB does not, in general, recognize variable names.)
Thus, location will be read in column 1, species in column 2, etc.

(OMMANDS 2-6 Each data line gives the values of the variables read in the worksheet columns for a single obser-
vation (fish). Input data values must be separated by at least one blank space; commas are not permitted. MINI-
TAB also requires all data used in statistical analysis to be numerical. For example, the values of the
nonnumeric variable location are converted to numbers in Cl. (Arbitrarily let 1 represent FCMS5, 2 represent

LCM3, etc.)

(OMMAND7 MINITAB uses the word commands ADD, SUBTRACT, MULTIPLY, and DIVIDE to perform the
usual arithmetic operations on variables. The ratio of length (C3) to weight (C4) is stored in C6.

(OMMANDS 8-9  For labeling printed output, the NAME command can be used to give names to the variables
stored in the worksheet columns. If the NAME command is omitted, the columns will be labeled C1, C2, etc.,
on the MINITAB printouts.
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COMMAND 10 The PRINT command will produce a listing of the data in the MINITAB worksheet for the speci-
fied variables (columns). (See Figure 1.3.)

(OMMAND 1 All MINITAB programs terminate with the STOP command.

GENERAL MINITAB permits you to insert extraneous words within each command to help you follow the logic of
the program. For example, command line 1 could be entered as follows:

READ LOCATION IN C1, SPECIES IN C2:+ LENGTH IN C3: WEIGHT IN Cd4, DDT IN CS

HGURE 1‘3 > ROW Location Species Length Weight DT LWRatio
MINITAB output: Listing of data in
1 1 1 42.5 732 10.00  0.0580601
Table .1 2 2 1 48,0 1151  7.70 0.0417029
3 3 2 49.0 1763  4.50 0.0277935
4 4 3 28.5 778 0.48  0.0366324
5 5 2 35.5 1300 1.30 0.0273077

COMPUTER LAB:  Accessing an External Data File (Optional)
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Data created by other software and saved in an external file as an ASCII data set can also be accessed and
analyzed by SAS and MINITAB. For example, the full data set of Appendix III (DDT measurements and other
data for 144 fish specimens) is saved in an ASCII file called FISH.DAT on a 3.5" micro disk or 5.25" floppy disk
available from the publisher (see the Preface). The program lines shown here give the commands for reading
and listing the data on this external file.

SAS
Command

line

1 DATA FISH;

2 INFILE *‘FISH.DAT i

3 INPUT LOCATION ¢ SPECIES % LENGTH WEIGHT DDT3

4 LWRATIO=LENGTH/WEIGHT

5 PROC PRINT
MINITAB
Command

line

| READ ‘*FISH.DAT' C1-C5

2 DIVIDE C3 C4 C8

3 NAME C1=‘*LOCATION’ CZ2=‘SPECIES’ C3=‘LENGTH’

4 C4="WEIGHT ' C5='DDT’ CGB="LWRATIOD’

5 PRINT C1-CG
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Accelerated life test, 1043
Acceptance number, 1019
Acceptance quality level (AQL), 1019
Acceptance sampling plan, 1018, 1025
Additive rule of probability, 105
mutually exclusive events, 106
Adjusted multiple coefficient of
determination, 631
Alternative hypothesis, 423, 436
Analysis of variance, 790, 810
assumptions, 898
completely randomized design, 813-814
k-way classification, 864
model adequacy (multiple regression),
630
randomized block design, 828-829
sample size, 807
three-stage nested sampling, 881
two-factor factorial experiment, 843844
two-stage nested sampling, 875
Arithmetic mean, 39
Assignable cause, 983-984

Bar graph, 16
Bartlett's test of homogeneity of variance,
900-902
Bayes estimator, 351
Bayes' rule, 117
Bayesian statistical methods, 116
Bernoulli random variable, 157
probability distribution, 158
Bernoulli trial, 157
Beta random variable, 245
density function, 244-245
mean, 246
moment generating function, 251
vanance, 246
Biased estimator, 339-340
Binomial experiment, 159
Binomial random variable
characteristics, 159
mean, 160
probability distribution, 160
variance, 160
Bivariate distribution, 258-259
Bivariate joint probability density function,
265
Blocking, 793, 800
Bonferroni multiple comparisons
" procedure, 895
Box plot, 59

c-chart, 1009
center line, 1009
control limits, 1009
interpreting, 1011
Categorical data, 5
Category
frequency, 16
relative frequency, 16
Censored life test, 1043
Censored sampling, 1043
Center line, 984-985
Central limit theorem, 311
Central tendency, measures of, 39
Chi-square random variable, 237
density function, 237, 322
mean, 237
moment generating function, 251
variance, 237

Class, 26
frequency, 26
intervals, 26

relative frequency, 26
Coding variables, 721-723
Coefhcient of correlation (see Correlation
coefhicient)
Coefhicient of determination (see
Determination, coefficient of )
Combinations rule, 125
Comparisonwise error rate, 891
Complement of an event, 94
Complementary events, 94
relationship, 94
Complete factorial experiment, 803
Complete model, 728
Completely randomized design, 794-795,
813-814
assumptions, 816
F test, 816
formulas, 819-820
model, 816
noise-reducing, 795
nonparametric, 945
Compound events, 91
Computer program
data entry command, 11
input data value, 11
statistical analysis command, 11
statistical software package, 10
Conditional density function, 266
Conditional probability, 98
distribution, 261-262
formula, 99
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Conhdence coefficient, 352
theoretical interpretation, 361
Conhdence interval, 352
censored sampling, 1045
difference in means, large sample, 372
difference in means, matched pairs, 383
difference in means, small sample, 374,
377
difference in proportions, 392
least squares estimates (multiple
regression), 615
linear function (multiple regression), 641
mean, large sample, 364
mean, small sample, 366
mean of y (linear regression), 574
mean of y (multiple regression), 642
multinomial experiment, 497-498
prediction interval for y (linear
regression), 374
proportion, 388
ratio of variances, 402
slope, 556
variance, 396
Conhdence limits, 354
Consumer's risk, 1020
Contingency table, 506
marginal probability, 506
test for independence, 509, 517
Continuity correction factor, 320
Continuous random variables, 204-206
Contour lines, 713
Control charts, 982-983
c-chart, 1009
means, 989
p-chart, 1004
R-chart, 999
runs analysis, 1002
x-chart, 989
Control limits, 984
c-chart, 1009
means, 991
p-chart, 1005
R-chart, 999
x-chart, 991
Correlation coefhicient
definition, 279
Pearson product moment, 561
population, 564
property, 280
Spearman’s rank, 957
Counting rules, 88, 119
summary, 127
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Covariance, 278
Cumulative distribution function, 204
method for finding density functions,
295

Data
categorical, 5
observational, 676
qualitative, 5
quantitative, 5
Decision tree, 119
Degrees of freedom, 237
Density function, 206
bivariate joint, 265
conditional, 266
marginal, 266
properties, 207
Dependent events, 109
Dependent variable, 532, 535
Design of an experiment, 790
completely randomized, 794-795,
813-814
factorial, 810, 803-804
randomized block, 794, 796, B28-829
three-stage nested sampling, 88!
two-stage nested sampling, 875
Determination, coefficient of, 567
adjusted multiple, 631
interpretation of, 569
multiple, 626
Deterministic model, 533
Discrete random variable, 144-145
Distribution-free tests, 921
Dot plot, 25
Double sampling plan, 1024
Dummy variables, 601, 735

Empirical Rule, 45
Error
probability of Type 1, 424
probability of Type II, 425
Estimator
Bayes, 351
biased, 339-340
interval, 338
jackknife, 351
M-estimator, 351
maximum likelihood, 348
mean of exponential distribution, 1044
minimum variance unbiased, 340
moment, 345
point, 338
robust, 351
unbiased, 339-340
Events, 84
complementary, 94
compound, 91
dependent, 109
independent, 109
intersection, 92

Events (continued)
mutually exclusive, 106
probability of, 84, 86
simple, 79
union, 92
Evolutionary operation, 1025
Expectation theorems, 155
Expected value, 151, 211, 271
Experiment, 79
Experimental design, 790, 793
completely randomized, 794-795,
813-814
factorial, 801, 803-804
noise-reducing, 794
randomized block, 794, 796, §28-829
sample size, 807
three-stage nested sampling, 881
two-stage nested sampling, 875
volume-increasing, 801
Experimental unit, 791
Experimentwise error rate, 891
Exponential probability distribution, 213,
237-238
confidence interval for mean, censored
sampling, 1045
density function, 238
estimator of mean, 1044
mean, 238
moment generating function, 250
variance, 238

F distribution, 323, 400
Factor-level combination, 801
Factorial, 122
Factorial design, 801, 803-804

volume-increasing, 803
Factorial experiment, 803

assumnptions, 845

F test, 844-845

formulas, 853-854

fractional, 806

interaction, 844, 850

models, §44-845

notation, 854
Factors, 791
Failure time, 1036

distribution, 1037
First-order model, 600, 704, 712
Fractional factorial experiment, 806
Frequency, relative, 16
Friedman F, test, 952-953

Gamma-type random variable, 236
density function, 235
mean, 236
moment generating function, 250
variance, 236

Geometric probability distribution, 174
mean, 175
variance, 175

Hazard rate, 1039
Histogram, 25-26
Hypergeometric random variable
characteristics, 179
mean, 179
probability distribution, 179
variance, 179

In control, 983-984
Incomplete beta function, 247
Incomplete block design, 800
Incomplete gamma function, 236
Independent events, 108-109
multiplicative rule for, 111
Independent random variable, 273-274
Independent variable (regression), 532-533,
535
levels, 701
Index variable, 601
Individuals control chart, 987
Inferential statistics, 3
Interaction, 713-715, 847
model, 714
Interaction sum of squares, 850
Interquartile range, 59
Intersection of events, 92
Interval estimator, 338
pivotal method, 352

Jackknife, 351, 659
estirnator, 351
Joint probability distribution, 258-259

k-way classihcation of data, 864
Kruskal-Wallis H test, 945-946

Latin cube design, 800
Latin square design, 800
Least squares
equations, 538
estimates, 538-539, 551
line, 537-538
matrix equation, 606
method of, 350, 532, 536
multiple regression, 603
prediction equation, 537
properties of estimators, 547, 612
solution (matrix algebra), 606
sum of squares for error (SSE), 537
Levels, of independent variable, 701, 791
Life test, 1042
accelerated, 1043
censored, 1043
with replacement, 1043
Likelihood, 347
Likelihood ratio test statistic, 430
Line of means, 534
Linear function, 281
confidence interval (multiple regression),
641



Linear function (continued)
expected value, 282
variance, 282

Linear model, 532, 600

Linear relationships, 276

Linear statistical model, 532

Lower confidence limit, 354

Lower control limit (LCL), 985-986

Lower quartile, 53

M-estimator, 351
Main effect sum of squares, 850
Main effect terms, 743, 805
Marginal density function, 266
Marginal probability, 506
distribution, 258, 261
Matched pairs, 382
Matched-pairs design, 382, 937
Matched-pairs experiment, 381
nonparametric, 939
Matrix, 604
Matrix algebra, 1065-1083
Maximum likelihood
estimators, 348
method, 344, 347
Mean (arithmetic), 39
Mean (randomn variable), 151
Mean square for error, 819
Mean square for treatments, 819
Mean squared error, 341
Means, control charts for, 989, 991
center line, 990-991
control limits, 990-991
interpreting, 995
Measurement, 79
Median, 39
test for, 924-925, 941-942
Memoryless distribution, 1040
Method of least squares, 350, 532, 536,
600
Method of maximum likelihood, 344,
347
Method of moments, 344
Midquartile, 53
Military standard sampling plans, 1023,
1025
Minimum variance unbiased estimator,
340
MINITAB computer programs
accessing an external data file, 13
analysis of variance, 917
bar chart, 74
box plot, 74
completely randomized design, 917
confdence intervals for means, 417
contingency table, 528
entering data, [2
histogram, 74
multiple regression, 697
nonparametric tests, 976
random numbers, 333

MINITAB computer programs (continued)
randomized block design, 917
residual analysis, 697
simple linear regression, 596
stem-and-leaf display, 74
stepwise regression, 786
t test, 491
three-way factorial experiment, 917
two-sample ¢ test, independent samples,

492
two-sample ¢ test, paired samples, 492
two-way factorial experiment, 917

Mode, 39

Model
complete, 728
deterministic, 533
first-order, 600, 704, 712
linear, 532, 600
linear statistical, 532
nested, 728
parsimonious, 732
probabilistic, 534
pth-order polynomial, 675, 703
quadratic, 600
qualitative variables, 701
quantitative variables, 701
reduced, 728
regression, 532
second-order, 600, 704, 716
simple linear regression, 534-535
straight-line, 600
third-order, 705
three-stage nested sampling design, 881
two-factor factorial experiment, 844845
two-stage nested sampling design, 876

Model building, 700
one qualitative independent variable,

737

Moment, kth, 192

Moment estimators, 345
moment generating function, 193,

249-251

Monotonically increasing, 205

Mound-shaped distribution, 45

Multicollinearity, 675, 677, 680

Multinomial experiment, 168, 496
confidence intervals, 497-498
probability distribution, 168-169
properties, 168
test of hypothesis, 503

Multiple coefficient of determination, 626
adjusted, 631

Multiple comparisons procedure, 891

Multiple regression analysis, 533, 600
assumptions, 603
confidence interval, least squares

estimates, 615
confidence interval, linear function,
641
confidence interval, mean of y, 642
estimates, 606, 613

Index 179

Multiple regression analysis (continued)
extrapolation, 681
fitting the model, 603
linear models, 600
multicollinearity, 675, 677, 680
parameter estimability, 674
parameter interpretation, 675
prediction interval, 646
test of hypothesis, least squares
estimates, 616
test of model adequacy, 630
Multiplicative model, 651
Multiplicative rule, 120
Multiplicative rule of probability, 107108
independent events, 111
Multivariate probability distribution, 263
Mutually exclusive events, 106, 110

Negative binomial distribution, 174
mean, 174
moment generating function, 196
variance, 174
Nested model, 728
Nested sampling design, 875
three-stage, 881
two-stage, 875
Noise-reducing design, 794
completely randomized, 795
Latin cube, 800
Latin square, 800
randomized block, 796
Nonparametric methods, 920
completely randomized design, 945
independent samples, 929, 934
matched pairs, 939
median, 924-925, 941-942
randomized block design, 952
rank correlation, 960
sign test, 924-925
zero slope, 962
Nonparametric techniques, 921
Normal probability plot, 228, 230-231
Normal (Gaussian) random variable, 221
density function, 221
mean, 221
moment generating function, 250
standard normal, 222
variance, 221
Normality, methods for assessing, 228
Null hypothesis, 423, 436
Numerical descriptive measures, 39

Observation, 79
Observational data, 676

coding procedure, 724
Observed significance level, 445
One-tailed statistical test, 431
One-way table, 496
Operating characteristic curve, 1020



Qutlier, 57, 658
detecting, 61, 658

p-chart, 1004
center line, 1005
control limits, 1005
interpreting, 1007
p-value, 445
calculating, 448
interpreting, 448
Paired observations, 381
Paired-difference experiment, 381
Parallel system, 1054
reliability, 1055
Parameter, 39
Pareto diagram, 18
Parsimonious model, 732
Parsimony, 732
Partitions rule, 124
Pearson product moment correlation
coefficient, 561
Percentile, 53
Permutation, 122
Permutations rule, 122
Pie chart, 16
Pivotal statistic, 353
Point estimate, 338
Point estimator, 338
methods of estimation, 344
properties, 339
Poisson random variable
characteristics, 185
mean, 185
probability distribution, 184-185
variance, 185
Polynomial regression model, 675,
703
Pooled estimate, 374
Pooled estimator of variance, 327
Population, 3
correlation coefficient, 564
moment, 344
Power of statistical test, 427
Prediction equation, 532
Prediction interval (regression)
multiple, 646
simple linear, 574
Primary unit, 875
Probabilistic model, 534
Probability, 78, 82
additive rule, 105
conditional, 98
multiplicative rule, 107-108
simple events, 82
unconditional, 98
Probability density function, 162
Probability distribution, 145, 147
beta, 245-246
binomial, 160
bivariate, 258-259
chi-square, 237

Probability distribution (continued)
conditional, 261-262
discrete, 147
exponential, 213, 237-238
failure time, 1037
gamma-type, 236
geometric, 174
hypergeometric, 179
joint, 258-259
marginal, 258, 261, 506
mean, 151
multinomial, 168-169
multivariate, 263
negative binomial, 174
normal, 221
normal approximation to binomial,

318-320
Poisson, 184-185
standard deviation, 152
uniform, 218
variance, 152
Weibull, 241
Producer’s risk, 1019

Quadratic model, 600
Qualitative data, 5
Qualitative variable, 701
Quality control, 982

c-chart, 1009

means, 989

p-chart, 1004

R-chart, 999

runs analysis, 1002

x-chart, 989
Quantitative data, 5
Quantitative variable, 701
Quartile, 53

R-chart (see Range chart)
Random numbers, 291, 813
Random sample, 290
generating by computer, 332
Random sampling, 291
Random variable, 144
Bernoulli, 157
beta, 245
binomial, 159
chi-square, 237
continuous, 204--206
discrete, 144-145
expected value, 151, 271
exponential, 238
gamma-type, 236
geometric, 174
hypergeometric, 179
independent, 273-274
negative binomial, 174
normal, 221
Poisson, 185
uniform, 217-218
Weibull, 241

Random variation, 983-984
Randomized block design, 794, 796,
828-829
assumptions, 831
F test, 830-831
formulas, 836-837
models, 830-831
nonparametric, 952
Range, 26, 44
Range chart, 999
center line, 999
control limits, 999
interpreting, 1001
Rank correlation coefhcient, Spearman’s,
957
Rank statistics, 922
Rank sum, 929
Rank tests, 922
Rational subgroups, 995
Reduced model, 728
Regression analysis
model, 532
multiple, 600
simple linear, 532
stepwise, 760
Regression line, 537
Rejection region, 423
Relative frequency, 16
distribution, 28
histogram, 25-26
mound-shaped distribution, 45
Relative ranks, 921
Relative standing, measures of, 39
Reliability, 1036
Residual, 648
Residual analysis, 648, 660
Residual frequency plot, 899
Response curve, 712, 755
Response surface, 600, 712
Risk
consumer's, 1020
producer’s, 1019
Robust estimator, 351
Run, 1002
Runs analysis, 1003

Sample, 3
random, 290

Sample moment, 344

Sample multiple coefhicient of

determination, 626

Sample points, 81

Sample size determination, 405
difference between means, 408
difference between proportions, 409
mean, 408
proportion, 408

Sample space, 80

Sampling
with replacement, 178
without replacement, 178



Sampling distribution, 294
estimate of slope, 554
least squares estimators, 612
linear function (regression), 640
mean, 311
simulation, 302
standard deviation, 311
sum of random variables, 315
Sampling errors (linear regression)
estimate of mean, 574
prediction, 574
Sampling plan
acceptance, 1018, 1025
double, 1024
military standard, 1023, 1025
sequential, 1024
SAS computer programs
accessing an external data file, 13
analysis of variance, 915
bar chart, 71
box plot, 71
completely randomized design, 915
contingency table, 527
entering data, 11
histogram, 71
multiple regression, 696
nonparametric tests, 974
random numbers, 333
randomized block design, 915
residual analysis, 696
simple linear regression, 594
stem-and-leaf display, 71
stepwise regression, 786
t test, 489
three-way factorial experiment, 916
two-sample ¢ test, independent samples,
490
two-sample t test, paired samples, 490
two-way factorial experiment, 916
Scale parameter, 235, 241
Scattergram, 533
Second-order model, 600, 704, 716
Sequential sampling plan, 1024
Series system, 1054
reliability, 1055
Shape parameter, 235
Shewhart control limits, 982
Sign test, 922
large sample, 925
population median, 924-925
Signed ranks, 937, 939, 941-942
Significance level, 445
Simple event, 79
probability of, §2-83
Simple linear regression, 532, 586
assumptions, 533
confidence interval, mean of y, 574
confidence interval, slope, 556
model, 534-535
prediction interval, 574
test of model wtility, 555

Index
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Skewness, 42
Spearman'’s rank correlation coefficient,
957

Specification limits, 1017
Standard deviation, 44

of probability distribution, 152
Standard error, 294
Standard normal random variable, 222
Statistic, 39
Statistical process control (SPC), 982
Statistical software package, 10
Statistical test of hypothesis (see Test of

hypotheses)

Statistics

descriptive, 2

inferential, 3
Stem-and-leaf display, 28-29
Stepwise regression analysis, 760
Straight-line model, 600
Student's ¢ distribution, 322
Subsampling, 875
Sum of squares for error (SSE), 537, 811
Sum of squares for treatment (SST), 811

t distribution, 322
Tchebysheff’s theorem, 46
Test of hypotheses, 422
alternative hypothesis, 423, 436
B parameters equal 0, 729
Bartlett’s test of homogeneity of
variance, 900-902
completely randomized design, 816
difference between two means, large
sample, 450
difference between two means, matched
pairs, 459-460
difference between two means, small
sample, 452, 455
difference between two proportions, large
sample, 469
elements, 423
factorial, 844-845
Friedman F,, 952-953
Kruskal-Wiallis H, 946
linear correlation, 564
location, 922
mean, large sample, 438
mean, small sample, 441
median, 924-925, 941-942
model adequacy (multiple regression),
630
model building, 729
model utility (linear regression), 555
multinomial experiment, 503
multiple regression, 616
nested model, 729
null hypothesis, 423, 436
one-tailed, 431
proportion, 465
randomized block design, 830-831
rank correlation, 960

Test of hypotheses (continued)
ratio of two variances, 477
rejection region, 423
simple linear regression, 555
test statistic, 423
three-stage nested design, 883
two-factor factorial design, 844-845
two-stage nested design, 878
two-tailed, 431
variance, 473
Wilcoxon rank sum, 929, 934
Wilcoxon signed ranks, 939, 941-942
zero slope, 962
Test for location, 922
Test statistic, 423
Theil C test, 960
Theory of runs, 1002
Third-order model, 705
Three-stage nested sampling design, 881
F test, 883
formulas, 883-884
notation, 882-883
probabilistic model, 881
Time series data, 659
Tolerance interval, 1014
nonparametric, 1016
normal population, 1015
Tolerance limits, 1014
Total quality management (TQM), 982
Treatment, 791-792
Tukey’s method, 891
Tukey's multiple comparisons procedure
equal sample sizes, 892
unequal sample sizes, 894
Two-factor factorial experiment, 843
assumptions, 845
F test, 844-845
formulas, 853-854
interaction, 844, 850
models, 844-845
notation, 854
Two-stage nested sampling design, 875
F test, 878
formulas, 8§79
notation, 8§78
probabilistic model, 876
Two-tailed statistical test, 431
Two-way table, 506
Type | error, 424
Type Il error, 425
calculating probability of, 435

Unbiased estimator, 339-340

Unconditional probability, 98
distribution, 261

Uniform random variable, 217-218
density function, 218
mean, 218
moment generating function, 250
variance, 218

Union of events, 92



Upper confidence limit, 354
Upper control limit (UCL), 985-986
Upper quartile, 53

Variable
coded, 721-723
dependent, 532, 535
dummy, 601, 735
independent, 532-533, 535
index, 601
levels, 701
qualitative, 701
quantitative, 701

Variance, 44
of probability distribution, 152
Variance-stabilizing transformations, 652,
902
Variation
assignable cause, 983-984
measures of, 39
random variation, 983-984
Venn diagram, 81
Volume-increasing design, 801
factorial design, 803

Weibull random variable, 241
density function, 241
mean, 241
moment generating function, 250
parameter estimation, 1048
variance, 241

Wilcoxon rank sum test, 928-929
large samples, 934

Wilcoxon signed ranks test, 937, 939,

041-942

x-chart (see Means, control charts for)

z-score, 53, 55
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Minitab printout for Exercise 247

248

Chapter 2 / Descriptive Statistics

The accompanying table gives the number of scrams at each of 56 U.S. nuclear reactor units in a recent
year. A MINITAB printout showing both a graphical and numerical description of the data is provided.

L R

Wk O

WO =]

Number of Scrams

1 4 2 10 6 S5 2 0 3 1 5
12 o0 3 8 2 0 9 3 3 4 7
302 7 13 4 2 3 3 7 0 9
2 7 & 5 2 4 3 4 0 1 7
Stem-and-leaf of SCRAMS = 56
Leaf Unit = 0.10
6 0 000000
10 1 0000
19 2 000000000
(10) 3 0000000000
27 4 00000000
19 5 00000
14 60
13 7 000000
7 8 00
5 9 00
3 10 0
2 11
2 12 0
1 13 0
———————— I + I *
+ + + + : + SCRAMS
0.0 2.5 5.0 7.9 10.0 12.5
N  MEAN MEDIAN TRMEAN  STDEV  SEMEAN
SCRAMS 56 4.036 3.000 3.820 3.027 0,404
MIN MAX Q1 Q3
SCRAMS 0.000 13.000 2.000 5.750

a. Fully interpret the results.

b. Would you expect to observe a nuclear reactor in the future with 11 unplanned scrams? Explain.

Industrial engineers periodically conduct “work measurement” analyses to determine the time required to
produce a single unit of output. At a large processing plant, the number of total worker-hours required per
day to perform a certain task was recorded for 50 days. The data are shown here.
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117 122

142
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Supplementary Exercises 65

Compute the mean, median, and mode of the data set.

. Find the range, variance, and standard deviation of the data set.

c. Construct the intervals y = 5, ¥ = 25, and y = 3s. Count the number of observations that fall within
each interval and find the corresponding proportions. Compare the results to the Empirical Rule. Do
you detect any outliers?

d. Construct a box plot for the data. Do you detect any outliers?

e. Find the 70th percentile for the data on total daily worker-hours. Interpret its value.

m

A marketing research study of consulting engineering services to industrial firms in the Midwest was recently
conducted. The main goal of the study was to gather information that will enable consulting engineers to
effectively market their services to industrial firms. Of the 70 firms surveyed, 40 indicated that they have
no need for outside consulting engineering services. The accompanying table gives the primary reasons cited
by the “nonneeders” and corresponding breakdown in percentages for both the large and small industrial
firms in the survey.

Reason Large Firms  Small Firms
Assistance obtained from corporate headquarters 62% 30%
No wastes, therefore, no need to improve 0 32
No improvements planned 0 24
Assistance obtained from staff engineers 19 6
Unfamiliar with consulting 10 2
Waiting for regulations 9 0
Other reasons 0 6
TOTALS 100% 100%

Source: Carey, R. J., and Brunner, ]. A. “A study of marketing of consulting engineering services to industrial firms.”
Journal of the Boston Society of Civil Engineers Section, American Society of Civil Engineers, Vol. 71, Nos. | and
2, 1985, p. 152.

a. Construct a pie chart that describes the reasons cited for not needing consulting engineering services at
large industrial firms.

b. Repeat part a for small industrial firms.

c. Compare the two pie charts in parts a and b. Do you detect major differences in the reasons cited by
large and small firms?

The nuclear mishap on Three Mile Island near Harrisburg, Pennsylvania, on March 28, 1979, forced many
local residents to evacuate their homes—some temporarily, others permanently. To assess the impact of the
accident on the area population, a questionnaire was designed and mailed to a sample of 150 households
within 2 weeks after the accident occurred. Two questions asked of the sampled residents were: (1) When
did you learn about the accident? and (2) How did you learn about the accident? The responses to the two
questions are illustrated in the frequency distributions shown at the top of page 66. Based on these graphical
descriptions, find each of the following:

a. The percentage of the 150 respondents who learned about the accident on Wednesday afternoon

. The percentage of the 150 respondents who learned about the accident on Friday

. The percentage of the 150 respondents who learned about the accident from a radio report

. The percentage of the 150 respondents who learned about the accident from television

a0 o
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Sampling Distributions

Objective
To present methods for finding the probability distri-
bution (sampling distribution) of a statistic; to identify
the sampling distributions for some useful statistics
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290 Chapter 7/ Sampling Distributions

1.1 Random Sampling
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Recall from Chapter 1 that statistical inference involves sampling from a well-defined
population. How a sample is selected from a population is of vital importance because
the probability of an observed sample will be used to infer the characteristics of the
sampled population.

To illustrate, suppose you deal yourself 4 cards from a deck of 52 cards and all
4 cards are aces. Do you conclude that your deck is an ordinary bridge deck, containing
only 4 aces, or do you conclude that the deck is stacked with more than 4 aces? It
depends on how the cards were drawn. If the 4 aces are always placed at the top of a
standard bridge deck, drawing 4 aces is not unusual—it is certain. On the other hand,
if the cards are thoroughly mixed, drawing 4 aces in a sample of 4 cards is highly
improbable. The point, of course, is that in order to use the observed sample of
4 cards to draw inferences about the population (the deck of 52 cards), you need to
know how the sample was selected from the deck.

One of the simplest and most frequently employed sampling procedures produces
what is known as a random sample.

Definition 7.1

--------------------------------

If n elements are selected from a population in such a way that every set of n
elements in the population has an equal probability of being selected, the n
elements are said to be a random sample. *

L N I R I I R A A I A D R S N I )

EXAMPLE 7.1 An experiment was conducted in which each of 10 different antiscalants was added
to an aliquot of brine. One of the 10 brine solutions is to be selected, filtered, and
the amount of silica determined. How would you select the brine solution so that the
choice is random?

Solution If the choice is to be random, each brine solution must have the same probability of
being drawn. That is, each solution should have a probability of 75 of being selected.
A method to achieve the objective of equal selection probabilities is to thoroughly mix
the 10 brine solutions and blindly pick one of the solutions. If this procedure were

“Strictly speaking, this is a simple random sample. There are many different types of random samples. For
example, a stratified random sample is obtained by partitioning the population into groups (strata) and
selecting a random sample of elements from each group; a cluster sample involves randomly selecting
groups (or clusters) of elements from the population and sampling all elements in each cluster; and 2
systematic sample is collected by systematically selecting every kth element from the population. Since it
is the most common, we focus our discussion on the random sample.




EXAMPLE 7.2

Solution

1.1/ Random Sampling 291

repeatedly used, each time replacing the selected solution, a particular solution should
be chosen approximately 15 of the time in a long serics of draws. This method of
sampling is known as random sampling.

R R R R N I )

How can a random sample be generated? If a population is not too large and the
elements can be numbered on slips of paper, poker chips, etc., you can physically
mix the slips of paper or chips and remove n elements from the total. The numbers
that appear on the chips selected would indicate the population elements to be included
in the sample. Such a procedure will not guarantec a random sample, because it is
often difficult to achieve a thorough mix, but it provides a reasonably good approxi-
mation to random sampling.

Another, more formal, technique is to use a table of random numbers. Random
number tables are generated by computer in such a way that every number of the
same length (2-digit, 3-digit, 4-digit, etc.), occurs with equal probability. Further, the
occurrence of any one number in the table is independent of any of the other numbers
in the table. Consequently, the numbers that are selected from a random number
table identify the elements to be included in the random sample.

Although this method of random sampling is casy to implement, it can become
time-consuming and tedious if the number of observations in the sample is large.
Therefore, large-sample scientific studies rely on computers (with built-in random
number generators) to automatically select the random sample.

Suppose you want to randomly sample 5 (we will keep the number in the sample
small to simplify our example) from a shipment of 100,000 bolts for quality control
testing.

a. Use a random number table to select this random sample.

b. Use the computer to generate the random sample.

a. Since there are 100,000 bolts in the shipment (target population), we first number
the bolts from 1 to 100,000. Then, we turn to a table of random numbers (see
Table 6, Appendix I1), and select a page, say, the first page. (A partial reproduction
of the first page of Table 6 is shown in Table 7.1 on page 292.) Now, randomly
select a starting number, say, the random number appearing in the third row,
second column. This number is 48360. Proceed down the second column to obtain
the remaining four random numbers. (Proceeding down or across is an arbitrary
choice.) The five selected random numbers are shaded in Table 7.1. Using the
first five digits to represent the bolts from 1 to 99,999 and the number 00000 to
represent bolt 100,000, you can see that the bolts numbered

48,360 93,093 39,975 6,907 72,905

should be included in your sample.
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FIGURE 7.1 »
§AS-generated random sample for
Example 7.2

TABLE 7.1  Partial Reproduction of Table 6 of Appendix Il

Column
Row | 1 3 4 5 b
| 10480 15011 01536 02011 81647 91646
] 22368 46573 25595 85393 30995 89198
3 24130 48360 22527 97265 76393 64809
4 42167 93093 06243 61680 07856 16376
5 37570 39975 81837 16656 06121 91782
6 77921 06907 11008 42751 27756 53498
1 99562 72905 56420 69994 98872 31016
8 96301 91977 05463 07972 18876 20922
9 89579 14342 63661 10281 17453 18103
10 85475 36857 53342 53988 53060 59533
I 28918 69578 88231 33276 70997 79936
11 63553 40961 48235 03427 49626 69445
13 (9429 93969 52636 92737 88974 33488
14 10365 61129 87529 85689 48237 52267
15 07119 97336 71048 08178 77233 13916

L

b. Almost all of the commercial statistical software packages available (e.g., SAS and
MINITAB) have procedures for generating random samples. The output from a
SAS program designed to generate a sample of size 5 from a population of 100,000
elements is displayed in Figure 7.1.* From the printout, you can see that bolts

numbered

6,181 35,982

OBS SELECT

6181
35982
76110
58667
59592

v WM

76,110

comprise the random sample of size 5.

58,667

59,592

L N N

Although random sampling represents one of the simplest of the multitude of
sampling techniques available for research, most of the statistical methods presented

*The commands for generating a random sample in SAS and MINITAB are provided in the Computer

Lab at the end of this chapter.
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in this text assume that such a sample has been collected. If a researcher knows that
a sample is nonrandom, any inferences derived from the analysis may be invalid.

EXERCISES
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1

12

13

14

15

16

Refer to the DDT levels for 144 contaminated fish specimens, Appendix Ill. Use Table 6 of Appendix Il
or a computer to generate a random sample of n = 10 DDT levels from the data set.

Refer to the CPU times for 1,000 computer jobs, Appendix V. Use Table 6 of Appendix II or a computer
to generate a random sample of n = 25 CPU times from the data set.

Refer to the percentage iron contents for 390 iron-ore specimens, Appendix V. Use Table 6 of Appendix II
or a computer to generate a random sample of n = 5 percentage iron measurements from the data set.

Laboratory tests were conducted to compare the permeability of open-graded asphalt concrete with asphalt
contents of 3% and 7% ( Journal of Testing and Evaluation, July 1981). Eight batches of cement were
prepared—four with a 3% asphalt mix and four with a 7% asphalt mix. Use Table 6 of Appendix I to
randomly select the four batches that receive the 3% asphalt mix.

One of the most infamous examples of improper sampling was conducted in 1936 by the Literary Digest
to determine the winner of the Landon—Roosevelt presidential election. The poll, which predicted Landon
to be the winner, was conducted by sending ballots to a random sample of persons selected from among
the names listed in the telephone directories of that year. In the actual election, Landon won in Maine
and Vermont but lost in the remaining 46 states. The Literary Digest’s erroneous forecast is believed to be
the major reason for its eventual failure.

What was the cause of the Digest’s erroneous forecast? That is, why might the sampling procedure
described above yield a sample of people whose opinions might be biased in favor of Landon?

Every 10 years the United States population census provides essential information about our nation and its

people. The basic constitutional purpose of the census is to apportion the membership of the House of

Representatives among the states. However, the census has many other important uses. For example, private

business uses the census for plant location and marketing.

The 1990 census included questions on age, sex, race, marital status, family relationship, and income;
this census was mailed to every household in the United States. [n some cities, however, a series of questions
was added for a 5% sample of the city’s households. That is, each of a random sample of the city’s households
was mailed a census form that included additional questions. Suppose that a particular city contzined
100,000 households and, of these, 5,000 were selected and mailed the longer census form.

a. If you worked for the Bureau of the Census and were assigned the task of selecting a random samgle of
5,000 of the city’s households, describe how you would proceed.

b. Suppose that one of the additional questions on the long form of the census concerned energy con-
sumption. The city used this sample information to project the average energy consumption for the city’s
100,000 households. Explain why it is important that the sample of 5,000 households be random.

¢. Using the procedure you described in part a, randomly select a sample of 10 households from the 100,000
households in the city.
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1.2 Sampling Distributions
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Recall (Chapter 6) that the n measurements in a sample can be viewed as observations
on n random variables, yi, y2, . . . , y,. Consequently, the sample mean y, the sample
variance s2, and other statistics are functions of random variables—functions that we
will use in the following chapters to make inferences about population parameters.
Thus, a primary reason for presenting the theory of probability and probability distri-
butions in the preceding chapters was to enable us to find and evaluate the properties
of the probability distribution of a statistic. This probability distribution is often called
the sampling distribution of the statistic. As is the case for a single random variable,
its mean is the expected value of the statistic. Its standard deviation is called the
standard error of the statistic.

Definition 7.2 |
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The sampling distribution of a statistic is its probability distribution. !

The standard error of a statistic is the standard deviation of its sampling
distribution.

The mathematical techniques for inding the sampling distribution of a statistic
are difficult to apply and, except for very simple examples, are beyond the scope of
this text. We will introduce this topic in Section 7.3, where we will develop a procedure
for using a computer to generate random samples from theoretical populations of data.
We will use this simulated sampling procedure to draw many samples of a specified
size, calculate the value of a statistic for each sample, and form a relative frequency
histogram of these values. The resulting relative frequency histogram will be an approx-
imation to the sampling distribution of the statistic.

Even if we are unable to find the exact mathematical form of the probability
distribution of a statistic and are unable to approximate it using simulation, we can
always find its mean and variance using the methods of Chapters 4—6. Then we can
obtain an approximate description of the sampling distribution by applying the Empir-
ical Rule.
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13 Probability Distributions of Functions of
Random Variables (Optional)
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There are essentially three methods for finding the density function for a function of
one or more random variables. Two of these—the moment gencrating function method
and the transformation method—are beyond the scope of this text, but a discussion
of them can be found in the references at the end of the chapter. The third method,
which we will call the cumulative distribution function method, will be demonstrated
with examples.

Suppose w is a function of one or more random variables. The cumulative
distribution function method finds the density function for w by first finding the
probability P(w = wy), which (dropping the subscript 0) is equal to F(w). The density
function f(w) is then found by differentiating F(w) with respect to w. We will dem-
onstrate the method in Examples 7.3 and 7.4.

D I I I I A R R I I I R AR R )

EXAMPLE 7.3 Suppose the random variable y has a density function

e_}'/be f 0 = =
S — = oo
fly) = ( g ")
0 elsewhere
and let w(y) = y2. Find the density function for the random variable w.

Solution A graph of w = y? is shown in Figure 7.2 on page 296. We will denote the cumula-
tive distribution functions of w and y as G(w) and F(y), respectively. We note
from the figure that w will be less than wy whenever y is less than yg; it follows that
P(w = wo) = G(wg) = F(yo). Since w = y?, we have yo = Vwp and

Q Vi, Vi go/8 v _—
o) = EVi) = [ foldy = [ 50 dy = =] =1 = oo

—co W] 0
Therefore, the cumulative distribution function for w is
Gw) =1 — e VWb
Differentiating, we obtain the density function for w:

dG(w) _ w2 VeI
dw = W)= 28
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EXAMPLE 7.4 If the random variables x and y possess a uniform joint density function over the unit
square, then f(x, y) = I for0 = x = 1 and 0 = y = 1. Find the density function for
the sum w = x + y.

Solution Each value of w corresponds to a series of points on the line wy = x + y (see Figure
7.3). Written in the slope—intercept form, y = wy — «x, this is the equation of a line
with slope equal to —1 and y-intercept equal to wy. The values of w that are less
than or cqual to wy are those corresponding to points (x, y) below the line wy =
x + y. (This arca is shaded in Figure 7.3.) Then, for values of the y-intercept wy,
0 = wy = 1, the probability that w is less than or equal to wq is equal to the volume
of a solid over the shaded area shown in the figure. We could find this probability by
multiple integration, but it is easier to obtain it with the aid of geometry. Each of the
two equal sides of the triangle has length wy. Therefore, the area of the shaded
triangular region is w3/2, the height of the solid over the region is f(x, y) = 1, and
the volume is

P(w =< wo) = F(wg) = wi/2
We now drop the subscript to obtain
Fiw)=w¥2 (0=w=1)
FIGURE 7.3 »

A graph showing the region of i |
integration to find F(wy), ’ 1




FIGURE 7.4 »

A graph showing the region of
integration to find F(wp),
Il=w=1
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The equation for F(w) is different over the interval 1 = w = 2. The probability
P(w = wg) = F(wyp) is the integral of f(x, y) = 1 over the shaded area shown in Figure
7.4. The integral can be found by subtracting from 1 the volume corrcsponding to
the small triangular (nonshaded) area that lies above the line wy = x + y. To find
the length of one side of this triangle, we need to locate the point where the line
wo = x + y intersects the line y = 1. Substituting y = | into the equation of the
line, we find

wo=x+1 or x=wy—1

Wo=X+Yy

The point (wg — 1, 1) is shown in Figure 7.4. The two equal sides of the triangle
each have length € = 1 — (wy — 1) = 2 — wy. The area of the triangle lying above
the line wg = x + y is then

Area = %(Basc){Height)

(2 — wp)?

2
Since the height of the solid constructed over the triangle is f(x, y) = 1, the probability
that w lies above the line wg = x + y is (2 — wp)?/2. Subtracting this probability
from 1, we find the probability that w lies below the line to be
(2 — wp)?
2

= 32 = w2 = w) =

F(wo) = Plw = wp) = 1 -

We drop the subscript and simplify to obtain
Fw)=-1+2w—w2 (l=w=2)
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The density function for the sum of the two random variables x and y is now obtained
by differentiating F(w):
_ dF(w) _ d(w?/2) _
flw) = dw  dw "
_dF(w) _ d(=1 + 2w — w?/2)
fw) = dw dw

O=w=1l

=2-w (l=w=2)

Graphs of the cumulative distribution function and the density function for w =
x + y are shown in Figures 7.5a and 7.5b, respectively. Note that the area under the
density function over the interval 0 = w = 2 is equal to 1.

FIGURE 7.5 » F(w) fow)
Graphs of the cumulative o ok
distribution function and density '
function for w = x +y

A e St

L 1w - W
0 | 2 0 1 2
a. Cumulative distribution function b. Density function
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One of the most useful functions of a single continuous random variable is the
cumulative distribution function itself. We will show that if y is a continuous random
variable with density function f(y) and cumulative distribution function F(y), then
w = F(y) has a uniform probability distribution over the interval 0 = w = 1. Using
a computer program for generating random numbers, we can generate a random
sample of w values. For each value of w, we can solve for the corresponding value of
y using the equation w = F(y) and, thereby, obtain a random sample of y values from
a population modeled by the density function f(y). We will present this important
transformation as a theorem, prove it, and then demonstrate its use with an example.
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Theorem 7.1

Let y be a continuous random variable with density function f(y) and cumulative
distribution F{y). Then the density function of w = F(y) will be a uniform
distribution defined over the interval 0 = w < 1, i.e.,

fw=1 0=w=1l)
k-,

PROOF OF THEOREM 7.1  Figure 7.6 shows the graph of w = F(y) for a continuous random
variable y. You can see from the figure that there is a one-to-one correspondence
between y values and w values, and that values of y corresponding to values of w in
the interval 0 = w = w; will be those in the interval 0 = y = y;. Therefore,

Plw = wp) = P(y = yo) = F(yo)
But since w = F(y), we have F(yy) = wy. Therefore, we can write
P(w = wp) = F(yo) = wo

The cumulative distribution function for w is obtained by dropping the subscript:

Flw) = w
HGURE 7.6 » Y
(umulative distribution function 1o w=Fy)
fiy
Wy fmm——————————
I
I
i
|
|
|
|
|
|
|
! 3
0 Yo
Finally, we differentiate over the range 0 = w =< 1 to obtain the density function:
fw) == ==1
EXAMPLE 7.5 Use Theorem 7.1 to generate a random sample of n = 3 observations from an
exponential distribution with g = 2.
Solution The density function for the exponential distribution with 8 = 2 is
—y/2
32 if0=y<oo
fly) =

0 elsewhere
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and the cumulative distribution function is

y Y g=t/2 ¥
Flp)= f f(tdt = f 5—dt = —e—'ﬁ] =1 = g2
e 6 L

If we let w = F(y) = 1 — ¢77/2, then Theorem 7.1 tells us that w has a uniform
density function over the interval 0 = w = 1.

To draw a random number y from the exponential distribution, we first randomly
draw a value of w from the uniform distribution. This can be done by drawing a
random number from Table 6 of Appendix Il or using a computer. Suppose, for
example, that we draw the random number 10480. This corresponds to the random
selection of the value w; = .10480 from a uniform distribution over the interval
0 = w = 1. Substituting this value of w) into the formula for w = F(y) and solving
for y, we obtain

wp=Fy) =1-en

10480 = 1 — en/2
e /2= 8952
b S
3 11
o 222

If the next two random numbers selected are 22368 and 24130, then the corresponding
values of the uniform random variable are w; = .22368 and w3 = .24130. By sub-
stituting these values into the formula w = 1 — ¢7%/2 you can verify that y, = .506
and y3 = .552. Thus, y, = .222, y; = .506, and y; = .552 represent three randomly
selected observations on an exponential random variable with mean equal to 2.

R N N NN

11 Consider the density function

_J2y fo=sy=1
f(y)_{() elsewhere

Find the density function of w, where:
aw=y" b w=2y-1 cw=l/y

18  Consider the density function

[0y ify>3
fo) = {0 elsewhere

Find the density function of w, where:
a. w=e? b.w=y-3 c. w=y/3
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The amount y of paper used per day by a line printer at a university computing center has an exponential
distribution with mean cqual to five boxes (i.e., B = 5). The daily cost of the paper is proportional to
¢ = (3y + 2). Find the probability density function of the daily cost of paper used by the line printer.

An environmental engineer has determined that the amount y (in parts per million) of pollutant per water
sample collected near the discharge tubes of an island power plant has probability density function

1 .
— f0<y<]10
fiy) =110
0 elsewhere
A new cleaning device has been developed to help reduce the amount of pollution discharged into the
ocean. It is believed that the amount a of pollutant discharged when the device is operating will be related
to y by

if0<y<5

ifS<y<l0

Find the probability density function of a.

Rescarchers at the University of California (Berkeley) have developed a switched-capacitor circuit for gen-
crating pseudorandom signals (International Journal of Circuit Theory and Applications, May/June, 1990).
The intensity of the signal (voltage), y, is modeled using the Rayleigh probability distribution with mean u.
This continuous distribution has density function:

) = Lexp 71w (y > 0)

Find the density function of the random variable w = y%. Can you name the distribution?

Use Theorem 7.1 to draw a random sample of n = 5 observations from a distribution with probability
density function

= By

elsewhere

Use Theorem 7.1 to draw a random sample of n = 5 observations from a beta distribution with @ = 2 and

B=1

OPTIONAL EXERCISE

114

The total time x (in minutes) from the time a computer job is submitted until its run is completed and the
time y the job waits in the job queue before being run have the joint density function

_Jer if0=sy=sx<e®
flx, y) = {0 elsewhere

The CPU time for the job (i.e., the length of time the job is in control of the computer’s central processing
unit) is given by the difference w = x — y. Find the density function of a job’s CPU time. [Hint: You
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may use the facts that

Plw = wg) = Plw = wg, x > wg) + Plw = wp, x = wy)

20

=Px—wy=y=x,w<x<®)+P0=y=x 0=x=w)

= Jw“ J;_wn e *dy dx + LJ; e " dy dx

and f ye ¥ dy = —ye ¥ + J e dy in determining the density function.]

14 Approximating a Sampling Distribution by Simulation

L R R NN

EXAMPLE 7.6

We explained in Section 7.2 that a statistic w is a function of the n sample measure-
ments, y1, ¥2, - . - , ¥a, and we have shown in Optional Section 7.3 how we can
use probability theory and mathematics to find its sampling distribution. However,
the mathematical problem of finding f(w) is often very difficult to solve. When such
a situation occurs, we may be able to find an approximation to f(w) by computer
simulation.

To illustrate the procedure, we will approximate the sampling distribution for the
sum w = y; + y; of a sample of n = 2 observations from a uniform distribution over
the interval 0 = y = 1. Recall that we found an exact expression for this sampling
distribution in Example 7.4. Thus, we will be able to compare our simulated sampling
distribution with the exact form of the sampling distribution shown in Figure 7.5b.

To begin the simulation procedure, we used the computer to generate 10,000
pairs of random numbers, with each pair representing a sample (y;, y;) from the
uniform distribution over the interval 0 = y = 1. We then programmed the computer
to calculate the sum w =y, + y; for each of the 10,000 pairs. A computer-generated
relative frequency histogram for the 10,000 values of w is shown in Figure 7.7. By
comparing Figures 7.5b and 7.7, you can see that the simulated sampling distribution
provides a good approximation to the true probability distribution of the sum of a
sample of n = 2 observations from a uniform distribution.

Simulate the sampling distribution of the sample mean

- _ntyztyst+ys+ys
7 5

for a sample of n = 5 observations drawn from the uniform probability distribution
shown in Figure 7.8 on page 304. Note that the uniform distribution has mean u =
.5. Repeat the procedure for n = 15, 25, 50, and 100. Interpret the results.
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FIGURE 7.7 »

Simulated sampling distribution for
the sum of two observations from
a uniform (0, 1) distribution
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We first obtained 1,000 computer-generated random samples of size n = 5 from the
uniform probability distribution, over the interval (0, 1), and programmed the com-
puter (using SAS) to compute the mean

—_ Yt yrtyztyatoys
y= 5

for each sample. The horizontal relative frequency histogram for the 1,000 values of
y obtained from the uniform distribution is shown in Figure 7.9a on page 304. Note
its shape for this small value of n.

The relative frequency histograms of ¥ based on samples of size n = 15, 25, 50,
and 100, also simulated by computer, are shown in Figures 7.9b—e, respectively. Note
that the-values of ¥ tend to cluster about the mean of the uniform distribution,
m=.5. Furthermore, as n increases, there is less variation in the sampling distribution,
You can also see from the figures that as the sample size inereases, the shape of the
sampling distribution of y tends toward the shape of the normal distribution (symmetric
and mound-shaped).
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FIGURE 7.12 » e.n= 100
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In Section 7.5, we generalize the results of Examples 7.6 and 7.7 in the form of
a theorem.

EXERCISE

ssssssenans LR R RN

OPTIONAL EXERCISE

1.IS  Use the computer to simulate the sampling distribution of s?, the variance of a sample of n = 100 observations
from a
a. Uniform distribution on the interval (0, 1)
b. Normal distribution, with mean 0 and variance ]
c. Exponential distribution with mean 1

1.5  The Sampling Distributions of Means and Sums

sssssssssanen SessssssEsReasbREsERAsEREREREBRS LR RN

The simulation of the sampling distribution of the sample mean based on independent
random samples from uniform, normal, and exponential distributions in Examples
7.6 and 7.7 illustrates the ideas embodied in one of the most important theorems in
statistics. The following version of the theorem applies to the sampling distribution of
the sample mean, y.
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Ifa random sample of n observations, yy, y2, . . . , ¥n, is drawn from a population
with finite mean w and variance o2, then, when n is sufficiently large, the
sampling distribution of the sample mean y can be approximated by a normal
density function.

The sampling distribution of y, in addition to being approximately normal for
large n, has other known characteristics, which are given in Definition 7.4.

Definition 7.4

Let y1, 2, . . ., yu be a random sample of n observations from a population
with finite mean p and finite standard deviation o. Then, the mean and standard
deviation of the sampling distribution of ¥, denoted p; and oy, respectively,
are:

us=p  oy=a/Vn

The significance of the central limit theorem and Definition 7.4 is that we can
use the normal distribution to approximate the sampling distribution of the sample
mean y as long as the population possesses a finite mean and variance, and the number
n of measurements in the sample is sufficiently large. How large the sample size must
be will depend on the nature of the sampled population. You can see from our simulated
experiments in Examples 7.6 and 7.7 that the sampling distribution of y tends to
become very nearly normal for sample sizes as small as n = 25 for the uniform,
normal, and exponential population distributions. When the population distribution
is symmetric about its mean, the sampling distribution of y will be mound-shaped
and nearly normal for sample sizes as small as n = 15. In addition, if the sampled
population possesses a normal distribution, then the sampling distribution of ¥ will be
a normal density function, regardless of the sample size. (This may be seen in Figure
7.11.) In fact, it can be shown that the sampling distribution of any linear function
of normally distributed random variables, even those that are correlated and have
different means and variances, is a normal distribution. This important result is pre-
sented (without proof) in Theorem 7.3 and illustrated in an example.
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Theorem 7.3

Letay, az, . . ., a,beconstants and let yy, y3, . . ., ¥, be n normally distributed
random variables with E(y;) = i, Viy) = a? and Cov(yi, yj) = o
(i=1,2, ..., n). Then the sampling distribution of a linear combination of

the normal random variables
C=ayy +azy2 + -+ anyn

possesses a normal density function with mean and variance®
E€) = p = ayu + aapa + - - - + appin

and

V(¢) = afoi + ajos + - - - + afor; .
+ 2a1a301; + 2aja3013 + + ¢+ + 2a18,01n
+ 2axa3023 + * ¢+ + 2a,0,02,
+ e begr idnon g

I R R R R R R I I

EXAMPLE 7.8 Suppose you select independent random samples from two normal populations, ny
observations from population 1 and n; observations from population 2. If the means
and variances for populations 1 and 2 are (w;, o) and (w2, &3), respectively, and if
y1 and y; are the corresponding sample means, find the distribution of the difference
(Y1 = y2).

Solution Since ¥ and 7, are both linear functions of normally distributed random variables,
they will be normally distributed by Theorem 7.3. The means and variances of the
sample means (see Example 6.13) are

o - ol .
E(y) = and V(z)=— (=12
Then, € =y, — ¥ is a linear function of two normally distributed random variables,

¥y and y. According to Theorem 7.3, € will be normally distributed with

E(€) = pe = E(3) — E(72) = w1 — 12
V€)= ot = (1)2V(y) + (=1)2V(52) + 2(1)(=1)Cov(¥,, ¥2)

But, since the samples were independently selected, y; and ¥, are independent and
Cov(yy, y2) = 0. Therefore,

2 Z
o a
Vie) = = + =4
ny na
*The formulas for the mean and variance of 2 linear function of any random variables, yi, y2, . . ., Va,

were given in Theorem 6.7,
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We have shown that (5, — y,) is a normally distributed random variable with mean
(w1 — w2) and variance (o}/n; + o3/n3).

R A N I A A “ee

Typical applications of the central limit theorem, however, involve samples
selected from nonnormal or unknown populations, as illustrated in Examples 7.9
and 7.10.

R I I I I R R I I R R R I R I A A A AR )

EXAMPLE 7.9 Engineers responsible for the design and maintenance of aircraft pavements tradition-
ally use pavement-quality concrete. A study was conducted at Luton Airport (United
Kingdom) to assess the suitability of concrete blocks as a surface for aircraft pavements
(Proceedings of the Institute of Civil Engineers, Apr. 1986). The original pavement-
quality concrete of the western end of the runway was overlaid with 80-mm-thick
concrete blocks. A series of plate-bearing tests was carried out to determine the load
classification number (LCN)—a measure of breaking strength—of the surface. Let ¥
represent the mean LCN of a sample of 25 concrete block sections on the western
end of the runway.

a. Prior to resurfacing, the mean LCN of the original pavement-quality concrete of
the western end of the runway was known to be w = 60, and the standard deviation
was ¢ = 10. If the mean strength of the new concrete block surface is no different
from that of the original surface, describe the sampling distribution of y.

b. If the mean strength of the new concrete block surface is no different from that
of the original surface, find the probability that y, the sample mean LCN of the
25 concrete block sections, exceeds 65.

c. The plate-bearing tests on the new concrete block surface resulted in y = 73. Based
on this result, what can you infer about the true mean LCN of the new surface?

Solution a. Although we have no information about the shape of the relative frequency dis-
tribution of the breaking strengths (LCNs) for sections of the new surface, we can
apply Theorem 7.2 to conclude that the sampling distribution of y, the mean LCN
of the sample, is approximately normally distributed. In addition, if w = 60 and
o = 10, the mean, wjy, and the standard deviation, oy, of the sampling distribution
are given by

py = p =60

and

a

o5 == -£=2
" Vn VIS
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b. We want to calculate P(y > 65). Since y has an approximate normal distribution,
we have

PG > 65) —P( “">65““’9)

Oy T3

= P(z o B ; 60) = Pz > 2.5)

where z is a standard normal random variable. Using Table 4 of Appendix 11, we
obtain

P(z > 2.5) = .5 — .4938 = .0062
Therefore, P(y > 65) = .0062.

c. If there is no difference between the true mean strengths of the new and original
surfaces (i.e., u = 60 for both surfaces), the probability that we would obtain a
sample mean LCN for concrete block of 65 or greater is only .0062. Observing
y = 73 provides strong evidence that the true mean breaking strength of the new
surface exceeds p = 60. Our reasoning stems from the rare event philosophy of
Chapter 3, which states that such a large sample mean (y = 73) is very unlikely
to occur if w = 60.

LR R R R R A I ]

EXAHPI.E 1.10 Consider a binomial experiment with n Bernoulli trials and probability of success p
on each trial. The number y of successes divided by the number n of trials is called
the sample proportion of successes and is denoted by the symbol p = y/n. Explain
why the random variable

b—o
pq

n

z=

has approximately a standard normal distribution for large values of n.

Solution If we denote the outcome of the ith Bernoulli trial as y; (i = 1, 2, . . ., n), where

ok | if outcome is a success
Vi 0 if outcome is a failure

then the number y of successes in n trials is equal to the sum of n independent
Bernoulli random variables:

i
2y
i=1

Therefore, p = y/n is a sample mean and, according to Theorem 7.2, p will be
approximately normally distributed when the sample size n is large. To find the
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expected value and variance of p, we can view p as a linear function of a singlc random
variable y:

P

] ]
p=£’=a|y1=(g)y wherea.=;andy1=y
We now apply Theorem 6.7 to obtain E(€) and V(€):

E(p) = ~E() = ~(np) = p

vip) = (1) Vi) = i = &2

n

Therefore,
L _b=»
g
n

is equal to the deviation between a normally distributed random variable p and its
mean p, expressed in units of its standard deviation, V'pg/n. This satishes the definition
of a standard normal random variable given in Section 5.5.

The central limit theorem also applies to the sum of a sample of n measurements

subject to the conditions stated in Theorem 7.2. The only difference is that the

approximating normal distribution will have mean nu and variance no?.

The Sampling Distribution of a Sum of Random Variables

If a random sample of n observations, y, y2, . . . , ¥n, is drawn from a population
with finite mean p and variance o?, then, when n is sufficiently large, the
sampling distribution of the sum

can be approximated by a normal density function with mean py, = nu and

oy, = no’.

In Section 7.6, we apply the central limit theorem for sums to show that the
normal density function can be used to approximate the binomial probability distri-
bution when the number n of trials is large.
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1.16

1.17

1.18

119

Let y;5 represent the mean of a random sample of size n = 25 from a probability distribution with unknown
density f(y), mean pw = 17, and standard deviation o = 10. Similarly, let y,09 represent the mean of a
random sample of size n = 100 selected from the same probability distribution.

a. Describe the sampling distributions of y;5 and y00.

b. Which of the probabilities, P(15 < y»5 < 19) or P(15 < y190 < 19), would you expect to be larger?
c. Calculate approximations to the two probabilities of part b.

The National Institute for Occupational Safety and Health (NIOSH) recently completed a study to evaluate
the level of exposure of workers to the chemical dioxin, 2,3,7,8-TCDD. The distribution of TCDD levels
in parts per trillion (ppt) of production workers at a Newark, New Jersey, chemical plant had a mean of
293 ppt and a standard deviation of 847 ppt (Chemosphere, Vol. 20, 1990). A graph of the distribution is
shown here.

20

Relative frequency

[ 1 [ |
0 500 1,000 1,500 2,000
TCCD level (ppt)

In a random sample of n = 50 workers selected at the New Jersey plant, let y represent the sample mean
TCDD level.

a. Find the mean and standard deviation of the sampling distribution of .

b. Draw a sketch of the sampling distribution of y. Locate the mean on the graph.

c. Find the probability that y exceeds 550 ppt.

Studies by neuroscientists at the Massachusetts [nstitute of Technology (MIT) reveal that melatonin, which

is secreted by the pineal gland in the brain, functions naturally as a sleep-inducing hormone (Tampa Tribune,

Mar. 1, 1994). Male volunteers were given various doses of melatonin or placebos and then placed in a

dark room at midday and told to close their eyes and fall asleep on demand. Of interest to the MIT researchers

is the time y (in minutes) required for each volunteer to fall asleep. With the placebo (i.e., no hormone),
the researchers found that the mean time to fall asleep was 15 minutes. Assume that with the placebo

treatment w = 15 and o = 5.

a. Consider a random sample of n = 20 men who are given the sleep-inducing hormone, melatonin. Let y
represent the mean time to fall asleep for this sample. If the hormone is not effective in inducing sleep,
describe the sampling distribution of y.

b. Refer to part a. Find P(y = 6).

c. In the actual study, the mcan time to fall asleep for the 20 volunteers was y = 5. Use this result to make
an inference about the true value of p for those taking the melatonin.

Cost estimation is the term used to describe the process by which engineers estimate the cost of work contracts
(e.g., road construction, building construction) that are to be awarded to the lowest bidder. The engineers’
estimate is the baseline against which the low (winning) bid is compared. A recent study investigated the
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factors that affect the accuracy of engincers’ estimates (Cost Engineering, Oct. 1988), where accuracy is

measured as the percentage difference between the low bid and the engineers’ estimate. One of the most

important factors is number of bidders—the more bidders on the contract, the more likely the engineers

are to overestimate the cost. For building contracts with five bidders, the mean percentage error was —7.02

and the standard deviation was 24.66. Consider a sample of 50 building contracts, each with 5 bidders.

a. Describe the sampling distribution of ¥, the mean percentage difference between the low bid and the
engincers’ estimate, for the 50 contracts.

b. Find P(y < 0). (This is the probability of an overestimate. )

c. Suppose you observe y = —17.83 for a sample of 50 building contracts. Based on the information given,
are all these contracts likely to have five bidders? Explain.

Many species of terrestrial frogs that hibernate at or near the ground surface can survive prolonged exposure
to low winter temperatures. In freezing conditions, the frog's body temperature, called its supercooling
temperature, remains relatively higher because of an accumulation of glycerol in its body fluids. Studies have
shown that the supercooling temperature of terrestrial frogs frozen at —6°C has a relative frequency distri-
bution with a mean of —2.18°C and a standard deviation of . 32°C (Science, May 1983). Consider the mean
supercooling temperature, ¥, of a random sample of n = 42 terrestrial frogs frozen at —6°C.

a. Find the probability that y exceeds —2.05°C.

b. Find the probability that y falls between —2.20°C and —2.10°C.

General trace organic monitoring describes the process in which water engineers analyze water samples for
various types of organic material (e.g., contaminants). One such contaminant, commonly found in trcated
surface water, is the pesticide trihalomethane (THM). General trace organic monitoring at the Bedford
(England) water treatment works revealed a mean THM level of 51 ug/l and a standard deviation of 14 ug/l
(Journal of the Institution of Water Engineers and Scientists, Feb. 1986). Assume that these figures represent
the population mean w and standard deviation o, respectively. Suppose we collect 45 water samples (called
water “profiles”) at the Bedford plant and measure the THM level in each.

a. Describe the sampling distribution of y, the mean THM level of the 45 water profiles.

b. Find the probability that y exceeds 52 ug/l.

c. Find the probability that y falls between 49.5 and 50.5 ug/l.

The U.S. Army Engineering and Housing Support Center recently sponsored a study of the reliability,
availability, and maintainability (RAM) characteristics of small diesel and gas-powered systems at commer-
cial and military facilities (IEEE Transactions on Industry Applications, July/Aug. 1990). The study revealed
that the time, y, to perform corrective maintenance on continuous diesel auxiliary systermns has an approximate
exponential distribution with an estimated mean of 1,700 hours.

a. Assuming p = 1,700, find the probability that the mean time to perform corrective maintenance for a

sample of 70 continuous diesel auxiliary systems exceeds 2,500 hours.
b. If you observe y > 2,500, what inference would you make about the value of w?

An article in Industrial Engineering (Aug. 1990) discussed the importance of modeling machine downtime
correctly in simulation studies. As an illustration, the researcher considered a single-machine-tool system
with repair times (in minutes) that can be modeled by a gamma distribution with parameters @ = 1 and
B = 60. Of interest is the mean repair time, y, of a sample of 100 machine breakdowns.

a. Find E(y) and Var(y).

b. What probability distribution provides the best model of the sampling distribution of y? Why?

¢. Calculate the probability that the mean repair time, , is no longer than 30 minutes.
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124 A large freight elevator can transport a maximum of 10,000 pounds (5 tons). Suppose a load of cargo
containing 45 boxes must be transported via the elevator. Experience has shown that the weight y of a box
of this type of cargo follows a probability distribution with mean p = 200 pounds and standard deviation
o = 55 pounds. What is the probability that all 45 boxes can be loaded onto the freight elevator and
transported simultaneously? [Hint: Find P(Z}2; y; = 10,000).]

OPTIONAL EXERCISES

125 Let p, be the sample proportion of successes in a binomial experiment with n, trials and let p; be the sample
proportion of successes in a binomial experiment with n; trials, conducted independently of the first. Let
p1 and p; be the correspt)nding population parameters. Show that

_b - (p1 — p2)

im;‘l b292
mny nz

has approximately a standard normal distribution for large values of ny and n;.

126 1f y has a x? distribution with n degrees of freedom (see Section 5.7), then y could be represented by
y = =%, x;, where the x;'s are independent x? distributions, each with 1 degree of freedom.
a. Show that z = (y — n)/V/2n has approximately a standard normal distribution for large values of n.
b. If y has a y? distribution with 30 degrecs of freedom, find the approximate probability that y falls within
2 standard deviations of its mean, i.c., find P(u — 20 <y < u + 20).

1.6 Normal Approximation to the Binomial Distribution

R R N N N N N N N N N NN

Consider the binomial random variable y with parameters n and p. Recall that y has
mean p = np and variance o> = npq. We showed in Example 7.10 that the number
y of successes in n trials can be regarded as a sum consisting of n values of 0 and 1,
with cach 0 and 1 representing the outcome (failure or success, respectively) of a
particular trial, i.e.,

c 1 if success
y=2y  wherey; = {0 i Bibise
Then, according to the central limit theorem for sums, the binomial probability
distribution p(y) should become more nearly normal as n becomes larger. The normal
approximation to a binomial probability distribution is reasonably good even for small
samples—say, n as small as 10—when p = .5 and the distribution of y is therefore
symmetric about its mean w = np. When p is near 0 (or. 1), the binomial probability
distribution will tend to be skewed to the right (or left), but this skewness will disappear
as n becomes large. In general, the approximation will be good when n is large enough
so that w — 20 = np — 2\/@4' and w + 20 = np + 2Vnpq both lie between 0
and n. It can be shown (proof omitted) that for both & = 20-and u + 20 to fall
between 0 and n, both np and ng must be greater than or equal to 4.
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Condition Required to Apply a Normal Approximation to a

Binomial Probability Distribution

The approximation will be good if both w — 20 = np — 2Vnpg and
u + 20 = np + 2Vnpq lie between 0 and n. This condition will be satished
if both np = 4 and ng = 4.

DR R IR R R I I S B DR Y

EXAMPLE 7.11 Let y be a binomial probability distribution with n = 10 and p = .5.
a. Graph p(y) and superimpose on the graph a normal distribution with & = np and

o= \Vnpq.
b. Use Table 1 of Appendix Il to find P(y = 4).

¢. Use the normal approximation to the binomial probability distribution to find an
approximation to P(y = 4).

Solution a. The graphs of p(y) and a normal distribution with
p=np=(10)(.5) =5
and
o= Vapg = VI0)(5)(.5) = 1.58

are shown in Figure 7.13. Note that both np = 5 and ng = 5 both exceed 4.
Thus, the normal density function with w = 5 and o = 1.58 provides a good
approximation to p(y).

FIGURE 7.13 » p(y)

A binomial probability distribution AN\

(p=10,p = 5) and the \

approximating normal distribution

| p=mp=S5ad o= / \

Vipg = 158) | / N

LI_EK% 1 1 1 1 | ﬁ:s 1 y
0 1+ 2 3 445 6 7 8 9 10 °
4.5

b. From Table 1 of Appendix I, we obtain
-i
2 ply) = 377
)r'=n

c¢. By examining Figure 7.13, you can see that P(y = 4) is the area under the normal
curve to the left of y = 4.5. Note that the area to the left of y = 4 would not be
appropriate because it would omit half the probability rectangle corresponding to
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y = 4. We need to add .5 to 4 before calculating the probability to correct for the
fact that we are using a continuous probability distribution to approximate a discrete
probability distribution. The value .5 is called the continuity correction factor for
the normal approximation to the binomial probability (see the box). The z value
corresponding to the corrected value y = 4.5 is
_y—,u=4.5—5: _‘S=_"
T o 158 158~ %

The area between z = 0 and z = .32, given in Table 4 of Appendix Il, is A =
.1255. Therefore,

Ply=4)=.5—-A=.5- 1255 = .3745

Thus, the normal approximation to P(y = 4) = .377 is quite good, although n is
as small as 10. The sample size would have to be larger to apply the approximation
if p were not equal to .5.

Continuity Correction for the Normal Approximation to a Binomial Probability

--------------------------------

Let y be a binomial random variable with parameters n and p, and let z be a
standard random variable. Then

= ls w)
= P(“< a7

: s {a-.5)—np)
P(y = a) P(z> NG

o b o RS = A {b+.3)—np)
Pa=y=b =P e s

EXERCISES
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121

128

Let y be a binomial random variable with n = 15 and p = .3.

a. Use Table | of Appendix Il to find P(y = 8§).
b. Use the normal approximation to the binomial probability distribution to find an approximation to

P(y = 8). Compare to your answer in part a.
Consumer Reports (Feb. 1992) found widespread contamination of seafood in New York and Chicago
supermarkets. For example, 40% of the swordfsh pieces available for sale have a level of mercury above
the Food and Drug Administration (FDA) limit. Consider a random sample of 20 swordfish pieces from
New York and Chicago supermarkets.
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a. Use the normal approximation to the binomial to calculate the probability that less than 2 of the
20 swordfish pieces have mercury levels exceeding the FDA limit.

b. Use the normal approximation to the binomial to calculate the probability that more than half of the
20 swordfish pieces have mercury levels exceeding the FDA limit.

¢. Usce the binomial tables to calculate the exact probabilities in parts a and b. Does the normal distribution
provide a good approximation to the binomial distribution?

The merging process from an acceleration lane to the through lane of a freeway constitutes an important

aspect of traffic operation at interchanges. A study of parallel interchange ramps in Israel revealed that many

drivers do not use the entire length of parallel lanes for acceleration, but seek as soon as possible an appropriate

gap in the major stream of traffic for merging (Transportation Engineering, Nov. 1985). At one site (Yavneh),

54% of the drivers use less than half the lane length available before merging. Suppose we plan to monitor

the merging patterns of a random sample of 330 drivers at the Yavneh site.

a. What is the approximate probability that fewer than 100 of the drivers will use less than half the
acceleration lane length before merging?

b. What is the approximate probability that 200 or more of the drivers will use less than half the acceleration
lane length before merging?

Occupational Outlook Quarterly (Spring 1993) reported that 1% of all drywall installers emploved in the
construction industry are women.

a. Approximate the probability that more than 100 of a random sample of 500 drywall installers arc women.
b. Approximate the probability that five or fewer of a random sample of 500 drywall installers are women.

One of the keys to developing successful information systems is to implement structured design and pro-
gramming techniques. Computer-aided software engineering (CASE) technology provides several automated
tools (e.g., data flow diagrams) that can facilitate structured techniques. The Journal of Systems Management
(July 1989) reported that 60% of information systems (IS) professionals make extensive use of data flow
diagrams in their work. In a sample of 150 IS professionals, what is the approximate probability that at least
half make extensive use of data flow diagrams?

Quality control is a problem with items that are mass produced. The production process must be monitored
to ensure that the rate of defective items is kept at an acceptably low level. One method of dealing with
this problem is lot acceptance sampling, in which a random sample of items produced is selected and each
item in the sample is carefully tested. The entire lot of items is then accepted or rejected, based on the
number of defectives observed in the sample. Suppose a manufacturer of pocket calculators randomly chooses
200 stamped circuits from a day’s production and determines y, the number of defective circuits in the
sample. If a sample defective rate of 6% or less is considered acceptable and, unknown to the manufacturer,
8% of the entire day’s production of circuits is defective, find the approximate probability that the lot of
stamped circuits will be rejected.

How well does a college engineering degree prepare you for the workplace? A 2-year nationwide survey of
engineers and engineering managers in “specific high-demand” industries revealed that only 34% believe
that their companies make good use of their learned skills (Chemical Engineering, Feb. 3, 1986). In a
random sample of 50 engineers and engineering managers, consider the number y who believe that their
employer makes good use of their college engineering background. Find the approximate probability that:

a.y=10 b.y=25 ¢ 20=y=30
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1.1 Sampling Distributions Related to the Normal Distribution

In this section, we present the sampling distributions of several well-known statistics
that are based on random samples of observations from a normal population. These
statistics are the x2, t, and F statistics. In Chapter 8, we show how to use these statistics
to estimate the values of certain population parameters. The following results are stated
without proof. Proofs using the methodology of Chapter 6 can be found in the ref-
erences at the end of this chapter.

Theorem 7.4
If a random sample of n observations, y), y2, . . ., ¥n, is selected from a normal
distribution with mean w and variance o?, then the sampling distribution of
2 (n—=1)?
X = o

has a chi-square density function (sce Section 5.7) with » = (n — 1) degrees of
freedom.

Theorem 1.5

If ¥} and x3 are independent chi-square random variables with »; and v, degrees
of freedom, respectively, then the sum (xf + x3) has a chi-square distribution
with (v + v;) degrees of freedom.

Definition 7.5

cccccccccccccccccccccccccccccccc

Let z be a standard normal random variable and x? be a chi-square random
variable with v degrees of freedom. If z and x? are independent, then

Z

Vixi/v

is said to possess a Student’s t distribution (or, simply, ¢ distribution) with »
degrees of freedom.

t =
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Definition 7.6

Let x{ and x4 be chi-square random variables with » and v, degrees of freedom,
respectively. If x7 and x3 are independent, then

F e X%f”l
Xzif V3

is said to have an F distribution with »; numerator degrees of freedom and v,
denominator degrees of freedom.

Note: The sampling distributions for the t and F statistics can also be derived
using the methods of Optional Section 7.3. Both sampling distributions are related to
the density function for a beta-type random variable (see Section 5.9). It can be shown
(proof omitted) that a t distribution with v degrees of freedom is actually a special case
of an F distribution with »; = 1 and v, = v degrees of freedom. Neither of the
cumulative distribution functions can be obtained in closed form. Consequently, we
dispense with the equations of the density functions and present useful values of the
statistics and corresponding areas in tabular form in Appendix Il.

The following examples illustrate how these statistics can be used to make prob-
ability statements about population parameters.

R I R R R A R A A

EXAMPLE 7.12 Consider a cannery that produces 8-ounce cans of processed comn. Quality control
engineers have determined that the process is operating properly when the true variation
o of the fill amount per can is less than .0025. A random sample of n = 10 cans is
selected from a day’s production, and the fill amount (in ounces) recorded for each.
Of interest is the sample variance, s. If, in fact, > = .001, find the probability that
s% exceeds .0025. Assume that the fill amounts are normally distributed.

Solution We want to calculate P(s> > .0025). Assume the sample of 10 fill amounts is selected
from a normal distribution. Theorem 7.4 states that the statistic

2=(:"1— 1)s?

0.2

has a chi-square probability distribution with » = (n — 1) degrees of freedom. Con-
sequently, the probability we seek can be written

— 1)s? — 1).0025
n = )2 (n J{Z )]

P(s? > .0025) = P[(

o
— 1)(.0025
- p[xz " (_”______0)(2 )]
Substituting n = 10 and o = .001, we have

9(.0025)
.001

P(s? > .0025) = P(f > ) = P(x2 > 22.9)




324 Chapter 7/ Sampling Distributions

Upper-tail areas of the chi-square distribution have been tabulated and are given
in Table 8 of Appendix II, a portion of which is reproduced in Table 7.2. The table
gives the values of x?, denoted x3, that locate an area (probability) a in the upper-
tail of the distribution, i.e., P(x?> > x2) = a. In our example, we want to find the
probability @ such that y2 > 22.5.

Now, for n = 10, we have » = n — 1 = 9 degrees of freedom. Searching
Table 7.2 in the row corresponding to v = 9, we find that x%, = 21.666
and x%os = 23.5893. (These values arc shaded in Table 7.2.) Consequently, the
probability that we seek falls between a = .01 and a = .005, i.e.,

005 < P(x? > 22.5) < .01 (see Figure 7.14)

Thus, the probability that the variance of the sample fill amounts exceeds .0025 is
small (between .005 and .01) when the true population variance o? equals .001.

o

TABLE 7.2 Abbreviated Version of Table 8 of Appendix II: Tabulated Values of x?

Degrees of
Freedom Xl Xhso Xoas Xhio X
| 2.70554 3.84146 5.02389 6.63490 7.87944
2 4.60517 5.99147 7.37776 9.21034 10.5966
3 6.25139 7.81473 9.34840 11.3449 12.8381
4 7.77944 9.48773 11.1433 13.2767 14.8602
5 9.23635 11.0705 12.8325 15.0863 16.7496
6 10,6446 12.5916 14.4494 16.8119 18.5476
7 12.0170 14.0671 16.0128 18.4753 20.2777
8 13.3616 15.5073 17.5346 20.0902 21.9550
9 14.6837 16.9190 19.0228 21.6660 23.5893
10 15.9871 18.3070 20.4831 23.2093 25.1882
1 17.2750 19.6751 21.9200 24.7250 26.7569
12 18.5494 21.0261 23.3367 26.2170 28.2995
13 19.8119 22.3621 24.7356 27.6883 29.8194
14 21.0642 23.6848 26.1190 29.1413 31.3193
15 22.3072 24.9958 27.4884 30.5779 32.8013
16 23.5418 26.2962 28.8454 31.9999 34.2672
17 24.7690 27.5871 30.1910 33.4087 35.7185
18 25.9894 28.8693 31.5264 34,8053 37.1564
19 27.2036 30.1435 32.8523 36.1908 38.5822




FIGURE 7.14 »
finding P(x? > 11.5) in
Example 7.12

EXAMPLE 7.13

Solution
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Suppose that y and s? are the mean and variance of a random sample of n observations
from a normally distributed population with mean w and variance o2. It can be shown
(proof omitted) that y and s? are statistically independent when the sampled population
has a normal distribution. Use this result to show that

Y- p®

s/Vn

possesses a ¢ distribution with » = (n — 1) degrees of freedom. *

=

We know from Theorem 7.3 that y is normally distributed with mean w and variance
o?/n. Therefore,

7 a
oz =
o-/\/“
is a standard normal random variable. We also know from Theorem 7.4 that
(n — 1)s?
xt=t

is a x? random variable with v = (n — 1) degrees of freedom. Then, using Defini-
tion 7.4 and the information that y and s* are independent, we conclude that

y— up

s o/Vn _)7-#

\/(n— 1)s /( s/Vn

has a Student’s ¢ distribution with v = (n — 1) degrees of freedom. As we will learn
in Chapter 8, the ¢ distribution is useful for making inferences about the population

*The result was first published in 1908 by W. 5. Gosset, who wrote under the pen name of Student.
Thereafter, this statistic became known as Student’s t.
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mean u when the population standard deviation o is unknown (and must be estimated

by s2).

Theorem 7.4 and Examples 7.12 and 7.13 identify the sampling distributions of
two statistics that will play important roles in statistical inference. Others are presented
without proof in Tables 7.3a and 7.3b. All are based on random sampling from
normally distributed populations. The results contained in Table 7.3 will be needed
in Chapter 8.

TABLE 7.3a. Sampling Distributions of Statistics Based on Independent Random Samples of ny and n,
Observations, Respectively, from Normally Distributed Populations with Parameters (;, o) and (u,, o3)

Additional Basis of Derivation of
Statistic Sampling Distribution Assumptions Sampling Distribution
, _ (m + np — 2)s} Chi-square with of = o} = ot Theorems 7.4-7.5
X = ot v=(n +n— 1)
degrees of freedom
where
2 = (my — st + (n2 — 1)s3
4 mn + ny — 2
(e y2) — ( — pa) Student'’s ¢ with ol = o} = o? Theorems 7.3-7.4
t= ] 1 v=(n +n; —2) and Definition 7.4
N, " my degrees of freedom
where
- (m = D)st + (ny — 1)s3
’ m+n; — 2
F= st\ (o} F distribution with None Theoremn 7.4
~\si/\o} w=(n~1) and Definition 7.6

numerator degrees
of freedom and

v, =(nz— 1)
denominator
degrees of freedom
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TABLE 7.3b.  Sampling Distributions of Statistics Based on a Random Sample from a Single Normally
Distributed Population with Mean . and Variance o

Additional Basis of Derivation of
Statistic Sampling Distribution Assumptions Sampling Distribution
i = 1 Chi-square with None Methods of Section 7.2
X =g v=(n—1)
degrees of freedom
Gl y— K Student’s t with None Theorems 7.3-7.4 and
s/Vn v=_(n-1) Definition 7.4

degrees of freedom

EXERCISES

134 Lety), y2, . . ., v be a random sample of n observations from a normal distribution with mean w and
variance o%. Let s? be the variance of the sample. Use Table 8 of Appendix Il to estimate the following
probabilities:

a. Ps*>8) whenn =10, 0>=5
b. P(s2> 1.11) whenn = 5, 0> = .3
c. P(s* > 199) when n = 22, 0% = 107

135 IEEE Transactions (June 1990) presented a hybrid algorithm for solving polynomial 0—1 mathematical
programming problems. The solution time (in seconds) for a randomly selected problem solved using the
hybrid algorithm has a normal probability distribution with mean u = .8 second and & = 1.5 seconds.
Consider a random sample of n = 30 problems solved with the hybrid algorithm.

a. Describe the sampling distribution of s?, the variance of the solution times for the 30 problems.
b. Find the approximate probability that s* will exceed 3.30.

OPTIONAL EXERCISES

136 Lety,, y2, . . ., yn be a random sample of n; observations from a normal distribution with mean w; and
variance of. Let x1, x2, . . ., Xn, be a random sample of nz observations from a normal distribution with
mean g7 and variance 3. Assuming the samples were independently selected, show that

N /2
= (S1)(22
o (SE) (cr%)

has an F distribution with »; = (n; — 1) numerator degrees of freedom and v, = (n; — 1) denominator

degrees of freedom.

131 Let s and s3 be the variances of independent random samples of sizes n; and n; selected from normally
distributed populations with parameters (), o) and (p,, o?), respectively. Thus, the populations have
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different means, but a common variance o2. To estimate the common variance, we can combine information
from both samples and use the pooled estimator
b 2
o (m = D)st + (ng — 1)s3
s —
m+n;— 2

Use Theorems 7.4 and 7.5 to show that (n, + n; — 2)%/0? has a chi-square distribution with v =
(ny + ny — 2) degrees of freedom.

Let y, and y; be the means of independent random samples of sizes n) and n selected from normally
distributed populations with parameters (w;, o2) and (w2, o?), respectively. If

2o (u = D+ (= )3

n +ny— 2
show that
= (V1 = 72) = (1 — p2)
2

has a Student’s ¢ distribution with v = (n; + n, — 2) degrees of freedom.

The continuous random variable y is said to have a lognormal distribution with parameters w and o if its
probability density function, f(y), satishes

__ 1 _(ny- u)z}
0= el -3 >0

Show that x = In(y) has a normal distribution with mean w and variance o2,

Summary

R I I I A I A R I R R A R I I A A A R I R R

In the following chapters, we will use sample statistics to make inferences about
population parameters; the properties of these statistics will be determined by their
probability distributions. The probability distribution of a statistic is called its sampling
distribution.

A simulation procedure may be used to approximate the sampling distribution
for a statistic. Random samples of a fixed size are drawn from a known population of
data. The value of some statistic—say, the sample mean y—is computed for each
sample. The relative frequency distribution of the values of the statistic, generated by
repeated sampling, approximates the probability distribution of the statistic.

Evidence of the major role that the normal distribution plays in statistical inference
is given by the central limit theorem, Theorem 7.3, and the related x2, F, and t
distributions. The central limit theorem explains why many statistics, especially those
based on large samples, possess sampling distributions that can be approximated by a
normal density function. Theorem 7.3, which states that linear functions of normally
distributed random variables will be normally distributed, provides further explanation
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for the common occurrence of normally distributed sampling distributions. The x?,
t, and F statistics are approximated when sampling from normally distributed popu-
lations. You will encounter them frequently in the statistical methodology to be devel-
oped in the following chapters.

SUPPLEMENTARY EXERCISES
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140  Consider the density function

3y ifo=y=1
fn = {0 clsewhere

Find the density function of w, where:
a.w=\/§ b. w=3—-y c. w= —In(y)

141 A supplier of home heating oil has a 250-gallon tank that is filled at the beginning of each week. Since the
weekly demand for the oil increases steadily up to 100 gallons and then levels off between 100 and 250
gallons, the probability distribution of the weekly demand y (in hundreds of gallons) can be represented by

% fo=y=<1
fy) = % ifl<y=25
0 elsewhere

If the supplier’s proft is given by w = 10y — 2, find the probability density function of w.

141  Dioxin, often described as the most toxic chemical known, is created as a by-product in the manufacture
of herbicides such as Agent Orange. Scientists have found that .000005 gram (five-millionths of a gram) of
dioxin—a dot barely visible to the human eye—is a lethal dose for experimental guinea pigs in more than
half the animals tested, making dioxin 2,000 times more toxic than strychnine. Assume that the amount
of dioxin required to kill a guinea pig has a relative frequency distribution with mean w = .000005 gram
and standard deviation o = .000002 gram. Consider an experiment in which the amount of dioxin required
to kill each of n = 50 guinea pigs is measured, and the sample mean y is computed.

a. Calculate p; and oy.
b. Find the probability that the mean amount of dioxin required to kill the 50 guinea pigs is larger than
.0000053 gram.

143 The determination of the percent canopy closure of a forest is essential for wildlife habitat assessment,
watershed runoff estimation, erosion control, and other forest management activities. One way in which
geoscientists estimate percent forest canopy closure is through the use of a satellite sensor called the Landsat
Thematic Mapper. A study of the percent canopy closure in the San Juan National Forest (Colorado) was
conducted by examining Thematic Mapper Simulator (TMS) data collected by aircraft at various forest sites
(IEEE Transactions on Geoscience and Remote Sensing, Jan. 1986). The mean and standard deviation of
the readings obtained from TMS Channel 5 were found to be 121.74 and 27.52, respectively.
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a. Let y be the mean TMS reading for a sample of 32 forest sites. Assuming the figures given are population
values, describe the sampling distribution of y.
b. Usc the sampling distribution of part a to find the probability that y falls between 118 and 130.

Refer to Exercise 7.43. Let s? be the variance of the TMS readings for the 32 sampled forest sites. Assuming
the sample is from a normal population, estimate the probability that s* exceeds 1,311.

Use Theorem 7.1 to draw a random sample of n = 5 observations from a population with probability density
function given by

~[2pe™ if0<y<o
f) = {U elsewhere

Use Theorem 7.1 to draw a random sample of n = 5 observations from a population with probability density
function given by

f(y):{g(y—l) flsy<2

elsewhere

This year a large architectural and engineering consulting firm began a program of compensating its
management personnel for sick days not used. The firm decided to pay each manager a bonus for every
unused sick day. In past years, the number y of sick days used per manager per year had a probability
distribution with mean p = 9.2 and variance o? = 3.24. To determine whether the compensation program
has effectively reduced the mean number of sick days used, the firm randomly sampled n = 80 managers
and recorded y, the number of sick days used by each at year’s end.

a. Assuming the compensation program was not effective in reducing the average number of sick days used,
find the probability that y, the mean number of sick days used by the sample of 80 managers, is less
than 8.80 days, i.e., find P(¥ < 8.80).

b. If you observe y < 8.80, what inference would you make about the cffectiveness of the compensation
program?

To determine whether a metal lathe that produces machine bearings is properly adjusted, a random sample
of 36 bearings is collected and the diameter of each is measured. Assumc that the standard deviation of the
diameter of the machine bearings measured over a long period of time is .001 inch.

a. What is the probability that the mean diameter y of the sample of 36 bearings will lie within .0001 inch
of the population mean diameter of the bearings?

b. Suppose the mean diameter of the bearings produced by the machine is supposed to be .5 inch. The
company decides to use the sample mean to decide whether the process is in control—i.e., whether it
is producing bearings with a mean diameter of .5 inch. The machine will be considered out of control
if the mean of the sample of n = 36 diameters is less than .4994 inch or larger than .5006 inch. If the
true mean diameter of the bearings produced by the machine is .501 inch, what is the probability that
the test will fail to imply that the process is out of control?

Refer to the problem of transporting neutral particles in a nuclear fusion reactor, described in Exercise 3.25.
Recall that particles released into a certain type of evacuated duct collide with the inner duct wall and are
either scattered (reflected) with probability .16 or absorbed with probability .84 (Nuclear Science and Engi-
neering, May 1986). Suppose 2,000 neutral particles are released into an unknown type of evacuated duct
in a nuclear fusion reactor. Of these, 280 are reflected. What is the approximate probability that as few as
280 (i.e., 280 or fewer) of the 2,000 neutral particles would be reflected off the inner duct wall if the reflection
probability of the evacuated duct is .16?
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Shear block tests on epoxy-repaired timber indicate that the probability distribution of the bond strengths

of parallel grain, mill lumber specimens has a mean of 1,312 pounds per square inch (psi) and a standard

deviation of 422 psi ( Journal of Structural Engineering, Feb. 1986). Suppose a sample of 100 epoxy-repaired

timber specimens is randomly selected and the bond strength of each is determined.

a. Describe the sampling distribution of y, the mean bond strength of the sample of 100 epoxy-repaired
timber specimens.

b. Compute P(y = 1,418).

c. If the actual sample mean is computed to be y = 1,418, what would you infer about the shear block
test results?

Refer to Exercise 7.50.
a. Describe the sampling distribution of s?, the variance of the bond strengths of the 100 sampled epcxy-
repaired timber specimens. Assume the sample is from a normal population.

b. Estimate P(s > 500).

OPTIONAL SUPPLEMENTARY EXERCISES

152

153

154

155

The waiting time y until delivery of a new component for a data-processing unit is uniformly distributed
over the interval from 1 to S days. The cost ¢ (in hundreds of dollars) of this delay to the purchaser is given
by ¢ = (2y* + 3). Find the probability that the cost of delay is at least $2,000, i.e., compute P(c = 20).

Let y; and y; be a sample of n = 2 observations from a gamma random variable with parameters a = 1
and arbitrary B, and corresponding density function

flyn) = ée‘wﬁ ify, >0 (i=1,2)

0 elsewhere

Show that the sum w = (y; + y;) is also a gamma random variable with parameters @ = 2 and B.
[Hint: You may use the result

W rwTy
Pw=w)=P0<y,=w-—y,0=y <w= L J‘U f(y1, y2)dyz dy

Then use the fact that
f(y1, y2) = f(y))f(y2)

since y; and y; are independent.]

Let y have an exponential density with mean B. Show that w = 2y/B has a x?* density with v = 2 deg-ees
of freedom.

The lifetime y of an electronic component of a home minicomputer has a Rayleigh density, given by

iy (%) e /B ify >0

0 elsewhere
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Find the probability density function for w = y?, and identify the type of density function. [Hint: You
may usc the result

j %’e--yzm dy = —¢™'/B

in determining the density function for w.]

15  Let y, and y; be a random sample of n = 2 observations from a normal distribution with mean w and
variance o2,
a. Show that

R

Vio

has a standard normal distribution.
b. Given the result in part a, show that 2% possesses a x? distribution with 1 degree of freedom. [Hint:  First
show that s2 = (y, — y)?/2; then apply Theorem 7.4.]

157  Refer to Exercise 7.12. Use the computer to generate a random sample of n = 100 observations from a
distribution with probability density

_Jer ify <D
fy) = {0 elsewhere
Repeat the procedure 1,000 times and compute the sample mean y for each of the 1,000 samples of size
n = 100. Then generate (by computer) a relative frequency histogram for the 1,000 sample means. Does
your result agree with the theoretical sampling distribution described by the central limit theorem?

COMPUTER LAB:  Generating Random Samples

CRCR I S O I R A I RO NI I S B I I A A R B S A I I B SR B R B I I B B B N N A )

Most statistical computer software packages have built-in algorithms for generating random samples of observa-
tions from a variety of probability distributions. The SAS and MINITAB commands for generating random
samples of size 50 from the uniform distribution are given in the following programs. Table 7.4 gives the corre-
sponding commands for generating samples from the normal, binomial, Poisson, exponential, and gamma
distributions.
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TABLE 74  Random llurhber Generators for SAS and MINITAB

Probability Distribution SAS MINITAB
Uniform (0, 1) Y = RANUNI(seed); UNIFORM.
Uniform (A, B) Y = A+B*RANUNI(seed); UNIFORM A B.
Normal (mean = 0, std.dev. = 1) Y = RANNOR(seed); NORMAL.
Normal (mean = M, std.dev. = §) Y = M+S“RANNOR(sced); NORMAL M S.
Binomial (N, P) = RANBIN(seced,N,P); BINOMIAL N P.
Exponential (mean = 1) Y = RANEXP(sced); EXPONENTIAL.
Exponential (mean = B) Y = RANEXP(seed)/B; EXPONENTIAL B.
Gamma (A, 1) Y = RANGAM(seed, A); GCAMMA A 1.
Gamma (A, B) Y = B"RANGAM(seed,A); GCAMMA A B.
Chi-square (df = V) Y = 2*RANGAM(seed,V/2); CHISQUARE V.
Poisson (mean = L) Y = RANPOI(seed,L) POISSON L.
Beta (A, B) Y1 = RANGAM(seed, A); BETA A B.

Y2 = RANGAM(seed,B);

Y = YU(YI+Y2)

Weibull (A, B) Not available WEIBULL A B.

SAS

Command
line

DATA SAMPLES

DD N = 1 TD 50;
Y RANUNI(213) 3
X

b ROUND(X» 1)3
OUTPUT

END 3

PROC PRINTS

OO =1 O Wi e wd B

1 + ZOOO*RANUNI(G) 5

Data entry instruction

Prints the random numbers

Generates 50 random numbers

(OMMAND3 RANUNI generates uniform random numbers in the interval (0, 1). The numerical “seed” (i.e.,

the

number in parentheses following RANUNI) can be any integer value.

(OMMANDS 4-5 Multiplying the uniform random number by 2,000 and adding 1 will generate a randormn number
between 1 and 2,000. The ROUND function (Command 5) will round the resulting random number to the
nearest integer.

NOTE:  The output from this SAS program is displayed in Figure 7.15 on page 334. SAS commands for the
random number generators of several other distributions are provided in Table 7.4.
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MINITAB Command

line

1 RANDOM S0 C13

2 UNIFORM, 5 &

B RANDOM 50 C23 Generates 50 random numbers
4 UNIFORM 1 2000,

5

PRINT Ci1 C2 Prints the random numbers

(OMMANDS I-2  RANDOM with the UNIFORM subcommand generates uniform random numbers in the interval
(0, 1).

C(OMMANDS 3-4 The UNIFORM subcommand followed by the values 1 and 2000 will generate a random number
between 1 and 2000.

NOTE:  The output from this MINITAB program is displayed in Figure 7.16. Minitab subcommands for the ran-
dom number generators of several other probability distributions are provided in Table 7.4.

FIGURE 7.15 »

N Y X
SAS printout for Computer Lab 1 0.39703 1259
2 0.16258 505
3 0.30135 913
4 0.65456 502
5  0.60613 358
6  0.51486 1170
7 0.77299 622
8  0.84608 606
9 0.06631 1911
10 0.05092 493
11 0.59439 1838
12 0.97203 359
13 0.34312 1965
14  0.15364 1496
15  0.08987 609

16 0.14101 1814
17 0.34850 1806
18 0.59765 618
19 0.29204 1256
20 0.73898 1607
21 0.47006 1092

22 0.64217 158
23 0.80029 303
24 0.55323 1762
25 0.91071 546
26 0.51053 1306
27 0.22638 1059
28 0.59268 1011
29 0.44032 591
30 0.68000 1031
31 0.26740 275

32 0.83772 1691
33 0.59476 1994
34 0.69763 1696

35 0.99709 624
36 0.27695 1930
37 0.61072 561

38 0.35919 1072
39 0.43803 1035
40 0.67097 1067

41 0.26741 471
42 0.07262 1105
43 0.41368 10
a4 0.87680 1626
45 0.68880 65
46 0.57243 1721
47 0.89295 965
a8 D.64618 269
49 0.75235 180

50 0.68174 216



FIGURE 7.16 » ROW c1 c2
HINITAB printout for Computer Lab i oaeEce e
2 0.833319 1166.89
3 0.164871 1808.98
4 0.608885 111.94
5 0.110577 1874.77
6 0.822181 339.32
7 0.772671 312.60
8 0.583832 969.61
9 0.978965 1137.29

10 0.370586 108.39
11 0.323264 1430.28
12 0.408010 750.34
13 0.001304 1714.99
14 0.163034 357.31
15 0.379198 561.50
16 0.399769 99.04
17 0.971068 262.59
18 0.383489 715.27
19 0.936076 1329.24
20 0.009521 113.97
21 0.190185 129.56
22 0.773176 78.92
23 0.646953 1745.57
24 0.869129 181.87

25 0.641075 620.47
26 0.134382 1472.91
27 0.797779 81.93

28 0.722374 121.72
29 0.296690 1097.71
30 0.086229 1157.76
31 0.778634 667.47
32 0.329307 1350.76
33 0.163365 805.58
34 0.420638 623.57
35 0.579784 1860.12
36 0.473011 506.76
37 0.126340 1251.50
38 0.792532 392.08
39 0.066484 909.82
40 0.310511 1659.03
41 0.813840 1358.03
42 0.729962 1713.86
43 0.245253 215.31
4 0.656617 802.93
45 0.077151 291.86
46 0.643837 376.03
47 0.479582 903.08
48 0.947811 817.06
49 0.476421 59.64
50 0.552677 1333.67
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Estimation
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8.  Estimators

L R I I R R A A A A A A N R A

An inference about a population parameter can be made in either of two ways—we
can estimate the unknown parameter value or we can make a decision about a hypoth-
esized value of the parameter. To illustrate, we can estimate the mean number w of
jobs submitted per hour to a data-processing center or we might want to decide whether
the mean u exceeds some value—say, 60. The method for making a decision about
onc or more population parameters, called a’statistical test of a hypothesis, is the
topic of Chapter 9. This chapter will be concerned with estimation.

Suppose we want to estimate some population parameter, which we denote by 6.
For example, 6 could be a population mean w, a population variance a2, or the
probability F(a) that an observation selected from the population is less than or equal
to the value a. A point estimator, designated by the symbol 6 (i.e., we place a “hat”
over the symbol of a parameter to denote its estimator), is a rule or formula that tells
us how to use the observations in a sample to compute a single number (a point) that
serves as an estimate of the value of 6. For example, the mean ¥ of a random sample
of n observations, y|, y2, . . ., ya, selected from a population is a point estimator of
the population mean p—i.e., o = y. Similarly, the sample variance s? is a point

estimator of o2—i.e., &% = §2.

Definition 8.1

sesssssasersannn IEEEREE] Psrrsaran

A point estimator is a rule or formula that tells us how to calculate a numerical
estimate based on the measurements contained in a sample. The single number
that results from the calculation is called a point estimate.

Another way to estimate the value of a population parameter 8 is to use an interval
estimator. An interval estimator is a rule, usually expressed as a formula, for calculating
two points from the sample data. The objective is to form an interval that contains 6
with a high degree of confidence. For example, if we estimate the mean number u
of jobs submitted to a data-processing center to be between 40 and 60 jobs per hour,
then the interval 40 to 60 is an interval estimate of w.

Definition 8.2

D R e R

An interval estimator is a formula that tells us how to use sample data to calculate
an interval that estimates a population parameter. ;

[n this chapter, we will identify desirable properties of point and interval estimators,
explain how to compare two or more estimators for a single parameter, and show how
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to measure how good a single estimate actually is. In addition, we will present methods
for finding both point and interval estimators, give the formulas for some useful
estimators, and show how they can be used in practical situations.

8. Properties of Point Estimators
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FIGURE 8.1 »
Sampling distribution of a sample
mean for large samples

FIGURE 8.2 b
Sampling distributions for unbiased
and biased estimators of @

Since a point estimator is calculated from a sample, it possesses a sampling distribution.
The sampling distribution of a point estimator completely describes its properties. For
example, according to the central limit theorem, the sampling distribution for a sample
mean will be approximately normally distributed for large sample sizes, say, n = 30
or more, with mean w and standard error o/Vn (see Figure 8.1). The figure shows
that a sample mean y is equally likely to fall above or below w and that the probability
is approximately .95 that it will not deviate from w by more than 203 = 20/Vn.

f
Approximately .95

el

u
-— 20}+ 20 T

The characteristics exhibited in Figure 8.1 identify the two most desirable prop-
erties of estimators. First, we would like the sampling distribution of an estimator to
be centered over the parameter being estimated. If the mean of the sampling distribution
of an estimator 6 is equal to the estimated parameter 6, then the estimator is said to
be unbiased. If not, the estimator is said to be biased. The sample mean is an unbiased
estimator of the population mean w. Sampling distributions for unbiased and biased
estimators are shown in Figures 8.2a and 8.2b, respectively.

fid) f8)

0 (2 Hg
My e
Bias

a. Estimator A is unbiased. b. Estimator B is biased.
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FIGURE 83 »

Sampling distributions for two
unbiased estimators of & with
different variances

An estimator 6 of a parameter 6 is unbiased if E(6) = 6. If E(§) # 6, the
estimator is said to be biased.

Definition 8.4

................................

The bias B of an estimator 6 is equal to the difference between the mean E(6)
of the sampling distribution of § and 6, i.c.,

B =E() -6

In addition to unbiasedness, we would like the sampling distribution of an estimator
to have minimum variance, i.e., we want the spread of the sampling distribution to
be as small as possible so that estimates will tend to fall close to 6.

Figure 8.3 portrays the sampling distributions of two unbiased estimators, A and
B, with A having smaller variance than B. An unbiased estimator that has the minimum
variance among all unbiased estimators is called the minimum variance unbiased
estimator (MVUE). For example, 7 is the MVUE for . That is, Var(y) = o?/n is
the smallest variance among all unbiased estimators of w. (Proof omitted.)

fla)

fiB)

Ha
Hp

Definition 8.5
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The minimum variance unbiased estimator (MVUE) of a parameter 6 is the
estimator @ that has the smallest variance of all unbiased estimators.

Sometimes we cannot achieve both unbiasedness and minimum variance in the
same estimator. For example, Figure 8.4 shows a biased estimator A with slight bias,
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but with a smaller variance than the MVUE B. In such a case, we prefer the estimator
that minimizes the mean squared error, the mean of the squared deviations between
6 and 6.

Mean squared error for & E[(§ — 6)?]
It can be shown (proof omitted) that
E[(6 — 6)4] = V(6) + B2

Therefore, if 6 is unbiased, i.e., if B = 0, then the mean squared error is equal to
V(6). Furthermore, when B = 0, the estimator 6 that yields the smallest mean
squared error is also the MVUE for 6.

fIGURE 8.4 »
Sampling distributions of biased
estimator A and MVUE B

EXAMPLE 8.1 Let y1, y2, . . ., yn be a random sample of n observations from a normal distribution
with mean w and variance o?. Show that the sample variance s? is an unbiased
estimator of the population variance o? when:

a. The sampled population has a normal distribution.
b. The distribution of the sampled population is unknown.
Solution a. From Theorem 7.4, we know that when sampling from a normal distribution,
(ﬂ =T 1)32 _ 2
a2 X

where x? is a chi-square random variable with » = (n — 1) degrees of freedom.
Rearranging terms yields

2 _ o’ 2
T Tl X

from which it follows that

E(Sz) = EI:(” (i- ])Xz}
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Applying Theorem 5.2, we obtain
2
A - O
(n — I)E(X )
We know from Section 5.6 that E(x?) = v and V(x?) = 2v; thus
2 2

(n‘i [ = 1) = o?

E(s?) =

U ol
m-0""

Therefore, by Definition 8.3, we conclude that s? is an unbiased estimator of 2.

E(s) =

. By the defnition of sample variance, we have

2
n (z }'i) n
1 .
2 = 3 = 2 2
(n_]);y. = n-lLE]”' n(?)}
From Theorem 4.4, a? = E(y?) — w? Consequently, E(y?) = o2 + u? for a
random variable y. Since each y value, y), y2, . . ., v, was randomly selected

from a population with mean w and variance o, it follows that
Ey =02+ p? (i=1,2,...,n)

and
E(y) = o} + (u3)* = o¥/n + p?

Taking the expected value of s? and substituting these expressions, we obtain

E) = {n L1201 - o]}

- {3 ] - Enon}

n i=

- {3 ey - o]

S 2 )

=S _{ jl(no? + np?) = 0% = np?|

nw 1[rur:al-z - o

=Ly s 5
(n = 1) 7
This shows that, regardless of the nature of the sampled population, s*is an unbiased
estimator of o2

D R R R I I R I R
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EXERCISES
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OPTIONAL EXERCISES

81  Let y), y2, y3 be a random sample from an exponential distribution with mean 6, i.e., E(y;) = 6, i =
1, 2, 3. Consider three estimators of 6:

& _ 5 n +
0=y & =y 0 = _)’12)’_

a. Show that all three estimators are unbiased.
b. Which of the estimators has the smallest variance? [Hint: Recall that, for an exponential distribution,

V(yi) = 6%]
82 Let yi, y2, ¥3, . . -, yn be a random sample from a Poisson distribution with mean A, ie., E(y;) =
A i=1,2 ..., n Consider four estimators of A:
A=y Ay=n(y+y2+ -+ y)
+
A = Y1 > Y2 A = )";1

a. Which of the four estimators are unbiased?
b. Of the unbiased estimators, which has the smallest variance? [Hint: Recall that, for a Poisson distri-
bution, V(y;) = A.]

83 Suppose y has a binomial distribution with parameters n and .
a. Show that p = y/n is an unbiased estimator of p.
b. Find the variance of p.

84  Lety), y2,. .., yn be a random sample from a gamma distribution with parameters @ = 2 and B unknown.
a. Show that y is a biased estimator of B. Compute the bias.
b. Show that B = 7/2 is an unbiased estimator of S.
€. Find the variance of 8 = y/2. [Hint: Recall that, for a gamma distribution, E(y;) = 28 and V(y;) =
2]

85  Show that E[(§ — 6))] = V(6) + B? where the bias B = E(f) — 6. [Hint: Write (§ — 6) =
(6 — E(9)] + [E(6) - 6].]

86  Let y; be a sample of size 1 from a uniform distribution over the interval from 2 to 6.
a. Show that y; is a biased estimator of 6 and compute the bias.
b. Show that 2(y; — 1) is an unbiased estimator of 6.
c. Find the variance of 2(y; — 1).

87 Let y1, y2, . . ., y» be a random sample from a normal distribution, with mean w and variance o%. Shew
that the variance of the sampling distribution of s% is 2% /(n — 1).
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8.3  Finding Point Estimators: Methods of Estimation
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There are a number of different methods for finding point estimators of parameters.
Two classical methods, the method of moments and the method of maximum like-
lihood, are the main topics of this section. These techniques produce the estimators
of the population parameters encountered in Sections 8.5-8.11. A discussion of other
methods for finding point estimators is beyond the scope of this text; we give a brief
description of these other methods and refer you to the references given at the end of
this chapter.

METHOD OF MOMENTS The method of estimation that we have employed thus far is to
use sample numerical descriptive measures to estimate their population parameters.
For example, we used the sample mean y to estimate the population mean w. From
Definition 4.7, we know that the parameter E(y) = w is the first moment about the
origin or, as it is sometimes called, the first population moment. Similarly, we define
the first sample moment as

n

The general technique of using sample moments to estimate their corresponding
population moments is called the method of moments. For the parameters discussed
in this chapter, the method of moments yields estimators that have the two desired
properties mentioned earlier, i.e., unbiased estimators and estimators with minimum
variance.

Definition 8.6

Let y1, 2, - . ., ¥n represent a random sample of size n from some probability
distribution (discrete or continuous). The kth population moment and kth
sample moment are defined as follows:

kth population moment:  E(y%)
n

2

i=]

kth sample moment: m* = e

For the case k = 1, the first population moment is E(y) = u and the first sample
| moment is m = .
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Solution
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Definition 8.7

--------------------------------

Let yi, y2, . . . , yn represent a random sample of size n from a probability
distribution (discrete or continuous) with parameters ), 65, . . ., 6,. Then
the moment estimators, 6;, 6;, ..., 0, are obtained by equating the first
m sample moments to the corresponding first m population moments:

Ey) ==

EG?) =13y

By =+ 3y

and solving for 6;, 65, . . . , 6,,. (Note that the first m population moments
will be functions of 6y, 6, . . ., 6,.)

For the special case m = 1, the moment estimator of 6 is some function
of the sample mean y.

The response rate y of auditory nerve fibers in cats has an approximate Poisson dis-
tribution with unknown mean A (Journal of the Acoustical Society of America, Ieb.
1986). Suppose the auditory nerve fiber response rate (recorded as number of spikes
per 200 milliseconds of noise burst) was measured in each of a random sample of
10 cats. The data follow:

15.1 146 12.0 19.2 16.1 155 11.3 187 17.1 17.2
Calculate a point estimate for the mean response rate A using the method of moments.
We have only one parameter, A, to estimate; therefore, the moment estimator is found

by setting the first population moment, E(y), equal to the first sample moment, y.
For the Poisson distribution, E(y) = A; hence, the moment estimator is

A=y
For this example,

_ 151 4+146+---+17.2
Y= 10

= 15.68

Thus, our estimate of the mean auditory nerve fiber response rate A is 15.68 spikes
per 200 milliseconds of noise burst.
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EXAMPLE 8.3 (OPTIONAL)

Solution

The time y until failure from fatigue cracks for underground cable possesses an approx-
imate gamma probability distribution with parameters « and B (IEEE Transactions
on Energy Conversion, Mar. 1986). Let y;, y2, . . . , y, be a random sample of n
observations on the random variable y. Find the moment estimators of a and .

Since we must estimate two parameters, @ and 8, the method of moments requires
that we set the first two population moments equal to their corresponding sample
moments. From Section 5.6, we know that for the gamma distribution

m

E(y) = op

o? = ap?

Also, from Theorem 4.4, 02 = E(y*) — p® Thus, E(y?) = 0% + u?. Then for the
gamma distribution, the first two population moments are

E(y) = op
E(y?) = o + p* = af® + (ap)’
Setting these equal to their respective sample moments, we have
&B =y
> 2
ap? + (app = =2

Substituting 7 for @B in the second equation, we obtain

i+ G = 22
or,
)_’B = znyi- - (F}E 2
y (E J’i)
2 2 — n(jP 24—
- n - n
(n — 1)

Solving these equations simultaneously, we obtain the moment estimators

=5 = =0
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METHOD OF MAXIMUM LIKELIHOOD The method of maximum likelihood and an exposition
of the properties of maximum likelihood estimators are the results of work by Sir
Ronald A. Fisher (1890-1962). Fisher’s logic can be seen by considering the following
example: If we randomly sclect a sample of n obscrvations, yi, y2, . .., ya, of a
discrete random variable y and if the probability distribution #(y) is a function of
a single parameter 8, then the probability of observing these n independent values
of y is

Py, ya. ooy ) = pyidplya) = - v plyn)

Fisher called this joint probability of the sample values, y1, y2, . . ., y,, the likelihood
L of the sample, and suggested that one should choose as an estimate of 6 the value
of @ that maximizes L. [f the likelihood L of the sample is a function of two parameters,
say, 6, and 6;, then the maximum likelihood estimates of 6 and 6, are the values
that maximize L. The notion is easily extended to the situation in which L is a function
of more than two parameters.

Definition 8.8

a. The likelihood L of a sample of n observations, yi, y2, . . ., yn, is the joint
probability function p(yy, y2, . . ., y.) when y1, y2, . . ., y, are discrete
random variables.

b. The likelihood L of a sample of n observations, y, y2, . . . , ¥n, is the joint
density function f(yy, y2, . . ., ya) when y, y2, . . ., y, are continuous
random variables.

Note: For fixed values of yy, y2, . . ., ¥4, L will be a function of 6.

Theorem 8.1 follows directly from the definition of independence and Definitions
6.8 and 6.9.

................................

a. Letyy, y2,. . ., y,represent a random sample of n observations on a random
variable y. Then L = p(y1)p(y2) « -+ ply,) when y is a discrete random
variable with probability distribution p(y).

b. Lety, y2,. . ., yn represent a random sample of n observations on a random
variable y. Then L = f(y))f(y2) * - - f(y,) when y is a continuous random
variable with density function f(y).
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EXAMPLE 8.4

Solution

--------------------------------

Let L be the likelihood of a sample, where L is a function of the parameters
6, 6, ..., 6. Then the maximum likelihood estimators of 6,, 6, . . . , 6
are the values of 8, 6;, . . ., 6 that maximize L.

Fisher showed that maximum likelihood estimators of population means and
proportions possess some very desirable propertics. As the sample size n becomes larger
and larger, the sampling distribution of a maximum likelihood estimator 6 tends to
become more and more nearly normal, with mean equal to 6 and a variance that is
equal to or less than the variance of any other estimator. Although these properties of
maximum likelihood estimators pertain only to estimates based on large samples, they
tend to provide support for the maximum likelihood method of estimation. The
properties of maximum likelihood estimators based on small samplcs can be acquired
by using the methods of Chapters 4, 5, and 6 to derive their sampling distributions
or, at the very lcast, to acquirc their means and variances.

To simplify our explanation of how to find a maximum likelihood estimator, we
will assume that L is a function of a single parameter 8. Then, from differential
calculus, we know that the value of @ that maximizes (or minimizes) L is the value

for which % = 0. Obtaining this solution, which always yields a maximum (proof

omitted), can be difhcult because L is usually the product of a number of quantities
involving 8. Differentiating a sum is easier than differentiating a product, so we attempt
to maximize the logarithm of L rather than L itself. Since the logarithm of L is a
monotonically increasing function of L, L will be maximized by the same value of 8
that maximizes its logarithm. We illustrate the procedure in Examples 8.4 and 8.5.

Let y1, y2, . . ., ya be a random sample of n observations on a random variable y
with the exponential density function

e-l"/ra

fly) =

0 elsewhere

fl=y<ow

Determine the maximum likelihood estimator of B.

Since y1, y2, . . ., yn are independent random variables, we have

L= fiyf(y2) = - - f(yn)

e, oot

e_z:;l }‘l/?

Bi’?
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Taking the natural logarithm of L yields

. 2 Yi
In(L) = In(e~=1 »/B) — n In(B) = —%— — n In(B)

Then

Therefore, the maximum likelihood estimator (MLE) of B is the sample mean y, i.e.,

-

B=7y.

R I I I I I R A R R R R A ]

EXAMPLE 8.5 (UPTIONM) Let y1, ¥2, . . . , yn be a random sample of n observations on the random variable
y, where f(y) is a normal density function with mean w and variance o%. Find the
maximum likelihood estimators of u and o2.

Solution Since y1, y2, . . . , yn are independent random variables, it follows that

L = f(y)f(y2) * - * f(yn)

(e-{ - .u)ZI(Zo'Z)) (e—( v m’z(za%) (e-( Yo~ n)‘/(Zcrz))
oVl oVir oVl

o~ Zi=1lyi~w/20?)

= T oa R
and
i (yi — my?
In(L) = —t2—eg— ~ gln(az) - g In(2m)
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Taking derivatives of In(L) with respect to u and o and setting them equal to 0 vields

d ]l’l(L) _ |=21 2()’1 - a&')

du er 0=0=0

and
n

-~

o 2
do* 267 2\&? B

The values of u and o? that maximize L [and hence In(L)] will be the simultaneous
solution of these two equations. The first equation reduces to

2 (n-=0 o 2y-ni=0
and it follows that
niv= 2y and =7

Substituting i« = ¥ into the second equation and multiplying by 262, we obtain
n n
2 (yi = P 2 (9P
e =n or 2= —
o n
Therefore, the maximum likelihood estimators of w and o are
n
2 (=P
o iy el
L=35 and & z
Note that the maximum likelihood estimator of o2 is equal to the sum of squares of
deviations 27 (y; — 7)? divided by n, whereas the sample variance s? uses a divisor
of (n — 1). We showed in Example 8.1 that s? is an unbiased estimator of a-2. Therefore,
the maximum likelihood estimator

s B
. 2 (=7 -1,
n n

is a biased estimator of o2.

METHOD OF LEAST SQUARES Another useful technique for finding point estimators is the
method of least squares. This method finds the estimate of 8 that minimizes the mean
squared error (MSE):

MSE = E(6 — )
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The method of least squares—a widely used estimation technique—is discussed in
detail in Chapter 11. Several other estimation methods are briefly described here; consult
the references at the end of this chapter if you want to learn more about their use.

JACKKNIFE ESTIMATORS Tukey (1958) developed a “leave-one-out-at-a-time” approach to
estimation, called the jackknife,” that is gaining increasing acceptance among prac-
titioners. Let y;, y2, . . ., y. be a sample of size n from a population with param-
cter 6. An estimate 6, is obtained by omitting the ith observation (i.e., y;) and
computing the estimate based on the remaining (n — 1) observations. This calculation
is performed for each observation in the data set, and the procedure results in n
estimates of 6: 6, é{z), ..., B The jackknife estimator of 6 is then some
suitably chosen linear combination (e.g., a weighted average) of the n estimates.
Application of the jackknife is suggested for situations where we are likely to have
outliers or biased samples, or find it difficult to assess the variability of the more
traditional estimators.

ROBUST ESTIMATORS Many of the estimators discussed in Sections 8.5-8.11 are based
on the assumption that the sampled population is approximately normal. When the
distribution of the sampled population deviates greatly from normality, such estimators
do not have desirable properties (e.g., unbiasedness and minimum variance). An
estimator that performs well for a very wide range of probability distributions is called
a robust estimator. For example, a robust estimate of the population mean u, called
the M-estimator, compares favorably to the sample mean y when the sampled pop-
ulation is normal and is considerably better than y when the population is heavy-
tailed. See Mosteller and Tukey (1977) and Devore (1987) for a good practical dis-
cussion of robust estimation techniques.

BAYES ESTIMATORS The classical approach to estimation is based on the concept that the
unknown parameter 6 is a constant. All the information available to us about 8 is
contained in the random sample yj, y2, . . ., y, selected from the relevant population.
In contrast, the Bayesian approach to estimation regards 8 as a random variable with
some known (prior) probability distribution g(8). The sample information is used
to modify the prior distribution on 6 to obtain the posterior distribution, f(6 | y),
Y2, - . ., ¥n). The Bayes estimator of 6 is then the mean of the posterior probability
distribution [see Mendenhall, Wackerly, and Scheaffer (1989)].

A binomial experiment consisting of n trials resulted in Bernoulli observations yy, ya2, . . ., ya, where

-

1
0

if the ith trial was a success

if not

and P(y; = 1) =p, P(y; = 0) =1 — p. Let y = Z%_, y; be the number of successes in n trials.

*The procedure derives its name from the Boy Scout jackknife; like the jackknife, the procedure serves as
a handy tool in a variety of situations when specialized techniques may not be available.



8.9

8.10

8.1l

8.12

8.13

8.4

Chapter 8 / Estimation

Find the moment estimator of p.
. Is the moment estimator unbiased?
Find the maximum likelihood estimator of p. [Hint: L = p¥(1 — p)"~7.]

. Is the maximum likelihood estimator unbiased?

oo o

Let yi, y2, - . ., . be a random sample of n observations from a Poisson distribution with probability
function

e MY
y!

a. Find the maximum likelihood estimator of A.
b. Is the maximum likelihood estimator unbiased?

py) = (r=0,12,...)

Let y1, y2, . . ., ya be a random sample of n observations on a random variable y, where f{y) is a gamma
density function with @ = 2 and unknown B:
~y/B
Y — ify>0
foy=1 P |
0 otherwise

a. Find the maximum likelihood estimator of B.
b. Find E(B) and V(B).

Refer to Exercise 8.10.
a. Find the moment estimator of B.
b. Find E(B) and V(B).

Let y1, y2, . . . , ¥» be a random sample of n observations from a normal distribution with mean 0 and
unknown variance o, Find the maximum likelihood estimator of o2.

Let yi, y2, . . ., y» be a random sample of n observations from an exponential distribution with density

le"’/ﬂ ify>0

() =1P
fn 0 otherwise

a. Find the moment estimator of B.
b. Is the moment estimator unbiased?
c. Find V(B).

Finding Interval Estimators: The Pivotal Method

In Section 8.1, we defined an interval estimator as a rule that tells how to use the
sample observations to calculate two numbers that define an interval that will enclose
the estimated parameter with a high degree of confidence. The resulting random
interval (random, because the sample observations used to calculate the endpoints of
the interval are random variables) is called a confidence interval, and the probability




FIGURE 8.5 »
Locating z,, 5, for a confidence
interval
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(prior to sampling) that it contains the estimated parameter is called its confidence
coefficient. If a confidence interval has a confidence coefficient equal to .95, we call
it a 95% confidence interval. If the confidence coefficient is .99, the interval is said
to be a 99% confidence interval, etc. A more practical interpretation of the confidence
coefficient for a confidence interval is given later in this section,

Definition 8.10

The confidence coefficient for a confidence interval is equal to the probability
that the random interval, prior to sampling, will contain the estimated parameter.

One way to find a confidence interval for a parameter 8 is to acquire a pivotal
statistic, a statistic that is a function of the sample values and the single parameter 6.
Because many statistics are approximately normally distributed when the sample
size n is large (central limit theorem), we can construct confidence intervals for their
expected values using the standard normal random variable z as a pivotal statistic.

To illustrate, let 6 be a statistic with a sampling distribution that is approximately
normally distributed for large samples with mean E(f) = 6 and standard error .
Then,

is a standard normal random variable. Since z is also a function of only the sample
statistic 6 and the parameter 8, we will use it as a pivotal statistic. To derive a confidence
interval for 6, we first make a probability statement about the pivotal statistic. To do
this, we locate values z,/2 and —z,4,2 that place a probability of @/2 in each tail
of the z distribution (see Figure 8.5), i.e., P(z > z4,2) = a/2. It can be seen from
Figure 8.5 that

Pl—zqpn=z=z,0)=1—-«a

fiz)

—Zan “af2
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FIGURE 8.6 »
The sampling distribution of 6 for
large samples

Substituting the expression for z into the probability statement and using some
simple algebraic operations on the inequality, we obtain

P—zapSz=szyn) = P(*:aﬂ = 9—;5—9 = za/z)
= P(—24/206 < 0 — 0 < z,/,0%)
=P(—0 - 2,205 = —0= — + 2,/20%)
=P - 2,206 = 0= 0+ z,p09) = 1 — &
Therefore, the probability that the interval formed by
LCL = 6 — z,/205 to UCL = 8 + z,,,0%

will enclose 8 is equal to (1 — a). The quantities LCL and UCL are called the lower
and upper confidence limits, respectively, for the confidence interval. The confidence
coefficient for the interval will be (I — «).

The derivation of a large-sample (I — @)100% confidence interval for 6 is sum-
marized in Theorem 8.2,

Theorem 8.2

--------------------------------

Let 6 be normally distributed for large samples with E(f) = 6 and standard
error . Then a (1 — @)100% confidence interval for 8 is

.~ Za205 to 0+ 240204

The large-sample confidence interval can also be acquired intuitively by examining
Figure 8.6. The z value corresponding to an area A = .475—i.e., the z value that
places area a/2 = .025 in the upper tail of the z distribution—is (see Table 4 of
Appendix II) z.02s = 1.96. Therefore, the probability that 8 will lie within 1.960
of 0 is .95. You can see from Figure 8.6 that whenever 6 falls within the interval
6 + 1.960, then the interval 6 = 1.960 will enclose 6. Therefore, 6 = 1.960
yields a 95% confidence interval for 6.

fié)

Approximately .95
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We may encounter one slight difficulty when we attempt to apply this confidence
interval in practice. It is often the case that o is a function of the parameter 6 that
we are attempting to estimate. However, when the sample size n is large (which we
have assumed throughout the derivation), we can substitute the estimate 6 for the
parameter € to obtain an approximate value for oy.

In Example 8.6 we will use a pivotal statistic to find a confidence interval for
when the sample size is small, say, n < 30.

Let 7 and s? be the sample mean and variance based on a random sample of n
observations (n < 30) from a normal distribution with mean w and variance 2. Find
a 95% confidence interval for w.

A pivotal statistic for u can be constructed using the ¢ statistic of Chapter 7. By
Definition 7.5,

z
Vixé/»

where z and x? are independent random variables and y? is based on v degrees of
freedom. We know that ¥ is normally distributed and that

f=

.= ¥
a/NVn
is a standard normal random variable. From Theorem 7.4, it follows that
(n — 1)s? _ 2
ol

is a chi-square random variable with » = (n — 1) degrees of freedom. We state (without
proof ) that 7 and s? are independent when they are based on a random sample selected
from a normal distribution. Therefore, z and x* will be independent random variables.
Substituting the expressions for z and x? into the formula for ¢, we obtain

y — W
L E o/Vn _Y T M
_V zfy_ - Z S{\/E
) Jﬁ?&/m‘”

t

Note that the pivotal statistic is a function only of w and the sample statistics y
and s2,

The next step in finding a confidence interval for w is to make a probability
statement about the pivotal statistic t. We will select two values of ¢, call them t,,2
and —t,/z, that correspond to probabilities of @/2 in the upper and lower tails,
respectively, of the t distribution (see Figure 8.7). From Figure 8.7, it can be seen
that

Pty St=ty)=1-a
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FIGURE 8.7 » )
The location of t, /; and —t, 1y
for a Student’s ¢ distribution

IR

a2

Substituting the expression for ¢ into the probability statement, we obtain

y — u
P—tap = t = o) = P(_fa/z Em = !a;z) =1-a

Multiplying the inequality within the brackets by s/Vn, we obtain

T

Subtracting y from each part of the inequality yields

o5 - o) o] 1

Finally, we multiply each term of the inequality by (—1), thereby reversing the ine-
quality signs. The result is

P{i = fa{‘?(%) spu=y+ 53/2(%)] =]l-a

Therefore, a (I — a)100% confidence interval for w when n is small is

_ s s
— (—) . (u-)
y a/? A\ y /2 i

sessane R R R

We now apply the confidence interval derived in Example 8.6 to a practical
situation.
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Solution

8.4/ Finding Interval Estimators: The Pivotal Method 357

Chemical plants must be regulated to prevent the poisoning of fish in ncarby rivers
or streams. One of the measurements made on fish to evaluate the potential toxicity
of chemicals is the length of mature fish. If a river or stream is inhabited by an
abundance of mature fish with lengths less than the average length of maturc members
of their species, we have strong evidence that the river is being chemically contami-
nated. A chemical plant, under investigation for chlorine poisoning of a stream, has
hired a biologist to estimate the mean length of fathead minnows (the main inhabitants
of the stream) exposed to 20 micrograms of chlorine per liter of water. The biologist
captures 20 newborn fathead minnows from the stream and rears them in aquaria with
this chlorine concentration. The length of each (in millimeters) is measured after a
10-week maturation period, with the following results:

Construct a 95% confidence interval for the true mean length of fathead minnows
reared in chlorine-contaminated water. Assume that the lengths of the fathead minnows
are approximately normal.

Recall that the sampling distribution of the ¢ statistic depends on its degrees of free-
dom, v. The tabulated values t,, such that P(t = t,) = a, are given in Table 7 of
Appendix I, for values of v from | to 29, as well as the value of t, when v becomes
infinitely large. An abbreviated version of this table is shown in Table 8.1 on page
358. For example, suppose a ¢ statistic is based on v = 4 degrees of freedom (df ) and
we want to find the value ¢, that places probability a = .025 in the upper tail of the
t distribution. The appropriate value, shaded in Table 8.1, is t 925 = 2.776.

For our example, n = 20 and ¢ will possess (n — 1) = 19 degrecs of frecdom.
Since we want to find a 95% = (1 — @)100% confidence interval for the mean
length w of fathead minnows, a = .05; we must find the value ¢ 35 corresponding
toa = .025 and 19 degrees of freedom. This value is given in Table 7 of Appendix Il
as ty/2 = tozs = 2.093. Then the confidence interval is

s 2.60

y = ¢ — | = 27.5 = 2.093 —)

! 'w(\/ﬁ) (\/20
=27.5 % 1.22 or (26.28, 28.72)

Since the confidence coefficient is .95, we say that we are 95% confident that the
interval from 26.28 to 28.72 millimeters contains the true mean length, u, of fathead
minnows reared in chlorine-contaminated water.
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Area=a

0 T

TABLE 8.1 An Abbreviated Version of Table 7 of Appendix Il

Degrees
of Freedom tioo tas tos taio Loos
| 3.078 6.314 12.706 31.821 63.657
1 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.54] 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
1 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
I 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.053
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2131 2.602 2.947

To demonstrate the interpretation of a confidence interval, we programmed a
computer to draw 1,000 samples of size n = 10 from a normal distribution with mean
w = 10 and variance o2 = 1. A 95% confidence interval for w was computed for
each of the 1,000 samples. These are shown in Table 8.2. Only the 50 intervals that
are starred (*) fail to enclose the mean w = 10. The proportion that enclose u, .95,
is exactly equal to the confidence coefficient. This explains why we are reasonably
confdent that the interval calculated in Example 8.7 (26.28, 28.72), encloses the true
value of w. If we were to employ our interval estimator on repeated occasions, 95% of
the intervals constructed would contain p.
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TABLE 82 One Thousand 95% Confidence Intervals for the Mean of a Normal Distribution (= 10, g = 1). [Note: Starred (*)
intervals fail to include . = 10]

SAMPLE LCL ucL SAMPLE LCL ucL SAMPLE LCL ucL SAMPLE LCL ucL SAMPLE LCL ucL
1 ( 9.574 , 11.183) 2 (9.370 , 11.137) 3 ( 9.425 , 10.403) 4 ( 9.356 , 10.777) 5 ( 9.956 , 11.455)
6 ( 8.807 , 10.589) 7 ( 9.188 , 10.588) 8 (9.798 , 11.390) 9 (10.057 , 11.561)* 10 ( 9.793 , 11.009)
11 ( 9.180 , 10.848) 12 ( 9.735 , 10.399) 13 ( 9.518 , 10.785) 14 ( 9.872 , 11.003) 15 ( 9.028 , 10.907)
16 ( 9.414 , 11.107) 17 ( 9.603 , 10.816) 18 ( 9.469 , 10.896) 19 ( 8.758 , 9.889)* 20 ( 9.617 , 11.285)
21 ( 8.926 , 10.389) 22 ( 9.710 , 10.512) 23 ( 8.B47 , 10.667) 26 { 9.148 |, 10.675) 25 ( 9.722 , 11.017)
26 ( 9.575 , 11.221) 27 ( 8.820 , 10.664) 28 ( 9.222 , 11.015) 29 ( 9.525 , 10.117) 30 ( 9.036 , 10.802)
31 ( B.758 , 10.151) 32 ( 9.043 , 10.650) 33 ( 9.819 , 10.958) 34 ( 9.085 , 10.610) 35 ( 8.847 , 10.692)
36 ( 9.590 , 10.551) 37 ( 9.826 , 11.753) 38 ( 9.506 , 10.615) 39 ( 9.322 , 10.401) 40 ( 8.892 , 10.239)
41 ( 9.519 , 10.812) 42 ( 9.023 , 10.640) 43 ( 9.560 , 10.651) 44 ( B.B85 , 10.327) 45 ( 9.901 , 11.353)
46 ( 9.348 |, 10.324) 47 ( 9.188 |, 10.766) 48 ( 9.173 , 10.563) 49 ( 9.039 , 10.567) 50 ( 9.234 , 10.864)
51 ( B.799 , 10.503) 52 ( 9.870 , 11.382) 53 ( 8.706 , 10.830) S6 ( 9.6%0 , 11.002) 55 ( 9.340 , 10.864)
56 ( 9.244 , 10.666) 57 ( 9.910 , 11.487) 58 ( B.690 , 10.111) 59 ( 9.149 , 10.661) 60 ( 9.320 , 10.740)
61 ( 9.052 , 11.085) 62 ( 9.593 , 10.985) 63 ( 9.103 , 10.768) 64 ( 9.429 , 10.023) 65 ( 9.275 , 10.032)
66 ( 9.139 , 11.033) 67 ( 9.621 , 10.916) 68 ( 9.464 , 10.571) 69 ( 9.717 , 10.938) 70 ( 8.895 , 10.638)
71 ( 9.496 , 11.260) 72 ( 9.124 , 10.437) 73 ( 9.416 , 10.718) 74 ( B.516 , 10.296) 75 ( 8.991 , 10.290)
76 ( 9.225 , 10.554) 77 ( 8.641 , 10.451) 78 ( 9.598 , 11.359) 79 ( 9.443 , 11.217) 80 ( 9.384 , 11.055)
81 ( 9.088 , 10.592) 82 ( 9.777 , 11.142) 83 ( 9.160 , 10.683) 84 ( B8.969 , 10.122) 85 ( 9.275 , 10.372)
86 ( 9.676 , 10.772) 87 ( 9.075 , 10.507) 88 ( 8.425 , 10.059) 89 ( 9.382 , 10.761) 90 ( 8.646 , 10.648)
91 ( 9.414 |, 10.410) 92 ( 9.661 , 10.909) 93 ( 9.240 , 10.679) 94 ( 9.138 , 10.469) 95 ( 9.497 , 10.824)
96 ( 8.871 , 10.627) 97 { 9.402 , 10.923) 98 ( 9.241 , 10.695) 99 ( 8.832 , 10.790) 100 ( 9.546 , 10.472)

101 ( 9.604 , 10.705) 102 ( 9.315 , 10.519) 103 ( 9.306 , 10.572) 104 ( 9.129 , 10.750) 105 ( 9.566 , 10.658)

106 ( 9.490 , 10.558) 107 ( 9.052 , 10.387) 108 ( 9.464 , 10.969) 109 ( 9.899 , 10.919) 110 ( 9.045 , 10.284)

111 ( 9.112 , 10.341) 112 ( 9.593 , 10.836) 113 ( 8.726 , 10.515) 114 ( 9.511 , 10.916) 115 ( 9.535 , 10.938)

116 ( 9.526 , 10.690) 117 ( 8.848 , 10.393) 118 ( 8.765 , 10.126) 119 ( 9.151 , 10.696) 120 ( 8.764 , 10.382)

121 ( 9.598 , 10.578) 122 ( 8.988 , 10.286) 123 ( 9.435 , 10.890) 124 ( B.833 , 10.335) 125 ( 9.644 , 10.744)

126 ( 9.589 , 10.533) 127 ( 9.284 , 10.174) 128 ( 9.110 , 10.522) 129 ( 9.502 , 10.728) 130  9.144 , 11.044)

131 ( 9.344 , 10.851) 132 ( 9.915 , 11.372) 133 ( 9.252 , 10.399) 134 ( 9.833 , 11.188) 135 ( 9.268 , 10.219)

136 ( 9.681 , 10.804) 137 ( 9.082 , 10.719) 138 ( 9.374 , 10.198) 139 ( 9.303 , 10.781) 140 ( 9,046 , 10.329)

141 ( 9.191 , 10.640) 12 (9.777 , 10.812) 143 ( 8.622 , 10.513) 144 ( 9.175 , 10.931) 145 ( 9.227 , 10.863)

146 ( 9.167 , 10.455) 147 ( 9.323 , 11.067) 148 ( 9.148 , 10.282) 149 ( 9.169 , 10.360) 150 ( 9.635 , 10.989)

151 ( 9.877 , 10.723) 152 ( 8.950 , 10.546) 153 ( 8.911 , 9.986)% 154 ( 9.039 , 10.502) 155 ( 9.765 , 10.749)

156 ( 9.354 , 10.900) 157 ( 8.566 , 9.779)* 158 ( 9.218 , 10.508) 159 ( 9.312 , 10.971) 160 ( 9.262 , 10.390)

161 ( 9.584 , 10.838) 162 ( 9.621 , 11.306) 163 ( 9.114 , 10.142) 164 ( B.680 , 10.564) 165 ( 9.249 , 10.030)

166 ( 9.518 , 10.579) 167 ( 9.740 , 10.844) 168 ( 9.183 , 10.795) 169 ( 8.686 , 10.580) 170 { 9.442 , 10.740)

171 ( 9.129 , 11.088) 172 ( 9.542 , 11.062) 173 ( 9.200 , 10.730) 174 ( 9.485 , 11.251) 175 ( 8.640 , 10.463)

176 ( 9.382 , 10.690) 177 ( 9.241 , 10.585) 178 ( 9.495 , 10.810) 179 ( 9.859 , 11.136) 180 ( 9.356 , 10.975)

181 ( 9.385 , 10.516) 182 ( B.884 , 10.759) 183 ( 9.011 , 10.829) 184 ( 9.401 , 10.731) 185 ( 8.637 , 10.468)

186 ( 8.769 , 10.727) 187 ( 9.925 , 11.065) 188 ( 9.427 , 11.199) 189 ( 2.550 , 11.040) 190 ( 9.729 , 10.887)

191 ( 9.157 , 10.439) 192 ( 9.277 , 10.485) 193 ( 9.691 , 10.611) 194 ( 9.358 , 10.997) 195 ( 9.229 , 10.976)

196 ( 9.014 , 11.275) 197 ( 8.475 , 10.120) 198 ( 9.390 , 10.469) 199 ( 9.485 , 11.083) 200 ( 9.238 , 10.721)

20t ( 9.153 , 10.465) 202 ( 9.121 , 10.960) 203 ( 9.596 , 10.440) 204 ( 9.595 , 11.125) 205 ( 9.136 , 10.383)

206 ( 8.930 , 10.040) 207 ( 9.045 , 10.714) 208 ( 8.894 , 10.830) 209 ( 9.029 , 10.821) 210 ( 9.320 , 10.355)

211 ( 9.380 , 10.707) 212 ( 9.283 , 10.236) 213 ( 9.280 , 10.681) 214 ( 8.606 , 10.343) 215 ( 9.585 , 11.183)

216 ( 8.958 , 9.899)% 217 ( 9.511 , 10.891) 218 ( 9.733 , 10.805) 219 ( 9.037 , 10.317) 220 ( 9.7717 , 10.910)

221 ( 9.312 , 10.209) 222 ( 9.349 , 10.646) 223 ( 9.252 , 10.943) 224 ( 9.682 , 11.876) 225 ( 8.773 , 10.697)

226 ( 9.202 , 10.266) 227 ( 9.756 , 10.685) 228 ( 9.544 , 10.478) 229 ( 9.523 , 10.876) 230 ( 9.454 , 10.8686)

231 ( 9.316 , 10.725) 232 ( 9.534 , 11.093) 233 ( 9.455 , 10.602) 234 ( 8.962 , 10.305) 235 ( 9.374 , 10.571)

236 ( 9.138 , 10.986) 237 ( 9.778 , 11.217) 238 ( 9.597 , 11.095) 239 ( 8.985 , 10.318) 240 ( 8.915 , 10.549)

241 ( 9.830 , 10.732) 252 ( 9.810 , 10.923) 243 ( 8.951 , 10.315) 264 (10.451 , 11.345)* 245 ( 9.170 , 10.339)

246 ( 9.020 , 10.123) 247 ( 9.296 , 10.288) 248 ( 9.510 , 10.359) 249 ( 9. 031 , 10.354) 250 ( 9.428 , 11.241)

251 ( 9.445 , 10.761) 252 ( 9.697 , 10.937) 253 ( 9.494 , 11.246) 254 ( 9.2 , 10.861) 255 ( 8.90& , 10.378)

256 ( 9.129 , 10.713) 257 ( 9.383 , 10.142) 258 ( 9.879 , 10.792) 259 ( 8. 852 , 10.912) 260 ( 9.725 , 10.517)

261 ( 9.626 , 11.264) 262 ( 8.700 , 10.547) 263 ( 8.911 , 10.488) 264 ( 9.289 , 10.694) 265 ( 9.229 , 10.756)

266 ( 9.188 , 10.753) 267 ( 9.296 , 11.143) 268 ( 9.225 , 11.391) 269 ( 9.005 , 10.153) 270 ( 9.196 , 10.505)

271 ( 9.208 , 10.526) 272 ( 8.902 , 10.389) 273 ( 8.742 , 11.019) 274 ( 9.069 , 10.410) 275 ( 9.501 , 10.632)

276 ( 9.324 , 10.635) 277 ( 9.488 |, 11.056) 278 ( 9.277 , 10.547) 279 ( 9.408 , 10.679) 280 ( 9.329 , 10.839)

281 ( B.636 , 9.820)* 282 ( 9.646 , 10.639) 283 ( 9.403 |, 10.742) 284 ( 9.216 , 10.454) 285 ( 8.598 , 9.849)%

286 ( 9.266 , 11.348) 287 ( 9.208 , 10.449) 288 ( 9.113 , 10.901) 289 ( B.934 , 10.334) 290 ( 9.306 , 10.454)

291 ( 9.573 , 11.202) 292 ( 9.063 , 10.685) 293 (10.229 , 11.040)% 294 ( 9.254 , 11.018) 295 ( 9.137 , 10.709)

296 ( 8.815 , 10.211) 297 ( 9.007 , 10.592) 298 ( B.787 , 10.315) 299 ( 9.260 , 10.962) 300 ( 9.319 , 10.876)

301 ( 8.995 , 10.614) 302 ( 9.104 , 10.095) 303 ( 9.306 , 10.346) 304 ( 9.239 , 10.968) 305 ( 9.113 , 9.934)*

306 ( 9.390 , 10.522) 307 ( 9.639 , 10.848) 308 ( 9.209 , 10.601) 309 ( 8.866 , 11.200) 310 ( 9.597 , 11.396)

311 ( 8.391 , 10.287) 312 ( 8.964 , 10.791) 33 ( 9.645 , 10.769) 314 ( 9.373 , 10.817) 315 ( 9.420 , 10.751)

316 ( 9.312 , 11.081) 317 ( 8.901 , 10.141) 318 ( 9.730 , 10.525) 319 ( 9.636 , 11.284) 320 ( 9.291 , 10.781)

321 ( 9.723 , 10.775) 322 ( 9.249 , 10.688) 323 ( 9.113 |, 10.160) 324 ( 9.109 , 10.434) 325 ( 9.329 , 11.007)

326 ( B8.959 , 10.226) 327 ( 9.664 , 10.516) 328 ( 9.856 , 11.101) 329 ( 9.345 , 10.956) 330 ( 8.908 , 10.843)

331 ( 9.693 , 11.499) 332 ( 9.423 , 11.238) 333 ( 8.978 , 10.768) 334 ( 9.534 , 11.050) 335 ( 9.576 , 11.082)

336 ( 9.371 , 10.638) 337 ( 8.950 , 11.271) 338 ( 9.276 , 10.557) 339 ( 9.310 , 10.619) 340 ( 9.073 , 10.076)

341 ( 9.28) , 10.795) 342 ( 9.744 , 10.505) 343 ( 9.542 , 10.813) 344 ( 8.913 , 10.316) 345 ( 9.6414 , 11.246)

346 ( 9.661 , 10.722) 347 ( 8.724 , 10.361) 48 { 9.224 |, 11.179) 349 ( 9.354 |, 10.569) 350 ( 9.318 , 10.665)

351 ( 9.174 , 10.895) 352 ( 9.615 , 11.003) 353 ( 9.121 , 10.696) 356 ( 9.517 , 10.884) 355 ( 8.730 , 10.328)

356 ( B8.942 , 10.684) 357 ( 8.890 , 10.399) 358 ( 9.640 , 11.146) 359 ( 9.349 , 11.253) 360 ( 9.522 , 10.452)

361 ( 9.136 , 10.555) 362 ( 8.923 , 10.764) 363 ( 9.737 , 11.513) 364 ( 9.159 , 10.257) 365 (9.736 , 11.238)

366 ( 9.156 , 10.699) 367 ( 9.515 , 11.037) 368 ( 9.175 , 10.724) 369 ( 9.475 , 10.408) 370 ( 9.108 , 10.933)

371 ( 9.135 |, 10.924) 372 ( 9.144 , 10.631) 373 ( 8.854 , 10.319) 374 ( 8.680 , 10.513) 375 ( 9.529 , 10.391)

(continued)
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TABLE 82 (continued)

SAMPLE LCL ucL SAMPLE LCL ucL SAMPLE LCL ucL SAMPLE LCL ucr SAMPLE LCL ucL
376 ( 9.886 , 11.506) 377 ( 9.633 , 10.961) 378 ( 9.252 , 11.411) 379 ( 9.218 , 10.469) 380 ( 8.648 , 10.653)
381 { 9.193 , 10.900) 382 ( 9.331 , 10.868) 383 ( 9.072 , 10.634) 384 ( 8.974 , 10.078) 385 ( 9.170 , 10.652)
386 ( 9.063 , 10.490) 387 ( 9.047 , 10.484) 388 ( 9.202 , 10.194) 389 ( 9.475 , 10.655) 390 ( 9.553 , 10.720)
391 ( 9.396 , 11.115) 392 ( 9.236 , 10.644) 393 ( 8.785 , 10.183) 394 ( 9.145 , 10.765) 395 ( 9.340 , 11.055)
396 ( 9.123 , 10.534) 397 ( 9.828 , 11.058) 398 ( 9.386 , 10.229) 399 ( 9.234 , 10.500) 400 ( 9.072 , 10.405) i
401 ( 9.680 , 10.752) 402 ( 9.487 , 10.849) 403 ( 9.539 , 11.137) 4o4 ( 9.795 , 11.293) 405 ( 9.566 , 10.792)
406 ( 8.983 , 10.842) 407 ( 9.410 , 10.964) 408 ( 9.892 , 10.949) 409 ( 9.097 , 11.117) 410 ( 9.229 , 11.201)
411 ( 9.451 , 10.924) 612 { 9.530 , 10.756) 413 ( 9.328 , 11.021) 414 ( 9.512 , 10.590) 415 ( 9.027 , 10.805)
416 ( 8.982 , 10.591) 417 ( 9.059 , 10/856) 418 ( 8.971 , 10.620) 419 ( 9.236 , 10.456) 420 ( 9.085 , 10.768)
421 ( 8.900 , 10.358) 422 ( 9.604 , 11.044) 423 (10.265 , 11.443)% 424 ( 9.101 , 10.972) 425 ( 9.229 , 10.903)
426 ( 9.092 , 10.530) 427 ( 8.971 , 10.457) 428 (10,116 , 11.071)* 429 ( 9.57% , 11.107) 430 ( 9.066 , 10.596)
431 ( 8.892 , 10.710) 432 ( 9.684 , 11.258) 433 ( B.919 , 10.350) 434 ( 9.226 , 11.093) 435 ( 9.012 , 10.969)
436 ( B.582 , 10.107) 437 ( 9.106 , 9.925)% 438 ( 8.820 , 10.324) 439 ( 9.031 , 10.282) 440 ( 9.206 , 10.572)
441 ( 9.473 , 10.449) 462 ( 9.075 , 10.210) 443 ( 9.500 , 11.252) 444 ( 9.513 , 10.446) 445 ( B.878 , 10.616)
446 ( B.B18 , 10.675) 447 ( 9.399 , 11.045) 448 ( 8.961 , 10.221) 449 ( 9.866 , 10.829) 450 ( 9.655 , 10.463)
451 ( 9.835 , 10.905) 452 ( 9.397 , 10.600) 453 ( 9.073 , 10.202) 454 ( 8.961 , 10.150) 455 ( 9.322 , 10.270)
456 ( 9.596 , 10.959) 457 ( 9.479 , 11.106) 458 ( 9.978 , 11.042) 459 ( 9.006 , 10.141) 460 ( 8.759 , 10.644)
461 ( 9.574 , 11.400) 462 ( 9.186 , 10.611) 463 ( 9.646 , 11.112) 464 ( 9.637 , 10.857) 465 ( 8.907 , 10.885)
466 ( 9.211 , 10.779) 467 ( 9.169 , 10.604) 468 ( 9.094 , 10.083) 469 ( 9.587 , 10.604) 470 ( 9.661 , 11.289)
471 ( 9.798 , 11.143) 472 ( 9.358 , 11.244) 473 ( B.4B5 , 10.234) 474 ( B.755 , 10.473) 475 ( 9.358 , 11.257)
476 ( 9.325 , 10.594) 477 ( 8.857 , 10.668) 478 ( 9.487 , 10.684) 479 ( 9.044 , 10.299) 480 ( 9.382 , 10.697)
481 ( 9.298 , 10.465) 482 ( 9.594 , 10.939) 483 ( 9.297 , 10.780) 484 ( 8.896 , 10.333) 485 ( 9.074 , 9.904)%
486 ( 9.284 , 10.777) 487 ( 9.125 , 10.438) 488 ( 9.081 , 10.6442) 489 ( 9.242 , 10.483) 490 ( 9.420 , 10.687)
491 ( 9.284 , 10.471) 492 ( 9.462 |, 10.845) 493 ( 9.274 , 10.676) 494 ( 8.961 , 10.458) 495 ( 9.796 , 11.205)
496 ( 9.080 , 10.854) 497 ( 9.399 , 10.606) 498 ( 8.593 , 10.554) 499 ( 9.527 , 10.925) 500 ( 9.340 , 10.413)
501 ( 8.907 , 10.531) 502 ( 9.243 , 10.401) 503 ( 9.270 , 10.787) 504 ( 9.331 , 11.183) 505 ( 9.200 , 10.602)
506 ( 9.422 , 10.835) 507 ( 9.279 , 10.687) 508 ( B.BB4 , 10.683) 509 ( 9.190 , 10.255) 510 ( 8.733 , 10.404)
511 ( 9.441 , 10.889) 512 ( 9.070 , 10.392) 513 ( 8.946 , 9.772)* 514 ( 8.799 , 10.236) 515 ( 9.070 , 10.830)
516 ( 8.984 , 10.365) 517 ( 9.183 , 10.387) 518 ( 9.236 , 10.863) 519 ( 9.826 , 11.197) 520 ( 8.906 , 10.672)
521 ( 9.755 , 10.996) 522 ( 9.400 , 10.880) 523 ( 9.374 , 11.276) 524 [ 9.288 , 11,211) 525 ( 9.412 , 11.000)
526 ( 9.028 , 10.300) 527 ( B.647 , 10.285) 528 ( 9.190 , 10.072) 529 ( 9.238 , 10.465) 530 (10.003 , 11.190)*
531 ( 9.644 , 10.974) 532 ( 9.679 , 10.738) 533 ( 8.559 , 10.014) 534 ( 9.895 , 11.131) 535 ( 9.653 , 11.007)
536 ( 9.769 , 11.144) 537 ( 8.837 , 10.136) 538 ( 9.939 , 10.836) 539 ( 9.553 , 10.853) 540 ( 9.351 , 10.552)
541 ( 9.532 , 11.320) 542 ( 9.262 , 10.728) 543 ( B.B64 , 11.341) 544 ( 9.052 , 10.482) 545 ( 9.551 , 10.610)
546 ( 9.564 , 11.060) 547 ( 9.699 , 10.912) 548 ( B.915 , 10.042) 549 ( 8.801 , 10.648) 550 ( 9.111 , 9.913)%
551 ( 9.811 , 11.558) 552 ( 8.593 , 10.128) 553 ( 8.612 , 9.854)% 554 ( 9.555 , 10.986) 555 ( 9.567 , 10.666)
556 ( 9.399 , 10.979) 557 ( 9.168 , 11.195) 558 ( 9.270 , 11.456) 559 ( 9.197 , 10.554) 560 ( 8.985 , 10.492)
561 ( 9.067 , 10.622) 562 ( B.B43 , 10.484) 563 ( 9.346 , 11.128) 564 ( 8.692 , 10.475) 565 ( 9.413 , 10.583)
566 ( 9.416 , 10.678) 567 ( 9.451 , 11.099) 568 ( 9.339 , 10.862) 569 ( 8.933 , 10.698) 570 ( 9.212 , 10.368)
571 ( B.894 , 10.438) 572 ( 9.161 , 10.964) 573 ( 9.841 , 11.306) 574 ( 8.990 , 10.541) 575 ( 8.530 , 10.038)
576 { 9.687 , 11.005) 577 ( 9.131 , 10.759) 578 ( 9.167 , 10.734) 579 ( 9.301 , 10.507) S80 ( 9.379 , 10.872)
581 ( 9.298 , 10.917) 582 ( 8.407 , 10.030) 583 ( 9.080 , 10.523) 584 ( 9.043 , 10.509) 585 ( 9.636 , 11.032)
586 ( 9.562 , 10.527) 587 ( 9.224 , 10.279) 588 ( 9.439 , 10.305) 589 ( 9.320 , 10.482) 590 ( 9.363 , 11.047)
591 ( 9.136 , 10.521) 582 ( 9.059 , 10.320) 593 ( 8.686 , 10.278) 594 ( 9.280 , 10.267) 595 ( 9.251 , 10.964)
596 ( B.693 , 10.114) 507 ( 8.712 , 10.394) 598 ( 9.340 , 10.710) 599 ( 8.244 , 9.684)% 600 ( 9.583 , 10.992)
601 ( 9.232 , 10.346) 602 ( 9.014 , 10.458) 603 ( 9.861 , 11.485) 604 ( 9.139 , 11.097) 605 ( 9.060 , 10.269)
606 ( 9.712 , 11.648) 607 ( 8.963 , 10.055) 608 ( 8.991 , 10.548) 609 ( 9.540 , 10.769) 610 ( 9.8B22 , 11.243)
611 ( 9.338 , 10.357) 612 ( B.632 , 10.201) 613 ( 9.371 , 10.898) 614 ( 9.155 , 10.582) 615 ( 8.806 , 10.919)
616 ( 9.182 , 10.488) 617 ( 9.403 , 10.755) 618 ( 9.199 , 10.527) 619 ( 9.016 , 10.844) 620 ( 9.321 , 11.077)
621 ( 9.475 , 10.651) 622 ( 9.481 , 10.701) 623 ( 9.661 , 10.590) 624 ( 9.358 , 10.812) 625 ( 9.046 , 10.679)
626 ( 9.948 , 10.907) 627 ( B.649 , 9.996)% 628 ( 9.201 , 10.332) 629 ( 9.195 , 10.908) 630 ( 9.460 , 10.435)
631 ( 9.222 , 10.772) 632 ( 9.757 , 10.880) 633 ( 9.926 , 10.885) 636 ( 9.027 , 10.425) 635 ( 8.436 , 10.011)
636 ( 9.160 , 10.474) 637 ( 9.723 , 11.075) 638 ( 8.597 , 10.879) 639 (10.024 , 10.931)* 640 ( 8.475 , 10.397)
641 ( 8.712 , 10.702) 642 (10.038 , 11.678)% 643 ( 9.706 , 10.962) 644 ( 9.028 , 10.275) 645 ( 9.395 , 10.414)
646 ( 9.283 , 10.641) 647 ( 8.628 , 10.107) 648 ( 9.456 , 10.820) 649 ( 9.999 , 11.336) 650 ( 8.587 , 10.063)
651 ( 9.616 , 11.090) 652 ( 9.403 , 10.537) 653 (10.263 , 11.277)% 654 ( 9.325 , 10.717) 655 ( 9.795 , 10.737)
656 ( 9.669 , 11.778) 657 ( 9.739 , 10.636) 658 ( 9.285 , 10.965) 659 ( 9.210 , 10.552) 660 ( 9.384 , 10.962)
661 ( 9.041 , 10.347) 662 ( 9.380 , 10.846) 663 { 9.950 , 10.597) 664 ( 9.602 , 10.584) 665 ( 9.092 , 10.439)
666 ( 9.475 , 10.844) 667 ( 9.192 , 10.844) 668 (10.134 , 11.385)% 669 ( 8.523 , 10.431) 670 ( 9.657 , 11.222)
671 ( 8.710 , 10.470) 672 ( 8.854 , 10.039) 673 ( B8.833 , 10.174) 674 ( 9.500 , 10.956) 675 ( 9.546 , 10.782)
676 [ 9.115 , 10.545) 677 ( 9.005 , 10.434) 678 ( 9.783 , 11.217) 679 ( 9.384 , 10.647) 680 ( 9.783 , 11.586)
681 ( 9.160 , 10.040) 682 ( 8.822 , 10.238) 683 ( 9.374 , 11.064) 684 ( B.8B95 , 10.274) 685 ( 8.986 , 10.B54)
686 ( 8.665 , 10.523) 687 ( 8.630 , 10.270) 688 { 9.914 , 10.898) 689 (" 8.787 , 10.323) 690 ( 9.483 , 10.850)
691 ( 9.369 , 10.797) 692 ( 9.271 , 10.776) 693 ( 8.715 , 9.B46)* 694 ( 8.764 , 10.481) 695 ( 8.934 , 10.053)
696 ( 9.280 , 10.143) 697 ( 8.354 , 9.985)% 698 ( 9.599 , 11.275) 699 ( B.488 |, 10.224) 700 ( 9.278 , 10.213)
701 ( 9.247 , 10.552) 702 ( 9.043 , 10.327) 703 ( 9.578 , 10.914) 704 ( 8.815 , 10.387) 705 ( 8.786 , 9.901)%
706 ( 9.029 , 10.654) 707 ( 9.731 , 10.545) 708 ( 9.143 , 10.562) 709 ( 9.254 , 10.501) 710 ( 9.045 , 10.718)
711 ( 9.552 , 10.664) 712 (10.039 , 11.511)* 713 ( 9.670 , 10.482) T14 ( 9.491 , 10.669) 715 ( 9.589 , 10.869)
716 ( 8.900 , 10.986) 717 ( 9.557 , 10.872) 718 { B.B45 , 10.578) 719 ( 9.316 , 11.041) 720 ( 9.420 , 10.645)
721 ( 9.839 , 10.896) 722 ( 9.264 , 10.440) 723 (10.020 , 11.239)* 724 ( 9.235 , 11.200) 725 ( 9.194 , 11.026}
726 ( 9.497 , 10.654) 727 ( 9.212 , 10.904) 728 ( 9.328 , 10.619) 729 ( 9.563 , 10.672) 730 ( 9.646 , 11.070)
731 ( 9.082 , 10.194) 732 ( 9.171 , 10.781) 733 ( 9.016 , 10.914) 734 ( 8.944 , 10.604) 735 ( 9.028 , 10.664)
736 ( 9.074 , 9.924)% 737 ( 9.050 , 10.604) 738 ( 8.641 , 10.155) 739 (10.052 , 11.660)% 740 ( 9.806 , 10.831)
741 ( 9.051 , 10.307) 742 ( 9.180 , 10.632) 743 { 9.181 , 10.306) Tah ( 9.751 , 10.867) T45 ( 9.162 , 10.229)
746 ( 9.088 , 10.658) 747 ( 9.184 , 9.982)% 748 ( B.697 , 10.393) 749 ( 9.292 , 10.612) 750 ( 9.331 , 10.615)

{continued)
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TABLE 8.2  (continued)

SAMPLE LCL ucL SAMPLE LCL ucl. SAMPLE  LCL ucL SAMPLE LCL ucL SAMPLE LCL ucL

751 ( 9.138 , 10.361) 752 ( 9.604 , 11.201) 753 ( 8,921 , 10.326) 754 ( 8.943 , 10.219) 755 ( 9.222 , 10.216)
756 ( 9.530 , 10.981) 757 ( 9.248 , 10.720) 758 ( 9.646 , 10.700) 759 ( 8.895 , 10.036) 760 ( 9.618 , 10.742)
761 ( 9.290 , 10.929) 762 ( 9.504 , 10.942) 763 ( 9.053 , 10.474) 764 ( 9.754 , 10.946) 765 ( 9.198 , 10.351)
766 ( 9.146 , 10.468) 767 ( 9.180 , 10.399) 768 ( 9.177 , 10.305) 769 ( 9.130 , 10.580) 770 ( 9.960 , 11.238)
771 ( 8.694 , 10.742) 772 ( 9.463 , 10.594) 773 ( 9.348 , 11.102) 774 ( 9.224 , 10.726) 775 ( 9.229 , 11.217)
176 ( 9.082 , 10.291) 777 ( 9.352 , 10.366) 778 ( 9.604 , 11.415) 779 ( 8.366 , 9.595)% 780 ( 9.622 , 11.160)
781 (10.024 , 11.043)% 782 ( 9.247 , 10.508) 783 (10.053 , 11.078)% 784 ( 8.640 , 10.792) 785 ( 9.278 , 10.767)
786 ( 9.486 , 11.021) 787 ( 9.215 , 10.090) 788 ( 9.647 , 11.227) 789 ( 8.559 , 10.444) 790 ( £.498 , 10.529)
791 ( 9.867 , 10.967) 792 ( 9.095 , 10.364) 793 ( 8.815 , 10.275) 794 ( 8.648 , 10.216) 795 ( 9.859 , 11.008)
796 ( 8.862 , 10.274) 797 ( 9.218 , 10.439) 798 ( 9.299 , 10.668) 799 ( 9.0i% , 10.139) 800 ( 8.873 , 10.581)
801 ( 9.502 , 11.150) 802 ( 9.598 , 11.290) 803 ( 9.843 , 11.204) 804 ( 9.377 , 10.387) 805 ( 9.388 , 10.640)
806 ( B.571 , 9.804)% 807 ( 9.369 , 10.523) 808 ( 8.432 , 10.584) 809 { 9.305 , 10.629) 810 ( 9.263 , 10.718)
811  9.253 , 9.991)% 812 ( 9.060 , 10.301) 813 ( 9.323 , 11.395) 814 ( 9.261 , 10.791) 815 ( 9.655 , 10.995)
816 ( 9.425 , 10.722) 817 ( 9.166 , 10.566) 818 ( 9.511 , 10.630) 819 ( 9.185 , 10.674) 820 ( 9.612 , 10.713)
821 ( 9.795 , 11.330) 822 ( 9.491 , 11.104) 823 ( 9.133 , 10.491) 824 { 9.459 , 10.787) 825 ( 9.197 , 10.451)
826 ( 9.276 , 10.493) 827 ( 9.528 , 10.964) 828 ( 8.961 , 10.897) 829 ( B.814 , 10.037) 830 ( 9.439 , 10.769)
831 ( 9.430 , 10.786) 832 (10.506 , 11.206)% 833 ( 9.033 , 10.450) 834 ( 9.641 , 11.223) 835 ( 9.383 , 10.561)
836 ( 9.046 , 10.512) 837 ( 9.281 , 10.414) 838 ( 8.707 , 10.181) 839 ( 9.870 , 11.157) 840 ( 9.321 , 10.426)
841 ( 9.058 , 10.378) 842 { 9.480 , 11.349) 843 ( 8.897 , 10.717) 844 ( 9.611 , 10.216) 845 ( 8.722 , 9.934)%
846 ( 9.350 , 10.886) 847 ( 9.411 , 10.844) 848 ( 8.984 , 10.566) 849 ( 8.968 , 10.537) 850 ( 9.081 , 10.380)
851 ( 9.054 , 10.647) 852 ( 8.873 , 9.791)% 853 (10.021 , 11.515)% #54 ( 9.554 , 11.099) 855 ( 8.524 , 10.378)
856 ( 8.781 , 10.739) 857 ( 9.385 , 10.910) 858 ( 8.945 | 10.416) 859 ( 9.183 , 10.624) 860 ( 9.462 , 10.607)
861 ( 9.099 , 10.434) 862 ( 9.331 , 10.806) 863 ( 9.771 , 10.995) 864 ( 9.327 , 10.731) 865 ( 8.963 , 10.438)
866 ( 9.259 , 11.270) 867 ( 9.211 , 10.519) R68 ( 9.821 , 11.420) 869 ( 9.335 , 10.513) 870 ( 9.078 , 10.210)
871 (10.080 , 10.769)% 872 ( 9.375 , 10.590) 873 ( 8.535 , 9.890)% 874 ( 9.414 , 10.751) 875 ( 8.877 , 9.994)%
876 ( 9.587 , 10.795) 877 ( 9.121 , 10.960) 878 ( 9.486 , 10.822) 879 (10.293 , 11.456)% 880 ( 9.514 , 10.926)
881 ( 9.058 , 10.909) 882 ( 8.990 , 10.079) 883 ( 9.580 , 11.051) 884 ( 9.185 , 10.505) 885 ( 8.812 , 10.421)
886 ( 9.301 , 10.096) 887 ( 9.194 , 10.273) 888 ( 9.278 , 11.004) 889 ( 8.658 , 10.170) 890 ( 9.367 , 10.074)
891 ( 8.630 , 10.978) 892 ( 9.842 | 11.724) 893 ( 9.504 , 10.998) 894 { 9.287 , 10.866) 895 ( 9.234 , 10.570)
896 ( 9.986 , 10.907) 897 ( 9.758 , 11.048) 898 ( 9.687 , 10.993) 899 ( 9.381 , 10.822) 900 ( 9.518 , 10.493)
901 ( 9.114 , 10.575) 902 ( 8.869 , 10.508) 903 ( 9.363 , 10.595) 904 ( 9.252 , 10.618) 905 ( 9.784 , 10.718)
906 ( 9.147 , 10.241) 907 ( 9.448 , 10.569) 908 ( 9.330 , 10.693) 909 ( 9.096 , 10.499) 910 ( 9.780 , 10.687)
911 ( 9.047 , 10.283) 912 ( 9.036 , 10.381) 913 ( 9.655 , 11.262) 914 ( 9.400 , 9.964)% 915 ( 9.368 , 11.079)
916 ( 9.456 , 10.747) 917 ( 8.768 , 10.250) 918 ( 9.270 , 10.158) 919 ( 9.419 , 10.101) 920 ( 9.159 , 10.773)
921 ( 9.736 , 11.113) 922 ( 9.445 , 10.763) 923 ( 9.423 , 10.674) 924 ( 8.777 , 10.774) 925 ( 9.155 , 10.204)
926 ( 9.087 , 10.368) 927 ( 9.079 , 10.049) 928 ( 9.245 , 10.969) 929 ( 9.096 , 10.402) 930 ( 9.106 , 10.613)
931 ( 9.603 , 10.961) 932 ( 9.511 , 11.157) 933 ( 9.650 , 10.768) 934 ( 9.149 , 10.002) 935 (10.015 , 11.540)%
936 ( 9.676 , 10.788) 937 ( 9.700 , 11.167) 938 ( 9.615 , 11.085) 939 ( 9.555 , 10.694) 940 ( 9.382 , 10.570)
941 ( 8,498 , 9.897)% 942 ( 9.216 , 10.700) 943 ( 9.140 , 10.459) 944 ( 9.543 , 10.540) 945 ( 8.824 , 10.129)
946 ( 9.523 , 10.824) 947 ( 9.147 , 10.406) 948 ( 9.068 , 10.536) 949 ( 9.119 , 10.172) 950 ( 8.709 , 10.638)
951 ( 9.850 , 11.410) 952 ( 9.729 , 10.94D) 953 ( 9.067 , 10.090) 954 ( 9.599 , 11.064) 955 ( 9.753 , 10.920)
956 ( 9.501 , 10.523) 957 ( 9.598 , 10.705) 958 ( 9.220 , 10.626) 959 ( B.391 , 9.950)% 960 ( 9.629 , 10.594)
961 ( 9.105 , 10.574) 962 ( 9,504 , 10.543) 963 ( 9.137 , 10.475) 964 ( 9.303 , 10.910) 965 ( 9.563 , 10.871)
966 ( 9.161 , 10.453) 967 ( 9.487 , 10.752) 968 ( 9.531 , 11.014) 969 ( 8.920 , 10.599) 970 ( 9.058 , 10.440)
971 ( 9.409 , 10.760) 972 ( 8.981 , 10.788) 973 ( 9.097 , 10.186) 974 ( 8.674 , 10.776) 975 ( 9.010 , 10.745)
976 ( 8.714 , 10.521) 977 ( 9.176 , 10.301) 978 ( 9.263 , 10.555) 979 { 8.700 , 10.244) 980 ( 9.334 , 10.959)
981 ( 9.577 , 10.873) 982 ( 9.381 , 10.970) 983 ( 9.462 , 10.826) 984 ( 9.367 , 10.726) 985 ( 8.657 , 10.496)
986 ( 9.436 , 10.970) 987 ( 9.532 , 11.605) 988 ( 9.309 , 10.876) 989 ( 9.536 , 10.799) 990 ( 9.827 , 10.698)
991 ( 8.834 , 9.807)* 992 ( 8.672 , 10.247) 993 ( 8.974 , 10.373) 994 ( 9.169 , 10.891) 995 ( 8.704 , 10.044)
996 ( 9.713 , 10.932) 997 ( 9.169 , 10.769) 998 ( 9.595 , 10.769) 999 ( 9.648 , 10.762) 1000 { 9.029 , 10.684)

Theoretical Interpretation of the Confidence Coefficient (I — «)

If we were to repeatedly collect a sample of size n from the population and
construct a (1 — a@)100% confidence interval for each sample, then we expect
(1 = a)100% of the intervals to enclose the true parameter value.

Confidence intervals for population parameters other than the population mean
can be derived using the pivotal method outlined in this section. The estimators and
pivotal statistics for many of these parameters are well known. In Sections 8.5-8.11,
we give the confidence interval formulas for several population parameters that are
commonly encountered in practice.
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EXERCISES
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8.14

8.15

8.16

8.17

Use Table 7 of Appendix Il to determine the values of ¢/, that would be used in the construction of a
confidence interval for a population mean for each of the following combinations of confidence coefficient
and sample size:

a. Confidence cocfficient .99, n = 18

b. Confidence coefficient .95, n = 10

¢. Confidence coefficient .90, n = 15

It can be shown (proof omitted) that as the sample size n increases, the t distribution tends to normality
and the value f,, such that P(t > t,) = a, approaches the value z,, such that P(z > z,) = a. Use Table 7
of Appendix II to verify that as the sample size n gets infinitely large, tos = z0s, tozs = z.025 and
tor = z.ol-

Let y be the number of successes in a binomial experiment with n trials and probability of success p.
Assuming that n is large, use the sample proportion of successes p = y/n to form a confidence interval
for p with confidence coefficient (1 — «). [Hint: Start with the pivotal statistic

z=ﬁ———£_
pq

mn
and use the fact (proof omitted) that for large n, z is approximately a standard normal random variable.]

Let y1, y2, . - ., y» be a random sample from a Poisson distribution with mean A. Suppose we use y as
an estimator of A. Derive a (1 — a)100% confidence interval for A. [Hint: Start with the pivotal statistic

_ =
Z_V)L/ﬂ

and show that for large samples, z is approximately a standard normal random variable. Then substitute
y for A in the denominator (why can you do this?) and follow the pivotal method of Example 8.6.]

=1

Let y1, y2, - . -, yn be a random sample of n observations from an exponential distribution with mean .
Derive a large-sample confidence interval for B. [Hint: Start with the pivotal statistic

L _7=B
B/Vn

and show that for large samples, z is approximately a standard normal random variable. Then substitute
y for B in the denominator (why can you do this?) and follow the pivotal method of Example 8.6.]

OPTIONAL EXERCISES

8.19

Let ) and s7 be the sample mean and sample variance, respectively, of n; observations randomly selected
from a population with mean w; and variance of. Similarly, define 7, and s3 for an independent random
sample of n, observations from a population with mean w; and o3. Derive a large-sample confidence
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interval for (u) — w2). [Hint:  Start with the pivotal statistic

_ O = y2) = (1 — p2)

z_
of L ot
n nz

and show that for large samples, z is approximately a standard normal random variable. Substitute s? for
ot and s} for o3 (why can you do this?) and follow the pivotal method of Example 8.6.]

Let (¥), s{) and (y3, s3) be the means and variances of two independent random samples of sizes n; and
ny, respectively, selected from normal populations with different means, w; and w3, but with a common
variance, 2.

a. Show that E(y, — ¥2) = p — na.

b. Show that

c. Explain why

(1 — ¥2) = (1 — p2)
| 1

O ==
n nz

zZ=

is a standard normal random variable.

Refer to Exercise 8.20. According to Theorem 7.4,

= = T2
X%=(ﬂ-l — )sf and X%=(nz — )s5

are independent chi-square random variables with (n;, — 1) and (n; — 1) df, respectively. Show that

2= = st + (np = 1)s5
-

X

is a chi-square random variable with (n; + n, — 2) df.
Refer to Exercises 8.20 and 8.21. The pooled estimator of the common variance o2 is given by

@2 = (= s+ (ma = 1)sh

P n +ny—2
Show that
i (1 — y2) = (i — pa)
1 1
Vo * 5

has a Student’s t distribution with (n; + ny — 2) df. [Hint: Recall that t = z/V x?/v has a Student's ¢
distribution with » df and use the results of Exercises 8.20c and 8.21.]
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823  Use the pivotal statistic t given in Exercise 8.22 to derive a (1 — @)100% small-sample confidence interval
for (w1 — w2).

8.5 Estimation of a Population Mean

L I R R N R R N N N N N NN NN

From our discussions in Section 8.3, we already know that a useful point estimate of
the population mean w is y, the sample mean. According to the central limit theorem
(Theorem 7.2), we also know that for sufficiently large n, the sampling distribution
of the sample mean y is approximately normal with E(y) = w and V(3) = ¢?/n. The
fact that E(y) = w implies that ¥ is an unbiased estimator of w. Furthermore, it can
be shown (proof omitted) that y has the smallest variance among all unbiased estimators
of w. Hence, y is the MVUE for w. Therefore, it is not surprising that y is considered
the best estimator of w.

Since y is approximately normal for large n, we can apply Theorem 8.2 to construct
a large-sample (1 — @)100% confidence interval for w. Substituting § = 7 and
0% = o/ Vninto the confidence interval formula given in Theorem 8.2, we obtain
the formula given in the following box.

Large-Sample (I — «)100% Confidence Interval for the Popuiﬁtion Mean,

................................

o S
Yz s0; =Ytz — | =y * z (—)
¥ a/2U5 y a/l(,\/ﬁ) y a/2 \/r_l

where z,,2 is the z valuc that locates an area of /2 to its right, ¢ is the standard
deviation of the population from which the sample was selected, n is the sample
size, and y is the value of the sample mean.

[Note: When the value of ois unknown (as will usually be the case), the sample
standard deviation s may be used to approximate o in the formula for the
confidence interval. The approximation is generally quite satisfactory when
n = 30.]

Assumptions: None (since the central limit theorem guarantees that y is approx-
imately normal regardless of the distribution of the sampled population)

Note: The value of the sample size n required for the sampling distribution
of y to be approximately normal will vary depending on the shape (distribution) of the
target population (sce Examples 7.6 and 7.7). As a general rule of thumb, a sample
size n of 30 or more will be considered sufficiently large for the central limit theorem

to apply.
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EXAMPLE 8.8

Solution

Suppose a regional computer center wants to evaluate the performance of its disk
memory system. One measure of performance is the average time between failures of
its disk drive. To estimate this value, the center recorded the time between failures
for a random sample of 45 disk-drive failures. The following sample statistics were
computed:

y = 1,762 hours s = 215 hours

a. Estimate the true mean time between failures with a 90% confdence interval.

b. If the disk memory system is running properly, the true mean time between failures
will exceed 1,700 hours. Based on the interval, part a, what can you infer about
the disk memory system?

a. For a confidence coefficient of | — @ = .90, we have a = .10 and a/2 = .05;
therefore, a 90% conhdence interval for w is given by

y = Zq/z(%) = Z.us(—'\%)

1,762 * z g5 (‘\2/1415)

where zgs is the z value corresponding to an upper-tail area of .05. From
Table 4 of Appendix 11, z o5 = 1.645. Then the desired interval is

1,762 = z,us(%) = 1,762 + 1.645(%)

= 1,762 + 52.7

or 1,709.3 to 1,814.7 hours. We are 90% confdent that the interval (1,709.3,
1,814.7) encloses u, the true mean time between disk failures.

b. Since all values within the 90% confidence interval exceed 1,700 hours, we can
infer (with 90% confidence) that the disk memory system is running propetly.

Sometimes, time or cost limitations may restrict the number of sample observations
that may be obtained for estimating w. In the case of small samples, (say, n < 30),
the following two problems arise:

1. Since the central limit theorem applies only to large samples, we are not able to
assume that the sampling distribution of y is approximately normal. Therefore, we
cannot apply Theorem 8.2. For small samples, the sampling distribution of §
depends on the particular form of the relative frequency distribution of the pop-
ulation being sampled.
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EXAMPLE 8.9

Solution

FIGURE 8.8 »
MINITAB descriptive statistics for
Example 8.9

2. The sample standard deviation s may not be a satisfactory approximation to the
population standard deviation o if the sample size is small.

Fortunately, we may proceed with estimation techniques based on small samples
if we can assume that the population from which the sample is selected has an
approximate normal distribution. [f this assumption is valid, then we can use the
procedure of Example 8.6 to construct a confidence interval for w. The general form
of a small-sample confidence interval for w, based on the Student’s ¢ distribution, is
as shown in the next box.

Small-Sample (I — «)100% Confidence Interval for the Population Mean,

................................

where the distribution of ¢ is based on (n — 1) degrees of freedom.

Assumption: The population from which the sample is selected has an approx-
imate normal distribution.

The Geothermal Loop Experimental Facility, located in the Salton Sea in southern
California, is a U.S. Department of Energy operation for studying the feasibility of
generating electricity from the hot, highly saline water of the Salton Sea. Operating
experience has shown that these brines lcave silica scale deposits on metallic plant
piping, causing excessive plant outages. Jacobsen et al. ( Journal of Testing and Eval-
uation, Mar. 1981) have found that scaling can be reduced somewhat by adding
chemical solutions to the brine. In one screening experiment, each of five antiscalants
was added to an aliquot of brine, and the solutions were fltered. A silica determination
(parts per million of silicon dioxide) was made on each filtered sample after a holding
time of 24 hours, with the following results:

229 255 280 203 229

Estimate the mean amount of silicon dioxide present in the five antiscalant solutions.
Use a 99% confidence interval.

The first step in constructing the confidence interval is to compute the mean, 7, and
standard deviation, s, of the sample of five silicon dioxide amounts. These values,
y = 239.2 and s = 29.3, are shaded in the MINITAB printout, Figure 8.8.

N MEAN MEDIAN  TRMEAN STDEV  SEMEAN
PFPM ] 239.2 229.0 239.2 29.3 13.1
MIN MAX Q1 Q3

PPM 203.0 280.0 216.0 267.5




FIGURE 8.9 »
MINITAB confidence interval for
Example 8.9
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For a conhdence coefficient of | — @ = .99, we have a = .0l and a/2 = .005.
Since the sample size is small (n = 5), our estimation technique requires the assump-
tion that the amount of silicon dioxide present in an antiscalant solution has an
approximately normal distribution (i.e., the sample of 5 silicon amounts is selccted
from a normal population).

Substituting the values for y, s, and n into the formula for a small-sample con-
fidence interval for u, we obtain

ol 5 )

2392 = t,ggg(—;i(;_—';)

where ¢ ggs 1s the value corresponding to an upper-tail area of .005 in the Student’s ¢
distribution based on (n — 1) = 4 degrees of freedom. From Table 7 of Appendix 11,
the required t value is t gos = 4.604. Substitution of this value yields

I

239.2 = 60.3

or, 178.9 to 299.5 ppm. Thus, if the distribution of silicon dioxide amounts is approx-
imately normal, we can be 99% confident that the interval (178.9, 299.5) encloses
i, the true mean amount of silicon dioxide present in an antiscalant solution.

The 99% confidence interval can also be obtained with a statistical software
package. Figure 8.9 shows a MINITAB printout of the analysis. You can see that the
computer-generated interval (shaded in Figure 8.9) is identical to the one we calculated.

TEST OF MU = 300.000 VS MU N.E. 300.000

N MEAN STDEV SE MEAN 99.0 PERCENT C.I.
ppm 5 239.2 29.3 13.1 178.9, 299.5)

berore we concludd this section, two comments are necessary. 1he hrst concerns
the assumption that the sampled population is normally distributed. In the real world,
we rarely know whether a sampled population has an exact normal distribution.
However, empirical studies indicate that moderate departures from this assumption
do not seriously affect the confidence coefficients for small-sample confidence intervals.
For example, if the population of silicon dioxide amounts for the antiscalant solutions
of Example 8.9 has a distribution that is mound-shaped but nonnormal, it is likely
that the actual confidence coefficient for the 99% confidence interval will be close to
.99—at least close enough to be of practical use. As a consequence, the small-sample
confidence interval given in the box is frequently used by experimenters when esti-
mating the population mean of a nonnormal distribution as long as the distribution
is mound-shaped and only moderately skewed. For populations that depart greatly
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from normality, other estimation techniques (such as robust estimation) or methods
that are distribution-free (called nonparametrics) are recommended. Nonparametric
statistics are the topic of Chapter 15.

The second comment focuses on whether o is known or unknown. We have
shown (Example 7.7) that when o is known and the sampled population is normally
distributed, the sampling distribution of y is normal regardless of the size of the sample.
That is, if you know the value of & and you know that the sample comes from a
normal population, then you can use the z distribution rather than the ¢ distribution
to form confidence intervals. In reality, however, o is rarely (if ever) known. Conse-
quently, you will always be using s in place of ¢ in the confidence interval formulas,
and the sampling distribution of y will be a t distribution. This is why the formula
for a large-sample confidence interval given earlier in this section is only approximate;
in the large-sample case, t = z. Many statistical software packages give the results for
exact confidence intervals when o is unknown; thus, these results are based on the t
distribution. For practical reasons, however, we will continue to distinguish between
z and t confidence intervals based on whether the sample size is large or small.

EXERCISES

R N N NN

824  Chemical engineers at the University of Murcia (Spain) conducted a series of experiments to determine the
most cffective membrane to use in a passive sampler (Environmental Science & Technology, Vol. 27, 1993).
The effectiveness of a passive sampler was measured by the sampling rate, recorded in cubic centimeters
per minute. In one experiment, six passive samplers were positioned with their faces parallel to the air flow
and with an air velocity of 90 centimeters per second. After 6 hours, the sampling rate of each was determined.
Based on the results, a 95% confidence interval for the mean sampling rate was calculated to be (49.66,
51.48).

a. What is the confidence coefficient for the interval?

b. Give a theoretical interpretation of the confidence coefficient, part a.

c. Give a practical interpretation of the confidence interval.

d. What assumptions, if any, are required for the interval to yield valid inferences?

8.25  The theoretical relationship between heat flux and temperature gradient for homogeneous materials is well
known and described by a Fourier equation. However, this relationship does not hold for nonhomogeneous
materials such as porous-capillary bodies, cellular systems, suspensions, and pastes. An experiment was
conducted to estimate the mean thermal relaxation time (defined as the mean time needed for accumulating
the thermal energy required for propagative transfer of heat) for several nonhomogeneous materials (Journal
of Heat Transfer, Aug. 1990). A 95% confidence interval for the mean thermal relaxation time of sand was
found to be 20.0 % 6.4 seconds.

a. Give a practical interpretation of the 95% confdence interval.
b. Give a theoretical interpretation of the 95% confidence interval.

826  Unusual rocks at “The Seven Islands,” located along the lower St. Lawrence River in Canada, have attracted
geologists to the area for over a century. A major geological survey of “The Seven I[slands” was recently
completed for the purpose of developing a three-dimensional gravity model of the area (Canadian Journal
of Earth Sciences, Vol. 27, 1990). One of the keys to an objective model is obtaining an accurate estimate
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of the rock densities. Based on samples of several varieties of rock, the following information on rock density
{grams per cubic centimeter) was obtained.

Type of Rock Sample Size  Mean Density ~ Standard Deviation

Late gabbro 36 3.04 13
Massive gabbro 148 2.83 1
Cumberlandite 135 3.05 31

Source:  Loncarevie, B. D., Feninger, T., and Lefebvre, D. “The Sept-iles layered mafic intrusion: Geo-
physical expression.” Canadian Joumal of Earth Sciences, Vol. 27, Aug. 1990, p. 505.
a. For each rock type, estimate the mean density with a 90% confidence interval.
b. Interpret the intervals, part a.

An evaluation of trace metal chemistry and cycling in an acidic Adirondack lake was reported in Environ-
mental Science & Technology (Dcc. 1985). Twenty-four (24) water samples were collected from Darts Lake,
New York, and analyzed for concentration of both lead and aluminum particulates.

a. The lead concentration measurements had a mean of 9.9 nmol/l and a standard deviation of
8.4 nmol/l. Calculate a 99% confidence interval for the true mean lead concentration in water samples
collected from Darts Lake.

b. The aluminum concentration measurements had a mean of 6.7 nmol/l and a standard deviation of
10.8 nmol/l. Calculate a 99% confidence interval for the true mean aluminum concentration in water
samples collected from Darts Lake.

¢. What assumptions are necessary for the intervals of parts a and b to be valid?

According to one study, “The majority of people who die from fire and smoke in compartmented fire-
resistive buildings—the type used for hotels, motels, apartments, and other health care facilities—die in
the attempt to evacuate” (Risk Management, Feb. 1986). The accompanying data represent the numbers
of victims who attempted to evacuate for a sample of 14 recent fires at compartmented fire-resistive buildings
reported in the study.
Died in Attempt
Fire to Evacuate

Las Vegas Hilton (Las Vegas) 5
Inn on the Park (Toronto) 5
Westchase Hilton (Houston) 8
Holiday Inn (Cambridge, Ohio) 10
Conrad Hilton (Chicago) 4
Providence College (Providence) 8
Baptist Towers (Atlanta) 7
Howard Johnson (New Orleans) 5
Cornell University (Ithaca, New York) 9
Wesport Central Apartments (Kansas City, Missouri) 4
Orrington Hotel (Evanston, lllinois) 0
Hartford Hospital (Hartford, Connecticut) 16
Milford Plaza (New York) 0
MGM Grand (Las Vegas) 36

Source:  Macdonald, J. N. “Is evacuation a fatal Raw in fire fighting philosophy?” Risk Management,
Vol. 33, No. 2, Feb. 1986, p. 37.
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a. State the assumption, in terms of the problem, that is required for a small-sample confidence interval
technigue to be valid.

b. Use the information in the accompanying MINITAB printout to construct a 98% confidence interval
for the true mean number of victims per fire who die in an attempt to evacuate compartmented fire-
resistive buildings.

c. Interpret the interval constructed in part b.

N MEAN S8TDEV BE MEAN 98.0 PERCENT C.I.
numdied 14 8.36 8.94 2.39 ( 2.02, 14.69)

The Journal of the American Medical Association (Apr. 21, 1993) reported on the results of a National

Health Interview Survey designed to determine the prevalence of smoking among U.S. adults. Over 40,000

adults responded to questions such as “Have you smoked at least 100 cigarettes in your lifetime?” and “Do

you smoke cigarettes now?” Current smokers (over 11,000 adults in the survey) were also asked: “On the

average, how many cigarettes do you now smoke a day?” The results yiclded a mean of 20.0 cigarettes per

day with an associated 95% confidence interval of (19.7, 20.3).

a. Interpret the 95% confidence interval.

b. State any assumptions about the target population of current cigarette smokers that must be satisfied for
inferences derived from the interval to be valid.

c. A tobacco industry researcher claims that the mean number of cigarettes smoked per day by regular
cigarette smokers is less than 15. Comment on this claim.

Tropical swarm-founding wasps, like ants and bees, rely on workers to raise their offspring. Interestingly,
the workers of this species of wasp are mostly female, capable of producing offspring of their own. Instead,
they rear the young of others in the brood. One possible explanation for this strange behavior is inbreeding,
which increases relatedness among the wasps and makes it easier for the workers to pick out and aid their
closest relatives. To test this theory, 197 swarm-founding wasps were captured in Venezuela, frozen at
—70°C, and then subjected to a series of genctic tests (Science, Nov. 1988). The data were used to generate
an inbreeding coefficient, x, for each wasp specimen, with the following results: x = .044 and s = .884.

a. Construct a 90% confidence interval for the mean inbreeding coefficient of this species of wasp.

b. A coefficient of 0 implies that the wasp has no tendency to inbreed. Use the confidence interval,

part a, to make an inference about the tendency for this species of wasp to inbreed.

The data for Excrcise 2.57 are reproduced here. The numbers in the table represent the CPU solution times
(in seconds) for 52 random polynomial 0-1 mathematical problems solved using a hybrid algorithm. A
stem-and-leaf display and descriptive statistics for the data set are provided in the accompanying SAS printout.
Use this information to estimate, with 95% confidence, the mean solution time for the hybrid algorithm.
Interpret the result.

045 136 8.788 079 3.985 1.267 379 327
136 130 036 136 .600 .209 506 064
.088 194 118 258 4170 554 412 045
.361 .049 .070 1.639 .258 .670 .567
182 1.055 .091 579 1.89%4 .291 445
<179 .336 145 .394 1.070 LT .258
182 .242 .209 333 912 3.046  3.888

Source:  Snyder, W. S., and Chrissis, J. W. "A hybnid algorithm for solving zero—one mathematical pro-
gramming problems.” IIE Transactions, Vol. 22, No. 2, June 1990, p. 166 (Table 1),
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UNIVARIATE PROCEDURE

Variable=SOLTIME

Moments

N 52 Sum Wgts 52
Mean 0.812192 Sum 42.234
std Dev 1.50476 Variance 2.264303
Skewness 3.65356 Kurtosis 15.73264
uss 149.7816 CS8S 115.4795
cv 185.2714 Std Mean 0.208673
T:Mean=0 3.892183 Prob>|T 0.0003
Sgn Rank 689 Pruh>[s} 0.0001
Num “= 0 52

WiNormal 0.530623 Prob<W 0.0

Quantiles (Def=5)

100% Max 8.788 99% 8.788
75% Q3 0.5895 95% 3.985
50% Med 0.2745 90% 1.894
25% Q1 0.136 10% 0.07

0% Min 0.036 5% 0.045
1% 0.036

Range 8.752

Q3-01 0.4535

Mode 0.136

Extremes
Lowest Obs Highest Obs
0.036( 22) 3.046¢( a9)
0.045( 50) 3.888( 35)
0.045¢( 1) 3.985( 33)
0.049( 51) 4.17( a3)
0.064( 45) 8.788( 17)
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8.6  Estimation of the Difference Between Two Population Means:
Independent Samples

In Section 8.5, we learned how to estimate the parameter w from a single population.
We now proceed to a technique for using the information in two samples to estimate
the difference between two population means, (u, — w2), when the samples are
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collected independently. For example, we may want to compare the mean starting
salaries for college graduates with mechanical engineering and civil engineering
degrees, or the mean operating costs of automobiles with rotary engines and standard
engines, or the mean failure times of two electronic components. The technique to
be presented is a straightforward extension of that used for estimation of a single
population mean.

Suppose we select independent random samples of sizes n) and n; from populations
with means w; and u,, respectively. Intuitively, we want to use the difference between

the sample means, (¥, — ¥;), to estimate (i, — w3). In Example 7.5, we showed
that
E(yi = y2) = 1 — 2
2 2
= = o a3
-~ =1 4 =<
V(y1 = »2) T

You can see that (¥, — ) is an unbiased estimator for (; — w2). Further, it can be
shown (proof omitted) that V(y; — ¥;) is smallest among all unbiased estimators, i.e.,
(¥ — y2) is the MVUE for (i) — u2).

According to the central limit theorem, (¥, — ;) will also be approximately
normal for large n; and n; regardless of the distributions of the sampled populations.
Thus, we can apply Theorem 8.2 to construct a large-sample confidence interval
for (w1 — p2). The procedure for forming a large-sample confidence interval for
() — p2) appears in the box.

Large-Sample (I — «)100% Confidence Interval for (o — w,):
Independent Samples

................................

- = oy o O'f ﬂ'%
51 = ¥2) £ ZapzOig-5 = (h =V} = Zapp\[ -+ 30

= i st 8
el &7 el 03 o 257 ;]-'Fnz

[Note: We have used the sample variances s{ and s% as approximations to the
corresponding population parameters. |

Assumptions: 1. The two random samples are selected in an independent
manner from the target populations. That is, the choice of
elements in one sample does not affect, and is not affected
by, the choice of elements in the other sample.

2. The sample sizes n; and n; are sufficiently large for the central
limit theorem to apply. (We recommend n, = 30 and
ny = 30.)




EXAMPLE 8.10
Solution

8.6 / Estimation of the Difference Between Two Population Means: Independent Samples 373

We want to estimate the difference between the mean starting salaries for recent
graduates with mechanical engineering and civil engineering degrees from the Uni-
versity of Florida (UF). The following information is available:*

1. A random sample of 59 starting salaries for UF mechanical engineering graduates
produced a sample mean of $32,675 and a standard deviation of $4,430.

2. A random sample of 30 starting salaries for UF civil engineering graduates produced
a sample mean of $27,460 and a standard deviation of $4,286.

We will let the subscript 1 refer to the mechanical engineering graduates and the
subscript 2 to the civil engineering graduates. We will also define the following notation:

w1 = Population mean starting salary of all recent UF mechanical engineering
graduates

w2 = Population mean starting salary of all recent UF civil engineering graduates

Similarly, let y; and y; denote the respective sample means; s; and s,, the respective

sample standard deviations; and n, and n;, the respective sample sizes. The given
information is summarized in Table 8.3.

TABLE 8.3  Summary of Information for Example 8.10

Mechanical Civil

Engineers Engineers
Sample Size n =59 n; = 30
Sample Mean » = 32,675 y2 = 27,460
Sample Standard Deviation 51 = 54,430 s; = 4,286

Source: Career Resource Center, University of Florida.

The general form of a 95% confidence interval for (u; — w;), based on large,
independent samples from the target populations, is given by

2

o ot o3
—5) i

(yy = ¥2) * z.025 % T

Recall that z 925 = 1.96 and use the information in Table 8.3 to make the following
substitutions to obtain the desired confidence interval:

(32,675 — 27,460) = 1.96V ¢}/59 + a3/30
~ (32,675 — 27,460) = 1.96V/(4,430)2/59 + (4,286)2/30
~ 5,215 + 1,905
or ($3,310, $7,120).

*The information for this example was extracted from a 1990 survey of graduates conducted by the Career
Resource Center, University of Florida.
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If we were to use this method of estimation repeatedly to produce confidence
intervals for (i, — w2), the diffcrence between population means, we would expect
95% of the intervals to enclose () — w2). Hence, we can be reasonably confident
that the mean starting salary of mechanical engineering graduates of UF was between
$3,310 and $7,120 higher than the mean starting salary of civil engineering graduates.

A confidence interval for (i) — u2), based on small samples from each population,
is derived using Student’s ¢ distribution. As was the case when estimating a single
population mean from information in a small sample, we must make specific assump-
tions about the relative frequency distributions of the two populations, as indicated in
the box. These assumptions are required if either sample is small (i.e., if either n; <
30 or n; < 30).

Small-Sample (I — «)I00% Confidence Interval for (1o, — w,):

Independent Samples and o = o}

where
o L st + (n2 — 1)s3
5 =

and the value of t,; is based on (n; + ny — 2) degrees of freedom.
Assumptions: 1. Both of the populations from which the samples are selected
have relative frequency distributions that are approximately
normal.
2. The variances of and o3 of the two populations are equal.
3. The random samples are selected in an independent manner
from the two populations.

Note that this procedure requires that the samples be selected from two normal
populations that have equal variances (i.e., of = 03 = o?). Since we are assuming
the variances are equal, we construct an estimate of o based on the information
contained in both samples. This pooled estimate is denoted by s and is computed
as shown in the previous box. You will notice that s3 is a weighted average of the two
sample variances, s{ and s3, with the weights proportional to the respective sample
sizes.

T T I R i A R I I S N R TR

EXAMPLE 8.11

The Journal of Testing and Evaluation (July 1981) reported on the results of laboratory
tests conducted to investigate the stability and permeability of open-graded asphalt




Solution

FIGURE 8.10 »
SAS descriptive statistics for
Example 8.11
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concrete. In one part of the experiment, four concrete specimens were prepared for
asphalt contents of 3% and 7% by total weight of mix. The water permeability of each
concrete specimen was determined by flowing deaerated water across the specimen and
measuring the amount of water loss. The permeability measurements (recorded in
inches per hour) for the eight concrete specimens are shown in Table 8.4. Find a
95% confidence interval for the difference between the mean permeabilities of concrete
made with asphalt contents of 3% and 7%. Interpret the interval.

TABLE 8.4  Permeability Measurements for 3% and 7% Asphalt
Concrete, Example 8.1

3% 1,189 840 1,020 980

Asphalt Content 5/ 853 900 733 785

Source:  Waoclfl, C., Wei, |., Faulstich, C., and Litwack, H. “Laboratory
testing of asphalt concrete for porous pavements.” Journal of Testing and
Evaluation, Vol. 9, No. 4, July 1981, pp. 175-181. Copyright American
Society for Testing and Materials.

First, we calculate the means and variances of the two samples, using the computer.
A SAS printout giving descriptive statistics for the two samples is shown in Figure
8.10. For the 3% asphalt, ) = 1,007.25 and s} = 20,636.92; for the 7% asphalt,
y2 = 817.75 and s3 = 5,420.92.

N Obs Variable N Mean Variance Std Dev
4 ASPH3PCT 4 1007.25 20636.92 143.6555487
ASPH7PCT 4 817.7500000 5420.92 73.6268746

Since both samples are small (n; = ny = 4), the procedure requires the assumption
that the two samples of permeability measurements are independently and randomly
selected from normal populations with equal variances. The 95% small-sample con-
fidence interval is

- = of 1 1
(y1 = y2) = tozs Sﬁ(— + ~)

n nz

= (1,007.25 — 817.75) + :_ng\lsg(‘l} & ‘l})

where t 525 = 2.447 is obtained from the t distribution (Table 7 of Appendix II) based
onn +n;—2=4+4—2 = 6 degrees of freedom, and
(ny — st + (n; — 1)s3 _ 3(20,636.92) + 3(5,420.92)
m+n — 2 - 6
= 13,028.92

2:
5p
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FIGURE B.11 »
MINITAB printout for Example 8.11

is the pooled sample variance. Substitution yields the interval

(1,007.25 — 817.75) 2.447\/13,028,92(% + l)

4
= 189.5 = 197.50

or, —8.00 to 387.00. This interval could also be obtained using the computer. The
MINITAB-generated 95% confidence interval is displayed in Figure 8.11. Our cal-
culated interval agrees with the MINITAB result. The interval is interpreted as follows:
We are 95% confident that the interval (—8, 387) encloses the true difference between
the mean permeabilities of the two types of concrete. Since the interval includes 0,
we are unable to conclude that the two means differ.

TWOSARMPLE T FOR asph3pct VS asphipct

N MEAN STDEV SE MEAN
asph3pct 4 1007 144 72
asph7pct 4 817.8 73.6 37

95 PCT CI FOR MU asph3pct - MU asph7pct: (-8, 387)
TTEST MU asph3pct = MU asph7pct (VS NE): T= 2.35 P=0.057 DF= 6

POOLED STDEV = 114

As with the one-sample case, the assumptions required for estimating (u, — u2)
with small samples do not have to be satisfied exactly for the interval estimate to be
useful in practice. Slight departures from these assumptions do not seriously affect the
level of confidence in the procedure. For example, when the variances o and o of
the sampled populations are unequal, researchers have found that the formula for the
small-sample confidence interval for (u; — ;) still yields valid results in practice as
long as the two populations are normal and the sample sizes are equal, i.e., n; = n;.

This situation occurs in Example 8.11. The sample variances given in Figure
8.10 are s = 20,636.92 and 53 = 5,420.92. Thus, it is very likely that the population
variances, o{ and o3, are unequal. * However, since ny = n; = 4, the inference derived
from this interval is still valid if we use s and s3 as estimates for the population
variances (rather than using the pooled sample variance, s3).

In the case where o # o and n; # n3, an approximate confidence interval for
(1 — p2) can be constructed by modifying the degrees of freedom associated with
the ¢ distribution, and, again, substituting s{ for o'} and s} for 3. These modifications
are shown in the box.

*A method for comparing two population variances is presented in Section 8.11.
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To obtain approximate confidence intervals and tests for (u; — wz) when
ot # o3, make the following modifications to the degrees of freedom v used in
the t distribution and the estimated standard error:

m=m=n v=m+m—-—2=2n—-1) 65-5= %{sf + s3)
o _ (s + s3/ny)? PR T
MY ) @ T Nm T
=4 =i}

[Note: In the case of nj # ny, the value of v will not generally be an integer.
Round » down to the nearest integer to use the ¢ table.

Assumptions: 1. Both of the populations from which the samples are selected
have relative frequency distributions that are approximately
normal.

2. The random samples are selected in an independent manner
from the two populations.

EXERCISES

832

Epidemiologists have theorized that the risk of coronary heart disease can be reduced by an increased
consumption of fish. One study, begun in 1960, monitored the diet and health of a random sample of
middle-age Dutchmen (New England Journal of Medicine, May 1985). The men were divided into groups
according to the number of grams of fish consumed per day. Twenty years later, the level of dietary cholesterol
(one of the risk factors for coronary disease) present in each was recorded. The results for two groups of
subjects, the “no fish consumption” group (0 grams per day) and the “high fish consumption” group (greater
than 45 grams per day), are summarized in the table. (Dietary cholesterol is measured in milligrams per
1,000 calories.)

No Fish Consumption ~ High Fish Consumption

0 gramsiday 45 grams/day
Sample Size 159 79
Mean 146 158
Standard Deviation 66 75

Source: Kromhout, D., Bosschieter, E. B., and Coulander, C, L. “The inverse relationship between fish
consumption and 20-year mortality from coronary heart discase.” New England Journal of Medicine,
May 9, 1985, Val. 312, No. 19, pp. 1205-1209. Reprinted by permission.
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a. Calculate an approximate 99% confidence interval for the difference between the mean levels of dietary
cholesterol present in the two groups.
b. Based on the interval constructed in part a, what can you infer about the true difference? Explain.

Marine biochemists at the University of Tokyo studied the properties of crustacean skeletal muscles (The
Journal of Experimental Zoology, Scpt. 1993). It is well known that certain muscles contract faster than
others. The main purpose of the experiment was to compare the biochemical properties of fast and slow
muscles of crayfish. Using crayfish obtained from a local supplier, twelve fast-muscle fiber bundles were
extracted and each fiber bundle tested for uptake of the protein Ca**. Twelve slow-muscle fiber bundles
were extracted from a second sample of crayfish, and Ca®* uptake measured. The results of the experiment
are summarized here. (All Ca?* measurements are in moles per milligram.) Analyze the data using a 95%
confidence interval. Make an inference about the difference between the protein uptake means of fast and
slow muscles.

Fast Muscle Slow Muscle
n = 12 n;: = 12
)_l| = .57 fz = .37
s = .104 s; = .035

Source:  Ushio, H., and Watabe, S. “Ultra-
structural and biochemical analysis of the sar-
coplasmic reticulum from crayhsh fast and slow
striated muscles.” The Journal of Experimental
Zoology, Vol. 267, Sept. 1993, p. 16 (Table 1).

Refer to the Harris Corporation/University of Florida study to determine whether a manufacturing process
performed at a remote location can be established locally, Exercise 2.12. Test devices (pilots) were set up
at both the old and new locations and voltage readings on 30 production runs at each location were obtained.
The data are reproduced in the table. Descriptive statistics are displayed in the accompanying SAS printout.
[Note: Larger voltage rcadings are better than smaller voltage readings. |

Old Location New Location
9.98 10.12 9.84 9.19 10.01 8.82
10.26 10.05 10.15 9.63 8.82 8.65
10.05 9.80 10.02 10.10 9.43 8.51
10.29 10.15 9.80 9.70 10.03 9.14
10.03 10.00 9.73 10.09 9.85 9.75
8.05 9.87 10.01 9.60 9.27 8.78
10.55 9.55 9.98 10.05 8.83 9.35
10.26 9.95 8.72 10.12 9.39 9.54
9.97 9.70 8.80 9.49 9.48 9.36
9.87 8.72 9.84 9.37 9.64 8.68

Source:  Harris Corporation, Melbourne, Fa.
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Analysis Variable : VOLTAGE

LOCATION=OLD

N Obs N Minimum Maximum Mean Std Dev

30 30 8.0500000 10.5500000 9.8036667 0.5409155

LOCATION=NEW --

N Obs N Minimum Maximum Mean 5td Dev

30 30 8.5100000 10.1200000 9.4223333 0.4788757

a. Compare the mean voltage readings at the two locations using a 90% confidence interval,
b. Based on the interval, part a, does it appear that the manufacturing process can be established locally?

The methodology for conducting a stress analysis of newly designed timber structures is well known. However,
few data are available on the actual or allowable stress for repairing damaged structures. Consequently,
design cngineers often propose a repair scheme (e.g., gluing) without any knowledge of its structural
cffectiveness. To partially fill this void, a stress analysis was conducted on epoxy-repaired truss joints ( Journal
of Structural Engineering, Feb. 1986). Tests were conducted on epoxy-bonded truss joints made of various
species of wood to determine actual glue-line shear stress recorded in pounds per square inch (psi). Summary
information for independent random samples of southern pine and ponderosa pine truss joints is given in
the accompanying table. Estimate the difference between the mean shear strengths of epoxy-repaired truss
joints for the two species of wood with a 90% confidence interval.

Southern Pine Ponderosa Pine

Sample Size 100 47
Mean Shear Stress, psi 1,312 1,352
Standard Deviation 422 271

Source: Avent, R. R. “Design criteria for cpoxy repair of timber structures.” Journal of
Structural Engineering, Vol, 112, No. 2, Feb, 1986, pp. 232.

To investigate the possible link between fluoride content of drinking water and cancer, Yiamouyiannis and
Burk (1977) recorded cancer death rates (number of deaths per 100,000 population) from 1952-1969 in 20
selected U.S. cities—the 10 largest fluoridated cities and the 10 largest cities not fluoridated by 1969. Maritz
and Jarrett (Applied Statistics, Feb. 1983) used the data collected by Yiamouyiannis and Burk to calculate
for each city the annual rate of increase in cancer death rate over this 18-year period for each of four age
groups: under 25, 25—44, 45-64, and 65 or older. The data for the 45—64 age group arc reproduced in the
table at the top of page 380, followed by a MINITAB analysis of the data.



380

837

Chapter 8 / Estimation

Fluoridated Nonfluoridated

Annual Increase in Annual Increase in

City Cancer Death Rate City Cancer Death Rate
Chicago 1.0640 Los Angeles .8875
Philadelphia 1.4118 Boston 1.7358
Baltimore 2.1115 New Orleans 1.0165
Cleveland 1.9401 Seattle .4923
Washington 3.8772 Cincinnati 4.0155
Milwaukee —.4561 Atlanta —1.1744
St. Louis 4.8359 Kansas City 2.8132
San Francisco 1.8875 Columbus 1.7451
Pittsburgh 4.4964 Newark —.5676
Buffalo 1.4045 Portland 2.4471

Source:  Maritz, . S., and Jarrett, R G. “The use of statistics to examine the association between fluoride in drinking water
and cancer death rates.” Applied Statistics, Vol. 32, No. 2, 1983, pp. 97-101.

TWOSAMPLE T FOR fluorat V8 nonflrat

N MEAN STDEV SBE MEAN
fluorat 10 2.26 1.66 0.52
nonflrat 10 1.34 1.56 0.49

95 PCT CI FOR MU fluorat - MU nonflrat: (-0.60, 2.43)
TTEST MU fluorat = MU nonflrat (V8 NE): T= 1.27 P=0.22 DF= 18

POOLED BTDEV = 1.61

a. Find a 95% confidence interval for the difference between the mean annual increases in cancer death
rates for fluoridated and nonfluoridated cities.

b. Interpret the interval obtained in part a.

c. What assumptions are necessary for the validity of the interval estimation procedure and any inferences
derived from it? Do you think these assumptions are satisfied?

Agricultural experts in Israel have developed a new method of irrigation, called fertigation, in which fertilizer
is added to water and the mixture is dripped periodically onto the roots of the plants. Very little water—a
precious commodity in Israel—is wasted, and the nutrients go directly where they are needed. To test this
new process, 100 acres were randomly selected and their historical yields were recorded. The fertigation
process was then applied to the new crop and the new yields were recorded. The accompanying table
summarizes the results.

Before Fertigation — After Fertigation

Sample Size 100 100
Mean Yield 40% 75%
Standard Deviation 8% 6%
a. Estimate the difference between the true mean yields before and after fertigation. Use a 90% confidence
interval.

b. Interprct the confidence interval of part a.
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838  Sintering, one of the most important techniques of materials science, is used to convert powdered material
into a porous solid body. The following two mecasurcs characterize the final product:

Vv = Percentage of total volume of final product that is solid

_ ( Solid volume ) . 100

Porous volume + Solid volume

Sv = Solid-pore interface area per unit volume of the product

When Vy = 100%, the product is completely solid—i.e., it contains no pores. Both Vy and Sy are estimated
by a microscopic examination of polished cross sections of sintered material. The accompanying table gives
the mean and standard deviation of the values of Sy (in squared centimeters per cubic centimeter) and Vy
(percentage) for n = 100 specimens of sintered nickel for two different sintering times.

Sv Vv
Time y s y s
10 minutes 736.0 181.9 96.73 2.1
150 minutes 299.5 161.0 97.82 1.5

Data and expenmental mformation provided by Guoquan Lin while visiting at the
University of Florida in 1983.

a. Find a 95% confidence interval for the mean change in Sy between sintering times of 10 minutes and
150 minutes. What inference would you make concerning the difference in mean sintering times?
b. Repeat part a for Vy.

8.7 Estimation of the Difference Between Two Population Means:
Matched Pairs

L R N N N

The large- and small-sample procedures for estimating the difference between two
population means presented in Section 8.6 were based on the assumption that the
samples were randomly and independently selected from the target populations. Some-
times we can obtain more information about the difference between population means,
(m1 — ma2), by selecting paired observations.

For example, suppose you want to compare two methods for drying concrete using
samples of five cement mixes with each method. One method of sampling would be
to randomly select 10 mixes (say, A, B, C, D, . . . , |) from among all available mixes
and then randomly assign five to drying method 1 and five to drying method 2 (see
Table 8.5 on page 382). The strength measurements obtained after conducting a series
of strength tests would represent independent random samples of strengths attained by
concrete specimens dried by the two different methods. The difference between the
mean strength measurements, (u; — u2), could be estimated using the confidence
interval procedure described in Section 8.6.
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TABLE 8.5  Independent Random
Samples of Cement Mixes Assigned to

Each Method
Method | Method 2
Mix A Mix B
Mix E Mix C
Mix F Mix D
Mix H Mix G
Mix ] Mix |

A better method of sampling would be to match the concrete specimens in pairs
according to type of mix. From each mix pair, one specimen would be randomly
selected to be dried by method 1; the other specimen would be assigned to be dried
by method 2, as shown in Table 8.6. Then the differences between matched pairs of
strength measurements should provide a clearer picture of the difference in strengths
for the two drying methods because the matching would tend to cancel the effects of
the factors that formed the basis of the matching (i.e., the effects of the different cement
mixes).

TABLE 8.6  Set-up of the Matched-Pairs Design
for Comparing Two Methods of Drying Concrete

Type of Mix Methad | Method 2
A Specimen 2 Specimen |
B Specimen 2 Specimen 1
C Specimen | Specimen 2
D Specimen 2 Specimen |
E Specimen 1 Specimen 2

In a matched-pairs experiment, the symbol g is commonly used to denote the
mean difference between matched pairs of measurements, where ug = (u; — pa).
Once the differences in the sample are calculated, a confidence interval for pg
is identical to the confidence interval for the mean of a single population given in
Section 8.5.

The procedure for estimating the difference between two population means based
on matched-pairs data for both large and small samples is given in the box.



8.7/ Difference Between Two Population Means: Matched Pairs 383

Letdy, da, . . . , dy represent the differences between the pairwise observations
in a random sample of n matched pairs, d = mean of the n sample differences,
and sy = standard deviation of the n sample differences.

Large Sample Small Sample

E:R(ﬂ) d=+t, (s—“)

“\Va A\Vn

where oy is the population deviation  where t4,2 is based on (n = 1)
of differences. degrees of freedom.
Assumption: n = 30 Assumption: The population of
[Note: When oy is unknown (as is P‘?”‘-_’d differences is normally
usually the case), use sq to distributed.

approximate oy. |

L I I I I R A I R I R R R )

EXAMPLE 8.12 One desirable characteristic of water pipes is that the quality of water they deliver be
equal to or near the quality of water entering the system at the water treatment plant.
A type of ductile iron pipe has provided an excellent water delivery system for the
St. Louis County Water Company. The chlorine levels of water emerging from the
South water treatment plant and at the Fire Station (Fenton Zone 13) were measured
over a 12-month period, with the results shown in Table 8.7. Find a 95% confidence
interval for the mean difference in monthly chlorine content between the two locations.

TABLE 8.7  Chlorine Content Data for Example 8.12

Month
............................ JanFehna,AP,Ha,lune]uwgughp,gauwnec
Lasiiar Sputh Pllant 2.0 2.0 2.1 1.9 ) 1.8 1.7 1.9 2.0 2.0 2.1 2.1
Fire Station 22 2.2 2.1 2.0 1.9 1.9 1.8 1.7 1.9 1.9 1.8 2.0
Difference -2 =2 0 -4 =2 =4 = 2 ] 1 3 1

Source:  “St. Louis County Standardizes Pipe and Procedures for Reliability” Staff Report, Water and Sewage Works, Dec. 1950,
Solution Since the chlorine levels at the two plants were recorded over the same 12 months,
the data are collected as matched pairs. We want to estimate ug = (@, — i2), where

iy = Mean monthly chlorine level at the South Plant
M2

Il

Mean monthly chlorine level at the Fire Station
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The differences between pairs of monthly chlorine levels are computed as
d = (South Plant level) — (Fire Station level)

and are shown in the last row of Table 8.7.

Since the number of differences, n = 12, is small, we must assume that these
differences are from an approximately normal distribution in order to proceed. The
mean and standard deviation of these sample differences are shown (shaded) on the
SAS printout, Figure 8.12. From the printout, d = —.0083 and sy = .1676.

FIGURE 8.12 »
SAS descriptive statistics for
matched pairs, Example 8.12

Analysis Variable : DIFF (Plant minus Station)

N Obs N Minimum Maximum Mean 8td Dev

-

12 12 -0.2000000 0.3000000 =0.0083333 0.1676486

B T T T LT e —————

The value of tgs, based on (n = 1) = (12 — 1) = 11 degrees of freedom, is
given in Table 7 of Appendix II as t 25 = 2.201. Substituting these values into the
formula for the small-sample confidence interval, we obtain

RN

1676
= —.0083 = 2,201(—)
’ V12
= —.0083 = .1065

or (—.1148, .0982).

We estimate, with 95% confidence, that the difference between the mean monthly
chlorine levels of water at the two St. Louis locations falls within the interval from
—.1148 to .0982. Since 0 is within the interval, there is insufficient evidence to
conclude there is a difference between the two means.

R R I R I I A R

In an analysis of matched-pair observations, it is important to stress that the pairing
of the experimental units (the objects upon which the measurements are taken) must
be performed before the data are collected. Recall that the objective is to compare two
methods of “treating” the experimental units. By using the matched pairs of units that
have similar characteristics, we are able to cancel out the effects of the variables used
to match the pairs.

EXERCISES

839  Pesticides applied to an extensively grown crop can result in inadvertent area-wide air contamination.
Environmental Science & Technology (Oct. 1993) reported on air deposition residues of the insecticide
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diazinon used on dormant orchards in the San Joaquin Valley, California. Ambient air samiples were collected
and analyzed at an orchard site for each of 11 days during the most intensive period of spraying. The levels
of diazinon residue (in ng/m?) during the day and at night are recorded in the table. The rescarchers want
to know whether the mean diazinon residue levels differ from day to night.

Diazinon Residue

Date Day Night
Jan. 11 5.4 24.3
12 2.7 16.5
13 34.2 47.2
14 19.9 12.4
15 2.4 24.0
16 7.0 21.6
17 6.1 104.3
18 77 96.9
19 18.4 105.3
20 27.1 78.7
21 16.9 44.6

Source:  Sclber, ]. N, et al. "Air and fog deposi-
tion residues for organophosphate insecticides used
on dormant orchards in the San Joaquin Valley,
California.” Environmental Science & Technology,

Vol. 27, No. 10, Oct. 1993, p. 2240 (Table 1V).

a. Analyze the data using a 90% confidence interval.
b. What assumptions are necessary for the validity of the interval estimation procedure of part a?
c. Use the interval, part a, to answer the researchers’ question.

840  The Journal of Environmental Fingineering (Feb. 1986) reported on a heat transfer model designed to predict
winter heat loss in wastewater treatment clarifiers, The analysis involved a comparison of clear-sky solar
irradiation for horizontal surfaces at different sites in the midwest. The day-long solar irradiation levels (in
BTU/sq. ft.) at two midwestern locations of different latitudes (St. Joseph, Missouri, and lowa Great Lakes)
were recorded on each of seven clear-sky winter days. The data are given in the table. Find a 95% confidence
interval for the mean difference between the day-long clear-sky solar irradiation levels at the two sites.
Interpret the results.

Date St. Joseph, Mo. lowa Great Lakes
December 2] 782 593
January 6 965 672
January 21 948 750
February 6 1,181 988
February 21 1,414 1,226
March 7 1,633 1,462
March 21 1,852 1,698

Source:  Wall, D. )., and Peterson, C. “Model for winter heat loss in uncovered
clarifiers.” Journal of Environmental Engineering, Vol. 112, No. 1, Feb. 1986,
p. 128.
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841 A federal traffic safety researcher was hired to ascertain the effect of wearing safety devices (shoulder harnesses,
scat belts) on reaction times to peripheral stimuli. To investigate this question, he randomly selected
15 subjects from the students enrolled in a driver education program. Each subject performed a simulated
driving task that allowed reaction times to be recorded under two conditions, wearing a safety device (restrained
condition) and no safety device (unrestrained condition). Thus, each subject reccived two reaction-time
scores, one for the restrained condition and one for the unrestrained condition. The data (in hundredths
of a second) are shown in the accompanying table, followed by a MINITAB printout of the analysis.

Driver 1 2 3 4 5 6 7 8 9 10 11 2 1’ B I§

Restrained  36.7 37.5 39.3 44.0 38.4 43.1 36.2 40.6 34.9 31.7 37.5 42.8 32.6 36.8 38.0
Unrestrained 36.1 35.8 38.4 41.7 38.3 42.6 336 409 32.5 30.7 37.4 40.2 33.1 33.6 375

N MEAN STDEV SE MEAN 90.0 PERCENT C.I.
RminusU 15 1.180 1.191 0.307 ( 0.638, 1.722)

a. Find a 90% confidence interval for the difference between mean reaction-time scores for the restrained
and unrestrained drivers.

b. What assumptions are necessary for the validity of the interval estimation procedure of part a?

c. Based on the interval of part a, what would you infer about the mean reaction times for the driving
conditions?

841  Medical researchers believe that exposure to dust from cotton bract induces respiratory disease in susceptible
field workers. An experiment was conducted to determine the effect of air-dried green cotton bract extract
(GBE) on the cclls of mill workers not exposed to dust (Environmental Research, Feb. 1986). Blood samples
taken on eight workers were incubated with varying concentrations of GBE. After a short period of time,
the cyclic AMP level (a measure of cell activity expressed in picomoles per million cells) of each blood
sample was measured. The data for two GBE concentrations, 0 mg/ml (salt buffer, control solution) and
.2 mg/ml, arc reproduced in the table. [Note that one blood sample was taken from each worker, with one
aliquot exposed to the salt buffer solution and the other to the GBE.]

GBE Concentration,

Worker mgiml

0 .2
A 8.8 4.4
B 13.0 5.7
C 9.2 4.4
D 6.5 4.1
F 9.1 4.4
H 17.0 7.9

Source: Buicher, B. T., Reed, M. A., and O'Neil,
C. E. “Biochemical and immunologic characterization
of cotton bract extract and its effect on in vitro cyclic
AMP production.” Environmental Research, Vol. 39,
No. 1, Feb. 1986, p. 119.

a. Find a 95% confidence interval for the mean difference between the cyclic AMP levels of blood samples
exposed to the two concentrations of GBE.
b. Based on the interval obtained in part a, is there evidence that exposure to GBE blocks cell activity?
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843  Many Vietnam veterans have dangerously high levels of the dioxin 2,3,7,8-TCDD in blood and fat tissue
as a result of their exposure to the defoliant Agent Orange. A study published in Chemosphere (Vol. 20,
1990) reported on the TCDD levels of 20 Massachusetts Vietnam veterans who were possibly exposed to
Agent Orange. The amounts of TCDD (measured in parts per trillion) in blood plasma and fat tissue drawn
from each veteran are shown in the table followed by a SAS printout giving summary statistics. Use the
information on the printout to construct a confidence interval that will allow you to compare the mean
TCDD level in plasma to the mean TCDD level in fat tissue for Vietnam veterans exposed to Agent Orange.
Interpret the result.

TCDD Levels  TCDD Levels TCDD Levels  TCDD Levels

Veteran in Plasma in Fat Tissue Veteran in Plasma in Fat Tissue
1 2.5 4.9 11 6.9 7.0
2 3.1 5.9 12 3.3 2.9
3 2.1 4.4 13 4.6 4.6
4 3.5 6.9 14 1.6 1.4
5 3.1 7.0 15 7id 7.7
6 1.8 4.2 16 1.8 1.1
7 6.0 10.0 17 20.0 11.0
8 3. 5.5 18 2.0 2.5
9 36.0 41.0 19 25 2.3
10 4.7 4.4 20 4.1 2.5

Source: Schecter, A., el. al. “Partitioning of 2,3,7,8-chlorinated dibenzo-p-dioxins and dibenzofurans between adipose tissue and plasma
lipid of 20 Massachusetts Vietnam veterans.” Chemosphere, Vol. 20, Nos. 7-9, 1990, pp. 954-955 (Table [ & II).

N Obs Variable N Minimum Maximum Mean 5td Dev
20 PLASMA 20 1.6000000 36.0000000 5.9900000 8.1279829
FAT 20 1.1000000 41.0000000 6.8600000 B8.4656209

DIFF 20 -5,0000000 9.0000000 -0.8700000 2.9773001

88  Estimation of a Population Proportion
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We will now consider the method for estimating the binomial proportion p of suc-
cesses—that is, the proportion of elements in a population that have a certain char-
acteristic. For example, a quality control inspector may be interested in the proportion
of defective items produced on an assembly line; or a supplier of heating oil may be
interested in the proportion of homes in its service area that are heated by natural gas.
A logical candidate for a point estimate of the population proportion p is the
sample proportion p = y/n, where y is the number of observations in a sample of
size n that have the characteristic of interest (i.e., y is the number of “successes”). In
Example 7.7, we showed that for large n, p is approximately normal with mean

E(p) = p
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EXAMPLE 8.13

and variance
= M
V(p) = =

Therefore, p is an unbiased estimator of p and (proof omitted) has the smallest variance
among all unbiased estimators; that is, p is the MVUE for p. Since p is approximately
normal, we can usc it as a pivotal statistic and apply Theorem 8.2 to derive the formula
for a large-sample confidence interval for p shown in the box.

Large-Sample (I — «)100% Confidence Interval for a Population Proportion, p

--------------------------------

where p is the sample proportion of observations with the characteristic of interest,
andg=1-p.

[Note: The interval is approximate since we must substitute the sample p and
q for the corresponding population values for op.]

Assumption: The sample size n is sufficiently large so that the approximation
is valid. As a rule of thumb, the condition of a “sufficiently large” sample size
will be satished if np = 4 and ng = 4.

Note that we must substitute p and ¢ into the formula for o = Vpq/n to construct
the interval. This approximation will be valid as long as the sample size n is sufficiently
large. Many rescarchers adopt the rule of thumb that n is “sufficiently large” if the
interval p = 2Vpq/n does not contain 0 or 1. Recall (Section 7.6) that this rule is
satished if np = 4 and ng = 4.

----- R R A

Stainless steels arc frequently used in chemical plants to handle corrosive fluids. How-
ever, these stecls are especially susceptible to stress corrosion cracking in certain envi-
ronments. In a sample of 295 steel alloy failures that occurred in oil refineries and
petrochemical plants in Japan over the last 10 years, 118 were caused by stress corrosion
cracking and corrosion fatigue (Materials Performance, June 1981). Construct a 95%
confidence interval for the true proportion of alloy failures caused by stress corrosion
cracking.
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Solution The sample proportion of alloy failures caused by corrosion is

. Number of alloy failures in sample caused by corrosion
Number of alloy failures in sample

118

=—2%=.4

Thus, ¢ = 1 — .4 = .6. The approximate 95% confidence interval is then

. pq _ 4. (.4).6) _
p* z_ozs\/: =4+ 196 SaE 4 = .056

or (.344, .456). [Note that the approximation is valid since np = 118 and ng = 177
both exceed 4.]

We are 95% confident that the interval from .344 to .456 encloses the true
proportion of alloy failures that were caused by corrosion. If we repeatedly selected
random samples of n = 295 alloy failures and constructed a 95% confidence interval
based on each sample, then we would expect 95% of the confidence intervals con-
structed to contain p.

Small-sample procedures are available for the estimation of a population propor-
tion p. These techniques are similar to those small-sample procedures for estimating
a population mean . (Recall that p = y/n can be thought of as a mean of a sample
of 0—1 Bernoulli outcomes.) The details are not included in our discussion, however,
because most surveys in actual practice use samples that are large enough to employ
the procedure of this section.

EXERCISES

844  An American Housing Survey (AHS) conducted by the U.S. Department of Commerce revealed that 705
of 1,500 sampled homeowners are “do-it-yourselfers”—they did most the work themselves on at least one
of their home improvements or repairs (Bureau of the Census, Statistical Brief, May 1992). Estimate the
true proportion of American homeowners who do most of the home improvement or repair work themselves
using a 95% confidence interval. Interpret the result.

845 The “Black Hole” survey, sponsored by the Professional Employment Research Council, reports on the
toughest jobs to fill on recruiters lists. In the most recent survey, 95 of 285 recruiters listed engineering
positions as the “toughest to fill” (Industrial Engineering, Aug. 1990). Estimate the true percentage of
recruiters who find it toughest to fll engineering positions. Use a 99% confidence interval.

846  Refer to the Journal of the Medical Association (Apr. 21, 1993) report on the prevalence of cigarette smoking
among U.S. adults, Exercise 8.29. Of the 43,732 survey respondents, 11,239 indicated that they were
current smokers and 10,539 indicated they were former smokers.

a. Construct and interpret a 90% confidence interval for the percentage of U.S. adults who currently smoke
cigarettes.
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b. Construct and interpret a 90% confidence interval for the percentage of U.S. adults who are former
cigarette smokers.

According to a study conducted by the California Division of Labor Research and Statistics (Engineering
News Record, Mar. 10, 1983), roofing is one of the most hazardous occupations. Of 2,514 worker injuries
that caused absences for a full workday or shift after the injury, 23% were attributable to falls from high
elevations on level surfaces, 21% to falling hand tools or other materials, 19% to overexertion, and 20% to
burns or scalds. Assume that the 2,514 injuries can be regarded as a random sample from the population
of all roofing injuries in California.

a. Construct a 95% confidence interval for the proportion of all injuries that are due to falls.

b. Construct a 95% confidence interval for the proportion of all injuries that are due to burns or scalds.

As part of a cooperative rescarch agreement between the United States and Japan, a full-scale reinforced
concrete building was designed and tested under simulated earthquake loading conditions in Japan ( Journal
of Structural Engineering, Jan. 1986). For one part of the study, several U.S. design enginecrs were asked
to evaluate the new design. Of the 48 engineers surveyed, 36 believed the shear wall of the structure to be
too lightly reinforced. Find a 95% confidence interval for the true proportion of U.S. design engineers who
consider the shear wall of the building too lightly reinforced.

Astronauts often report cpisodes of disorientation as they move around the zero-gravity spacecraft. To
compensate, crew members rely heavily on visual information to establish a top-down orientation. An
empirical study was conducted to assess the potential of using color brightness as a body orientation cue
(Human Factors, Dec. 1988). Ninety college students, reclining on their backs in the dark, were disoriented
when positioned on a rotating platform under a slowly rotating disk that filled their entire field of vision.
Half the disk was painted with a brighter level of color than the other half. The students were asked to say
“stop” when they believed they were right-side up, and the brightness level of the disk was recorded. Of the
90 students, 58 selected the brighter color level.
a. Use this information to estimate the true proportion of subjects who usc the bright color level as a cue
to being right-side up. Construct a 95% confidence interval for the true proportion.
b. Can you infer from the result, part a, that a majority of subjects would select bright color levels over
dark color levels as a cue to being right-side up? Explain.

The U.S. Food and Drug Administration (FDA) recently approved the marketing of a new chemical solution,
Caridex, which dissolves cavitics. In a study conducted by dental researchers at Northwestern University,
21 of 35 patients with cavities preferred treatment with Caridex to drilling (Gainesville Sun, Feb. 11, 1988).
Estimate the true proportion of dental patients who prefer having their cavities dissolved with Caridex rather
than drilled. Usc a 99% confidence interval and interpret the result.

Estimation of the Difference Between Two Population Proportions

R I R N A R B A R I R I R I I I R R A R I A I A I R A I A I R R )

This scction extends the method of Section 8.8 to the case in which we want to
estimate the difference between two binomial proportions. For example, we may be
interested in comparing the proportion p; of defective items produced by machine |
to the proportion p; of defective items produced by machine 2.

Let y; and y; represent the numbers of successes in two independent binomial
experiments with samples of size ny and n3, respectively. To estimate the difference
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(p1— p2), where p) and p; are binomial parameters—i.e., the probabilities of success
in the two independent binomial experiments—consider the proportion of successes
in cach of the samples:

i | 2o Y2
f’!—m and P oy

Intuitively, we would expcet (p; — p2) to provide a reasonable estimate of (p; — pa).
Since (p; = p2) is a linear function of the binomial random variables y; and y;, where
E(y;) = nip; and V(y;) = n;ipiqi, we have
E(hr — p2) = E(p1) = E(hs) = (”‘) - £(2)
1 1
= ;I—IE(YI) ()’2) = _“(”Ilf’l) = *—(ﬂzp?)

ny
I

=P~ P
and
V(b1 — b2) = V(p1) + V(p2) — 2 Cov(py, p2)
= V(ﬂ) + V(i—i) -0 since y; and y; are independent

1
;I_(HIPIQI) z(nzpth)
n;

19y, P22
n nz

Thus, (p; — p2) is an unbiased estimator of (p; — p2) and, in addition, it has minimum
variance (proof omitted).

The central limit theorem also guarantees that, for sufficiently large sample sizes
ny and ny, the sampling distribution of (p; — p2) will be approximately normal. It
follows (Theorem 8.2) that a large-sample confidence interval for (p; — p,) may be
obtained as shown in the box on page 392.

Note that we must substitute the values of p; and p; for p) and p3, respectively,
to obtain an estimate of o5 5, As in the one-sample case, this approximation is
reasonably accurate when both ny and n; are sufficiently large, i.e., if the intervals

ﬁ+2\/§’:~; and p1+2\/f7

do not contain 0 or the sample size (n) or ny). This will be true if nypy, n2p2, maq,
and n»g; are all greater than or equal to 4.
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EXAMPLE 8.14

Solution

--------------------------------

(B1 — P2) £ 2ap200, by = (P — P2) = 242 bidy + bt

mny ny

where p; and p- are the sample proportions of observations with the characteristic
of interest.

[Note: We have followed the usual procedure of substituting the sample values
p1, 1. P2, and G for the corresponding population values required for
Tpy-pa)

Assumption: The samples are sufficiently large that the approximation is
valid. As a general rule of thumb, we will require that np, = 4, n\g; = 4,
napy = 4, and nag; = 4.

A traffic engineer conducted a study of vehicular speeds on a segment of street that
had the posted speed limit changed several times. When the posted speed limit on
the street was 30 miles per hour, the engineer monitored the speeds of 100 randomly
selected vehicles traversing the street and observed 49 violations of the speed limit.
After the specd limit was raised to 35 miles per hour, the engineer again monitored
the speeds of 100 randomly selected vehicles and observed 19 vehicles in violation of
the speed limit. Find a 99% confidence interval for (p, — p3), where p; is the true
proportion of vehicles that (under similar driving conditions) exceed the lower speed
limit (30 miles per hour) and p; is the true proportion of vehicles that (under similar
driving conditions) exceed the higher speed limit (35 miles per hour). Interpret the
interval.

In this example,

49 .19
bi=1p5= 49 and h=55=19

Note that
mp; =49 mq = 51
ﬂzflz =19 nz@'z = 81

all exceed 4. Thus, we can apply the approximation for a large-sample confidence
interval for (p; — p2).

For a confidence interval of (1 — a) = .99, we have a = .01 and z,,; =
Zo0s = 2.58 (from Table 4 of Appendix II). Substitution into the confidence interval




8.9 / The Difference Between Two Population Proportions 393

formula vields:

hr — Ho) + = £7_|(}_| ?52&2
(p| pz) — -a,‘2 n + ﬂz
= (49 — 10 + 2.58+ /AT (19)(.81)

100 100
= .30 £ .164

Our interpretation is that the true difference, (p) — p2), falls between .136 and .464
with 99% confidence. Since the lower bound on our estimate is positive (.136), we
are fairly confident that the proportion of all vehicles in violation of the lower speed
limit (30 miles per hour) exceeds the corresponding proportion in violation of the
higher speed limit (35 miles per hour) by at least .136.

LR R A I A N Tesss s

Small-sample estimation procedures for (p; — p3) will not be discussed here for
the reasons outlined at the end of Section 8.8.

EXERCISES
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8.3l

852

Geneticists at Duke University Medical Center have identified the E2F1 transcription factor as an important
component of cell proliferation control (Nature, Sept. 23, 1993). The researchers induced DNA synthesis
in two batches of serum-starved cells. Each cell in one batch was micro-injected with the E2F1 gene,
whereas the cells in the second batch (the controls) were not exposed to E2F1. After 30 hours, the number
of cells in cach batch that exhibited altered growth was determined. The results of the experiment are
summarized in the table.

Control E2F1 Treated Cells

Total Number of Cells 158 92
Number of Growth-Altered Cells 15 41

Source: Johnson, D. G., ¢t al. “Expression of transcription factor E2F1 induces quicscent to enter
S phase.” Nature, Vol. 365, No. 6444, Sept. 23, 1993, p. 351 (Table 1),

a. Compare the percentages of cells exhibiting altered growth in the two batches with a 90% confidence
interval.

b. Use the interval, part a, to make an inference about the ability of the E2F1 transcription factor to induce
cell growth.

The nuclear mishap at Threc Mile Island near Harrisburg, Pennsylvania, on March 28, 1979, forced many
local residents to evacuate their homes—some temporarily, others permanently. To assess the impact of the
accident on the area population, a questionnaire was designed and mailed to a sample of 150 households
within 2 weeks after the accident occurred. Residents were asked how they felt both before and after the
accident about having some of their electricity generated from nuclear power. The summary results are
provided in the table on page 394.
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Attitude Toward Nuclear Power Totals
Favor Oppose Indifferent
Before Accident 62 35 53 150
After Accident 52 72 26 150

Source:  Brown, A., et al. Final Report on a Survey of Three Mile [sland Area Residents. Department of
Ceography, Michigan State University, Aug. 1979.

a. Construct a 99% confidence interval for the difference in the true proportions of Three Mile I[sland
residents who favor nuclear power before and after the accident.

b. Construct a 99% confidence interval for the difference in the true proportions of Three Mile Island
residents who oppose nuclear power before and after the accident.

The Journal of Fish Biology (Aug. 1990) reported on a study comparing the prevalence of parasites (tapeworms)
found in species of Mediterranean and Atlantic fish. In the Mediterranean Sea, 588 brill were captured and
dissected, and 211 were found to be infected by the parasite. In the Atlantic Ocean, 123 brill were captured
and dissected, and 26 were found to be infected. Compare the proportions of infected brill at the two capture
sites using a 90% confidence interval. Interpret the interval.

The Egyptian National Scientific and Technical Information Network (ENSTINET) operates an en-line
database search service of existing U.S. databases. A database “search” occurs when a specific request is
executed by ENSTINET during a single session. In situations when the search produces irrelevant or no
output, the search is “rerun.” According to Information Processing & Management (Vol. 22, No. 3, 1986),
ENSTINET performed 342 database searches in 1982, of which 40 were rerun. In 1985, 83 of 2,117
searches required reruns. Assuming that the two samples of database searches are independent and random,
construct a 95% confidence interval for the difference between the proportions of database search reruns
performed by ENSTINET in 1982 and 1985. Interpret the interval.

Refer to the marketing research study of consulting engineering services to industrial firms in the Midwest,
Exercise 2.49. Forty of the firms surveyed (20 large and 20 small firms) indicated they have no need for
outside consulting engineering services ( Journal of the Boston Society of Civil Engineers, Vol. 71, 1985).
The primary reason cited by the “nonneeders” was that they obtained consulting assistance from corporate
headquarters whenever necessary. However, twice as many large firms (12) as small firms (6) cited this
reason. Fstablish a 90% confidence interval for the difference in the percentages of large and small industrial
firms that cite assistance from corporate headquarters as the primary reason why they have no need for
outside consulting engineering scrvices.

Estimation of a Population Variance

[n the previous sections, we considered interval estimates for population means and
proportions. In this section, we discuss confidence intervals for a population variance
a?, and, in Scction 8.11, confidence intervals for the ratio of two variances, o}/a3.
Unlike means and proportions, the pivotal statistics for variances do not possess a
normal (z) distribution or a ¢ distribution. In addition, certain assumptions arc required
regardless of the sample size.
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Let yi, y2, . . ., ya be a random sample from a normal distribution with mean
w and variance 2. From Theorem 7.4, we know that

s _(n- 1)s?
e
possesses a chi-square distribution with (n — 1) degrees of freedom. Confdence inter-
vals for o are based on the pivotal statistic, x2.

Recall that upper-tail areas of the chi-square distribution have been tabulated and
are given in Table 8 of Appendix [I. Unlike the z and ¢ distributions, the chi-square
distribution is not symmetric about 0. To find values of x* that locate an area a in
the lower tail of the distribution, we must find y{_,, where P(y* > x7_.) =1 — a.
For example, the value of x? that places an area @ = .05 in the lower tail of the
distribution when df = 9 is x_, = x%s = 3.32511 (see Table 8 of Appendix II). We
use this fact to write a probability statement for the pivotal statistic y*:

PXi-en=x*sxip=1-«

where x2,; and x4 _, 2 are tabulated values o~ x? that place a probability of a/2 in
each tail of the chi-square distribution (see Figure 8.13).

FIGURE 8.13 » e
The location of x(i_, y and
X2 for a chi-square distribution

(51}~
(S T}=1

|- o

2 2
(1-a/2) zmz

Substituting [(n — 1)s?]/a? for x? in the probability statement and performing
some simple algebraic manipulations, we obtain

n — 1)s?
P(Xﬁ-a;z: = (—;;zi = Xi;z)
_ Xbi-as2) =1 Xas2
(n—1)%%" a2~ (n— 1)s?

I ED LS, N

IA

X{ZXIZ - X(zl—u/Z)
Thus, a (I — @)100% confidence interval for o is
== 2 w2 2
(n . 1)s < pls (n2 1)s
Xa/2 X(l-a/2)
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EXAMPLE 8.15

Solution

Gl il
Xaj2 Xﬁ-am
where xZ > and x{ 2 are values of x? that locate an area of a/2 to the right

and a/2 to the left, respectively, of a chi-square distribution based on (n — 1)
degrees of freedom.

Assumption: The population from which the sample is selected has an approx-
imate normal distribution.

Note that the estimation technique applies to either large or small n, and that
the assumption of normality is required in either case.

A quality control supervisor in a cannery knows that the exact amount each can
contains will vary, since there are certain uncontrollable factors that affect the amount
of fill. The mean fill per can is important, but equally important is the variation o?
of the amount of fill. If a7 is large, some cans will contain too little and others too
much. To estimate the variation of ]l at the cannery, the supervisor randomly selects
10 cans and weighs the contents of each. The following weights (in ounces) are
obtained:

796 790 798 801 797 796 803 802 8.04 8.02

Constuct a 90% confidence interval for the true variation in fill of cans at the cannery.

The supervisor wishes to estimate o?, the population variance of the amount of fill.
A (1 — @)100% confidence interval for o2 is

(n—1)s* _ Bl 1)s*
— = =
Xa/2 X(?‘l--am

For the confidence interval to be valid, we must assume that the sample of observations
(amounts of fill) is selected from a normal population.

To compute the interval, we need to calculate either the sample variance s* or
the sample standard deviation s. Descriptive statistics for the sample data are provided
in the SAS printout shown in Figure 8.14. The value of s, shaded in Figure 8.14, is
s = .043.

Now, (1 — @) = .90 and a/2 = .10/2 = .05. Therefore, the tabulated values
x%s and x%s for (n — 1) = 9 df (obtained from Table 8, Appendix 11) are

X%]; = 169190 and X%?S = 332511
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EXAMPLE 8.16

Solution
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Variable=FILL

Moments
N 10 Sum Wgts 10
Mean 7.989 Sum 79.89
8td Dev 0.043r63 Variance 0.001854
Skewness -0.8538 FKurtosis 0.479371
uss 638.2579 CSS 0.01669
cv 0.539032 sStd Mean 0.013618
T:Mean=0 586.6587 Prob)‘Tl 0.0001
Sgn Rank 27.5 Prob>|S 0.0020
Num ~“= 0 10
Quantiles(Def=5)

100% Max 8.04 99% 8.04
75% Q3 8.02 95% 8.04
50% Med 7.995 90% 8.035
25% Q1 7.96 10% 7.93

0% Min 7.9 5% 7.9
1% 7.9

Range 0.14

Q3-01 0.06

Mode 7.96

Substituting these values into the formula, we obtain
(10 = 1)(.043)* _ , _ (10 — 1)(.043)*
169190 ~ 7 T 332511
.00098 = o* = .00500

We are 90% conhdent that the true variance in amount of fll of cans at the cannery
falls between .00098 and .00500. The quality control supervisor could use this interval
to check whether the variation of fill at the cannery is too large and in violation of
government regulatory specifications.

Refer to Example 8.15. Find a 90% confidence interval for o, the true standard
deviation of the can weights.

A confidence interval for o is obtained by taking the square roots of the lower and
upper endpoints of a confidence interval for a?. Thus, the 90% confidence interval
is

V.00098 = ¢ = V.00500
03] = o= .07]

We are 90% confident that the true standard deviation of can weights is between .031
and .071 ounce.
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EXERCISES
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8.56  For cach of the following combinations of @ and degrees of frecedom (df), find the value of chi-square,
x2, that places an arca a in the upper tail of the chi-square distribution:
a. a=.05 df=7 b. a= .10, df=16 c.a= .01, df=10
d. a=.025 df=38 e. a=.005 df=5

857  Jitter is a term used to describe the variation in conduction time of a modular pulsed-water power system.
Low throughput jitter is critical to successful waterline technology. An investigation of throughput jitter in
the plasma opening switch of a prototype system ( Journal of Applied Physics, Sept. 1993) yielded the following
descriptive statistics on conduction time for n = 18 trials:

¥ = 334.8 nanoseconds s = 6.3 nanoseconds

(Conduction time is defined as the length of time required for the downstream current to equal 10% of the

upstream current. )

a. Construct a 95% conhdence interval for the true standard deviation of conduction times of the prototype
system.

b. A system is considered to have low throughput jitter if the true conduction time standard deviation is
less than 7 nanoseconds. Does the prototype system satisfy this requirement? Explain.

858  Refer to the IEEE Transactions (June 1990) study of a new hybrid algorithm for solving polynomial 0-1
mathematical programs, Exercise 8.31. A SAS printout giving descriptive statistics for the sample of 52
solution times is reproduced here. Use this information to compute an approximate 95% confidence interval
for the variance of the solution times. Interpret the result.

Analysis Variable : CPU

N Obs N Mean Variance Std Dev

52 52 0.8121923 2.2643035 1.5047603

8.59  An interlaboratory study was conducted to determine the variation in the measured level of polychlorinated
biphenyls (PCBs) in environmentally contaminated sediments (Analytical Chemistry, Nov. 1985). Samples
of sediment from New Bedford Ilarbor (Massachusetts) known to be contaminated with PCBs were collected
and aliquot solutions prepared. For one part of the study, the PCB concentration in each of a random
sample of five aliquots was determined by a single laboratory using the Webb—McCall procedure. The
analysis yiclded a mecan PCB concentration of 56 mg/kg and a standard deviation of .45 mg/kg. Find a
90% confidence interval for the variance in the PCB levels of contaminated sediment, determined using
the Webb-McCall procedure.
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8.61

8.11

An experiment was conducted to investigate the precision of measurements of a saturated solution of iodine
after an extended period of continuous stirring. The data shown in the table represent 1 = 10 iodire
concentration measurements on the same solution. The population variance o? measures the variability—
i.c., the precision—of a measurement. Use the information in the accompanying MINITAB printout to
find a 95% confidence interval for o2, Interpret the result.

Run

W ) ) e

conctrat

conctrat

Concentration Run Concentration
5.507 6 5,527
5.506 7 5.504
5.500 8 5.490
5.497 9 5.500
5.506 10 5.497
N MEAN MEDIAN TRMEAN  STDEV  SEMEAN

10 5.5034 5.5020 5.5021 0.0098 0.0031

MIN MAX 01 03

5.49%00 5.5270 5.4970 5.5062

Geologists analyze fluid inclusions in rock to infer the compositions of luids present when the rocks crystallized.
A new technique, called laser Raman microprobe (LRM) spectroscopy, has been developed for this purpose.
An experiment was conducted to estimate the precision of the LRM technique (Applied Spectroscopy, Feb.
1986). A chip of natural Brazilian quartz with several artificially produced fluid inclusions was subjected to
LRM spectroscopy. The amount of liquid carbon dioxide (CO,) present in the inclusion was recorded for
the same inclusion on four different days. The data (in mole percentage) follow:

86.6

85.5 85.9

a. Obtain an estimate of the precision of the LRM technique by constructing a 99% confidence interval
for the variation in the CO; concentration measurements.
b. What assumption is required for the interval estimate to be valid?

Estimation of the Ratio of Two Population Variances

L N N N N NN

The common statistical procedure for comparing two population variances, o} and
o}, makes an inference about the ratio /a3, This is because the sampling distri-
bution of the estimator of /o3 is well known when the samples are randomly and
independently sclected from two normal populations. Under these assumptions, a
confdence interval for of/o3 is based on the pivotal statistic

B = _X_%/Vi
= 2T
Xi/v2
where x} and x3 are chi-square random variables with v; = (n; — 1) and »; =

(ny — 1) degrees of freedom, respectively. Substituting (n — 1)s?/o® for x? (see
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Theorem 7.4), we may write

= lS]/
n — 1)
X1/V1 — &
/Vz '("—;-gﬁ/(ﬂg = )
_ si/of
s3/o}

- ()

From Definition 7.2 we know that F has an F distribution with ¥, = (n; — 1) numerator
degrees of freedom and v; = (n; — 1) denominator degrees of freedom. An F distri-
bution can be symmetric about its mean, skewed to the left, or skewed to the right;
its exact shape depends on the degrees of freedom associated with sf and s3, i.e.,
(np — 1)and (n; — 1).

To establish lower and upper confidence limits for ¢/a%, we need to be able to
find tabulated F values corresponding to the tail areas of the distribution. The upper-
tail F values can be found in Tables 9, 10, 11, and 12 of Appendix II for a = .10,
.05, .025, and .01, respectively. Table 10 of Appendix Il is partially reproduced in
Table 8.8. The columns of Tables 9-12 of Appendix II correspond to various degrees
of freedom for the numerator sample variance, s, in the pivotal statistic, whearas the
rows correspond to the degrees of freedom for the denominator sample variance, s3.
For example, with numerator degrees of freedom »; = 7 and denominator degrees of
freedom v; = 9, we have F s = 3.29 (shaded in Table 8.8). Thus, a = .05 is the
tail area to the right of 3.29 in the F distribution with 7 numerator df and 9 denominator
df, i.e., P(F > Fys5) = .05.

Lower-tail values of the F distribution are not given in Tables 9—12 of Appendix
1I. However, it can be shown (proof omitted) that

. 1

Pt ™ Fog

where Fy_y(y,,,,) is the F value that cuts off an area a in the lower tail of an F distribution
based on », numerator and »; denominator degrees of freedom, and F,, ,,) is the F
value that cuts off an area a in the upper tail of an F distribution based on v, numerator
and » denominator degrees of freedom. For example, suppose we want to find the
value that locates an area @ = .05 in the lower tail of an F distribution with »; =7
and v, = 9. That is, we want to find Fy _4(,,,,) = Fos(7,9). First, we find the upper-
tail values, Fgs9,7) = 3.68, from Table 8.8. (Note that we must switch the numerator
and denominator degrees of freedom to obtain this value.) Then, we calculate

| 1

Fos7.0) = F osﬁ =368 " = ,272
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AF)
TABLE 8.8  Abbreviated Version of Table 10 of Appendix |I: Tabulated Values of the F Distribution, & = .05
v Numerator Degrees of Freedom
" I 1 3 4 5 6 1 8 9
I 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
g 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
E‘“E 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
-3-'% 1 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
sx 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
E-‘s 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
= 10 4.96 4.10 3.71 3.48 3.33 3.22 3. 14 3.07 3.02
] 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
)] 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
13 4.67 3.81 3.4] 3.18 3.03 2.92 2.83 2.77 2.71
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
Using the notation established previously, we can write a probability statenent
for the pivotal statistic F (see Figure 8.15):
P(Pysgpne, iy S P& Ry )= 1—~a
FIGURE 8.15 » i(a)

F distribution with v, =

(m—Nand v = (0, — 1)
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Letting Fi. = Fy_,2 and Fy = F, 3, and substituting (s?/s3)(a3/0}) for F, we

obtain:
5 5 s?\ (o3
P < F < Fo) = PR = (3)(8) = Ry
83/ \0Y
- p(Sp < of_s )
P(sfFL = ot = sfFU |
2 2 2
. Lo 2y
_P(SE PUEU%ESE' L)—l “
or
P(ﬁ.;iojiﬁ.—l‘):l—a
3% Fa/Z(vl.vz) G’% S% Fl—aﬁ{v,.vz)

Replacing Fi_q/2(s,,4,) With 1/F,2(s,.,,), We obtain the final form of the confidence
interval:

2

s 1 o $

P(_.ii—g—.Fz ):l—a
8 Fopu,m 0% 5 = o/%0wn)

A (I — «)I00% Confidence Interval for the Ratio of
Two Population Variances, o'}/ o3

................................

)

sf 1 at _ sf
f———— < — =< —=F 2

s% Fa}Z(v].&hi O.i SE a/2v )

where Fy /2,4, is the value of F that locates an area @ /2 in the upper tail of
the F distribution with », = (n; — 1) numerator and v> = (n; — 1) denominator
degrees of freedom, and F,/z,,,,,) is the value of F that locates an area a/2
in the upper tail of the F distribution with v, = (n; — 1) numerator and », =
(ny — 1) denominator degrees of freedom.

Assumptions: 1. Both of the populations from which the samples are selected
have relative frequency distributions that are approximately
normal.

2. The random samples are selected in an independent manner
from the two populations.

As in the one-sample case, normal populations must be assumed regardless of the
sizes of the two samples.

EXAMPLE 8.17 A firm has been experimenting with two different physical arrangements of its assembly
line. It has been determined that both arrangements yield approximately the same
average number of finished units per day. To obtain an arrangement that produces




TABLE 8.9  Summary Statistics
for Example 8.17

Assembly

Line |

Assembly

Line 2

Solution

EXERCI

SES
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greater process control, you suggest that the arrangement with the smaller variance in
the number of finished units produced per day be permanently adopted. Two inde-
pendent random samples yield the results shown in Table 8.9. Construct a 95%
confidence interval for o{/a3, the ratio of the variances of the number of finished
units for the two assembly line arrangements. Based on the result, which of the two
arrangements would you recommend?

First, we must assume that the distributions of the numbers of finished units for the
two assembly lines are both approximately normal. Since we want a 95% confidence
interval, the value of a/2 is .025, and we need to find F g25,,,,,) and F 025(,,,,,)- The
sample sizes are ny = 21 and ny = 25; thus, Fo25(,,,4,) is based on vy = (m; — 1) =
20 numerator df and v> = (n; — 1) = 24 denominator df. Consulting Table 11 of
Appendix I, we obtain F 500,24y = 2.33. In contrast, Foas(,,, s, i based on v; =
(nz — 1) = 24 numerator df and v, = (n; — 1) = 20 denominator df; hence
(from Table 11 of Appendix II), Foz504,200 = 2.41. Substituting the values for
51, 83, F025(s,, ) and F025(,,,4,) into the confidence interval formula, we have

1,432 1 1,432
3,761(2.33) == (sl
63 =

Qs

1S
—rd PP

~ 3,761

= 018

[STN]

o

We estimate with 95% confidence that the ratio o7/ @3 of the true population variances
will fall between .163 and .918. Since all the values within the interval (.163,.918)
are less than 1.0, we can be confident that the variance in the number of units Anished
on line 1 (as measured by o) is less than the corresponding variance for line 2 (as
measured by a3).

Ses s s e s Ess AN SEBEEsBERERBEERBEES R R N N N N N N N

8.62

8.63

8.64

Find F, for an F distribution with 15 numerator df and 12 denominator df for the following values of a:
b.a=.05 ¢ a=.10

Find Fgs for an F distribution with:
a. Numerator df = 7, denominator df = 25 b. Numerator df = 10, denominator df = §
c¢. Numerator df = 30, denominator df = 60 d. Numerator df = 15, denominator df = 4

a. a=.025

In Environmental Science & Technology (Oct. 1993), scientists reported on a study of the transport and
transformation of PCDD, a pollutant emitted from solid waste incineration, motor vehicles, steel mills, and
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metal production. Ambient air specimens were collected over several different days at two locations in Swden:
Rérvik (11 days) and Gothenburg (3 days). The level of PCDD (measured in pg/m?) detected in each
specimen is recorded here. Use interval estimation to compare the variation in PCDD levels at the two
locations. Draw an inference from the analysis.

Raérvik Gothenburg

238 303 14 47 50 .61 .90
50 22 26 3l
46 1.09 214

Source:  Tysklind, M., et al. “Atmospheric transport and transformation of poly-
chlorinated dibenzo-p-dioxins and dibenzofurans.” Environmental Science & Tech-
nology, Vol. 27, No. 10, Oct. 1993, p. 2193 (Table III).

Refer to the Journal of Structural Engineering (Feb. 1986) experiment with epoxy-repaired truss joints,
Exercise 8.35. The data are reproduced here for convenience. Construct a 90% confidence interval for the
ratio of the shear stress variances of epoxy-repaired truss joints for the two species of wood. Based on this
interval, is there evidence to indicate that the two shear stress variances differ? Explain.

Southern Pine Ponderosa Pine

Sample Size 100 47
Mean Shear Stress, psi 1,312 1,352
Standard Deviation 422 271

Source: Avent, R. R. “Design critenia for epoxy repair of timber structures.” Journal of
Structural Engineering, Vol. 112, No. 2, Feb. 1986, pp. 232.

Refer to the strength and capacity guidelines for manual materials handling activities, Exercise 2.52. The
guidelines were established by observing the maximum weight that random samples of men and women
can safely lift from the floor to knuckle height (Human Factors, June 1980). When lifting at the rate of
1 lift per minute, males lifted a mean maximum weight of 30.25 kilograms (kg) with a standard deviation
of 8.56 kg, whereas the mean and standard deviation for females was 19.79 kg and 3.11 kg, respectively.
a. Assuming the sample consisted of 60 males and 60 females, construct a 90% confidence interval for the
ratio of the variances of the maximum weights that can safely be lifted by males and females.
b. What assumptions must be satisfied to ensure the validity of the interval estimate of part a?

Refer to the cancer death rate increases for fluoridated and nonfluoridated cities given in Exercise 8.36. The
data are reproduced here for convenience. Find a 95% confidence interval for the ratio of the variances of
the cancer death rate increases for the two groups of cities. Based on the interval, does it appear that the
assumption of equal variances required to conduct the analysis of Exercise 8.36 is satished?
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Fluoridated Nonfluoridated

Annual Increase in Annual Increase in

City Cancer Death Rate City Cancer Death Rate
Chicago 1.0640 Los Angeles .8875
Philadelphia 1.4118 Boston 1.7358
Baltimore 2.1115 New Orleans 1.0165
Cleveland 1.9401 Seattle .4923
Washington 3.8772 Cincinnati 4.0155
Milwaukee —-.4561 Atlanta -1.1744
St. Louis 4.8359 Kansas City 2.8132
San Francisco 1.8875 Columbus 1.7451
Pittsburgh 4.4964 Newark -.5676
Buffalo 1.4045 Portland 2.4471

Source: Maritz, | S., and Jarrett, R C. “The use of statistics to examine the association between fuoride in drinking
waler and cancer death rates.” Applied Statistics, Vol. 32, No. 2, 1983, pp. 97-101.

868  Refer to the PCB study described in Exercise 8.59. Recall that level of PCB was measured in each of a
sample of five aliquots using the Webb—McCall procedure. Another sample of five aliquots of sediment was
measured for PCBs using a diffferent procedure, called the Aroclor Standard comparison. Summary statistics
on PCB concentration for the two samples are given in the table.

Webb-McCall  Aroclor Standard

Sample Size 5 5
Mean PCB Concentration, mglkg 56 60
Standard Deviation 45 .89

Source:  Alford-Stevens, A. L., Budde, W. L., and Bellar, T. A. “Interlaboratory study on detcrmination
of polychlorinated biphenyls in environmentally contaminated scdiments.” Analytical Chemistry, Vol. 57,
No. 13, Nov. 1985, p. 2454, Reprinted with permission from Analytical Chemistry. Copyright 1985 Amer-
ican Chemical Society.

a. Construct a 90% confidence interval for the ratio of the variances in the PCB levels measured by the
two techniques.
b. What assumptions are required for the interval estimate to be valid?

8.12  Choosing the Sample Size

LR R NN RN N NN EEENE RN NN RN

One of the first problems encountered when applying statistics in a practical situation
is to decide on the number of measurements to include in the sample(s). The so.ution
to this problem depends on the answers to the following questions: Approximately
how wide do you want your confidence interval to be? What confidence coefficient
do you require?

You have probably noticed that the half-widths of many of the confidence intervals
presented in Sections 8.5-8.11 are functions of the sample size and the estimated
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EXAMPLE 8.18

Solution

standard error of the point estimator involved. For example, the half-width H of the
small-sample confidence interval for w is

=)

where t,/, depends on the sample size n, and s is a statistic computed from the sample
data. Since we will not know s before selecting the sample and we have no control
over ifs value, the easiest way to decrease the width of the conhdence interval is to
increase the sample size n. Generally speaking, the larger the sample size, the more
information you will acquire and the smaller will be the width of the confidence
interval. We illustrate the procedure for selecting the sample size in Examples 8.18
and 8.19.

As part of a Department of Energy (DOE) survey, American families will be randomly
selected and questioned about the amount of money they spent last year on home
heating oil or gas. Of particular interest to the DOE is the average amount w spent
last year on heating fuel. If the DOE wants the estimate of u to be correct to within
$10 with a confidence coefficient of .95, how many families should be included in
the sample?

The DOE wants to obtain an interval estimate of w, with confidence coefficient equal
to (1 — a) = .95 and half-width of the interval equal to 10. The half-width of a large-
sample confidence interval for w is

-
H = z,p03 = Zaﬁ(ﬁ)

In this example, we have H = 10 and z,,2 = z.025 = 1.96. To solve the equation
for n, we need to know . But, as will usually be the case in practice, o is unknown.
Suppose, however, that the DOE knows from past records that the yearly amounts
spent on heating fuel have a range of approximately $520. Then we could approximate
o by letting the range equal 40.* Thus,

40 =520 or o= 130

Solving for n, we have
o 130
= zop| = 10 = 1.9
H=anl ) or 10-196(7)

*From the Empirical Rule, we expect about 95% of the observations to fall between w — 2and p + 20
Thus,

Range = (u + 20) — (. — 20) = 4o
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Solution
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or

~ (1.96)%130)?
TR

Consequently, the DOE will need to elicit responses from 650 American families to
estimate the mean amount spent on home heating fuel last year to within $10 with
95% confidence. Since this would require an cxtensive and costly survey, the DOE
might decide to allow a larger half-width (say, H = 15 or H = 20) to reduce the
sample size, or the DOE might decreasc the desired confidence coefficient. The
important point is that the experimenter can obtain an idea of the sampling effort
necessary to achieve a specified precision in the final estimate by determining the
approximate sample size before the experiment is begun.

= 650

R R I R R )
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A production supervisor suspects a difference exists between the proportions p) and p;
of defective items produced by two different machines. Experience has shown that the
proportion defective for cach of the two machines is in the neighborhood of .03. If
the supervisor wants to estimate the difference in the proportions correct to within
.005 with probability .95, how many items must be randomly sampled from the
production of each machine? (Assume that you want n) = ny = n.)

Since we want to estimate (p) — p;) with a 95% confidence interval, we will use z,/2
= zu25 = 1.96. For the estimate to be correct to within .005, the half-width of the
confidence interval must equal .005. Then, letting py = p; = .03 and ny = n; = n,
we find the required sample size per machine by solving the following equation
for n:

141 242
H = z,/205,-p» ot H=2z4p2 P1Q + p

nj n
.005 = 1‘96\[(-0335-97) + £03X.97)

n
005 = 1,95,/ 20X

(1.96)X2)(.03)(.97) _
(.005) -

You can see that this may be a tedious sampling procedure. If the supervisor insists
on estimating (p; — p2) correct to within .005 with probability equal to .95, approx-
imately 9,000 items will have to be inspected for each machine.

n= 8,944

DR R R R IR R R A R )

You can see from the calculations in Example 8.19 that o73,_5,) (and hence the
solution, n; = n; = n) depends on the actual (but unknown) values of p; and 5. In
fact, the required sample size ny = n, = n is largest when p, = p; = .5. Therefore,
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if you have no prior information on the approximate values of p; and p;, use p; =
p2 = .5 in the formula for o1, 5, If p1 and p; are in fact close to .5, then the
resulting values of n; and n> will be correct. If py and p; differ substantially from .5,
then your solutions for n; and n; will be larger than needed. Consequently, using
p1 = p2 = .5 when solving for n; and n; is a conservative procedure because the
sample sizes ny and n; will be at least as large as (and probably larger than) nceded.

The formulas for calculating the sample size(s) required for estimating the param-
eters m, (1 — p2), p, and (p; — p2) are summarized in the following boxes. Sample
size calculations for variances require more sophisticated techniques and are beyond
the scope of this text.

Choosing the Sample Size for Estimating a Population Mean w to Within H
Units with Probability (I — «)

[Note: The population standard deviation o will usually have to be approx-
imated. |

Choosing the Sample Sizes for Estimating the Difference (1, — pt,) Between a
Pair of Population Means Correct to Within H Units with Probability (I — «)

m=n= (22 (ot + o3

where n) and n; are the numbers of observations sampled from each of the two
populations, and of and o} are the variances of the two populations.

Choosing the Sample Size for Estimating a Population Proportion p to Within
H Units with Probability (I — «)

o Ea)?
= ()
where p is the value of the population proportion that you are attempting to
estimate and ¢ = 1 — p.

[Note: This technique requires previous estimates of p and ¢. If none are
available, use p = ¢ = .5 for a conservative choice of n.]
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Choosing the Sample Sizes for Estimating the Difference (b, — p,) Between Two
Population Proportions to Within H Units with Probability (I — «)

--------------------------------

Za/2\2
ng=n; = (_H&) (hqr + p242)

where p; and p; are the proportions for populations 1 and 2, respectively, and
ny and n; are the numbers of observations to be sampled from each population.

EXERCISES
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8.69

8.70

8.71

8.1

Cost Engineering (Oct. 1988) reports on a study of the percentage difference between the low bid and the
engineer’s estimate of the cost for building contracts (see Exercise 7.19). For contracts with four bidders,
the mean percentage error is w = —7.02 and the standard deviation is o = 24.66. Suppose you want to
estimate the mean percentage error for building contracts with five bidders. How many five-bidder contracts
must be sampled to estimate with 90% confidence the mean to witihin 5 percentage points of its true value?
Assume that the standard deviation for five-bidder contracts is approximately equal to the standard deviation
for four-bidder contracts.

Refer to the Human Factors study on the use of color brightness as a body orientation cue, Exercise 8.49.
How many subjects are required for a similar experiment to estimate the true proportion who use a bright
color level as a cue to being right-side up to within .05 with 95% confidence? Use the sample proportion
calculated in Exercise 8.49 as an estimate of p.

The federal government requires states to certify that they are enforcing the 55-miles-per-hour speed limit
and that motorists are driving at that speed. A state is in jeopardy of losing millions of dollars in federal
road funds if more than 60% of its vehicles on 55-miles-per-hour highways are exceeding the speed limit.

The state highway patrol conducts 70 radar surveys each year at a total of 50 sites to estimate the proportion

p of vehicles exceeding 55 miles per hour. Each sample survey involves at least 400 vehicles.

a. How large a sample should be selected at a particular site to estimate p to within 3% with 90% confidence?
Last year approximately 60% of all vehicles exceeded 55 miles per hour.

b. The highway patrol also estimates w, the average speed of vehicles on state highways. Accordingly, it
wants to know whether the sample size determined in part a is large enough to also estimate w to within
.25 mile per hour with 90% confidence. Assume that the standard deviation of vehicle speeds is approx-
imately 2 miles per hour. How large a sample should be taken at a particular site to estimate u with the
desired reliability?

A consumer protection agency wants to compare the work of two electrical contractors to evaluate their
safety records. The agency plans to inspect residences in which each of these contractors has done the wiring
to estimate the difference in the proportions of residences that are electrically deficient. Suppose the pro-
portions of deficient work are expected to be about .10 for both contractors. How many homes should be
inspected to estimate the difference in proportions to within .05 with 90% confidence?
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A large steel corporation conducted an experiment to compare the average iron contents of two consignments
of lumpy iron ore. In accordance with industrial standards, n increments of iron ore were randomly selected
from each consignment and measured for iron content. From previous experiments, it is known that iron
contents vary over a range of roughly 3%. How large should n be if the steel company wants to estimate
the difference in mean iron contents of the two consignments correct to within .05% with 95% confidence?
[Hint: To obtain an approximate value for o and o0, set oy = 03 = o and set Range = 40. Then 3 =
4oand o = 3.

Materials requirements planning (MRP) systems are computerized planning and control systems for man-
ufacturing operations. Since their introduction in the mid-1960s, MRP systems have been used to manage
raw materials and work-in-process inventories while improving customer service. Suppose you want to
estimate the proportion p of manufacturing firms that use MRP systems. Approximately how large a sample
would be required to estimate p to within .02 with a confidence coefficient of .95? (Use a conservative
estimate of p = .5 in your calculations.)

OPTIONAL EXERCISE

8.75

8.13

When determining the sample size required to estimate p, show that the sample size n is largest when

p=.5.

Summary

R R I NN

Estimation is a procedure for inferring the value(s) of one (or more) population param-
eters. An estimator, a rule that tells how to calculate a particular estimate of a parameter
based on information contained in a sample, can be one of two types. A point estimator
uses the sample data to calculate a single number that serves as an estimate of a
population parameter. An interval estimator uses the sample data to calculate two
numbers that define an interval that is intended to enclose the estimated parameter
with some predetermined probability.

Point and interval estimators can be acquired intuitively; it seems reasonable to
use sample statistics to estimate the corresponding population parameters (the method
of moments). In addition, point estimators can be acquired using the method of
maximum likelihood (Section 8.3) or the method of least squares (Chapter 11); interval
estimators can be constructed using pivotal statistics and the procedure illustrated in
Section 8.4. In general, we prefer point estimators that are unbiased and possess
minimum variance, i.e., minimum variance unbiased estimators (MVUE). For a
given confidence coefficient, we prefer interval estimators with a mean interval width
that is small and subject to a small amount of variation.

We presented a number of point and interval estimators and demonstrated how
they can be applied in practical situations. (These results are summarized in Tables
8.10a and 8.10b.) By reviewing the examples, you can see that estimation as a method
of inference attempts to answer the question, “What is the value of the parameter 62"
We will approach inference-making from a different point of view in Chapter 9.




TABLE 8.10a  Summary of Estimation Procedures: Dne—Sampie Case

Parameter Estimator X Approximation (I — a)loo% Additional
0 0 E(0) o4 to 0 Confidence Interval Sample Size Assumptions
Mean p y m o s S a (L) n=30 None
\/H \/’r'; Y= Za2 '\/i_l
—_ L) n <30 Normal
Y=t population
where ¢t,,2 is based on
(n—1)df
Binomial 2 _ Y p bq ba bq n large enough so None
proportion p P=n n == b= zap = that the interval
p=* 2\/%i does not
contain 0 or 1
Variance o? 52 a? Not Not needed (n—1s* _ , _(n—1)5 All n Normal
needed Xarz " Xb-am population

where x2,; and x{_, ) are
the tabulated values of y2,
given in Table 8 of Appendix
11, that locate a/2 in each tail
of the chi-square distribution
with (n — 1) df, i.e.,

P(x* = x%,;) = a/2 and
PX* = xfi o) =1 - a/2
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TABLE 8.10b  Summary of Estimation Procedures: Two-Sample Case

Parameter Estimator R Approximation (I — a)loo% Sample Additional
] (7] E(8) P 0 o Confidence Interval Sizes Assumptions
(- m2)  (i—¥) (- ) \/a’i o} O e \/Ef E m =30, m=30 None
Eelfucer::“ m“ ™ ' m o ' X TR o : - Either ny < 30 or  Both populations
1
population  sample 1 1 " .- i ny < 30, or normal with
means: means "'a(;; s 5 e (Fr =9 =tap \)‘P n x 2 equal variances
Independent (of = o)
samples where where t.; is based on
=t m-ng (o 2d
%= m+n-12
= d=Zd/n pq o 84 1+ (__sd_) ng = 30 None

(= p2)  Mean of S ey e * zon| g |
Difference ﬁvmplc where sy is the standard i 54 ng < 30 ngula!!un of_
beh“;c; differences d_eviation of the sample of x oy VZ‘ dszem?m d, is
?:;: n differences where t,; is based on (ng — 1) df Horma
Matched
pairs
(b — p) (b= p) by —p2) iy . Paq: b b P B ban ny and n; large Independent
Difference D;'Iffc,enzcg T!" + ";2' ;Il + n: (P — P2) = 242 _:‘1I + N enough so that the  samples
between two  between intervals
binomial the sample . P
parameters  proportions hx2 \|I|TI- and

P = y/m 2

P2 = yilm do not contain

Dorl

at/al st/s3 of/o} Not needed Not needed (:s_f) 1 _oi_ (ﬁ F All ny and n; Independent
Ratio of Ratio of 3 Fappoyr) 03 aflign) samples frolm
population  sample two norma
variances variances populations

where oo, ) a0d Fojaien,.) are the
tabulated values of F (Tables 9, 10,
11, and 12 of Appendix 11} that place
an area equal to a/2 in the upper tail
of the F distribution, where Fy 20,01
is based on » = (m; — |) numerator
and v; = (n; — 1) denominator
degrees of freedom, and Fo a0 is
based on ¥; = (n; — 1) numerator
and » = (n; — 1) denominator

degrees of freedom

4l
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SUPPLEMENTARY EXERCISES
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8.76

8.77

What do college recruiters think are the most important topics to be covered in a job interview? To answer

this and other questions, Taylor and Sniezek elicited the opinions of recruiters interviewing at a small

midwestern college and a large midwestern university ( Journal of Occupational Psychology, 1984). Recruiters

were asked to rate on a 105-point scale the importance of each in a list of 25 interview topics [where 0 =

least important (can sometimes be omitted without hurting the interview), 52.5 = average importance (can

sometimes be omitted without hurting the interview), and 105 = most important (can never be omitted

without hurting the interview)]. The topic concerning “applicant’s skill in communicating ideas to others”

received the highest ratings of the n = 58 college recruiters who returned the questionnaire. The sample

mean rating and sample standard deviation for this topic were y = 84.84 and s = 15.67, respectively.

a. Give a point estimate for the true mean rating of the importance of “applicant’s skill in communicating
ideas to others” by all college recruiters.

b. Use the sample information to construct a 95% confidence interval for the true mean rating.

c. What is the confidence coefficient for the interval of part b? Interpret this value.

When new instruments are developed to perform chemical analyses of products (food, medicine, etc.), they
are usually evaluated with respect to two criteria: accuracy and precision. Accuracy refers to the ability of
the instrument to identify correctly the nature and amounts of a product’s components. Precision refers to
the consistency with which the instrument will identify the components of the same material. Thus, a large
variability in the identification of a single sample of a product indicates a lack of precision. Suppose a
pharmaceutical firm is considering two brands of an instrument designed to identify the components of
certain drugs. As part of a comparison of precision, ten test-tube samples of a well-mixed batch of a drug
are selected and then five are analyzed by instrument A and five by instrument B. The data shown in the
table are the percentages of the primary component of the drug given by the instruments. A SAS printout
giving descriptive statistics follows.

Instrument A 43 48 37 52 45
Instrument B 46 49 43 41 48

Analysis Variable : READING
INSTRMNT=A wwr—— e mmmemmm - ———————
N Obs N Minimum Maximum Mean Std Dev
o 5 5 37.0000000 52.0000000 45.0000000 5.6124861
-- - - INSTRMNT=B ----—
N Obs N Minimum Maximum Mean Std Dev
5 5 41-6655560 49 .0000058“ 45.4000000 3.3615473

a. Construct a 90% confidence interval to compare the precision of the two instruments.
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b. Based on the interval estimate of part a, what would you infer about the precision of the two instruments?
¢. What assumptions must be satishied to ensure the validity of any inferences derived from the estimate?

A regional computer center wants to evaluate the performance of its disk memory system. One measure of
performance is the average time between failures of a disk drive. Since the computer center operates two
disk drives, it wants to compare the mean times between failures of the two disk drives. Independent random
samples of n; = 10 and n, = 15 failures produced the following statistics:

Disk Drive 1 Disk Drive 2
y1 = 92 hours y» = 108 hours
s = 16 hours s» = 12 hours

Which of the two disk drives appears to give better performance?

According to a report by the U.S. surgeon general, electrical engineers have the lowest smoking rate among
all workers surveyed (IEEE Spectrum, Apr. 1986). Only 16% of the male clectrical engineers in the sample
smoke cigarcttes regularly. How many male electrical engineers must be sampled to estimate the proportion
of all male electrical engineers who smoke regularly to within 3% of its true value with 95% confidence?

The pesticide Temik is used for controlling insects that feed on potatoes, oranges, and other crops. According
to federal standards, drinking water wells with levels of Temik above 1 part per billion are considered
contaminated. The accompanying table lists the results of tests for Temik contamination conducted in five
states over the past few years. For each state, construct a 95% confidence interval for the true proportion
of wells contaminated with Temik. Interpret the results.

Number of Number of
State Wells Tested Contaminated Wells
New York 10,500 2,750
Wisconsin 700 105
Maine 124 82
Florida 825 4
Virginia 76 17

Source:  Orlando Sentinel, July 4, 1983,

A machine used to fll beer cans must operate so that the amount of beer actually dispensed varies very
little. If too much beer is released, the cans will overflow, causing waste. If too little beer is released, the
cans will not contain enough beer, causing complaints from customers. A random sample of the fills for
20 cans yielded a standard deviation of .07 ounce. Estimate the true variance of the fills using a 95%
confidence interval.

Refer to the LRM spectroscopy experiment described in Exercise 8.61. The amount of liquid CO; present
in each of two diffcrent fluid inclusions (named FREO and FRITZ) was measured on each of four randomly
selected days. The data are reproduced in the table. Use interval estimation to compare the mean difference
between the CO; concentrations (in mole percentage) of the two fluid inclusions.
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Day Inclusion FREO Inclusion FRITZ

1 86.6 83.8
2 84.6 85.3
3 85.5 84.6
4 85.9 83.4

Source:  Wopenka, B., and Pasteris, |. D. "Limitations to quantitative
analysis of Auid inclusions in geological samples by laser Raman micro-
probe spectroscapy.” Applied Spectroseapy, Vol. 40, No. 2, Feb. 1986,
p. 149

Some power plants are located near rivers or oceans so that the available water can be used for cooling the
condensers. As part of an environmental impact study, suppose a power company wants to estimate the
difference in mean water temperature between the discharge of its plant and the offshore waters. How many
sample measuremnents must be taken at each site to estimate the true difference between means to within
.2°C with 95% confidence? Assume the range in readings will be about 4°C at each site and the same
number of readings will be taken at each site.

A study was conducted to compare the attitudes of American and Soviet teenagers on nuclear war (New

England Journal of Medicine, Aug. 18, 1988). A tcam of American and Soviet researchers surveyed 3,370

public school students in Maryland and 2,148 students in central Russia. One question asked whether the

students believe a nuclear war will occur in their lifetime. Forty-two percent of the Maryland students and

9% of the Russian students responded affirmatively.

a. Calculate a 99% confidence interval for the difference between the proportions of Maryland and Russian
students who believe that a nuclear war will occur in their lifetime. Interpret the interval.

b. How could the width of the interval of part a be reduced?

c¢. Although Maryland students were recruited randomly for the study, there is speculation that the Soviet
students were selected much more carefully. How could the nonrandom Soviet sample bias the results
obtained in part a?

Two alloys, A and B, are used in the manufacture of steel bars. Suppose a steel producer wants to compare
the two alloys on the basis of average load capacity, where the load capacity of a steel bar is defined as the
maximum load (weight in tons) it can support without breaking. Steel bars containing alloy A and steel bars
containing alloy B were randomly selected and tested for load capacity. The results arc summarized in the
accompanying table.

Alloy A Alloy B
n = 11 n; = 17
i =437  y, =485
st=244 s3=199

a. Find a 99% conhdence interval for the difference between the true average load capacities for the two
alloys.

b. For the interval of part a to be valid, what assumptions must be satished?

c. Interpret the interval of part a. Can you conclude that the average load capacities for the two alloys are
different?

d. How many steel bars of each type should be sampled to estimate the true difference in average load
capacities to within 2 tons with 99% conhdence? (Assume n; = n, = n.)
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OPTIONAL SUPPLEMENTARY EXERCISES

8.86

8.87

8.88

8.89

8.90

8.9

Let ¥, be the mean of a random sample of n, observations from a Poisson distribution with mean A;, and
let ¥, be the mean of a random sample of n» observations from a Poisson distribution with mean A;. Assume
the samples are independent.

a. Show that (y; — y2) is an unbiased estimator of (A} — A;).

b. Find V(y, — ;). How could you estimate this variance?

c. Construct a large-sample (1 — @)100% confidence interval for (A; — A;). [Hint: Consider

(1 =72 —(AL— A

Ny n

mny nz

z

as a pivotal statistic. |

Let yi, y2, . . ., yn denote a random sample from a uniform distribution with probability density

f(y):{l fo<y=0+1

0 elsewherc

a. Show that y is a biased estimator of 6, and compute the bias.
b. Find V(y).
c. What function of y is an unbiased estimator of 6?

Suppose y is a random sample of size n = 1 from a normal distribution with mean 0 and unknown

variance o2

a. Show that y?/a? has a chi-square distribution with 1 degree of freedom. [Hint: The result follows
directly from Theorem 7.4.]

b. Derive a 95% confidence interval for o? using y?/o? as a pivotal statistic.

Suppose y is a random sample of size n = | from a gamma distribution with parameters @ = 1 and

arbitrary B.

a. Show that 2y/B has a gamma distribution with parameters @ = | and 8 = 2. [Hint:  Use the distribution
function approach of Section 7.2.]

b. Use the result of part a to show that 2y/B has a chi-square distribution with 2 degrees of freedom.
[Hint: The result follows directly from Section 5.7.]

c¢. Derive a 95% confdence interval for 8 using 2y/f as a pivotal statistic.

Suppose y is a single observation from a normal distribution with mean w and variance 1. Use y to find a
95% confidence interval for . [Hint: Start with the pivotal statistic z = (y — w). Since z is a standard
normal random variable,

Pl—zoss Sy~ pszoes)=.9

Follow the method of Example 8.6.]

A confidence interval for 6 is said to be unbiased if the expected value of the interval midpoint is equal
to 6.
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a. Show that the small-sample confidence interval for g,

_ s _ s
— sl 2| 2 T el
Y °’2(\/E) = ’2(\/5)
is unbiased.
b. Show that the confidence interval for o?,
(n = 1)s? o (nz‘ 1)s?
Xa/2 X(1~a/2)
is biased.

892  Suppose y is a single observation from a uniform distribution defined on the interval from 0 to 6. Find a
95% confidence limit LCL for € such that P(LCL < 8 < ) = .95. [Hint: Start with the pivotal statistic
y/6 and show (using the method of Chapter 7) that y/8 is uniformly distributed on the interval from 0 to
1. Then observe that

.95
P(O < % < _95) = L ()dy = .95

and proceed to obtain LCL.]

(OMPUTER LAB: Confidence Intervals for Means
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Most commercial statistical software packages (e.g., SAS) do not have modules for computing confidence inter-
vals for the parameters discussed in this chapter. Those that do (e.g., MINITAB) are limited in scope. For exam-
ple, MINITAB will produce confidence intervals for means but not for variances or proportions. The MINITAB
programs presented here give the confidence interval commands for estimating the parameters u, u; — w2, and
4. The outputs of the programs are shown in Figures 8.16-8.18, on pages 418-419, respectively.

NINITAB
a. Confidence Interval for u—Data from Example 8.9

Command

line

1 SET SILICON PPM IN Ci Data entry instruction

2 229 255 2BO 203 229 Input data (5 observations per line)
3 NAME C1 = ‘PPM’
4 TINTERVAL 99 C1 99% conhdence interval

(OMMAND 4 The TINTERVAL command produces a confidence interval for the mean of the data stored in Cl.
The confidence interval (in this case, 99%) is specified following TINTERVAL. (The default is a 95% confi-
dence interval.)

NOTE When o is unknown, as is usually the case, TINTERVAL uses the appropriate value from the t distribu-
tion to calculate the interval regardless of the size of the sample. For large samples, recall that t,,; = z4/2.
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FIGURE 8.16 » N MEAN STDEV SE MEAN  99.0 PERCENT C.I.
OI.IIPM for MINITAB program a. ppm 4 241.8 33.2 16.6 ( 144 .8, 338.7)

b. Confidence Interval for u; — p2, Independent Samples—Data from Example 8.11

Command
line

READ THREE IN C1, SEVEN IN CZ Data entry command

|

2 1189 BS3

3 840 800 [nput data values

4 1020 733 (1 observation per line)

5 980 785

6 NAME C1 = ‘3%ZASPH’ C2 = ‘7%ASPH’

7 THOSAMPLE 85 €1.€21 } 035 copience nena

(OMMAND 7  TWOSAMPLE produces a confidence interval on the difference between the mean of the data in Cl
and the mean of the data in C2. By default, a 95% confidence interval is computed. To change the confidence

level, specify 99, 90, etc., following the TWOSAMPLE command.

(OMMAND 8  The POOLED subcommand instructs MINITAB to use s3 in the calculation of a small-sample confidence
interval. Omit the POOLED subcommand if you want MINITAB to compute a large sample confidence interval

for wy — 2.

NOTE TWOSAMPLE uses the appropriate value from the ¢ distribution to compute the confidence interval regardless

of the sample size. For large samples, recall that t,/; = z4/2.

FIGURE 8.17 » TWOSAMPLE T FOR 3%asph VS 7%asph

Output for MINITAB program b. N MEAN STDEV  SE MEAN
3tasph 4 1007 l44 72
7%asph 4 817.8 73.6 37

95 PCT CI FOR MU 3%asph - MU 7%asph: (-8, 387)
TTEST MU 3%asph = MU 7%asph (VS NE): T= 2.35 P=0.057 DF= 6

POOLED STDEV = 114

c. Conhdence Interval for ug = (1 — p), Paired Samples—Data from Example 8.12

Command
line
1 READ PLANT DATA IN C1l. STATION DATA IN C2 Data entry instruction

fa 2.0 252
input data (1 observation per line)

13 2.12.0

14 SUBTRACT C2 FROM Ci, PUT IN C3

15 NAME C3 = "DIFF"

16 TINTERVAL 95 C3 95% conhdence interval
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(OMMAND 14 Use the SUBTRACT command to calculate the differences for the paired observations in Cl

(OMMAND 16 Use the TINTERVAL command to compute a 95% confidence interval for the mean of the differ-

STDEV SE MEAN
0.1676

95.0 PERCENT C.I.
0.0484 ( -0.1149, 0.0982)

and C2.

ences in C3.

FIGURE 8.18 » N e
Output for MINITAB program c. Aiff 12 -0.0083
References

N N N N RS

Devore, ). Probability and Statistics for Engineering and the
Sciences, 2nd ed. Monterey, California: Brooks/Cole,
1987.

Freedman, D., Pisani, R., and Purves, R. Statistics. New
York: W. W. Norton and Co., 1978.

Hoel, P. G. Introduction to Mathematical Statistics, 4th ed.
New York: Wiley, 1971.

Hogg, R. V., and Craig, A. T. Introduction to Mathematical
Statistics, 4th ed. New York: Macmillan, 1978.

Mendenhall, W. Introduction to Probability and Statistics,
8th ed. Boston: Duxbury, 1990.

Mendenhall, W., Wackerly, D. D., and Scheaffer, R. L.
Mathematical Statistics with Applications, 3rd ed.
Boston: Duxbury, 1989.

Mood, A. M., Graybill, F. A., and Boes, D. Introduction to
the Theory of Statistics, 3rd ed. New York: McGraw-
Hill, 1974,

Mosteller, F., and Tukey, ]. W. Data Analysis and Regres-
sion. Reading, Massachusetts: Addison-Wesley, 1977.
Chapters 8 and 10.

Snedecor, G. W., and Cochran, W. G. Statistical Methods,
7th ed. Ames, lowa: lowa State University Press, 1980.

Tukey, J. W. “Bias and Confidence in Not-Quite Large Sam-
ples.” Annals of Mathematical Statistics, Vol. 29, 1958,
p. 614.



CHAPTER NINE

------- L I R I N I N I I A A )

Tests of Hypotheses

Objective

To introduce the basic concepts of a statistical test of
a hypothesis; to present statistical tests for several
common population parameters and to illustrate their
use in practical sampling situations
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9.1  The Relationship Between Statistical Tests
of Hypotheses and Confidence Intervals

As stated in Chapter 8, there are two general methods available for making inferences
about population parameters. We can estimate their values using confidence intervals
(the subject of Chapter 8) or we can make decisions about them. Making decisions
about specific values of the population parameters—testing hypotheses about these
values—is the topic of this chapter.

Confidence intervals and hypothesis tests are related and can be used to make
decisions about parameters. For example, suppose an investigator for the Environ-
mental Protection Agency (EPA) wants to determine whether the mean level u of a
certain type of pollutant released into the atmosphere by a chemical company meets
the EPA guidelines. If 3 parts per million is the upper limit allowed by the EPA, the
investigator would want to use sample data (daily pollution measurements) to decide
whether the company is violating the law, i.e., to decide whether pu > 3. If] say, a
99% confidence interval for p contained only numbers greater than 3, then the EPA
would be confident that the mean exceeds the established limit.

As a second example, consider a manufacturer that purchases terminal fuses in
lots of 10,000, and suppose that the supplier of the fuses guarantees that no more than
1% of the fuses in any given lot are defective. Since the manufacturer cannot test
each of the 10,000 fuses in a lot, he must decide whether to accept or reject a lot
based on an examination of a sample of fuses selected from the lot. If the number y
of defective fuses in a sample of, say, n = 100, is large, he will reject the lot and send
it back to the supplier. Thus, he wants to decide whether the proportion p of defectives
in the lot exceeds .01, based on information contained in a sample. If a confidence
interval for p falls below .01, then the manufacturer will accept the lot and be confident
that the proportion of defectives is less than 1%; otherwise, he will reject it.

The examples in the preceding paragraphs illustrate how a confidence interval
can be used to make a decision about a parameter. Note that both applications are
one-directional; the EPA wants to determine whether w > 3 and the manufacturer
wants to know if p > .01. (In contrast, if the manufacturer is interested in determining
whether p > .01 or p < .01, the inference would be two-directional.)

Recall, from Chapter 8, that to find the value of z (or ) used in a (1 — «)100%
conhdence interval, the value of « is divided in half and /2 is placed in both the
upper and lower tails of the z (or t) distribution. Consequently, confidence intervals
arc designed to be two-directional. Use of a two-directional technique in a situation
where a one-directional method is desired will lead the researcher (e.g., the EPA or
the manufacturer) to understate the level of confidence associated with the method.
As we will explain in this chapter, hypothesis tests are appropriate for either one- or
two-directional decisions about a population parameter.
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2 Elements of a Statistical Test

We now return to the EPA example to introduce the concepts involved in a test of a
hypothesis. We will use a method analogous to proof by contradiction. The theory
the EPA wants to support, called the alternative (or research) hypothesis, is that p >
3, where u is the true mean level of pollution in parts per million. The alternative
hypothesis is denoted by the symbol H,. The theory contradictory to the alternative
hypothesis, that w is at most equal to 3, say, u = 3, is called the null hypothesis and
is denoted by the symbol Hy. Thus, the EPA hopes to show support for the alternative
hypothesis, u > 3, by obtaining sample evidence indicating that the null hypothesis,
p = 3, is false. That is, the EPA wants to test

Hg: #:3
Hy: pn>3

The decision whether to reject the null hypothesis is based on a statistic, called
a test statistic, computed from sample data. For example, suppose the EPA plans to
base its decision on a sample of n = 30 daily pollution readings. If the sample mean
y of the 30 pollution measurements is much larger than 3, the EPA would tend to
reject the null hypothesis and conclude that u > 3.However, if y is smaller than 3,
say, ¥ = 2.8 parts per million, there is insufficient evidence to refute the null hypothesis.
Thus, the sample mean y serves as a test statistic.

The values that the test statistic y can assume will be divided into two sets. Those
larger than some specified value, say, y = 3.1, will imply rejection of the null hypothesis
and acceptance of the alternative hypothesis. This set of values of the test statistic is
known as the rejection region for the test. A test of the null hypothesis, Hy: u = 3,
against the alternative hypothesis, H,: w > 3, employing the sample mean y as a test
statistic and ¥ = 3.1 as a rejection region, represents one particular test that possesses
specific properties. If we change the rejection region to y = 3.2, we obtain a different
test with different properties.

The preceding discussion indicates that a statistical test consists of the four elements
summarized in the box.

Elements of a Statistical Test

1. Null hypothesis, Hg, about one or more population parameters

2. Alternative hypothesis, H,, that we will accept if we decide to reject the null
hypothesis -

Test statistic, computed from sample data

B oW

. Rejection region, indicating the values of the test statistic that will imply
rejection of the null hypothesis
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In Section 9.3, we will show how to evaluate the reliability of a statistical test,
how to compare one test with another, and how to evaluate the reliability of a particular
test decision. We will apply the results to several practical examples.

Evaluating the Properties of a Statistical Test
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Since a statistical test can result in one of only two outcomes—rejecting or not rejecting
the null hypothesis—the test conclusion is subject to only two types of error. To
illustrate, consider the EPA example of Section 9.2. Recall that the investigator wants
to test Hg: o = 3 against H,: u > 3, where u = mean level of pollutant released
into the atmosphere by a chemical company. If the investigator concludes that H, is
true (i.e., if he rejects Hg), then the EPA will charge the company with violating its
pollution standards. The two errors that the EPA can make are shown in Table 9.1.

TABLE 9. Conclusions and Consequences for the EPA's Test of Hypothesis

True State of Nature

Company Not in Violation Company in Violation
EPA Decision (Ho true) (H, true)
Company in Violation (Reject Hyp) 1 Type I error Correct decision
Company Not in Violation (Accept Hy) Correct decision Type 11 error

The EPA might reject the null hypothesis if, in fact, it is true. That is, the EPA
might charge the company with violating its standards, when, in fact, the company
is innocent (Type [ error). Or the EPA might decide to accept the null hypothesis if;
in fact, it is false. That is, the EPA may conclude that the company is not in violation
of the pollution standards when, in fact, the company is in violation (Type II error).
The probabilities of making these two types of errors measure the risks of making
incorrect decisions when we perform a test of hypothesis and, consequently, provide
measures of the goodness of this inferential decision-making procedure.

Definition 9.1

Rejecting the null hypothesis if it is true is a Type I error. The probability of
making a Type | error is denoted by the symbol e.
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Definition 9.2

Accepting the null hypothesis if it is false is a Type II error. The probability of
making a Type 1l error is denoted by the symbol B.

Which of the two errors, Type | or Type Il, is more serious? From the EPA’s

perspective, the Type | error is the more serious error. If the EPA falsely accuses the
company of violating the pollution limits, a costly lawsuit will likely occur. On the
other hand, the residents who live near the chemical company would probably view
the Type Il error as more serious; if this error occurs, the EPA is failing to charge the
company when it is, in fact, polluting the surrounding air. In either case, it is important
to compute the probabilities, a and 3, to assess the reliability of inferences derived
from the hypothesis test. The next four examples illustrate how to compute these
probabilities.

R R A I A R A )

EXAMPLE 9.1

Solution

FIGURE 9.1 »

Graph of p(y) for n = 10 and

p =2, ie, if the null hypothesis
is true

A manufacturer of minicomputers believes that it can sell a particular software package
to more than 20% of the buyers of its computers. Ten prospective purchasers of the
computer were randomly selected and questioned about their interest in the software
package. Of these, four indicated that they planned to buy the package. Does this
sample provide sufficient evidence to indicate that more than 20% of the computer
purchasers will buy the software package?

Let p be the true proportion of all prospective computer buyers who will purchase the
software package. Since we want to show that p > .2, we choose H,: p > .2 for the
alternative hypothesis and Hy: p = .2 for the null hypothesis. We will use the binomial
random variable y, the number of prospective purchasers in the sample who plan to
buy the software, as the test statistic and will reject Ho: p = .2 if y is large. A graph
of p(y) for n = 10 and p = .2 is shown in Figure 9.1.

py)

3

1 1 L | 1 1 I‘—‘ 1 ] | ]
0 1 2 3 B 5 6 7 8 9 10
- Rejection region
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Large values of y will support the alternative hypothesis, H,: p > .2, but what
values of y should we include in the rejection region? Suppose that we select values
of y = 4 as the rejection region. Then the elements of the test are:

Ho: p=.2
Hy: p>.2
Test statistic: 'y
Rejection region: y = 4
To conduct the test, we note that the observed value of y, y = 4, falls in the rejection

region. Thus, for this test procedure, we reject the null hypothesis, Hp: p = .2, and
conclude that the manufacturer is correct, i.e., p > .2.

R R R

EXAMPLE 9.2 What is the probability that the statistical test procedure of Example 9.1 would lead

us to an incorrect decision if, in fact, the null hypothesis is true?

Solution We will calculate the probability a that the test procedure would lead us to make a
Type [ error, i.e., to reject Hy if, in fact, Hp is true. This is the probability that y falls
in the rejection region if in fact p = .2

3
a=Py=4ifinfactp=.2)=1— EGI)()«‘)
e

The partial sum 2}_ p(y) for a binomial random variable with n = 10 and p = .2
is given in Table 1 of Appendix II as .879. Therefore,

3
a=1- Zop(y)zl—.379=.121
y;

The probability that the test procedure would lead us to conclude that p > .2, if in
fact it is not, is .121. This probability corresponds to the area of the shaded region in
Figure 9.1.

R R R N R N R R

In Example 9.1, we computed the probability a of committing a Type [ error.
The probability B of making a Type Il error, i.e., failing to detect a value of p greater
than .2, depends on the value of p. For example, if p = .20001, it will be very dif-
ficult to detect this small deviation from the null hypothesized value of p = .2. In
contrast, if p = 1.0, then every prospective purchaser of the minicomputer will
want to buy the software package, and in such a case it will be very evident from the
sample information that p > .2. We will illustrate the procedure for calculating 8 in
Example 9.3.

EXAMPLE 9.3 Refer to Example 9.2 and suppose that p is actually equal to .60. What is the probability
B that the test procedure will fail to reject Hp: p = .2 if, in fact, p = .62




Solution

FIGURE 9.2 »

Graph of p(y) for n = 10 and
p = .6, ie, if the alternative
hypothesis is true
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The binomial probability distribution p(y) for n = 10 and p = .6 is shown in Figure
9.2. The probability that we will fail to reject Hy is equal to the probability that y =
0, 1, 2, or 3, i.e., the probability that y does not fall in the rejection region. This
probability, B, corresponds to the shaded area under the probability histogram in the
figure. Therefore,

3
B=Py=3ifinfactp=.6)= zop(y) forn=10and p = .6
y=

)
3+
2
A
0 | 2 3 4 5 6 7 8 9 1w
| «———————— Rejection region

This partial sum, given in Table 1 of Appendix Il for a binomial random variable
with n = 10 and p = .6, is .055. Therefore, the probability that we will fail to reject
Ho: p = .2 if pis as large as .6 is B = .055.

Another important property of a statistical test is its ability to detect departures
from the null hypothesis when they exist. This is measured by the probability of
rejecting Ho when, in fact, Hp is false. Note that this probability is simply (1 — B):

P(Reject Hy when Hy is false) = 1 — P(Accept Hy when Hy is false)

= 1 — P(Type Il error)

=1-8
The probability (1 — B) is called the power of the test. The higher the power, the
greater the probability of detecting departures from Hy when they exist.

Definition 9.3

--------------------------------

The power of a statistical test, (1 — B), is the probability of rejecting the null
hypothesis Hy when, in fact, Hy is false.
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EXAMPLE 94 Refer to the test of hypothesis in Example 9.1. Find the power of the test if in fact
p=3

Solution From Definition 9.3, the power of the test is the probability (I — ). The probability i
of making a Type II error, i.e., failing to reject Hy: p = .2, if in fact p = .3, will be

larger than the value of B calculated in Example 9.3 because p = .3 is much closer
to the hypothesized value of p = .2. Thus,

3
B=Py=3ifinfactp=.3) = zup(y) forn=10and p = .3
y:

The value of this partial sum, given in Table 1 of Appendix I for a binomial random
variable with n = 10 and p = .3, is .650. Therefore, the probability that we will
fail to reject Hy: p = .2 if in fact p = .3 is B = .650 and the power of the test
is (1 — B) = (1 — .650) = .350. You can see that the closer the actual value of p is
to the hypothesized null value, the more unlikely it is that we will reject Hp: p = .2.

D R R A I R R}

The preceding examples indicate how we can calculate @ and B for a simple
statistical test and thereby measure the risks of making Type [ and Type II errors.
These probabilities describe the properties of this inferential decision-making procedure
and enable us to compare one test with another. For two tests, each with a rejection
region selected so that e is equal to some specified value, say, .10, we would select
the test that, for a specified alternative, has the smaller risk of making a Type Il error,
i.e., one that has the smaller value of B. This is equivalent to choosing the test with
the higher power.

We will present a number of statistical tests in the following sections. In each
case, the probability e of making a Type [ error is known, i.e., a is selected by the
experimenter and the rejection region is determined accordingly. In contrast, the value
of B for a specific alternative is often difficult to calculate. This explains why we
attempt to show that H, is true by showing that the data do not support Hg. We hope
that the sample evidence will support the alternative (or research) hypothesis. If it
does, we will be concerned only about making a Type I error, i.e., rejecting Hy if it
is true. The probability & of committing such an error will be known.

EXERCISES
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9.1 Define a and B for a statistical test of hypothesis.

92 Explain why each of the following statements is incorrect:
a. The probability that the null hypothesis is correct is equal to .
b. If the null hypothesis is rejected, then the test proves that the alternative hypothesis is correct.
c. In all statistical tests of hypothesis, @ + B = 1.
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9.5
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Pharmaceutical companies are continually searching for new drugs. Testing the thousands of compounds
for the few that might be effective is known in the pharmaceutical industry as drug screening. Dunnett
(1978) views the drug-screening procedure in its preliminary stage in terms of a statistical decision problem:
“In drug screening, two actions are possible: (1) to ‘reject’ the drug, meaning to conclude that the tested
drug has little or no effect, in which case it will be set aside and a new drug selected for screening; and
(2) to ‘accept’ the drug provisionally, in which case it will be subjected to further, more refined experimenta-
tion.”™ Since it is the goal of the researcher to find a drug that effects a cure, the null and alternative
hypotheses in a statistical test would take the following form:

Hy:  Drug is ineffective in treating a particular disease
H,: Drug is effective in treating a particular disease

Dunnett comments on the possible errors associated with the drug-screening procedure: “To abandon a drug
when in fact it is a useful one (a false negative) is clearly undesirable, yet there is always some risk in that.
On the other hand, to go ahead with further, more expensive testing of a drug that is in fact useless (a false
positive) wastes time and money that could have been spent on testing other compounds.”

a. A false negative corresponds to which type of error, Type I or Type 1I?

b. A false positive corresponds to which type of error, Type I or Type 117

¢. Which of the two errors is more serious? Explain.

Pascal is a high-level programming language used frequently in minicomputers and microprocessors. An

experiment was conducted to investigate the proportion of Pascal variables that are array variables (in contrast

to scalar variables, which are less efficient in terms of execution time). Twenty variables are randomly

selected from a set of Pascal programs and y, the number of array variables, is recorded. Suppose we want

to test the hypothesis that Pascal is a more efficient language than Algol, in which 20% of the variables are

array variables. That is, we will test Ho: p = .20 against H,: p > .20, where p is the probability of observing

an array variable on each trial. (Assume that the 20 trials are independent.)

a. Find a for the rejection region y = §.

b. Find « for the rejection region y = 5.

c. Find B for the rejection region y = 8 if p = .5. Note: Past experience has shown that approximately
half the variables in most Pascal programs are array variables. |

d. Find B for the rejection region y = 5 if p = .5.

e. Which of the rejection regions, y = 8 or y = 5, is more desirable if you want to minimize the probability
of a Type I error? Type Il error?

f. Find the rejection region of the form y = a so that a is approximately equal to .01.

g. For the rejection region determined in part f, find the power of the test, if in fact p = .4.

h. For the rejection region determined in part f, find the power of the test, if in fact p = .7.

A manufacturer of power meters, which are used to regulate energy thresholds of a data-communications
systemn, claims that when its production process is operating correctly, only 10% of the power meters will
be defective. A vendor has just received a shipment of 25 power meters from the manufacturer. Suppose
the vendor wants to test Hy: p = .10 against H,: p > .10, where p is the true proportion of power meters
that are defective. Use y = 6 as the rejection region.
a. Determine the value of « for this test procedure.

*From Tanur, ]. M., et al., eds. Statistics: A Guide to the Unknown. San Francisco: Holden-Day, 1978.
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b. Find B if in fact p = .2. What is the power of the test for this value of p?
c. Find B if in fact p = .4. What is the power of the test for this value of p?

OPTIONAL EXERCISE

9.6 Show that for a fixed sample size n, « increases as B decreases, and vice versa.

94  Finding Statistical Tests: An Example of a Large-Sample Test

To find a statistical test about one or more population parameters, we must (1) find
a suitable test statistic and (2) specify a rejection region. One method for finding a
reasonable test statistic for testing a hypothesis was proposed by R. A. Fisher. For
example, suppose we want to test a hypothesis about the sole parameter 6 of a probability
function p(y) or density function f(y), and let L represent the likelihood of the sample.
Then to test the null hypothesis, Hq: 8 = 6y, Fisher’s likelihood ratio test statistic is

_ Likelihood assuming 6 = 6, _ L(6o)

A= , =
Likelihood assuming 6 = 6 L()

where @ is the maximum likelihood estimator of 6. Fisher reasoned that if @ differs
from 6y, then the value of the likelihood L when 6 = 6 will be larger than when
0 = 6. Thus, the rejection region for the test contains values of A that are small—
say, smaller than some value Ag.

If you are interested in learning more about Fisher'’s likelihood ratio test, consult
the references at the end of this chapter. Fortunately, most of the statistics that we
would choose intuitively for test statistics are functions of the corresponding likelihood
ratio statistic A. These are the pivotal statistics used to construct confidence intervals
in Chapter 8.

Recall that most of the pivotal statistics in Chapter 8 have approximately normal
sampling distributions for large samples. This fact allows us to easily derive a large-
sample statistical test of hypothesis. To illustrate, suppose that we want to test a
hypothesis, Ho: 6 = 69, about a parameter @ and that the estimator @ possesses a
normal sampling distribution with mean 6 and standard deviation a3 We will further
assume that o is known or that we can obtain a good approximation for it when the
sample size(s) is (are) large. It can be shown (proof omitted) that the likelihood ratio
test statistic A reduces to the standard normal variable z:

_6-6
0%

4

The location of the rejection region for this test can be deduced by examining
the formula for the test statistic z. The farther édeparts from 6y, i.e., the larger the
absolute value of the deviation [ — 6|, the greater will be the weight of evidence
to indicate that 6 is not equal to 6. If we want to detect values of 6 larger than 6,
i.e., Hy: 6 > 6y, we locate the rejection region in the upper tail of the sampling
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distribution of the standard normal z test statistic (see Figure 9.3a). If we want to detect
only values of 8 less than 6y, i.e., H.: 8 < 6, we locate the rejection region in the
lower tail of the z distribution (see Figure 9.3b). These two tests are called one-tailed
statistical tests because the entire rejection region is located in only one tail of the
z distribution. However, if we want to detect either a value of 6 larger than 6, or a
value smaller than 6, i.e., H,: 8 # 6y, we locate the rejection region in both the
upper and the lower tails of the z distribution (see Figure 9.3c). This is called a two-
tailed statistical test.

flz) fiz)

o
0
_Rejecrion Rejection
region region
o —Ia
a. One-tailed test; b. One-tailed test;
H;:8>8, H.:8 <8,
f@)
a ‘ o
2 2
0
Rejection Rejection
region region
~Zan Zaf2
c. Two-tailed test;
”r_.ll LS en
FIGURE 9.3 A The large-sample statistical test that we have described is summarized in the box
Rejection regions for one- and on page 432. Many of the population parameters and test statistics discussed in the
two-tailed tests remaining sections of Chapter 9 satisfy the assumptions of this test. We will illustrate

the use of the test with a practical example on the population mean p.
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EXAMPLE 9.5

Solution

................................

One-Tailed Test Two-Tailed Test
Hy: 8= 6 Hyp: 8= 6y
Ho= 0= 8, ' H,: 6+ 6
(orH,: 6< 6) J 4
: 6 — 6 Test statistic: z = 6= b :
Test statistic: z = : (o

)

iz L Rejection region: |z| > z4.2
. Rejection region: z > z, ! g 2l Sk
(orz.= —7.)

; - A
where P(z > z,) = « where Pz > z42) = a/2

The Department of Highway Improvements, responsible for repairing a 25-mile stretch
of interstate highway, wants to design a surface that will be structurally efficient. One
important consideration is the volume of heavy freight traffic on the interstate. State
weigh stations report that the average number of heavy-duty trailers traveling on a
25-mile segment of the interstate is 72 per hour. However, the section of highway to
be repaired is located in an urban area and the department engineers believe that the
volume of heavy freight traffic for this particular sector is greater than the average
reported for the entire interstate. To validate this theory, the department monitors the
highway for 50 1-hour periods randomly selected throughout the month. Suppose the
sample mean and standard deviation of the heavy freight traffic for the 50 sampled
hours are

y=74.1 s=13.3
Do the data support the department’s theory? Use a = |10,

For this example, the parameter of interest is u, the average number of heavy-duty

trailers traveling on the 25-mile stretch of interstate highway. Recall that the sample

mean ¥ is used to estimate u, and that for large n, ¥ has an approximately normal

sampling distribution. Thus, we can apply the large-sample test outlined in the box.
The elements of the test are

Hg'. ,u.=72
Hao o 72
=92 §=T72_ §=T2
- i _U/\/Ems/\/;

Test statistic:  z
o

Rejection region: z > 1.28
(since z 19 = 1.28, from Table 4 of Appendix II)
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Location of the test statistic for
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EXAMPLE 9.6

Solution
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We now substitute the sample statistics into the test statistic to obtain

BT, s
13.3/VS0

Thus, although the average number of heavy freight trucks per hour in the sample
exceeds the state’s average by more than 2, the z value of 1.12 does not fall in the
rejection region (see Figure 9.4). Therefore, this sample does not provide sufficient
evidence at & = .10 to support the Department of Highway Improvements’ theory.

fi2)

Rejection
region

1.28

......................

What is the risk of making an incorrect decision in Example 9.57 If we reject the
null hypothesis then we know that the probability of making a Type I error (rejecting
Hy if it is true) is @ = .10. However, we failed to reject the null hypotheses in Exam-
ple 9.5 and, consequently, we must be concerned about the possibility of making a
Type Il error (accepting Hy if in fact it is false). We will evaluate the risk of making
a Type Il error in Example 9.6.

Refer to the one-tailed test for u, Example 9.5. If the mean number p of heavy freight
trucks traveling a particular 25-mile stretch of interstate highway is in fact 78 per hour,
what is the probability that the test procedure of Example 9.5 would fail to detect it?
That is, what is the probability 8 that we would fail to reject Hy: i = 72 in this one-
tailed test if w is actually equal to 78?7

To calculate B for the large-sample z test, we need to specify the rejection region in
terms of the point estimator §, where, for this example, § = 3. From Figure 9.4,
you can see that the rejection region consists of values of z = 1.28. To determine the
value of y corresponding to z = 1.28, we substitute into the equation

=72

_Y T Ko _ Y T Mo = e
13.3/V/50

A= o/Nn s/\Vn =

1.28
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FIGURE 9.5 »

The probability 3 of making a
Type Il error if o = 78 in
Example 9.6

Solving for ¥, we obtain y = 74.41. Therefore, the rejection region for the test is
z = 1.28 or, equivalently, y = 74.41.

The dotted curve in Figure 9.5 is the sampling distribution for y if Hp: p = 72
is true. This curve was used to locate the rejection region for y (and, equivalently, z),
i.e., values of y contradictory to Hg: w = 72. The solid curve is the sampling distribution
for y if p = 78. Since we want to find B if Hy is in fact false and pu = 78, we want
to find the probability that y does not fall in the rejection region if w = 78. This
probability corresponds to the shaded area under the solid curve for values of y <
74.41. To find this area under the normal curve, we need to find the area A corre-
sponding to

778 441 - 78
a/Nn  13.3/V50

—1.91

£

|

u=72 74.4) u=78

~— Rejection region

The value of A, given in Table 4 of Appendix 11, is .4719. Then from Figure 9.5, it
can be seen that

B=.5—A=.5—-.4719 = 0281

Therefore, the probability of failing to reject Hy: w = 72 if w is, in fact, as large as
w = 78, is only .0281.

Example 9.6 illustrates that it is not too difficult to calculate B for various alter-
natives for the large-sample z test (see box). However, it may be extremely difficult to
calculate B for other tests. Although sophisticated techniques are available for eval-
uvating the risk of making a Type II error when the exact value of B8 is unavailable or
is difficult to calculate, they are beyond the scope of this text. Consult the references
at the end of this chapter if you are interested in learning about these methods.
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Consider a large-sample test of Hy: 8 = 6y at significance level a. The value
of B for a specific value of the alternative 8 = 6, is calculated as follows:

Upper-tailed test: B = P(z < éu?_—e—“)
(]
where 8y = 6 + z,0; is the value of the estimator corresponding
to the border of the rejection region
Lower-tailed test: B = P(z > @)
]
where 6y = 6y — z,03 is the value of the estimator corresponding to
the border of the rejection region
bor —6a _  _Gou— Ba)
o) 4

Two-tailed test: B = P(

where éo,u = 6y + z,0% and é(u__ = 6y — z,0p are the values of
the estimator corresponding to the borders of the rejection region

EXERCISES

LRI R I I B N R R B R O A R N O B I R R I A I A I A I A R A ]

OPTIONAL EXERCISES

9.1

9.8

Suppose y1, y2, . . . , yn is a random sample from a normal distribution with unknown mean w and variance
Grenh
gt =1, ie.,

1 2
o~ r—w)2
Vin :
Show that the likelithood L of the sample is

= _..]_)n _E:'-=[(}"_ﬂ’)2/2
L{w) ( o

Refer to Optional Exercise 9.7. Suppose we want to test Hy: u = 0 against the alternative H,: > 0. Since
the estimator of w is o = y, the likelihood ratio test statistic is

i) =

s TA0N0) L)
Liw) Ly
Show that
A = e n2

[Hint: Use the fact that =7_, (y; — y)? = 2 ,y? — ny2.]
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99 Refer to Optional Exercises 9.7 and 9.8. Show that the rejection region A = A, is equivalent to the rejection
region y = j,, where P(A = A,) = @ and P(j = ¥,) = a. [Hint: Use the fact that e " 0 as a — =]

9.5  Choosing the Null and Alternative Hypotheses

R R I R A B I R R R R A R R I R R R B R R I R B A A N )

Now that you have conducted a large-sample statistical test of hypothesis and have
seen how to calculate the value of B—the probability of failing to reject Hp: 6 = 6,
if 8 is in fact equal to some alternative value, 8 = 68,—the logic for choosing the null
and alternative hypotheses may make more sense to you. The theory that we want to
support (or detect if true) is usually chosen as the alternative hypothesis because, if
the data support H, (i.e., if we reject Hp), we immediately know the value of a, the
probability of incorrectly rejecting Hy if it is true. For example, in Example 9.5, the
Department of Highway Improvements theorized that the mean number of heavy-
duty vehicles traveling a certain segment of interstate exceeds 72 per hour. Conse-
quently, the department set up the alternative hypothesis as H,: p > 72. In contrast,
if we choose the null hypothesis as the theory that we want to support, and if the data
support this theory, i.e., the test leads to nonrejection of Hg, then we would have to
investigate the values of 8 for some specific alternatives. Clearly, we want to avoid
this tedious and sometimes extremnely difficult task, if possible.

Another issue that arises in a practical situation is whether to conduct a one- or
a two-tailed test. The decision depends on what you want to detect. For example,
suppose you operate a chemical plant that produces a variable amount y of product
per day and that if u, the mean value of y, is less than 100 tons per day, you will
eventually be bankrupt. If w exceeds 100 tons per day, you are fnancially safe. To
determine whether your process is leading to financial disaster, you will want to detect
whether p < 100 tons, and you will conduct a one-tailed test of Hy: w = 100 versus
H,: p < 100. If you were to conduct a two-tailed test for this situation, you would
reduce your chance of detecting values of w less than 100 tons, i.e., you would increase
the values of B for alternative values of u < 100 tons.

As a different example, suppose you have designed a new drug so that its mean
potency is some specific level, say, 10%. As the mean potency tends to exceed 10%,
you lose money. If it is less than 10% by some specified amount, the drug becomes
ineffective as a pharmaceutical (and you lose money). To conduct a test of the mean
potency w for this situation, you would want to detect values of w either larger than
or smaller than p = 10. Consequently, you would select H,: p # 10 and conduct a
two-tailed statistical test (or alternatively, construct a conhdence interval).

These examples demonstrate that a statistical test is an attempt to detect departures
from Hy; the key to the test is to define the specific alternatives that you want to
detect. We must stress, however, that Hy and H, should be constructed prior to
obtaining and observing the sample data. If you use information in the sample data
to aid in selecting Hy and H,, the prior information gained from the sample biases
the test results—specifically, the true probability of a Type | error will be larger than
the preselected value of a.
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EXAMPLE 9.7 A metal lathe is checked periodically by quality control inspectors to determine whether

Solution

it is producing machine bearings with a mean diameter of . 5 inch. If the mean diameter
of the bearings is larger or smaller than .5 inch, then the process is out of control and
needs to be adjusted. Formulate the null and alternative hypotheses that could be
used to test whether the bearing production process is out of control.

The hypotheses must be stated in terms of a population parameter. Thus, we define
w = True mean diameter (in inches) of all bearings produced by the lathe

If either > .5 or . < .5, then the metal lathe’s production process is out of control.
Since we wish to be able to detect cither possibility, the null and alternative hypotheses
would be

Hg: = .5 (i.e., the process is in control)

H.: wp# .5 (i.e., the process is out of control)

In Sections 9.6-9.13, we will present applications of the hypothesis-testing logic
developed in this chapter. The cases to be considered are those for which we developed
estimation procedures in Chapter 8. Since the theory and reasoning involved are based
on the developments of Chapter 8 and Sections 9.1-9.5, we will present only a
surnimary of the hypothesis-testing procedure for one-tailed and two-tailed tests in each
situation.

EXERCISES

LRI RN R R R O R B BB I O I A O A R A N N N NN NN

In Exercises 9.10-9.15, formulate the appropriate null and alternative hypotheses.

9.10

9.11

9.12

9.3

9.14

A herpetologist wants to determine whether the egg-hatching rate for a certain species of frog exceeds .5
when the eggs are exposed to ultraviolet radiation.

A manufacturer of fishing line wants to show that the mean breaking strength of a competitor’s 22-pound
line is really less than 22 pounds.

A craps player who has experienced a long run of bad luck at the craps table wants to test whether the
casino dice are “loaded,” i.e., whether the proportion of “sevens” occurring in many tosses of the two dice
is different from ¢ (if the dice are fair, the probability of tossing a “seven” is #).

Each year, Computerworld magazine reports the Datapro ratings of all computer software vendors. Vendors
are rated on a scale from 1 to 4 (1 = poor, 4 = excellent) in such areas as reliability, efficiency, ease of
installation, and ease of use by a random sample of software users. A software vendor wants to determine
whether its product has a higher mean Datapro rating than a rival vendor’s product.

The Environmental Protection Agency wishes to test whether the mean amount of radium-226 in soil in
a Florida county exceeds the maxium allowable amount, 4 pCi/L.
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9.15  Industrial engineers want to compare two methods of real-time scheduling in a manufacturing operation.
Specifically, they want to determine whether the mean number of items produced differs for the two methods. |

9.6 Testing a Population Mean

T R O R R R N N A A ]

In Example 9.5, we developed a large-sample test for a population mean based on
the standard normal z statistic. The elements of this test are summarized in the box.

Large-Sample (n = 30) Test of Hypothesis About a Population Mean w

................................

One-Tailed Test Two-Tailed Test
Hp: = pp Ho: p = o
Hi: p>po Ha: p# po
(or Hy:  p < po)

Test statistic: Test statistic:

eyt L F— e A e

gy s/NVn oy s/Vn

Rejection region: Rejection region: |z| > z42

Bn oL =T

where z, is the z value such that P(z > z,) = @; and z,, is the z value such
that P(z > z,,2) = @/2. [Note: . is our symbol for the particular numerical
value specified for w in the null hypothesis. |

Assumptions: None (since the central limit theorem guarantees that y is approx-
imately normal regardless of the distribution of the sampled population)

LR A I ] LR R R A R R R RN AR I A R I R R )

EXAMPLE 9.8 Humerus bones from the same species of animal tend to have approximately the same
length-to-width ratios. When fossils of humerus bones are discovered, archeologists
can often determine the species of animal by examining the length-to-width ratios of
the bones. It is known that species A has a mean ratio of 8.5. Suppose 41 fossils of
humerus bones were unearthed at an archeological site in East Africa, where species
A is believed to have inhabited. (Assume that the unearthed bones are all from the
same unknown species.) The length-to-width ratios of the bones were measured and
are listed in Table 9.2.
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TABLE 9.2  Length-to-Width Ratios of a Sample of Humerus Bones

10.73 8.89 9.07 9.20 10.33 9.98 9.84 9.59
8.48 8.71 9.57 9.29 9.94 8.07 8.37 6.85
8.52 8.87 6.23 9.41 6.66 9.35 8.86 9.93
8.91 11.77 10.48 10.39 9.39 9.17 9.89 8.17
8.93 8.80 10.02 8.38 11.67 8.30 9.17 12.00
9.38

We wish to test the hypothesis that w, the population mean ratio of all bones of this
particular species, is equal to 8.5 against the alternative that it is different from 8.5,
i.e., we wish to test whether the unearthed bones are from species A.

a. Suppose we want a very small chance of rejecting Hy, if, in fact, p is equal to
8.5. That is, it is important that we avoid making a Type | error. Select an
appropriate value of the significance level, e.

b. Test whether w, the population mean length-to-width ratio, is different from 8.5,
using the significance level selected in part a.

a. The hypothesis-testing procedure that we have developed gives us the advantage
of being able to choose any significance level that we desire. Since the significance
level, e, is also the probability of a Type 1 error, we will choose a to be very small.
In general, researchers who consider a Type | error to have very serious practical
consequences should perform the test at a very low a value—say, @ = .01. Other
researchers may be willing to tolerate an @ value as high as .10 if a Type I error
is not deemed a serious error to make in practice. For this example, we will test
at a = .01,

b. We formulate the following hypotheses:

HQ: i 85

H: p#85
Note that this is a two-tailed test, since we want to detect departures from u = 8.5
in either direction. The sample size is large (n = 41); thus, we may proceed with
the large-sample test about u.

At significance level @ = .01, we will reject the null hypothesis for this two-
tailed test if

|z| > 2472 = z.005

ie., if z < —2.58 or if z > 2.58. This rejection region is shown in Figure 9.6 on
page 440.
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FIGURE 9.6 »
Rejection region for Example 9.8

FIGURE 9.7 »
SAS printout for Example 9.8

o _
-2-—,005

Reject Hy, Reject Hy T
:=-2.58 z=2.58 i

|
Observed value of test statistic
2=4.03

After entering the data of Table 9.2 into a computer, we obtained the summary
statistics shown in the SAS printout, Figure 9.7. The values y = 9.257 and s =
1.203 (shaded in the printout) are used to compute the test statistic

P o 9257 -85
s/Vn  1.203/V4]l

Since this value lies within the rejection region (see Figure 9.6), we reject Hg
and conclude that the mean length-to-width ratio of all humerus bones of this
particular species is significantly different from 8.5. If the null hypothesis is in fact
true (i.e., if w = 8.5), then the probability that we have incorrectly rejected it is
equal to @ = .01l.

4.03

Analysis Variable : LWRATIO

N Obs Minimum Maximum Mean Std Dev

41 6.2300000 12.0000000 9.2575610 1.2035651

The practical implications of the result obtained in Example 9.8 remain to be
studied further. Perhaps the animal discovered at the archeological site is of some
species other than A. Alternatively, the unearthed humerus bones may have larger
than normal length-to-width ratios because of unusual feeding habits of species A. It
is not always the case that a statistically significant result implies a practically sig-
nificant result. The researcher must retain his or her objectivity and judge the practical
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significance using, among other criteria, his or her knowledge of the subject matter
and the phenomenon under investigation.

A small-sample statistical test for making inferences about a population mean is
(like its associated confidence interval of Section 8.5) based on the assumption that
the sample data are independent observations on a normally distributed random var-
iable. The test statistic is based on the ¢ distribution given in Section 8.5.

The elements of the statistical test are listed in the accompanying box. As we
suggested in Chapter 8, the small-sample test will possess the properties specified in
the box even if the sampled population is moderately nonnormal. However, for data
that departs greatly from normality (i.e., highly skewed data), we must resort to one
of the nonparametric techniques discussed in Chapter 15.

Small-Sample Test of Hypothesis About a Population Mean w

................................

One-Tailed Test Two-Tailed Test
Ho: p = po Ho: p= o
Ha: p> po Ha: w # po
(or Hi:  p < o)
£y Y = o
Test statistic: 3= ——F+
s/Vn
Rejection region: t > t, Rejection region: |t| > tas2

(or t < —tg)

where the distribution of ¢ is based on (n — 1) degrees of freedom; ¢, is the t value
such that P(t > t,) = a; and t,,; is the t value such that P(t > t,,2) = a/2.
Assumption: The relative frequency distribution of the population from which
the sample was selected is approximately normal.

Warning:  If the data departs greatly from normality, this small-sample test may
lead to erroneous inferences. In this case, use the nonparametric sign test that
is discussed in Section 15.2.

Scientists have labeled benzene, a chemical solvent commonly used to synthesize
plastics, as a possible cancer-causing agent. Studies have shown that people who work
with benzene more than 5 years have 20 times the incidence of leukemia than the
general population. As a result, the federal government has lowered the maximum
allowable level of benzene in the workplace from 10 parts per million (ppm) to 1 ppm
(reported in Florida Times-Union, Apr. 2, 1984). Suppose a steel manufacturing plant,
which exposes its workers to benzene daily, is under investigation by the Occupational
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Safety and Health Administration (OSHA). Twenty air samples, collected over a period
of 1 month and examined for benzene content, yielded the following summary statistics:

y = 2.1 ppm s = 1.7 ppm

[s the steel manufacturing plant in violation of the new government standards? Test
the hypothesis that the mean level of benzene at the steel manufacturing plant is
greater than 1 ppm, using a = .05.

Solution The OSHA wants to establish the research hypothesis that the mean level of benzene,
YP
., at the steel manufacturing plant exceeds 1 ppm. The elements of this small-sample
one-tailed test are

Hy: p=1
Hy: p>1
isti Y~ Mo
Test statistic: t = ———=
s/Vn

Assumption: The relative frequency distribution of the population of benzene
levels for all air samples at the steel manufacturing plant is approx-
imately normal.

Rejection region: For a = .05 and df = (n — 1) = 19, reject Hy if t > t o5 =

1.729 (see Figure 9.8)

FIGURE 9.8 » fin
Rejection region for Example 9.9

2.89

Rejection
region
1.729

We now calculate the test statistic:

_y-1_21-1 _
b= e~ 175~ =%

Since the calculated ¢ falls in the rejection region, the OSHA concludes that u > 1
part per million and the plant is in violation of the new government standards. The
reliability associated with this inference is @ = .05. This implies that if the testing
procedure was applied repeatedly to random samples of data collected at the plant,
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the OSHA would falsely reject Hg for only 5% of the tests, Consequently, the OSHA
is highly confident (95% confident) that the plant is violating the new standards.

EXERCISES
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916  Radium-226 is a naturally occurring radioactive gas. Elevated levels of radium-226 in metropolitan Dade
County (Florida) were recently investigated (Florida Scientist, Summer/Autumn 1991). The data in the
table are radium-226 levels (measured in pCi/L) for 26 soail specimens collected in southern Dade County.
The Environmental Protection Agency (EPA) has set maximum exposure levels of radium-226 at 4.0
pCi/L. Use the information in the accompanying MINITAB printout to determine whether the mean
radium-226 level of soil specimens collected in southern Dade County is less than the EPA limit of 4.0
pCi/L. Use a = .10.

1.46 58 431 1.02 A7 2.92 .91 #3 91
1.30 8.24  3.51 6.87 1.43 144 449 4.21 1.84
5.92 1.86 1.41 .70 2.02 1.65 1.40 75

Source: Moore, H. E., and Cussow, . G. "Radium and radon in Dade County ground water and soil
samples.” Florida Scientist, Vol. 54, No. 3/4, Summer/Autumn, 1991, p. 155 (portion of Table 3)

N MEAN MEDIAN TRMEAN STDEV SEMEAN

RadLevel 26 2.413 1.585 2.264 2.081 0.408
MIN MAX Q1 Q3
RadLevel 0.170 8.240 0.993 3.685

917 The effect of machine breakdowns on the performance of a manufacturing system was investigated using
computer simulation (Industrial Engineering, Aug. 1990). The simulation study focused on a single machine
tool system with several characteristics, including a mean interarrival time of 1.25 minutes, a constant
processing time of 1 minute, and a machine that breaks down 10% of the time. After n = 5 independent
simulation runs of length 160 hours, the mean throughput per 40-hour week was y = 1,908.8 parts. For
a system with no breakdowns, the mean throughput for a 40-hour week will be equal to 1,920 parts.
Assuming the standard deviation of the 5 sample runs was s = 18 parts per 40-hour week, test the hypothesis
that the true mean throughput per 40-hour weck for the system is less than 1,920 parts. Test using
a = .05.

9.18  Refer to the Science (Nov. 1988) study of inbreeding in tropical swarm-founding wasps, Exercise 8.30. A
sample of 197 wasps, captured, frozen, and subjected to a series of genetic tests, yielded a sample mean
inbreeding coefficient of § = .044 with a standard deviation of s = .884. Recall that if the wasp has no
tendency to inbreed, the true mean inbreeding coefhicient u for the species will equal 0.

a. Test the hypothesis that the true mean inbreeding coefficient u for this species of wasp exceeds 0. Use
a = .05

b. Compare the inference, part a, to the inference obtained in Exercise 8.28 using a confidence interval.
Do the inferences agree? Explain.
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Results of the second National Health and Nutrition Examination Survey indicate that the mean blood
lead concentration of individuals between the ages of 6 months and 74 years is 14 ug/dl (Analytical Chemistry,
Feb. 1986). However, the blood lead concentration in black children under the age of 5 years was found
to be significantly higher than this figure. Suppose that in a random sample of 200 black children below
the age of 5 years, the mean blood lead concentration is 21 pg/dl and the standard deviation is 10 ug/dl.
Is there sufficient evidence to indicate that the true mean blood lead concentration in young black children
1s greater than 14 ug/dl? Test using a« = .01.

The EPA sets a limit of 5 parts per million on PCB (a dangerous substance) in water. A major manufacturing

firm producing PCB for electrical insulation discharges small amounts from the plant. The company
management, attempting to control the amount of PCB in its discharge, has given instructions to halt
production if the mean amount of PCB in the effluent exceeds 3 parts per million. A random sampling of
50 water specimens produced the following statistics:

y = 3.1 parts per million s = .5 part per million

a. Do these statistics provide sufficient evidence to halt the production process? Use a = .01.
b. If you were the plant manager, would you want to use a large or a small value for « for the test in part
a? Explain.

“Deep hole” drilling is a family of drilling processes used when the ratio of hole depth to hole diameter
exceeds 10. Successful deep hole drilling depends on the satisfactory discharge of the drill chip. An experiment
was conducted to investigate the performance of deep hole drilling when chip congestion exists (Journal of
Engineering for Industry, May 1993). The length (in millimeters) of 50 drill chips resulted in the following
summary statistics: y = 81.2 mm, s = 50.2 mm. Conduct a test to determine whether the true mean drill
chip length, w, differs from 75 mm. Use a significance level of & = .01.

Environmental Science & Technology (Oct. 1993} reported on a study of contaminated soil in The Neth-
erlands. A total of 72 400-gram soil specimens were sampled, dried, and analyzed for the contaminant
cyanide. The cyanide concentration (milligrams per kilogram of soil) of each soil specimen was determined
using an infrared microscopic method. The sample resulted in a mean cyanide level of y = 84 mg/kg and
a standard deviation of s = 80 mg/kg. Use this information to test the hypothesis that the true mean cyanide
level in soil in The Netherlands falls below 100 mg/kg. Test at @ = .10.

The building specifications in a certain city require that the sewer pipe used in residential areas have a
mean breaking strength of more than 2,500 pounds per lineal foot. A manufacturer who would like to
supply the city with sewer pipe has submitted a bid and provided the following additional information: An
independent contractor randomly selected seven sections of the manufacturer’s pipe and tested each for
breaking strength. The results (pounds per lineal foot) follow:

2,610 2,750 2,420 2,510 2,540 2,490 2,680

Is there sufficient evidence to conclude that the manufacturer’s sewer pipe meets the required specifications?
Use a significance level of a = .10.

Refer to Examples 9.5 and 9.6. Find the value of B8 for w, = 74. What is the power of the test?

Refer to Example 9.9.
a. Find the value of B for p, = 1.015.
b. Find the power of the test for u, = 1.045.
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Refer to Optional Exercises 9.7-9.9. Show that the rejection region for the likelihood ratio test is given by
7> 7, where P(z > z,) = a. [Hint: Under the assumption that Ho: u = 0 is true, show that V/n(7) is
a standard normal random variable.]

The Observed Significance Level for a Test

I N N R I N N I I R R T R R A R R R I A A I B N I A NN I

According to the statistical test procedures described in the preceding sections, the
rejection region and the corresponding value of a are selected prior to conducting the
test and the conclusion is stated in terms of rejecting or not rejecting the null hypothesis.
A second method of presenting the result of a statistical test is one that reports the
extent to which the test statistic disagrees with the null hypothesis and leaves the reader
the task of deciding whether to reject the null hypothesis. This measure of disagreement
is called the observed significance level (or p-value) for the test.”

Definition 9.4

The observed significance level, or p-value, for a specific statistical test is the
probability (assuming Hy is true) of observing a value of the test statistic that is
at least as contradictory to the null hypothesis, and supportive of the alternative
hypothesis, as the one computed from the sample data.

When publishing the results of a statistical test of hypothesis in journals, case
studies, reports, etc., many researchers make use of p-values. Instead of selecting « a
priori and then conducting a test as outlined in this chapter, the researcher may
compute and report the value of the appropriate test statistic and its associated p-value.
It is left to the reader of the report to judge the significance of the result, i.e., the
reader must determine whether to reject the null hypothesis in favor of the alternative
hypothesis, based on the reported p-value. Usually, the null hypothesis will be rejected
only if the observed significance level is less than the fixed significance level a chosen
by the reader. There are two inherent advantages of reporting test results in this manner:
(1) Readers are permitted to select the maximum value of & that they would be willing
to tolerate if they actually carried out a standard test of hypothesis in the manner
outlined in this chapter, and (2) it is an easy way to present the results of test calculations
performed by a computer. Most statistical software packages perform the calculations
for a test, give the observed value of the test statistic, and leave it to the reader to
formulate a conclusion. Others give the observed significance level for the test, a
procedure that makes it easy for the user to decide whether to reject the null hypothesis.

“The term p-value or probability value was coined by users of statistical methods. The p in the expression
p-value should not be confused with the binomial parameter p.
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EXAMPLE 9.10

Solution

FIGURE 9.9 »

Finding the p-value for an upper-
tailed test when z = |.12

EXAMPLE 9.11

--------------------------

Find the observed significance level for the statistical test of Example 9.5 and interpret
the result.

In Example 9.5, we tested a hypothesis about the mean w of the number of heavy
freight trucks per hour using a particular 25-mile stretch of interstate highway. Since
we wanted to detect values of w larger than py = 72, we conducted a one-tailed test,
rejecting Hy for large values of y, or equivalently, large values of z. The observed
value of z, computed from the sample of n = 50 randomly selected 1-hour periods,
was z = 1.12. Since any value of z larger than z = 1.12 would be even more
contradictory to Hy, the observed significance level for the test is

p-value = P(z = 1.12)

fiz)

p-value =.1314

=112

This value corresponds to the shaded area in the upper tail of the z distribution
shown in Figure 9.9. The area A corresponding to z = 1.12, given in Table 4 of
Appendix 11, is .3686. Therefore, the observed significance level is

p-value = Pz =1.12) = .5 — A= .5 — 3686 = .1314

This result indicates that the probability of observing a z value at least as contradictory
to Hy as the one observed in this test (if Hy is in fact true) is . 1314. Therefore, we
will reject Hy only for preselected values of a greater than .1314. Recall that the
Department of Highway Improvements selected a Type | error probability of a = .10,
Since @ = .10 is less than the p-value, the department has insufficient evidence to
reject Hy. Note that this conclusion agrees with that of Example 9.5.

Suppose that the test of Example 9.5 had been a two-tailed test, i.e., suppose that the
alternative of interest had been H,: u # 72. Find the observed significance level for
the test and interpret the result. Assume that @ = .10, as in Example 9.5.
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FIGURE 9.10 »
Finding the p-value for a two-
tailed test when z = |12

EXAMPLE 9.12

Solution

FIGURE 9.11 »
The observed significance level for
the test of Example 9.12
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If the test were two-tailed, either very large or very small values of z would be con-
tradictory to the null hypothesis Hy: p = 72. Consequently, values of z = 1.12 or
z = —1.12 would be more contradictory to Hg than the observed value of z = 1.12.
Therefore, the observed significance level for the test (shaded in Figure 9.10) is

p-value = P(z = 1.12) + Pz = —1.12)
= 2(.1314) = .2628

Since we want to conduct the two-tailed test at @ = .10, and since the p-value exceeds
a, we again have insufficient evidence to reject Hy.

fz)

p-value = 2628

z==1.12 z=1.12

Find and interpret the observed significance level for the small-sample test described
in Example 9.9. Recall that the test was conducted using & = .05.

The test of Example 9.9 was a small-sample test of Hy: p = | versus Hy: p > 1.
Since the value of ¢ computed from the sample data was t = 2.89, the observed
significance level (or p-value) for the test is equal to the probability that t would assume
a value greater than or equal to 2.89, if in fact Hy were true. This is equal to the area
in the upper tail of the ¢ distribution (shaded in Figure 9.11). To find this area, i.e.,
the p-value for the test, we consult the ¢ table (Table 7 of Appendix II).

An

t distribution with 19 df

p-value
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Unlike the table of areas under the normal curve, Table 7 gives only the t values
corresponding to the areas . 100, .050, .025. .010, .005. .001. and .0005. Therefore,
we can only approximate the p-value for the test. Since the observed t value was based
on 19 degrees of freedom, we use the df = 19 row in Table 7 and move across the
row until we reach the ¢ values that are closest to the observed t = 2.89. The ¢ values
corresponding to p-values of .001 and .005 are 3.579 and 2.861, respectively. Since
the observed t value falls between t oo and t ggs, the p-value for the test lies between
.001 and .005. We could interpolate to more accurately locate the p-value for the
test, but it is easier and adequate for our purposes to choose the larger area as the
p-value and report it as .005. Thus, we would reject the null hypothesis, Hy: p = 1
part per million, for any value of a larger than .005. Since a = .05 for this test, the
correct conclusion is to reject Hy.

Calculating p-Values

................................

Large-sample tests: p-value = P(z = z;) if upper-tailed
p-value = P(z = z;) if lower-tailed
p-value = 2P(z = |z|) if two-tailed

where z. is the computed value of the test statistic.
Small-sample tests: p-value = P(t = t.) if upper-tailed
p-value = P(t = t.) if lower-tailed
2P(t = |t) if two-tailed

p-value
where . is the computed value of the test statistic.

[Note: |z and |t.| denote the absolute values of z. and t. and will always be
positive. |

Interpreting p-Values

................................

1. Choose the maximum value of « that you are willing to tolerate.

2. Ifthe observed significance level ( p-value) of the test is less than the maximum
value e, then reject the null hypothesis.

You can see from Example 9.12 that calculating a p-value for a ¢ test by hand
will rarely lead to an exact value. If we desire an exact p-value, we need to resort to
the use of a computer. The SAS printout for the t test of Examples 9.9 and 9.12 is
shown in Figure 9.12. The p-value for a two-tailed test (shaded) is given under the
heading PROB > |T|. The p-value for a one-tailed test is equal to the reported value
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divided by 2. Thus, the p-value for the one-tailed test Hy: o = 1 versus Hy: p > 1
is

p-value = ig% = .0044

Example 9.12

s Analysis Variable : BENZLEV
SAS printout for t test of
N Obs T Prob>|T|
20 2.8937350 0.0088

EXERCISES
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9.01

9.28

9.09
9.30

931

938

For a large-sample test of Hy: 6 = 6 versus H,: 0 > 6, compute the p-value associated with each of the
following test statistic values:

a. z=196 b. z = 1.645 ¢z = 2.67 d. z=1.25

For a large-sample test of Hy: 8 = 6, versus H,: 8 # 6, compute the p-value associated with each of the

following test statistic values:
a. z=—1.01] b. z = —-2.37 c. z=4.66 d z=145

Compute and interpret the p-value for the test of Example 9.8, assuming the test is two-tailed.

Compute and interpret the p-values for the tests conducted in the following exercises.
a. Exercise 9.16 b. Exercise 9.17 c. Exercise 9.18 d. Exercise 9.19 e. Exercise 9.20

A SAS printout for the ¢ test of Exercise 9.23 is shown here. Find and interpret the p-value of the test.
Does the result agree with your inference in Exercise 9.23?

Analysis Variable : Y (strength - 2500)

N Obs T Prob>|T|

Testing the Difference Between Two Population Means:
Independent Samples

Consider independent random samples from two populations with means w; and w3,
respectively. When the sample sizes are large (i.e., n; = 30 and n; = 30), a test of
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EXAMPLE 9.13

Solution

hypothesis for the difference between the population means (., — w2) is based on the
pivotal z statistic given in Section 8.6. A summary of the large-sample test is provided
in the box.

Large-Sample Test of Hypothesis About (i, — wt): Independent Samples

................................

One-Tailed Test Two-Tailed Test
Ho: (1 — p2) = Do Hp: (1 = p2) = Dy
Ha: (w1 — p2) > Dy Hyt (= )+ Dy

lor Hy: (1 — pa) < Dy
s L=y o oo
Test statistic: z = (¥ %) 0 (1 = y2) 0
o-{iﬁ"‘)"z?' s% si

n nz

Rejection region: Rejection region:
237, lorz< —z,) 12| > zap2

[Note: Dy is our symbol for the particular numerical value specified for
(m1 — m2) in the null hypothesis. In many practical applications, we wish to
hypothesize that there is no difference between the population means; in such
cases, Dy = 0.]
Assumptions: 1. The sample sizes n; and n; are sufficiently large—say, n; =
30 and n> = 30.
2. The two samples are selected randomly and independently
from the target populations.

To reduce costs, a bakery has implemented a new leavening process for preparing
commercial bread loaves. Loaves of bread were randomly sampled and analyzed for
calorie content both before and after implementation of the new process. A summary
of the results of the two samples is shown in the table. Do these samples provide
sufficient evidence to conclude that the mean number of calories per loaf has decreascd
since the new leavening process was implemented? Test using a = .05.

New Process Old Process

ny = 50 iz = 30

y1 = 1,255 calories y2 = 1,330 calories
s = 215 calories §; = 238 calories

We can best answer this question by performing a test of a hypothesis. Dehning
as the mean calorie content per loaf manufactured by the new process and w; as the
mean calorie content per loaf manufactured by the old process, we will attempt to
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support the research (alternative) hypothesis that w, > w, [i.e., that (u; — w2) < 0].
Thus, we will test the null hypothesis that (1, — w;) = 0, rejecting this hypothesis
if (71 — y2) equals a large negative value. The elements of the test are as follows:
Ho: (w1 — p2) =0 (e, Dy = 0)
Ha: (w1 — p2) <0 (e, py < p2)
(1 = ¥2) = Do _ (1 —y2) = 0
O3, -72) T(3,-5,)
(since both ny and n; are greater than or equal to 30)

Test statistic: z =

Rejection region: z < —z, = —1.645 (see Figure 9.13)
Assumptions: The two samples of bread loaves are independently selected.

FIGURE 9.13 » fiz)
Rejection region for Example 9.13

1
-1.41 0
Rejection

region T 7

—-1.645

We now calculate
(y1 — y2) — 0 _ (1,255 — 1,330)

O51-72) of | o
n nz
e -75 _ 5;7053 i
\/ﬁ L8 fesp @3
ny  n 50 30

As you can see in Figure 9.13, the calculated z value does not fall in the rejection
region. The samples do not provide sufficient evidence, with a = .05, to conclude
that the new process yields a loaf with fewer mean calories.

When the sample sizes n| and n; are inadequate to permit use of the large-sample
procedure of Example 9.13, modifications may be made to perform a small-sample
test of hypothesis about the difference between two population means. The test pro-
cedure 1s based on assumptions that are, again, more restrictive than in the large-
sample case. The elements of the hypothesis test and the assumptions required are
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EXAMPLE 9.14

e

listed in the box. Reminder: When the assumption of normal population is grossly
violated, the small-sample test outlined here will be invalid. In this case, we must
resort to a nonparametric method.

Small-Sample Test of Hypothesis About (i, — pt,): Independent Samples

................................

One-Tailed Test Two-Tailed Test
Ho: (m1 — p2) = Dy Ho: (1 — p2) = Dy
Hy: (= p2) > Dy Hi: (1 — wp2) # Dy
for Hy: (1 — p2) < Dyl
Test statistic: t = MM
1 1
3 B i
s"(ﬂl = nz)
Rejection region: t > i, Rejection region: |t| > ts)2
for t < —t,l
where
A (my = l)sf + [ = l)ﬁ’

P ng+n—2
and the distribution of t is based on ny + ny — 2 df.

Assumptions: 1. The populations from which the samples are selected both
have approximately normal relative frequency distributions.
2. The variances of the two populations are equal, i.e.,
of = o3. .
3. The random samples are selected in an independent manner
from the two populations.

Warning: When the assumption of normal populations is violated, the test may
lead to erroneous inferences. In this case, use the nonparametric Wilcoxon test

described in Section 15.3.

LR I R I A R ]

Computer response time is defined as the length of time a user has to wait for the
computer to access information on the disk. Suppose a data center wants to compare
the average response times of its two computer disk drives. If w, is the mean response
time of disk 1 and . is the mean response time of disk 2, we want to detect a difference
between u; and po—if such a difference exists. Therefore, we want to test the null
hypothesis

Ho: (1 — p2) =0
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against the alternative hypothesis

He (m — p2) #0 (e, > ppor gy < pp)

Independent random samples of 13 response times for disk 1 and 15 response times
for disk 2 were selected. The data (recorded in milliseconds), as well as summary
statistics, are given in Table 9.3. Is there sufficient evidence to indicate a difference
between the mean response times of the two disk drives? Test using a = .05.

TABLE 9.3 Response Times for Two Disk Drives

Disk | (ny = 13) J Disk 2 (n; = 15)
T
9 73 74 6l 71 63 40 34
92 60 84 |38 48 60 T
4 73 47 47 4 4 86
102 75 33 | B3 68 39
i =682 s =186 | 5,=538 s =158

We first calculate

2 (= Dst + (m = D)3
2 n +ny—=2
= (13 — 1)(18.6)% + (15 — 1)(15.8)*

13 4 15 =2
7,646.48
=5 = 294.09
Then, if we can assume that the distributions of the response times for the two disk
drives are both approximately normal with equal variances, the test statistic is

(1 — y2) = Do _ (68.2 —53.8) - 0

| 1 1 1
¥l W Loy A Tty
\/sp(nl+n2) \/29409( iy

14.4

=65 = 2.22
Since the observed value of ¢ (t = 2.22) falls in the rejection region (see Figure 9.14
on page 454), the samples provide sufficient evidence to indicate that the mean response
times differ for the two disk drives. Or, we say that the test results are statistically
significant at the @ = .05 level of significance. Because the rejection was in the positive
or upper tail of the t distribution, it appears that the mean response time for disk drive
1 exceeds that for disk drive 2.

1 =
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FIGURE 9.14 »
Rejection region for Example 9.14

FIGURE 9.15 »
SAS printout for Example 9.4

¢ _
5 .025
- f
-2.056 0 2.056 1
399
Rejection Rejection
Y — - .
region region

Refer to Example 9.14. The same conclusion can be reached using the p-value
approach. The SAS printout for the ¢ test of Example 9.14 is shown in Figure 9.15.
The test statistic and p-value for the test are both shaded on the printout. Note that
the two-tailed p-value (for the equal variances case), p = .0356, is less than a = .05
thus, there is sufficient evidence to reject Hy.

TTEST PROCEDURE

Variable: Y

DISK N Mean Std Dev Std Error Minimum Maximum
1 13 68.23076923 18.65991178 5.17532836 33.00000000 102.0000000
2 15 53.80000000 15.80777386 4.08154966 34.00000000 B6.0000000

Variances T DF Prob>|T|

Unequal 2,1894 23.7 0.0387

Equal 2,2163 26.0 0.0356

For HO: Variances are equal, F' = 1.39 DF = (12,14) Prob>F' = 0,5482

Recall from Section 8.6 that valid small-sample inferences about (u; — u,) can
still be made when the assumption of equal variances is violated. We conclude this
section by giving the modifications required to obtain approximate small-sample tests
about (i) — w2) when o7 # o3 for the two cases described in Section 8.6: n; = n;
and ny # n.
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Independent Samples

Hy = W3 = R

Test statistic:

Modifications to Small-Sample Tests About (w; — w,) When o # oi:

n + n>
Test statistic:

[~ G1=7) = Dy

2 2

5 5
LIS

mn nz

; (1 — ¥2) = Do _ (51 — ¥2) — Dy
Ay L+
n n: n

Degrees of freedom: v=ny +n; —2=2n—1)

(si/m _+ s3/ny)?

s [(s%/n.)z z (s%/nzf]
ny — | nz — 1

Degrees of freedom:

Note: The value of » will generally not be an integer. Round down to the
nearest integer to use the ¢ table (Table 7 of Appendix II).

EXERCISES
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932 Does competition between separate research and development (R&D) teams in the U.S. Department of
Defense, working independently on the same project, improve performance? To answer this question,
performance ratings were assigned to each of 58 multisource (competitive) and 63 sole source R&D contracts

(IEEE Transactions on Engineering Management, Feb. 1990). With respect to quality of reports and products,

the competitive contracts had a mean performance rating of 7.62, whereas the sole source contracts had a

mean of 6.95,

a. Set up the null and alternative hypothesis for determining whether the mean quality performance rating
of competitive R&D contracts exceeds the mean for sole source contracts.

b. Find the rejection region for the test using & = .05.

¢. The p-value for the test was reported to be between .02 and .03. What is the appropriate conclusion?

933 a.

Use a random number table (Table 6 of Appendix I1) to generate a random sample of n = 40 observations

on DDT concentration in fish from the data of Appendix IlIl. Compute ¥ and s for the sample

measurements.
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b. The Food and Drug Administration (FDA) sets the limit for DDT content in individual fish at 5 parts
per million (ppm). Does the sample of part a provide sufficient evidence to conclude that the average
DDT content of individual fish inhabiting the Tennessee River and its creek tributaries exceeds 5 ppm?
Test using a signihcance level of & = .01.

c. Suppose the test of hypothesis, part b, was based on a random sample of only n = 8 fish. What are the
disadvantages of conducting this small-sample test?

d. Repeat part b using only the information on the DDT contents of a sample of 8 fish (randomly selected
from the 40 observations of part a). Compare the results of the large- and small-sample tests.

Many computer software packages utilize menu-driven user-interfaces to increase “user-friendliness.” One

feature that can be incorporated into the interface is a stacked menu display. Each time a menu item is

selected, a submenu is displayed partially over the parent menu, thus creating a series of “stacked” menus.

The Special Interest Group on Computer Human Interaction Bulletin (July 1993) reported on a study to

determine the effects of the presence or absence of a stacked menu structure on search time. Twenty-two

subjects were randomly placed into one of two groups, and each was asked to search a menu-driven software

package for a particular item. In the experimental group (ny = 11), the stacked menu format was used; in

the control group (n; = 11), only the current menu was displayed.

a. The researcher’s initial hypothesis is that the mean time required to find a target item does not differ
for the two menu displays. Describe the statistical method appropriate for testing this hypothesis.

b. What assumptions are required for inferences derived from the analysis to be valid?

c. The mean search times for the two groups were 11.02 seconds and 11.07 seconds, respectively. [s this
enough information to conduct the test? Explain.

d. The observed significance level for the test, part a, exceeds .10. Interpret this result.

Environmental Science & Technology (Oct. 1993) reported on a study of insecticides used on dormant
orchards in the San Joaquin Valley, California. Ambient air samples were collected and analyzed daily at
an orchard site during the most intensive period of spraying. The thion and oxon levels (in ng/m?®) in the
air samples are recorded in the table, as well as the oxon/thion ratios. Compare the mean oxon/thion ratios
of foggy and clear/cloudy conditions at the orchard using a test of hypothesis. Use a@ = .05.

Date Condition ~ Thion Oxon Oxon/Thion Ratio

Jan. 15 Fog 38.2 10.3 270
17 Fog 28.6 6.9 241
18  Fog 30.2 6.2 205
19 Fog 23.7 12.4 523
20 Fog 62.3  (Air sample lost) —
20 Clear 74.1 45.8 618
21 Fog 88.2 9.9 112
21 Clear 46.4 27.4 .591
22 Fog 135.9 44.8 .330
23 Fog 102.9 27.8 270
23 Cloudy 28.9 6.5 .225
25  Fog 46.9 11.2 .239
25  Clear 44.3 16.6 .375

Source:  Selber, J. N., et al. “Air and fog deposition residues of four organophosphate insecticides used on
dormant orchards in the San Joaquin Valley, California.” Environmental Science & Technology, Vol. 27,
No. 10, Oct. 1993, p. 2240 (Table V).
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Percentage of body fat can be a good indicator of an individual’s energy metabolic status and general health.
In an American Journal of Physical Anthropology (Jan. 1981) study of the percentage of body fat of college
students in India, two groups of healthy male students, from urban and rural colleges in eastern India, were
independently and randomly selected. The percentage of body fat in each was measured, with the results
summarized in the table. Does the sample information provide sufficient evidence to conclude that the
mean percentage of body fat in healthy male college students residing in urban areas of India differs from
the corresponding mean for students residing in rural areas? Use a significance level of & = .05.

Urban Students Rural Students

n = 193 1y = 188
?| = 12.07 92 = 11.04
s = 3.04 s = 2.63

Source:  Bandyopadhyay, B., and Chattopadhyay,
H. “Body fat in urban and rural male college students
of eastern India” American Journal of Physical
Anthropology, Jan. 1981, Vol. 54, pp. 119-122.

According to a popular model of managerial behavior, the current state of autornation in a manufacturing
firm influences managers’ perceptions of problems of automation. To investigate this proposition, researchers
at Concordia University (Montreal) surveyed managers at firms with a high level of automation and at firms
with a low level of automation (IEEE Transactions on Engineering Management, Aug. 1990). Each manager
was asked to give his/her perception of the problems of automation at the firm. Responses were measured
on a 5-point scale (1: No problem, . . . 5: Major Problem). Summary statistics for the two groups of
managers, provided in the table, were used to test the hypothesis of no difference in the mean perceptions
of automation problems between managers of highly automated and less automated manufacturing firms.

Sample Size  Mean  Standard Deviation

Low Level 17 3.274 762
High Level 8 3.280 721

Source:  Farhoomand, A. F., Kira D_, and Williams, |. “Managers' perceptions towards
automalion in manufacturing” IEEE Transactions on Engineering Management, Vol. 37,
No. 3, Auvg. 1990, p. 230,

a. Conduct the test for the researchers, assuming that the perception variances for the two groups of managers
are equal. Use @ = .0].

b. Conduct the test for the researchers, if it is known that the perception variances differ for managers at
low-level and high-level firms.

An industrial plant wants to determine which of two types of fuel—gas or electric—will produce more
useful energy at the lower cost. One measure of economical energy production, called the plant investment
per delivered quad, is calculated by taking the amount of money (in dollars) invested in the particular utility
by the plant, and dividing by the delivered amount of energy (in quadrillion British thermal units). The
smaller this ratio, the less an industrial plant pays for its delivered energy. Random samples of 11 plants



939

Chapter 9 / Tests of Hypotheses

using electrical utilities and 16 plants using gas utilities were taken, and the plant investment/quad wa
calculated for each. The data are listed in the table, followed by a MINITAB printout of the analysis of the
data.

Electric
204.15 57 62.76  89.72
35 85.46 .78 .65

44.38 9.28  78.60

Gas
.78 16.66 74.94 .01
.54 23.59 88.79 .64
.82 91.84 7.20 66.64
.74 64.67 165.60 .36

TWOSAMPLE T FOR electric VS gas

N MEAN STDEV SE MEAN
electric 11 52.4 62.4 19
gas 16 37.7 49.0 12

95 PCT CI FOR MU electric - MU gas: (-30, 59)
TTEST MU electric = MU gas (VS NE): T= 0.68 P=0.50 DF= 25

POOLED STDEV = 54.8

a. Do these data provide sufficient evidence at the & = .05 level of significance to indicate a difference in
the average investment/quad between the plants using gas and those using electrical utilities?

b. What assumptions are required for the procedure to be valid?

c. Check whether the assumptions, part b, are reasonably satisfied. How does this impact on the validity
of the result, part a?

A field experiment was conducted to ascertain the impact of desert granivores (seed-eaters) on the density
and distribution of seeds in the soil (Ecology, Dec. 1979). Since some desert rodents are known to hoard
seeds in surface caches, the study was specifically designed to determine whether these caches eventually
produce more seedlings, on the average, than an adjacent control area. Forty small areas excavated by
rodents were located and covered with plastic cages to prevent rodents from reusing the caches. A caged
control area was set up adjacent to each of the caged caches. The numbers of seedlings germinating from
the caches and from the control areas were then observed. A summary of the data is provided in the
accompanying table. Is there sufficient evidence (at @ = .05) to indicate that the average number of seedlings
germinating from the seed caches of desert rodents is significantly higher than the corresponding average
for the control areas?
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Caches Control Areas
n = 40 ny = 40
f| =53 ;z = 2.7
sy = 1.3 8 = J

Source: Reichman, O. | "Desert granivore for-
aging and its impact on seed densilies and distri-
butions.” Ecology, Dec. 1979, Vol. 60, pp. 1085-
1092. Copyright 1979, the Ecological Socicty of
America. Reprinted by permission.

99  Testing the Difference Between Two Population Means:
Matched Pairs

R O R R N N RN E RN

It may be possible to acquire more information on the difference between two pop-
ulation means by using data collected in matched pairs instead of independent samples.
Consider, for example, an experiment to investigate the effectiveness of cloud seeding
in the artificial production of rainfall. Two farming areas with similar past meteoro-
logical records were selected for the experiment. One is seeded regularly; the other is
left unseeded. The monthly precipitation at the farms will be recorded for 6 randomly
selected months. The resulting data, matched on months, can be used to test a
hypothesis about the difference between the mean monthly precipitation in the seeded
and unseeded areas. The appropriate procedures are summarized in the boxes.

Large-Sample Test of Hypothesis About (gt, — w,): Matched Pairs

................................

One-Tailed Test Two-Tailed Test
Hp: (1 — p2) = Do Hq= (w1 — p2) = Dy
Hy: (1 = p2) > Dy Hy: (p — p2) # Dy

lor Ha: (1 — m2) < Dy)
d — Dy = d — Dy
'fi"d/\/H Sd/\/ﬁ

where d and sy represent the mean and standard deviation of the sample of
differences.

Test statistic: z =

Rejection region: z > z, Rejection region: |z| > z,)2
[or z < —z,]

[Note: Dy is our symbol for the particular numerical value specified for
(1 = p2) in Hq. In many applications, we want to hypothesize that there is
no difference between the population means; in such cases, Dy = 0.]
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EXAMPLE 9.15

................................

One-Tailed Test Two-Tailed Test
Hp: (w1 — m2) = Do : Ho: (my — p2) = Dy
Hy: (1 — p2) > Dy Hy: () — p2) # Dy

[or Hy: (1 — m2) < Dy)

t__F(_f—Dr;ma-—D(;
O’d/\/; Sd/\/;

where d and s, represent the mean and standard deviation of the sample of
differences.

Test statistic:

Rejection region: t > I,
for t > =t,]

Rejection region: |t| > ta)2

where the t-distribution is based on (n — 1) degrees of freedom.

[Note: Dy is our symbol for the particular numerical value specified for
(m; — m2) in the null hypothesis. In many practical applications, we want to
hypothesize that there is no difference between the population means; in such
cases, Dy = 0.]

Assumptions: 1. The relative frequency distribution of the population of dif-
ferences is approximately normal.

2. The paired differences are randomly selected from the pop-
ulation of differences.

Warning:  When the assumption of normality is grossly violated, the ¢ test may
lead to erroncous inferences. In this case, use the nonparametric Wilcoxon test

described in Section 15.4,

Consider the cloud seeding experiment to compare monthly precipitation at the two
farm areas. Do the data given in Table 9.4 provide sufficient evidence to indicate that
the mean monthly precipitation at the seeded farm area exceeds the corresponding
mean for the unseeded farm area? Test using @ = .05.

TABLE 94  Monthly Precipitation Data (in Inches) for Example 9.15

Farm Area | 1 3 4 5 6
I

Seeded 1.75 2.12 1.53 1.10 1.70 242

Unseeded | L& 1.83 1.40 75 1.71 2.33

d 13 29 13 35 —.01 09
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Solution

FIGURE 9.16 »
Rejection region for Example 9.15

FIGURE 9.17 »
Hinitab printout for Example 9.17
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Let p; and p; represent the mean monthly precipitation values for the seeded and
unseeded farm areas, respectively. Since we want to be able to detect pu; > w2, we
will conduct the one-tailed test:

Ho: () —p2) =0
H.: (FLI = ﬁiz) >0

Assumning the differences in monthly precipitation values for the two areas are from
an approximately normal distribution, the test statistic will have a t distribution based
on(n—1)= (6 — 1) = 5 degrees of freedom. We will reject the null hypothesis if

t > tgs = 2.015 (see Figure 9.16)

D

t distribution with 5
degrees of freedom

1=2015 Reject Hy

Observed value of test statistic
t=3.00

To conduct the test by hand, we must frst calculate the difference d in monthly
precipitation at the two farm areas for each month. These differences (where the
observations for the unseeded farm area is subtracted from the observation for the
seeded area within each pair) are shown in the last row of Table 9.4. Next, we would
calculate the mean d and standard deviation sy for this sample of n = 6 differences
to obtain the test statistic.

Rather than perform these calculations, we will rely on the output from a com-
puter. The MINITAB printout for the analysis is shown in Figure 9.17. The test
statistic, shaded in Figure 9.17, is t = 3.01.

TEST OF MU = 0.0000 VS MU N.E. 0.0000

N MEAN STDEV SE MEAN T P VALUE
diff 6 0.1633 0.1331 0.0543 3.01 0.030
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Substituting the values d = .1633 and s4 = .1331 into the formula for the test
statistic, we have

_d-Dy_.1633-0 _
so/Vn o .1331/V6

Since this value of the test statistic exceeds the critical value t g5 = 2.015, there is
sufficient evidence (at @ = .05) to indicate that the mean monthly precipitation at
the seeded farm area exceeds the mean for the unseeded farm area.

The same conclusion can be reached by examining the p-value of the test. The
two-tailed p-value, shaded on the MINITAB printout, is .030. Consequently, the one-
tailed p-value is p = .030/2 = .015. Since this value is less than the chosen a level
(.05), we reject Hy.

3.01

t

In the experiment of Example 9.15, why did we collect the data in matched pairs
rather than use independent random samples of months, with some assigned to only
the seeded area and others to only the unseeded area? The answer is that we expected
some months to have more rain than others. To cancel out this variation from month
to month, the experiment was designed so that precipitation at both farm areas would
be recorded during the same months. Then both farm areas would be subjected to
the same weather pattern in a given month. By comparing precipitation within each
month, we were able to obtain more information on the difference in mean monthly
precipitation than we could have obtained by independent random sampling.

EXERCISES
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940  Researchers at Purdue University compared human real-time scheduling in a processing environment to an
automated approach that utilizes computerized robots and sensing devices (IEEE Transactions, Mar. 1993).
The experiment consisted of eight simulated scheduling problems. Each task was performed by a human
scheduler and by the automnated system. Performance was measured by the throughput rate, defined as the
number of good jobs produced weighted by product quality. The resulting throughput rates are shown in
the accompanying table. Analyze the data using a test of hypothesis.

Human Automated Human Automated
Task Scheduler Method Task Scheduler Method
1 185.4 180.4 5 240.0 269.3
2 146.3 248.5 6 253.8 249.6
3 174.4 185.5 7 238.8 282.0
+ 184.9 216.4 8 263.5 315.9

Source:  Yih, Y., Liang, T., and Moskowitz, H. “Robot scheduling in a circuit board production line: A
hybrid OR/ANN approach.” IEEE Transactions, Vol. 25, No. 2, March 1993, p. 3] {Table 1).
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For the perception of speech, profoundly deaf persons rely mainly on speechreading, i.e., they perceive
spoken language by observing the articulatory movements, facial expressions, and gestures of the speaker.
Can speech perception be improved by supplementing the speechreader with auditorily presented information
about the prosody of the speech signal? To investigate this phenomenon, 10 normal-hearing subjects par-
ticipated in an experiment in which they were asked to verbally reproduce sentences spoken but not heard
on a video monitor ( Journal of the Acoustical Society of America, Feb. 1986). The sentences were presented
to the subjects under each of two conditions: (1) speechreading with information about the frequency and
amplitude of the speech signal (denoted S + F + A), and (2) speechreading only (denoted S). For each of
the 10 subjects, the difference between the percentage of correctly reproduced syllables under condition
S + F + A and under condition S was calculated. The mean and standard deviation of the differences are
as follows:

d=204 sy = 17.44

Test the hypothesis that the mean percentage of correct syllables under condition S + F + A exceeds the
corresponding mean under condition S. Use & = .05.

Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic substance found in industrial wastes. A study was
conducted to determine the amount of TCDD present in the tissues of bullfrogs inhabiting the Rocky Branch
Creek in central Arkansas, an area known to be contaminated by TCDD (Chemosphere, Feb. 1986). The
level of TCDD (in parts per trillion) was measured in several specific tissues of four female bull frogs; the
ratio of TCDD in the tissue to TCDD in the leg muscle of the frog was recorded for each. The relative
ratios of contaminant for two tissues, the liver and the ovaries, are given for each of the four frogs in the
accompanying table. According to the researchers, “the data set suggests that the [mean] relative level of
TCDD in the ovaries of female frogs is higher than the [mean] level in the liver of the frogs.” Test this
claim using @ = .05.

Frog A B C D

Liver 11.0 14.6 14.3 12.2
Ovaries 34.2 4]1.2 32.5 26.2

Source: Korfmacher, W. A., Hansen, E. B., and Rowland,
K. L. “Tissue distribution of 2,3,7,8-TCDD in bullfrogs
obtained from a 2,3,7,8-TCDD-contaminated area.” Chemo-
sphere, Vol. 15, No. 2, Feb. 1986, p. 125. Reprinted with
permission. Copyright 1986, Pergamon Press, Ltd.

Merck Research Labs conducted an experiment to evaluate the effect of a new drug using the Single-T
Swim maze. Nineteen impregnated dam rats were captured and allocated a dosage of 12.5 milligrams of
the drug. One male and one female pup were randomly selected from each resulting litter to perform in
the swim maze. Each rat pup is placed in water at one end of the maze and allowed to swim until it
successfully escapes at the opposite end. If the rat pup fails to escape after a certain period of time, it is
placed at the beginning end of the maze and given another attempt to escape. The experiment is repeated
until three successtul escapes are accomplished by each rat pup. The number of swims required by each
pup to perform three successful escapes is reported in the table on page 464. Is there sufficient evidence of
a difference between the mean number of swims required by male and female rat pups? Use the MINITAB
printout on page 464 to conduct the test (at & = .10).
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Litter Male Female Litter Male Femnale
1 8 5 11 6 5
2 8 4 12 6 3
3 6 7 13 12 5
4 6 3 14 3 8
5 6 5 15 3 4
6 6 3 16 8 12
7 3 8 17 3 6
8 5 10 18 6 4
9 + 4 19 9 5

10 4 4

Source: Thomas E. Bradstrect, Merck Research Labs, BL 3-2, West Point, Penn. 19486,

TEST OF MU = 0.000 VS MU N.E. 0.000

N MEAN STDEV SE MEAN T P VALUE
SwimDiff 19 0.368 3.515 0.806 0.46 0.65

944  Refer to the Journal of Environmental Engineering (Feb. 1986) study of winter heat loss in wastewater
treatment clarifiers, Exercise 8.40. The data, reproduced in the table, were used to compare the mean day-
long clear-sky solar radiation levels (in BT U/sq. ft.) at two midwest sites. A SAS printout for a test to compare
the means follows. Interpret the results of the test.

Date St. Joseph, Mo. lowa Great Lakes
December 21 782 593
January 6 965 672
January 21 948 750
February 6 1,181 988
February 21 1,414 1,226
March 7 1,633 1,462
March 21 1,852 1,698
Source:  Wall, D. |, and Peterson, G Modcl for winter heat loss in uncovered
:Iailzﬁgrs Journal af Environmental Engineering, Vol. 112, No. 1, Feb. 1986,

Analysis Variable : RADDIFF

N Obs T Prob>|T|
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9.10 Testing a Population Proportion
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In Section 9.3, we gave several examples of a statistical test of hypothesis for a pop-
ulation proportion p. When the sample size is large, the sample proportion of successes
b is approximately normal and the general formulas for conducting a large-sample z
test (given in Section 9.3) can be applied.

The procedure for testing a hypothesis about a population proportion p based on
a large sample from the target population is described in the box. (Recall that p
represents the probability of success in a binomial experiment.) For the procedure to
be valid, the sample size must be sufhciently large to guarantee approximate normality
of the sampling distribution of the sample proportion, p. As with confidence intervals,
a general rule of thumb for determining whether n is “sufficiently large” is that both
np and nq are greater than or equal to 4.

Large-Sample Test of Hypothesis About a Population Proportion

................................

One-Tailed Test Two-Tailed Test
Ho: p = po Hp: p = po
Hy: p> po Hy: p# po
[or Hi:  p < po
Latp =i

Test statistic: z =
' V pogo/n

where go = 1 = po
Rejection region: z > z, Rejection region: |z| > z4
[orz < —z,]

Assumption: The sample size n is sufficiently large so that the approximation
is valid. As a rule of thumb, the condition of “sufficiently large” will be satisfied
when np = 4 and ng = 4.

T LR R R N R

EXAMPLE 9.16

Controversy surrounds the use of weathering steel in the construction of highway
bridges. Critics have recently cited serious corrosive problems with weathering steel
and are currently urging states to prohibit its use in bridge construction. On the other
hand, the steel corporations claim that these charges are exaggerated and report that
95% of all weathering steel bridges in operation show “good” performance, with no
major corrosive damage. To test this claim, a team of engineers and steel industry
experts evaluated 60 randomly selected weathering steel bridges and found 54 of them
showing “good” performance. Is there evidence, at @ = .05, that the true proportion
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Solution

FIGURE 9.18 »
Rejection region for Example 9.16

of weathering steel highway bridges that show “good” performance is less than .95,
the figure quoted by the steel corporations?
The parameter of interest is a population proportion, p. We want to test

Ho: p=.95

H,: p<.95

where p is the true proportion of all weathering steel highway bridges that show “good”
performance.
At significance level @ = .05, the null hypothesis will be rejected if

zZ< —Zgps
that is, Hy will be rejected if
z < —1.645 (see Figure 9.18)

The sample proportion of bridges that show “good” performance is

.54
P60

.90

Reject Hy 7=-1.645

Observed value of test statistic
z=-178

Thus, the test statistic has the value

h—po _ 90— .95

Vowo/n V(9505760

The null hypothesis can be rejected (at & = .05), since the computed value of z
falls within the rejection region. There is sufficient evidence to support the hypothesis
that the proportion of weathering steel highway bridges that show “good” performance
is less than .95. [Note that both np = 60(.90) = 54 and ng = 60(.10) = 6 exceed 4.
Thus, the sample size is clearly large enough to guarantee the validity of the hypothesis
test. ]
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Although small-sample procedures are available for testing hypotheses about a
population proportion, the details are omitted from our discussion. It is our experience
that they are of limited utility, since most surveys of binomial populations (for example,
opinion polls) performed in the real world use samples that are large enough to employ
the techniques of this section.

EXERCISES
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Researchers at the University of Rochester studied the friction that occurs in the paper-feeding process of a
photocopier (Journal of Engineering for Industry, May 1993). The experiment involved monitoring the
displacement of individual sheets of paper in a stack fed through the copier. If no sheet except the top one
moved more than 25% of the total stroke distance, the feed was considered successful. In a stack of 100
sheets of paper, the feeding process was successful 94 times. The success rate of the feeder is designed to
be .90. Test to determine whether the true success rate of the feeder exceeds .90. Use a = .10.

Staying too long in a spa pool can result in overheating, which in the case of a pregnant woman, may cause
fetal malformation. But how long is too long? Based on their work in this area, several researchers hypothesize
that 75% of women, immersed in a spa with water temperature of 40°C, will become uncomfortably hot
when their ear canal (core) temperature reaches 40°C. As a result, subjective discomnfort is suggested as a
possible safeguard against overheating. This finding was apparently contradicted by an Australian study of
24 healthy, nonpregnant women (New England Journal of Medicine, Sept. 20, 1990). Only 11 of the 24
women (46%) were uncomfortably hot when their core temperature reached 40°C. Test the hypothesis that
the true percentage of healthy, nonpregnant women who become uncomfortably hot when their core
temperature reaches 40°C is less than 75%. Use a = .10.

Distortions that occur on a computer graphics terminal screen are often due to data being lost in the
communications linkage process between the terminal and the computer. A manufacturer of a new data-
communications error controller claims that the chance of losing data with the controller in operation is
only .01. To test this claim, the communications link between a graphics terminal and computer is monitored
with the error controller in operation. Of a random sample of 200 on-screen graphic items, six were distorted
because of data errors in the communications link. Does the sample evidence refute the manufacturer’s
claim? Use @ = .05.

The National Science Foundation, in a survey of 2,237 engineering graduate students who earned their
Ph.D.degrees, found that 607 were U.S. citizens; the majority (1,630) of the Ph.D. degrees were awarded
to foreign nationals (Science, Sept. 24, 1993). Conduct a test to determine whether the true proportion of
engineering Ph.D. degrees awarded to foreign nationals exceeds .5. Use a = .01.

Concerned about airport and airline security, the Federal Aviation Administration (FAA) has begun imposing
sanctions against airlines that fail security tests. One series of tests conducted at Los Angeles International
Airport (LAX) showed that security guards detected only 72 of the 100 mock weapons carried on by FAA
inspectors or included in their carry-on luggage (Gainesville Sun, Dec. 11, 1987). According to the FAA,
this “detection rate was well below the national rate of .80.” Is there sufficient evidence to conclude that
the mock weapon detection rate at LAX is less than the national rate of .80? Test using & = .10.
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As part of the evaluation for an environmental impact statement of proposed hydroelectric design on the
Stikine River in British Columbia, researchers conducted preliminary investigations of the effects of human-
induced disturbances on the behavior of the resident mountain goat population (Environmental Manage-
ment, Mar. 1983). Goat responses to exploration activities, including close-flying helicopters, fixed-wing
aircraft, human bipedal movement, and loud blasts from geological drilling activities, were recorded for

= 804 goats. The researchers observed that 265 goats displayed a severe flight response to local rock or
plant cover. Test the hypothesis that over 30% of the resident mountain goats will show a severe response
to human-induced disturbances. Use a = .05.

Architects and engineers, faced with public-sector (i.e., government) cuts, are turning to private-sector clients
to fill an increasing share of their workloads. According to some researchers, the decrease in popularity of
public-sector work among small, medium, and large architecture—engineering (A-E) firms has been dra-
matic. Two years ago, one-third of all A—E firms reported they relied on public sector projects for most (if
not all) of their work. In a recent survey of 60 A—E firms, 10 indicated that they depended so heavily on
government contracts. Do the sample data provide sufficient evidence to conclude that the percentage of
A-E firms that rely heavily on public-sector clients has declined during the past 2 years? Use a = .05.

Testing the Difference Between Two Population Proportions
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The method for performing a large-sample test of hypothesis about (p; — p3), the
difference between two binomial proportions, is outlined in the accompanying box.

When testing the null hypothesis that (p; — p,) equals some specified difference—
say, Dg—we make a distinction between the case Dy = 0 and the case Dy # 0. For
the special case Dy = 0, i.e., when we are testing Ho: () — p2) = 0 or, equivalently,
Hy: p1 = p», the best estimate of p; = p» = p is found by dividing the total number
of successes in the combined samples by the total number of observations in the two
samples. That is, if y; is the number of successes in sample 1 and y; is the number
of successes in sample 2, then

= P
}f) - n -+ mnz
In this case, the best estimate of the standard deviation of the sampling distribution
of (1 — p2) is found by substituting p for both p; and ps:

Tipi—p,) = \,‘p:l—(fl + ﬁ;—? = pq ﬁq \/

For all cases in which Dy # 0 [for examplc, when testing Ho: (py — p2) =
.2], we use p; and p; in the formula for o7, - ,). However, in most practical situations,
we will want to test for a difference between proportions—that is, we will want to test
Ho: (p1 — p2) = 0.
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One-Tailed Test Two-Tailed Test
~Hop: (p1 — p2) = Do Ho: (p1 — p2) = Do
Ha: (f’i = Pz) = DU H,: (Pl = pl) #+ DO
for Hy:  (py — p2) < Dyl
Test statistic: z = m
Tipy-p2)
Rejection region: z > z, Rejection region: |z| > z./2

[orz < =z,

When Dy # 0,

Otp1~p2) =~
where gy =1 — pyand g = 1 — ps.

When Dy = 0,
af ot 1
Opr—pa) = ﬁQ(n—l + ﬂ_g)

where the total number of successes in the combined sample is (y; + y;) and

= =A=.Zl_.u2_
h=p=ph e

Assumption: The sample sizes, n; and ny, are sufficiently large. This will be
satisfied if mip; = 4, mq) = 4, and nzp = 4, nxg2 = 4.

The sample sizes n) and n; must be sufficiently large to ensure that the sampling
distributions of p; and p,, and hence of the difference (p; — p,), are approximately
normal. The rule of thumb used to determine if the sample sizes are “sufficiently
large” is the same as that given in Section 8.9, namely, that the quantities np,
napz, n1qy, and nyq; are all greater than or equal to 4. [Note: If the sample sizes are
not sufficiently large, p; and p; can be compared using a technique to be discussed

in Chapter 10.]
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EXAMPLE 9.17

Solution

Recently there have been intensive campaigns encouraging people to save energy by
carpooling to work. Some cities have created an incentive for carpooling by designating
certain highway traffic lanes as “car-pool only” (i.e., only cars with two or more
passengers can use these lanes). To evaluate the effectiveness of this plan, toll booth
personnel in one city monitored 2,000 randomly selected cars prior to establishing
car-pool-only lanes, and 1,500 cars after the car-pool-only lanes were established. The
results of the study are shown in Table 9.5, where y; and y; represent the numbers
of cars with two or more passengers (i.e., car-pool riders) in the “before” and “after”
samples, respectively, Do the data indicate that the fraction of cars with car-pool riders
has increased over this period? Use a = .05.

TBLE 95 Results of Carpooling Study, Example

9.16 ; '
Before
Car-Pool After Car-Pool
Lanes Lanes
Established Established
Sample Size m =2,000 n=1,500
(ar-Pool Riders y) = 655 y2 = 576

If we define p; and p; as the true proportions of cars with car-pool riders before and
after establishing car-pool lanes, respectively, the elements of our test are:

Ho: (pr —p2) =0

Ha: (!91 - pZ) <0

(The test is one-tailed since we are interested only in determining whether the pro-
portion of cars with car-pool riders has increased, i.e., whether p; > p,.)

(hr —h2) = 0
Tip1—p2)
Rejection region: a = .05
z2< —z4= —zos = —1.645 (see Figure 9.19)

Test statistic: z =

We now calculate the sample proportions of cars with car-pool riders:

The test statistic is
z:(f?l—fiz)—oz (b1 — p2)

O(p1-p2) 1 1
(2 + 1)
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FIGURE 9.19 »> R
Rejection region for Example 9.17

o =.05
—1.645 0 ?
Rejection
’ region
-3.56
where
. ity 652+ 576
P v my 2,000+ 1,500 )
Thus,
- 326 — 384 _—.058 _
z= \j : ] = 0163 3.56
('35”('649)('2_,W + ——1,500)
Since z = —3,56 falls in the rejection region, there is sufficient evidence at @ = .05

to conclude that the proportion of all cars with car-pool riders has increased after
establishing car-pool lanes. We could place a confidence interval on (p; — p7) if we
were interested in estimating the extent of the increase.

EXERCISES
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9512 Scientists have linked a catastrophic decline in the number of frogs inhabiting the world to ultraviolet
radiation from the earth’s tattered ozone layer (Tampa Tribune, Mar. 1, 1994). The Pacific tree frog, however,
is not believed to be in decline because it produces an enzyme that appears to protect its eggs from ultraviolet
radiation. Researchers at Oregon State University compared the hatching rates of two groups of Pacific tree
frog eggs. One group of eggs was shielded with ultraviolet-blocking sun shades, whereas the second group
was not. The number of eggs successfully hatched in each group is provided in the table. Compare the
hatching rates of the two groups of Pacific tree frog eggs with a test of hypothesis. Use a = .01.

Sun-Shaded Eggs ~ Unshaded Eggs

Total Number 70 80
Number Hatched 34 3]
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Calcium blockers are among several classes of medicines commonly prescribed to relieve high blood pressure.
A study in Denmark has found that calcium blockers may also be effective in reducing the risk of heart
attacks (Tampa Tribune, Mar. 23, 1990). A total of 897 Danish patients, each recovering from a heart
attack, were given a daily dose of the drug Verapamil, a calcium blocker. After 18 months of follow-up,
146 of these patients had recurring heart attacks. In a control group of 878 people—each of whom took
placebos—180 had a heart attack. Do the data provide sufficient evidence to infer that calcium blockers
are effective in reducing the risk of heart attacks? Test using a = .01.

Every 10 years the Mechanics Division of ASEE conducts a nationwide survey on undergraduate mechanics
education at colleges and universities. In 1985, 66 of the 100 colleges surveyed covered fluid statics in their
undergraduate engineering program, compared to 43% in the 1975 survey (Engineering Education, Apr.
1986). Assuming that 100 colleges were also surveyed in 1975, conduct a test to determine whether the
percentage of colleges covering fluid statics increased from 1975 to 1985, Use & = .01,

A study was conducted to determine the impact of a multifunction workstation (MFWS) on the way managers
work (Datamation, Feb. 15, 1986). Two groups of managers at a St. Louis-based defense agency took part
in the survey: a test group consisting of 12 managers who currently use MFWS software and a control group
of 25 non-MFWS users. One question on the survey concerned the information sources of the managers.
In the test group (MFWS users), 4 of the 12 managers reported that their major source of information is
the computer, whereas 2 of the 25 in the control group (non-MFWS users) rely on the computer as their
major source of information.

a. Is there evidence of a difference between the proportions of MFWS users and non-MEFWS users who

rely on the computer as their major information source? Test using & = .10.
b. Are the sample sizes large enough for the approximation procedure, part a, to be valid?

Home solar heating systems can be categorized into two groups, passive solar heating systems and active
solar heating systems. In a passive solar heating system, the house itself is a solar energy collector, whereas
in an active solar heating system, elaborate mechanical equipment is used to convert the sun’s rays into
heat. Consider the difference between the proportions of passive solar and active solar heating systems that
require less than 200 gallons of oil per year in fuel consumption. Independent random samples of 50 passive
and 50 active solar-heated homes are selected and the numbers that required less than 200 gallons of oil
last year are noted, with the results given in the table. [s there evidence of a difference between the proportions
of passive and active solar-heated homes that required less than 200 gallons of oil in fuel consumption last
year? Test at a level of significance of a = .02.

Passive Active
Solar Solar

Number of homes 50 50
Number that required less than
200 gallons of oil last year 37 46

In 1982, 371 manufacturing and retailing companies were surveyed to determine the extent to which logistics
information systerns were implemented. A follow-up survey of 459 firms was conducted in 1987 to measure
the 5-year trend in computerization of logistics information (Industrial Engineering, July 1990). One of
the survey items focused on the percentage of firms that had computerized external market data. From
1982 to 1987, this percentage increased from 25% to 33%. Use this information to test for a significant
increase in the percentage of firms with computerized external market data over the 5-year period. Test
using @ = .05.
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9.12  Testing a Population Variance

EXAMPLE 9.18

Recall from Section 8.10 that the pivotal statistic for estimating a population variance
o2 does not possess a normal (z) distribution. Therefore, we cannot apply the procedure
outlined in Section 9.4 when testing hypotheses about o2.

When the sample is selected from a normal population, however, the pivotal
statistic possesses a chi-square (x?) distribution and the test can be conducted as outlined
in the box. Note that the assumption of normality is required regardless of whether
the sample size n is large or small.

Test of Hypothesis About a Population Variance o

................................

One-Tailed Test Two-Tailed Test
Hy: 0% = o} Hy: o= o}
H.: o*> o} H.: o* # o}

[or Hy: % < o)

5 =g

Test statistic: x= = pe
Rejection region: Rejection region:
Xe ok nxt i) R Xy OE X5 X2

where x2 and x{_, are values of x? that locate an area of a to the right and «
to the left, respectively, of a chi-square distribution based on (n — 1) degrees of
freedom.

[Note: o§ is our symbol for the particular numerical value specified for o2 in
the null hypothesis. |

Assumption: The population from which the random sample is selected has
an approximate normal distribution.

Refer to Example 8.15 concerning the variability of the amount of fll at a cannery.
Suppose regulatory agencies specify that the standard deviation of the amount of fill
should be less than .1 ounce. The quality control supervisor sampled n = 10 cans
and mesured the amount of fill in each. The data are reproduced here. Does this
information provide sufficient evidence to indicate that the standard deviation o of
the fill measurements is less than .1 ounce?

796 790 798 801 797 79 803 802 804 8.02
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Solution

FIGURE 9.20 »

Rejection region for Example 9.18

Since the null and alternative hypotheses must be stated in terms of o? (rather than
o), we will want to test the null hypothesis that o® = .01 against the alternative that
o2 < .01. Therefore, the elements of the test are

Hy: o2= .01 (ie, o=".1)
H,: o*< .01 (ie,o<.l)
Assumption: The populaton of fill amounts is approximately normal.
o 5 _fn = 1)s?
Test statistic: x* = ~————
0
Rejection region: The smaller the value of s? we observe, the stronger the evi-
dence in favor of H,. Thus, we reject Hy for “small values” of
the test statistic. With & = .05 and 9 df, the x? value for
rejection is found in Table 8 of Appendix 11 and pictured in
Figure 9.20. We will reject Hy if x? < 3.32511. (Remember
that the area given in Table 8 of Appendix Il is the area to the
right of the numerical value in the table. Thus, to determine
the lower-tail value that has @ = .05 to its left, we use the
X%s column in Table 8.)

£

1.44
Rejection
region

3.325

To compute the test statistic, we need to find the sample standard deviation, .
Numerical descriptive statistics for the sample data are provided in the SAS printout
shown in Figure 9.21. The value of s, shaded in Figure 9.21, is s = .043. Substituting
s = .043, n = 10, and o = .01 into the formula for the test statistic, we obtain

(10 = 10437
gh= 01 -

Conclusion: Since the test statistic, y2 = 1.66, is less than 3.32511, the supervisor
can conclude (at & = .05) that the variance of the population of all amounts of fill
is less than .01 (o < .1). If this procedure is repeatedly used, it will incorrectly reject
Hg only 5% of the time. Thus, the quality control supervisor is confident in the
decision that the cannery is operating within the desired limits of variability.

1.66
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FIGURE 9.21 » variable=FILL

. — Moments
SAS printout: Descriptive

statistics for Example 9.18 ¥ S e ioin8
8td Dev 0.043063 Variance 0.001854
Skewness -0.8538 FKurtosis 0.479371
uss 638.2579 CsSS 0.01669
cv 0.539032 sStd Mean 0.013618
T:Mean=0 586.6587 Prob>|T 0.0001
Sgn Rank 27.5 Proh)lsl 0.0020

Num “= 0 10

Quantiles (Def=5)

100% Max 8.04 99% 8.04
75% Q3 8.02 95% 8.04
50% Med 7.995 90% 8.035
25% Q1 7.96 10% 7.93
0% Min 7.9 5% 7.9
1% 7.9

Range 0.14

03-91 0.06

Mode 7.96

......................

EXERCISES
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Refer to the Journal for Engineering for Industry (May 1993) study of deep hole drilling under drill chip
congestion, Exercise 9.21. Test to determine whether the true standard deviation of drill chip lengths differs
from 75 mm. Recall that for n = 50 drill chips, s = 50.2,

Recording electrical activity of the brain is important in clinical problems as well as in neurophysiological

research. To improve the signal-to-noise ratio (SNR) in the electrical activity, it is necessary to repeatedly

stimulate subjects and average the responses—a procedure that assumes that single responses are homo-
geneous. A study was conducted to test the homogeneous signal theory (IEEE Engineering in Medicine and

Biology Magazine, Mar. 1990). The null hypothesis is that the variance of the SNR readings of subjects

equals the “expected” level under the homogeneous signal theory. For this study, the “expected” level was

assumed to be .54. If the SNR variance exceeds this level, the researchers will conclude that the signals
are nonhomogeneous.

a. Set up the null and alternative hypotheses for the researchers.

b. SNRs recorded for a sample of 41 normal children ranged from .03 to 3.0. Use this information to
obtain an estimate of the sample standard deviation. [Hint: Assume that the distribution of SNRs is
normal, and that most of the SNRs in the population will fall within p % 2¢, i.e., from p — 20 to
p + 20. Note that the range of the interval equals 40|

c. Use the estimate of s in part b to conduct the test of part a. Test using a = .10.

The most common method of disinfecting water for potable use is free residual chlorination. Recently,
preammoniation (i.e., the addition of ammonia to the water prior to applying free chlorine) has received
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considerable attention as an alternative treatment. In one study, 44 water specimens treated with pream-
moniation were found to have a mean effluent turbidity of 1.8 and a standard deviation of .16 (American
Water Works Journal, Jan. 1986). Is there sufficient evidence to indicate that the variance of the efflu-
ent turbidity in water specimens disinfected by the preammoniation method exceeds .0016? (The value
.0016 represents the known effluent turbidity variance of water specimens treated with free chlorine.) Test
using @ = .01.

In any canning process, a manufacturer will lose money if the cans contain either significantly more or
significantly less than is claimed on the label. Accordingly, canners pay close attention to the amount of
their product being dispensed by the can-filling machines. Consider a company that produces a fast-drying
rubber cement in 32-ounce aluminum cans. A quality control inspector is interested in testing whether the
variance of the amount of rubber cement dispensed into the cans is more than .3. If so, the dispensing
machine is in need of adjustment. Since inspection of the canning process requires that the dispensing
machines be shut down, and shutdowns for any lengthy period of time cost the company thousands of
dollars in lost revenue, the inspector is able to obtain a random sample of only 10 cans for testing. After
measuring the weights of their contents, the inspector computes the following summary statistics:

x = 31.55 ounces s = .48 ounce

a. Does the sample evidence indicate that the dispensing machines are in need of adjustment? Test at
significance level a = .05.
b. What assumption is necessary for the hypothesis test of part a to be valid?

Polychlorinated biphenyls (PCBs), used in the manufacture of large electrical transformers and capacitors,
are extremely hazardous contaminants when released into the environment. The Environmental Protection
Agency (EPA) is experimenting with a new device for measuring PCB concentration in fish. To check the
precision of the new instrument, seven PCB readings were taken on the same fish sample. The data are
recorded here (in parts per million):

6.2 5.8 5.7 6.3 5.9 5.8 6.0

Suppose the EPA requires an instrument that yields PCB readings with a variance of less than . 1. Does the
new instrument meet the EPA’s specifications? Test at @ = .05.

9.13  Testing the Ratio of Two Population Variances
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As in the one-sample case, the pivotal statistic for comparing two population vari-
ances, o and o3, has a nonnormal sampling distribution. Recall from Section 8.11
that the ratio of the sample variances s/s3 possesses, under certain conditions,
an F distribution.

The elements of the hypothesis test for the ratio of two population variances,
oi/o3, are given in the box.
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Test of Hypothesis for the Ratio of Two Population Variances o}/ o2
Independent Samples

One-Tailed Test Two-Tailed Test
2 3
AL 7 AR
HD. O'_%_ 1 ['Iu. -lf-;g I
of of
M= =] H,: —#1
o} o3
2
L]
s =]
o 1 <]
Test statistic: Test statistic:
st .83 Larger sample variance
F== Jo, F=-5 = ;
55 ST Smaller sample variance
st :
s—; when sf > s3
p 53
=% when s3 > s}
ST
Rejection region: Rejection region:
F > F, F > Fop

where F, and F, > are values that locate area a and a/2, respectively, in the
upper tail of the F distribution with »; = numerator degrees of freedom (i.c.,
the df for the sample variance in the numerator) and v; = denominator degrees
of freedom (i.e., the df for the sample variance in the denominator).

Assumptions: 1. Both of the populations from which the samples are selected
have relative frequency distributions that are approximately
normal.

2. The random samples are selected in an independent manner
from the two populations.

Heavy doses of ethylene oxide (ETO) in rabbits have been shown to alter signihicantly
the DNA structure of cells. Although it is a known mutagen and suspected carcinogen,
ETO is used quite frequently in sterilizing hospital supplies. A study was conducted
to investigate the effect of ETO on hospital personnel involved with the sterilization
process. Thirty-one subjects were randomly selected and assigned to one of two tasks.
Eighteen subjects were assigned the task of opening the sterilization package that
contains ETO (task 1). The remaining 13 subjects were assigned the task of opening
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and unloading the sterilizer gun filled with ETO (task 2). After the tasks were per-
formed, researchers measured the amount of ETO (in milligrams) present in the
bloodstream of each subject. A summary of the results appears in Table 9.6. Do the
data provide sufficient evidence to indicate a difference in the variability of the ETO
levels in subjects assigned to the two tasks? Test using a = .10.

TABLE 9.6  Summary Data for Example 9.19

Task | Task 2
Sample Size 18 13
Mean 5.90 5.60
Standard Deviation 1.93 3.10

Let

of = Population variance of ETO levels in subjects assigned task 1
o3 = Population variance of ETO levels in subjects assigned task 2

For this test to yield valid results, we must assume that both samples of ETO
levels come from normal populations and that the samples are independent.

The hypotheses of interest are then
Hy: —= =1 (o= 0}

2
Hy: = #1 (of # o))

2

The nature of the F tables given in Appendix Il affects the form of the test statistic.
To form the rejection region for a two-tailed F test we want to make certain that the
upper tail is used, because only the upper-tail values of F are shown in Tables 9-12
of Appendix 1. To accomplish this, we will always place the larger sample variance
in the numerator of the F test statistic. This has the effect of doubling the tabulated
value for e, since we double the probability that the F ratio will fall in the upper tail
by always placing the larger sample variance in the numerator. That is, we make the
test two-tailed by putting the larger variance in the numerator rather than establishing
rejection regions in both fails.

Thus, for our example, we have a denominator s with df = n; — 1 = 17 and

a numerator s3 with df = n; — 1 = 12. Therefore, the test statistic will be
_ Larger sample variance _ s3

~ Smaller sample variance ~ sf

and we will reject Hy: oof = 0% for @ = .10 when the calculated value of F exceeds
the tabulated value:

Fn/z = F_(}; = 238
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Rejection region for Example 9.19
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We can now calculate the value of the test statistic and complete the analysis:

_s3_ (3.10* _9.61 _
Fe s ~dmpr~3n %"
When we compare this to the rejection region shown in Figure 9.22, we see that
F = 2.58 falls in the rejection region. Therefore, the data provide sufficient evidence
to indicate that the population variances differ. It appears that hospital personnel
involved with opening the sterilization package (task 1) have less variable ETO levels
than those involved with opening and unloading the sterilizer gun (task 2).

fiF)

=.05

[S1h=]

/

[ 1 - - lF
0 | 2 143 4 5 6

2.58
Rejection region

2.38

LR R R I R R U B A )

What would you have concluded in Example 9.19 if the value of F calculated
from the samples had not fallen in the rejection region? Would you conclude that the
null hypothesis of equal variances is true? No, because then you risk the possibility
of a Type Il error (failing to reject Hy if H, is true) without knowing the value of B,
the probability of failing to reject Hy: of = o3 if in fact it is false. Since we will not
consider the calculation of B for specific alternatives, when the F statistic does not
fall in the rejection region, we simply conclude that insufficient sample evidence exists
to refute the null hypothesis that o = o3.

Example 9.19 illustrates the technique for calculating the test statistic and rejection
region for a two-tailed test to avoid the problem of locating an F value in the lower
tail of the F distribution. In a one-tailed test this is much easier to accomplish since
we can control how we specify the ratio of the population variances in Hy and H,.
That is, we can always make a one-tailed test an upper-tailed test. For example, if we
want to test whether o7 is greater than o3, then we write the alternative hypothesis
as

H: —3>1 (ie, o}> 03
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and the appropriate test statistic is F = s{/s3. Conversely, if we want to test whether
ot is less than o3 (i.e, whether o3 is greater than o), we write
2
o} ,
H,: ?ﬁ >1 (e, 03> o?)
i

and the corresponding test statistic is F = s3/s7.
EXERCISES
9.63  Refer to Exercise 9.35. Recall that an Environmental Science & Technology study was conducted to compare

the mean oxon/thion ratios at a California orchard under two weather conditions—foggy and clear/cloudy.
Test the assumption of equal variances required for the comparison of means to be valid. Use a = .05,

Date Condition Thion Oxon Oxon/Thion Ratio

Jan. 15 Fog 38.2 10.3 .270
17 Fog 28.6 6.9 241
18  Fog 30.2 6.2 .205
19  Fog 23.7 12.4 523
20 Fog 62.3  (Air sample lost) —
20 Clear 74.1 45.8 618
21 Fog 88.2 9.9 112
21 Clear 46.4 27.4 .591
22 Fog 135.9 44.8 330
23 Fog 102.9 27.8 .270
23 Cloudy 28.9 6.5 225
25 Fog 46.9 11.2 .239
25 Clear 443 16.6 375

Source:  Selber, |. N., et al. “Air and fog deposition residues of four organophosphate insecticides used on
dormant orchards in the San Joaguin Valley, California.” Environmental Science & Technology, Vol. 27,
No. 10, Oct. 1993, p. 2240 (Table V).

964  Wet samplers are standard devices used to measure the chemical composition of precipitation. The accuracy
of the wet deposition readings, however, may depend on the number of samplers stationed in the feld.
Experimenters in The Netherlands collected wet deposition measurements using anywhere from one to
eight identical wet samplers (Atmospheric Environment, Vol. 24A, 1990). For each sampler (or sampler
combination) data was collected every 24 hours for an entire year; thus, 365 readings were collected per
sampler (or sampler combination). When one wet sampler was used, the standard deviation of the hydrogen
readings (measured as percentage relative to the average reading from all eight samplers) was 6.3%. When
three wet samplers were used, the standard deviation of the hydrogen readings (measured as percentage
relative to the average reading from all eight samplers) was 2.6%. Conduct a test to compare the variation
in hydrogen readings for the two sampling schemes (i.c., one wet sampler versus three wet samplers). Test
using @ = .05.

9.65  An experiment was conducted to study the effect of reinforced flanges on the torsional capacity of reinforced
concrete T-beams (Journal of the American Concrete Institute, Jan.—Feb. 1986). Several different types of
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T-beams were used in the experiment, each type having a different flange width. The beams were tested
under combined torsion and bending until failure (cracking). One variable of interest is the cracking torsion
moment at the top of the fAange of the T-beam. Cracking torsion moments for eight beams with 70-cm slab
widths and eight beams with 100-cm slab widths follow:

70-cm slab width:  6.00, 7.20, 10.20, 13.20, 11.40, 13.60, 9.20, 11.20
100-cm slab width:  6.80, 9.20, 8.80, 13.20, 11.20, 14.90, 10.20, 11.80

a. Is there evidence of a difference in the variation in the cracking torsion moments of the two types of
T-beams? Use a = .10.
b. What assumptions are required for the test to be valid?

Refer to the general trace organic monitoring study discussed in Exercise 7.21. The total organic carbon
(TOC) level was measured in water samples collected at two sewage treatment sites in England. The
accompanying table gives the summary information on the TOC levels (measured in mg/l) found in the
rivers adjacent to the two sewage facilities. Since the river at the Foxcote sewage treatment works was subject
to periodic spillovers, not far upstream of the plant’s intake, it is believed that the TOC levels found at
Foxcote will have greater variation than the levels at Bedford. Does the sample information support this
hypothesis? Test at & = .05.

Bedford Foxcote
= 61 = 52
y1 =535 y2 = 4.27
s; = .96 s; = 1.27

Source:  Pinchin, M. ]. “A study of the trace
organics profiles of raw and potable water sys-
tems.” Journal of the Institute of Water Engi-
neers & Scientists, Vol. 40, No. 1, Feb. 1986,
p. 87,

Refer to the speechreading study introduced in Exercise 9.41. A second experiment was conducted to
compare the variability in the sentence perception of normal-hearing individuals with no prior experience
in speechreading to those with experience in speechreading. The sample consisted of 24 inexperienced and
12 experienced subjects. All subjects were asked to verbally reproduce sentences under several conditions,
one of which was speechreading supplemented with sound-pressure information. A summary of the results
(percentage of correct syllables) for the two groups is given in the table. Conduct a test to determine whether
the variance in the percentage of correctly reproduced syllables differs between the two groups of speech-
readers. Test using a = .10.

Inexperienced Experienced
Speechreaders Speechreaders
n = 24 n; =12
y = 87.1 y» = 86.1
s = 8.7 52 = 12.4

Source: Breeuwer, M., and Plomp, R. “Speechreading
supplemented with auditorily presented speech param-
eters.” Journal of the Acoustical Sociely of America, Vol.
79, No. 2, Feb. 1986, p. 487.
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OPTIONAL EXERCISES

968  Suppose we want to test Hy: o = o3 versus H,: 0} # o3. Show that the rejection region given by

2

51 o
S>F or
S% af

2

ST
‘3_2 < Ffl—a{l)
2

where F depends on v, = (n; — 1) df and v; = (n, — 1) df, is equivalent to the rejection region given by

2

or

s :
s—% > F,/2 where F depends on »; numerator df and »; denominator df
)

2
E% > Fy2 where F* depends on v; numerator df and »; denominator df
]

[Hint: Use the fact (proof omitted) that

Foarp = 5

where F depends on »; numerator df and v, denominator df and F* depends on v; numerator df and »

denominator df ]

9.69  Use the results of Optional Exercise 9.68 to show that

Larger sample variance = g
Smaller sample variance a2

where F depends on numerator df = [(Sample size for numerator sample variance) — 1] and denominator
df = [(Sample size for denominator sample variance) — 1]. [Hint:  First write

Larger sample variance
Smaller sample variance

57 s3
> Bz =P g> Fop2 or o > Fop2

Then use the fact that P(F > F, ;) = a/2.]

9.14  Summary

R R N N N N RN

This chapter presents the basic concepts of a statistical test of a hypothesis about one
or more population parameters. Tests of hypotheses are used when the ultimate prac-
tical objective of an inference is to reach a decision about the value(s) of the
parameter(s). We can evaluate the goodness of the inference in terms of a and B, the
probabilities of making incorrect decisions.

The close relationship between estimation and hypothesis testing is apparent when
we compare the statistics employed for these two purposes. The statistics used to
construct confidence intervals for parameters in Chapter 8 were then used to test
hypotheses about the same parameters in Chapter 9. These tests are summarized in
Tables 9.7a and 9.7b.

In the following chapters, we will present some very useful methodology for
analyzing multivariable experiments. As you will subsequently learn, the confidence
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intervals and tests that we will employ are based on an assumption of normality. Thus,
the statistics that we will use to construct confidence intervals and test hypotheses
possess sampling distributions that are the familiar ¢, x?, and F distributions of Chapters
7, 8, and 9.

TABLE 9.7a  Summary of Hypothesis Tests: One-Sample Case :
Null Paint Additional

Parameter (6)  Hypothesis (Hy)  Estimator (6) Test Statistic Sample Size Assumptions
= B = po y D el 7 Al n=30 None
- o/Vn s/Vn
Y Mo n<30 Normal
b= s/Vn population

where t is based on v = (n — 1)
degrees of freedom

b p=po £ ¥ b= po n large enough so that None
A 7= p = 4and ng = 4
" Podo s B
n
i 0% = o} 52 y.. b= 1)s? All n Normal
% where population
x? has a chi-square distribution
with ¥ = (n — 1) degrees of freedom
TABLE 9.7b  Summary of Hypothesis Tests: Two-Sample Case
Null Point Additional
Parameter (6)  Hypothesis (Ho)  Estimator (6) Test Statistic Sample Size Assumptions
(= p2) (1 —m2)=Do (¥ - 72) _(h=5)-—D ny =30, my = 30 None
Independent (If we want to LS ot ol
samples detect a el
difference ! ?
between w2 Ja) — Dy
and M2, then sf 5%
Do =0.) o
L = (71 — ¥2) = Do Either n; < 30 Both populations
| 1 or n; < 30 or both normal with equal
s3 (— —) variances (of = o)
m nz : ¥ =
{For situations in
where t is based on v = which o} # o2,
m + ny — 2 degrees see the modifica-
of freedom and tions listed in the
5 _ (m = 1)sf + (n2 = 1)s} box on page 455.)
= np4+n;—2

(continued )
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TABLE 9.7b  Summary of Hypothesis Tests: Two-Sample Case, continued
Null Point Additional
arameter othesis (H, timator est Statistic ample Size ssumptions
P 0 Hypothesis (H Es 0 Test § Sample § Assump
P = g = Dy (If we d= =0 difn d - Dy All ny Population of
(s — p2) want to detect Mean of £= ;/_\/T (If ng = 30, then the differences d; is
Matched a difference sample ¢ . ¢ standard normal (z) test  normal
pairs between differences where £ is based on v = (ng — 1) may be used.)
and p2, then degrees of freedom
Dy =0.)
(pr — p2) (pr — p2) = Do (hr — p2) For Dy = O: ny and n; large enough  Independent
(If we want By = b) so that nyp; = 4, samples
to detect a 2= —— g = 4 and nap; =4,
difference \/ﬁ?(i ¥ L) nags = 4
between p, moon
and p;, then o yit oy
DO 2 0) where p= m
For Dy # 0:
b=y - Dy
Py | Pade
ny nz
ot ot - st For H,: ot > o} All ny and n» Independent
o} ol s3 s random samples
(i.e., of = a3) = 2 from normal
ulations
For H,: 3 > o} pop
-
F P
For H,: o} # oi:
_ Largers?

= Smaller s?
where the distribution of F is

based on v, = numerator degrees
of freedom and »» = denominator
degrees of freedom

SUPPLEMENTARY EXERCISES
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9.0  One of the keys to occupational therapy is patient motivation. A study was conducted to determine whether
purposeful activity (defined as tasks that are goal-directed) provides intrinsic motivation to exercise perform-
ance (Journal of Occupational Therapy, Mar. 1984). Twenty-six females were recruited to take part in the
study. Each female subject was instructed to perform two similar exercises, jumping rope (the purposeful

activity) and jumping without a rope (the nonpurposeful activity), until their perceived exertion level reached
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17 on the RPE scale (i.e., until they had worked their bodies “very hard”). The length of time (in minutes)
that each subject jumped was then recorded for each of the two exercises and the difference d; (computed
by subtracting the length of jumping time without rope from the length of jumping time with rope) was
calculated. A summary of the 26 differences is provided here:

d = 41.84 seconds
sq = 110.28 seconds

One theory held by occupational therapists is that those performing a purposeful activity are more motivated,
and hence, tend to fatigue less easily. Test the hypothesis that the mean exercise time for the purposeful
activity (jumping with a rope) exceeds the mean exercise time for the nonpurposeful activity (jumping
without a rope). Use a = .05.

Suppose you want to determine whether users of data processors have a preference between word processors
A and B. If users have no preference for either of the two word processors (i.e., if the two systems are
identical), then the probability p that a user prefers system A is p = .5. Let y be the number of users in a
sample of 10 who prefer system A, and suppose you want to test Hyp: p = .5 against H;: p # .5. One
possible test procedure is to reject Ho if y = 1 or y = 8.

a. Find «a for this test.

b. Find Bif p = .4. What is the power of the test?

c. Find Bif p = .8. What is the power of the test?

The quality control department of a paper company measures the brightness (a measure of reflectance) of
finished paper on a periodic basis throughout the day. Two instruments that are available to measure the
paper specimens are subject to error, but they can be adjusted so that the mean readings for a control paper
specimen are the same for both instruments. Suppose you are concerned about the precision of the two
instruments—namely, that instrument 2 is less precise than instrument 1. To check this theory, five mea-
surements of a single paper sample are made on both instruments. The data are shown in the table. Do
the data provide sufficient evidence to indicate that instrument 2 is less precise than instrument 17 Test
using a = .05.

Instrument 1 Instrument 2
29 26
28 34
30 30
28 32
30 28

The testing department of a tire and rubber company schedules truck and passenger tires for durability tests.
Currently, tires are scheduled twice weekly on Hexible processors (machines that can handle either truck or
passenger tires) using the shortest processing time (SPT) approach. Under SPT, the tire with the shortest
processing time is scheduled first. Company researchers have developed a new scheduling rule which they
believe will reduce the average Aow time (i.e., the average completion time of a test) and lead to a reduction
in the average tardiness of a scheduled test. To compare the two scheduling rules, 64 tires were randomly
selected and divided into two groups of equal size. One set of tires was scheduled using SPT, the other
using the proposed rule. A summary of the flow times and tardiness (in hours) of the tire tests is provided in
the table on page 486.
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Flow Time Tardiness
Mean Variance Mean Variance
SPT 158.28 8,532.80 5.26 452.09
Proposed Rule 117.07 5,208.53 4,52 319.41

a. s there sufficient evidence at @ = .05 to conclude that the average flow time is less under the proposed

scheduling rule than under the SPT approach?
b. Is there sufficient evidence at & = .05 to conclude that the proposed scheduling rule will lead to a
reduction in the average tardiness of tire tests?

Refer to the reinforced concrete T-beam cracking experiment described in Exercise 9.65. The experimental
results were compared to the theoretical results obtained using the failure surface method of predicting
ultimate load capacity. The actual and theoretical ultimate torsion moments for six T-beamns with 40-cm
slab widths are given in the table. Conduct a test to determine whether the experimental mean ultimate
torsion moment differs from the theoretical mean ultimate torsion moment. Use e = .05,

T-Beam 1 2 3 4 5 6
Experimental result 4.70 5.20 5.40 5.40 430  4.80
Theoretical result 4.63  4.65 560  5.60 3.62 3.62

Source:  Zararis, P D., and Penelis, G. Jr. "Reinforced concrete T-beams in torsion and bending.” Journal of
the American Concrete Institute, Vol. 83, No. |, Jan.—Fcb. 1986, p. 153.

A problem that occurs with certain types of mining is that some byproducts tend to be mildly radioactive

and these products sometimes get into our freshwater supply. The EPA has issued regulations concerning

a limit on the amount of radioactivity in supplies of drinking water. Particularly, the maximum level for

naturally occurring radiation is 5 picocuries per liter of water. A random sample of 24 water specimens

from a city’s water supply produced the sample statistics y = 4.61 picocuries per liter and s = .87 picocurie

per liter.

a. Do these data provide sufficient evidence to indicate that the mean level of radiation is safe (below the
maximum level set by the EPA)? Test using a = .01,

b. Why should you want to use a small value of « for the test in part a?

c. Calculate the value of B for the test if w, = 4.5 picocuries per liter of water.

d. Calculate and interpret the p-value for the test.

Usually, when trees grown in greenhouses are replanted in their natural habitat, there is only a 50% survival
rate. However, a recent General Telephone and Electronics (GTE) advertisement claimed that trees grown
in a particular environment ideal for plant growth have a 95% survival rate when replanted. These trees
are grown inside a mountain in Idaho where the air temperature, carbon dioxide content, and humidity
are all constant, and there are no major disease or insect problems. A key growth ingredient—light—is
supplied by specially made GTE Sylvania Super-Metalarc lamps. These lights help the young trees develop
a more fbrous root system that aids in the transplantation. Suppose that we want to challenge GTE's claim,
i.e., we want to test whether the true proportion of all trees grown inside the Idaho mountain that survive
when replanted in their natural habitat is less than .95. We randomly sample 50 of the trees grown in the
controlled environment, replant the trees in their natural habitat, and observe that 46 of the trees survive.
Perform the test at a level of significance of a = .01.

A parallel processor, or paracomputer, consists of autonomous processing elements (PEs) sharing a central
memory. Researchers at New York University have recently designed such a paracomputer, called the NYU
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Ultracomputer. To assess the impact of network delay on overall ultracomputer performance, the researchers
simulated central memory access time for sample instructions from a parallel version of a NASA weather
program. Two sets of access times were simulated—one set processed with 16 processing elements, the other
set with 48 processing elements. With 16 PEs, the average central memory access time was 8.94 seconds,
whereas with 48 PEs the average central memory access time was 8.83 seconds. Assume that n = 1,000
instructions were simulated for each of the two programs, with standard deviations equal to 3.10 and 3.50,
respectively. This information was not provided in the researchers’ report. Is there sufficient evidence to
indicate a difference between the average central memory access times of instructions processed with 16
and 48 PEs? Test using a = .05.

In the manufacture of machinery, it is essential to utilize parts that conform to specifications. In the past,
diameters of the ball bearings produced by a certain manufacturer had a variance of .00156. To cut costs,
the manufacturer instituted a less expensive production method. The variance of the diameters of 100
randomly sampled bearings produced by the new process was .00211. Do the data provide sufficient evidence
to indicate that diameters of ball bearings produced by the new process are more variable than those produced
by the old process? Test at & = .05.

The ion balance of our atmosphere has a significant effect on human health. A high concentration of
positive ions in a room can induce fatigue, stress, and respiratory problems in the room’s occupants. However,
research has shown that introduction of additional negative ions into the room’s atmosphere (through a
negative ion generator), in combination with constant ventilation, restores the natural balance of ions that
is conducive to human health. One experiment was conducted as follows. One hundred employees of a
large factory were randomly selected and divided into two groups of 50 each. Both groups were told that
they would be working in an atmosphere with an ion balance controlled through negative ion generators.
However, unknown to the employees, the generators were switched on only in the experimental group's
work area. At the end of the day, the number of employees reporting migraine, nausea, fatigue, faintness,
or some other physical discomfort was recorded for each group. The results are summarized in the table.

Experimental Group Control Group
(Ton generators on) (Ion generators off)
Number in Sample n = 50 ny; = 50
Number in Sample Who Experience
Some Type of Physical Discomfort 3 12

a. Perform a test of hypothesis to determine whether the proportion of employees in the experimental group
who experience some type of physical discomfort at the end of the day is significantly less than the
corresponding proportion for the control group. Use a significance level of a = .03,

b. Compute the p-value for this test.

The use of computer equipment in business is growing at a phenomenal rate. A recent study revealed that
184 of 616 working adults now regularly use a personal computer, microcomputer, computer terminal, or
word processor on the job (Journal of Advertising Research, Apr./May 1984). [s this sufficient evidence to
indicate that the proportion of all working adults who regularly use computer equipment on the job exceeds
25%7 Test using a = .05,

The means and standard deviations shown in the table summarize information on the strengths (modules
of rupture at ground line, in pounds per square inch) for two types of wooden poles used by the utility
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industry. Do the data provide sufficient evidence to indicate a difference in the variance of the strengths of
wooden poles made from coastal Douglas fir and southern pine? Test using a = .02.

Species Sample Size  Sample Mean ~ Sample Standard Deviation
Coastal Douglas fir 118 8,380 644.62
Southern pine 147 8,870 611.72

Source:  Goodman, J. R., Vanderbilt, M. D., and Criswell, M. E. “Reliability-based design of wood transmission line
structures.” Journal of Structural Engineering, Vol. 109, No. 3, 1983, pp. 690-704.

The accompanying table provides data on the theoretical (calculated) and experimental values of the vapor
pressures for dibenzothiophene, a heterocycloaromatic compound similar to those found in coal tar. If the
theoretical model for vapor pressure is a good model of reality, the true mean difference between the
experimental and calculated values of vapor pressure for a given temperature will equal 0.

Temperature Vapor Pressure Temperature Vapor Pressure
(°C) Experimental ~ Calculated (°C) Experimental ~ Calculated
100.60 .282 276 116.69 .669 695
101.36 314 307 119.38 .834 .805
104.60 335 .350 121.08 .890 .882
106.44 404 .390 123.61 1.01 1.01
108.70 422 444 124.90 1.07 1.08
110.96 513 505 12774 1.26 1.25
112.62 554 .554 130.24 1.42 1.43
115.21 642 640 131.75 1.55 1.54

Source: Edwards, D. R., and Prausnitz, . M. “Vapor pressures of some sulphur-containing, coal-related compounds.” Journal of Chemical
and Engineering Data, Vol. 26, 1981, pp. 121-124. Copyright 1981 Amencan Chemical Society. Reprinted with permission.

a. Do the data provide sufficient evidence to indicate that the mean difference differs from 0? Test using
a = .05
b. Calculate and interpret the p-value for the test.

A machine is set to produce bolts with a mean length of 1 inch. Bolts that are too long or too short do not
meet the customer’s specifications and must be rejected. To avoid producing too many rejects, the bolts
produced by the machine are sampled from time to time and tested as a check to determine whether the
machine is still operating properly, i.e., producing bolts with a mean length of 1 inch. Suppose 50 baolts
have been sampled, and y = 1.02 inches and s = .04 inch. Does the sample evidence indicate that the
machine is producing bolts with a mean length not equal to 1 inch; i.e., is the production process out of
control? Test using & = .01.

Heat stress in dairy cows can have a dramatic negative effect on milk production. High temperatures tend
to reduce a cow’s food intake, which in turn reduces milk yield. Researchers in the IFAS Dairy Research
Unit and the Department of Agricultural Engineering at the University of Florida have developed design
criteria for the construction of shade structures that they believe will help alleviate heat stress for dairy cows.
In one experiment, 31 Holstein cows in the last trimester of pregnancy were divided into two groups. Sixteen
cows were given access to a shade structure and the remaining 15 cows were denied shade. Researchers
recorded the 100-day milk yield (in pounds) of each cow after calving. The mean milk yields of the two




Computer Lab 489

groups are shown in the accompanying table. Is there sufficient evidence to indicate a difference between
the mean milk yields of cows given access to shade and cows denied shade? Use a = .10, (Assume the
standard deviations of milk yields are equal to 40 pounds for both groups.)

Shade No Shade

Sample Size 16 15
Mean 367.4 330.8
Source: “Minimizing heat stress for dairy cows.”

Florida Agricultural Research 83, Vol. 2, No. |, Win-
ter 1983, pp. 10-13.

(OMPUTER LAB:  Testing Means
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In this section, we present the computer commands for conducting tests of hypotheses concerning population
means. Both packages, SAS and MINITAB, can perform t tests about w, (u1 — 2} for independent samples,
and () — p1) for paired samples. (Remember, for large samples, the ¢ and z statistics are nearly equivalent.)
Tests about variances and proportions are not available in SAS or MINITAB.

SAS
a. One-Sample Test—Test Hy: i = 8.5 in Example 9.8
Command
line
1 DATA BONES: - B
2 INPUT RATIO GBS Data entry instructions
3 TESTRAT=RATIO-B.5i
4 CARDS;
10,73 B.48 8.52
: : Input data values
. ’ (3 observations per line)
9,93 B.,17 12.00.
5 PROC MEANS T PRT; ,
6 VAR TESTRAT: }Studentsrlest

(OMMAND 3 The transformed variable TESTRAT is computed by subtracting the hypothesized mean (u = 8.5)
from each value of RATIO.

(OMMANDS 5-6 The PROC MEANS statement commands SAS to conduct a ¢ test on the values of the variable
TESTRAT (specified in line 6). SAS will test the null hypothesis Ho: wrestrar = 0, which is equivalent to testing
Hy: praTio = 8.5.

OUTPUT  The p-value reported in SAS is a two-tailed observed significance level. Divide this reported value in half
to obtain the p-value for a one-tailed test. [Note: The SAS output for this program is displayed in Figure 9.23a.]
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b. Two-Sample Test, Independent Samples —Test Hy: sy — w2 = 0 in Example 9.14

Command
line
é II):;ETD:)?;ﬁé TIME €@; } Data entry instructions
3 CARDS i
1 59173 1 74 1 Bl
oo Input data values
§ 6§ 2 B B3 {4 observations per line)
2 BB 2 53 2 BB 2 389
g PRAR Tieald } Student’s ¢ test
5 CLASS DRIVES VAR TIME]

(OMMAND 2 TIME is the variable of interest. DRIVE is a grouping variable that takes on two values (e.g., 1
and 2).

COMMANDS 4-5 The TTEST procedure conducts a ¢t test on the difference in means of the variable TIME for the
two groups identified by DRIVE.

OUTPUT  SAS calculates the t value for both the equal population variances case and the unequal variances case.
[Note: The SAS output for this program is displayed in Figure 9.23b.]

¢. Two-Sample Test, Paired Samples—Test Hyp: uq = 0 in Example 9.15

Command
line
1 DATA CLOUD:
2 INPUT SEED UNSEED] Data entry instructions
3 DIFF=SEED-UNSEED
4 CARDS 3
1.75 1,62
. : Input data values
: : (1 observation per line)
2.42 2,33
S pROC MEANS TRRTE ] e

(OMMANDS 2-3 The variables SEED and UNSEED contain the measurements for each member of the matched
pair. The difference, DIFF, is computed in line 3.

OUTPUT [Note: The SAS output for this program is displayed in Figure 9.23c.]

FIGURE 9.23 » a.
SAS m“put for computer Lab Analysis Variable : TESTRAT

N Obs T Prob>|T|

41 4.0303238 0.0002
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TTEST PROCEDURE

Variable: TIME

DRIVE N Mean Std Dev std Error Minimum Maximum
1 13 68.23076923 18.65991178 5.17532836 33.00000000 102.0000000
2 15 53.80000000 15.80777386 4.08154966 34.,00000000 86 ..0000000

Variances T DF Prob>|T|

Unequal 2.1894 23.7 0.0387

Equal 2.2163 26.0 0.0356

For HO: Variances are equal, F' = 1.39 DF = (12,14) Prob>F’' = 0.5482

Analysis Variable : DIFF

N Obs T Prob>|T|

6 3.0066442 0.0299

MINITAB
a. One-Sample t Test—Test Hy: o = 8.5 in Example 9.8

Command
line

| SET RATIOS IN Ci
2 NAME C1=‘*RATIO’
10.73 B.48 8.52

Data entry instruction

[nput data values

: i 3 (3 observations per line)
9.93 8.17 12,00

TTEST OF MU=50 ON C13 } Sridebe ptest

4 ALTERNATIVE=+1,

ad

(OMMANDS 3-4 The TTEST procedure performs a t test on the difference between the mean of the variable read
in Cl and the hypothesized value specified in the MU= subcommand (line 3). The subcommand ALTERNA-
TIVE=+1 (line 4) requests that a one-tailed upper-tailed test be performed. Use ALTERNATIVE=—1 for a
lower-tailed test. If the subcommand is not used, a two-tailed test is performed.

OUTPUT [Note: The MINITAB output for this program is displayed in Figure 9.24a on page 493.]
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b. Two-Sample Test, Independent Samples—Test Hy: uy — w2 = 0 in Example 9.14

Command
line
1 SET DISK1 DATA IN C1 Data entry instruction
59 73 74 61
T A e Input data values
{4 observations per line)
2 SET DISKZ DATA IN C2
71 B3 40 34
e 8 % [nput data values
{4 observations per line)
3 TWOSAMPLE T C1 CZ3 5
4 POOLED. } Student’s ¢ test

COMMANDS 3-4 TWOSAMPLE performs a ¢ test on the difference between the means of the data in Cl and C2.
The subcommand POOLED (line 4) requests that a pooled sample variance be used. (This is appropriate when
the population variances are equal.) If you want MINITAB to adjust the ¢ statistic and degrees of freedom for the
uncqual variances case, omit the POOLED subcommand.

GENERAL  Use the ALTERNATIVE subcommand to obtain a one-tailed test.
OUTPUT [Note: The MINITAB output for this program is displayed in Figure 9.24b.]

¢. Two-Sample Test, Paired Samples—Test Hg: pg = 0 in Example 9.15

Command
line
1 READ DATA IN C1 C2 Data entry instruction
1.79 1.62
. : Input data values
s : (1 observation per line)
242 Z.u3
2 SUBTRACT C2 FROM C1, PUT IN C3
3 NAME C3=‘DIFF*
4

TTEST OF MU=0 ON DATA IN C3 Student's ¢ test

COMMANDS [-2 The data in columns C1 and C2 are the measurements for each member of the matched pair.
C3 contains the difference between the measurements.

(OMMAND 4 TTEST performs a ¢ test on the mean of the differences in C3.
GENERAL  Use the ALTERNATIVE subcommand to obtain a one-tailed test.
OUTPUT [Note: The MINITAB output for this program is displayed in Figure 9.24c.]
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FIGURE 9.24 » a. TEST OF MU = 8.500 VS MU G.T. 8.500
HINITAB output for Computer 5 MEAN STOEY  BE MEAN = P VALUE
Lab RATIO a1 9.258 1.204 0.188 4.03 0.0001
b. TWOSAMPLE T FOR diskl VS disk2
N MEAN STDEV  SE MEAN
diskl 13 68.2 18.7 5.2
disk2 15 53.8 15.8 4,1
95 PCT CI FOR MU diskl - MU disk2: (1.0, 27.8)
TTEST MU diskl = MU disk2 (VS NE): T= 2.22 P=0.036 DF= 26
POOLED STDEV = 172
¢. TEST OF MU = 0.0000 VS MU N.E. 0.0000
N MEAN STDEV  SE MEAN T P VALUE
DIFF 6 0.1633 0.1331 0.0543 3.01 0.030
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