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Preface
The fourth ed ition of Statistics for Engineering and the Sciences is a text for a two­
semester int roductory co urse in statistics for studen ts maj oring in engineeri ng or any
of the physical sciences . Inevitably, on ce these students gradu ate and are em ployed,
they will be involved in the analysis of data and will be required to ma ke inferences
from their ana lyses. Conseque ntly, they need to acqu ire knowledge of the basic conce pts
of statistical inference and familiarity with some of the statistical meth ods that they
will be required to use in their em ployme nt.

Pedagogy
Chapters 1-7 identify the objec tives of statistics, expla in how we can descr ibe data
sets, and present the basic con cepts of proba bility. Chapters 8 and 9 introduce the two
methods for making inferences about population parameters: estim ation and testing
hypoth eses. These notions are extended in the remaining chapters to cover othe r topics
that are useful in analyzing engi neering an d scien tific data, incl uding the analysis
of categorical data (Chapter 10), regression analysis and model building (Cha pters
11 -1 3), the ana lysis of variance for designed expe rime nts (Cha pter 14), nonparametric
statistics (C hap ter 15), statistica l qua lity control (Chapter 16), and product and system
reliability (C hapter 17).

T he assumed mathem atical background is a two-sem ester seque nce in calc u lus­
that is, the course could be taught to students of average ma the matica l talent and with
a basic understanding of the prin ciples of differential and int egral calculus. Presentation
requ ires the ability to perform one-variable differentiati on and int egration, bu t exam­
ples involving topics from multivar iable calc ulus are designated as optiona l. T hus, the
theoretical con cepts are sketched and presented in a one-variabl e con text, but it is
easy for the instructor to delve deeper in to the theoreti cal and mathematical aspects
of statistics using the optional topics, examples, and exercises.

Features
Specific features of the text are the following:

1. Blend of theory and applications. T he basic theoreti cal conce pts of math ematical
statistics are in tegrated with a two-sem ester presentation of statistical meth odology.
Thus, the instru ctor has the opportunity to present a course with eith er of two
cha racteris tics-a course stressing basic con cepts and applied statistics or a course
that , while still tilted toward application, presents a modest introduction to the
theory underlyin g statistical inference.

2. Computer applications with instructions on how to use th e computer. T he
instructor and studen t have the option of using a com puter to perform the statistical
calcu lations. Printouts from two popular statistical software packages available at

YIII



Preface

most university computing centers, SAS and MINITAB, are fully integrated into
the text. Additionally, we provide the SAS and MINITAB commands required to
generate the printouts in "Computer Lab" sections at the end of most chapters.
These tutorials are designed for the novice user; no prior computer experience is
needed. The instructions on how to use SAS and MINITAB for statistical analysis
of data apply to both large mainframe computers and personal computers (PCs).

3. Broad coverage of topics. To meet the diverse needs of future engineers and
scientists, the text provides coverage of a wide range of data analysis topics. The
material on exploratory data analysis (Chapter 2), regression analysis and model
building (Chapters 11-13), quality control (Chapter 16), and reliability (Chap­
ter 17) sets the text apart from the typical introductory statistics text. The material
often refers to theoretical material covered in earlier chapters, but the presentation
is oriented toward applications.

4. Applied exercises extracted from scientific journals. The text contains a large
number of applied exercises designed to motivate a student and suggest future uses
for the methodology. Most of these exercises require the student to analyze actual
data or interpret experimental results extracted from professional journals in the
engineering and physical sciences.

5. Optional theoretical exercises. Where appropriate, theoretical exercises are pro­
vided to motivate those students who have a stronger desire to understand the
mathematical theory that forms an underpinning for the applications. These exer­
cises arc labeled "optional" because they require greater mathematical skill for their
solution.

6. Key concepts highlighted. Definitions, theorems, formulas, steps to follow in
performing a statistical procedure, and warnings (indicating a specific situation
where a student might misuse a statistical technique) are boxed and highlighted to
enable the student to assimilate easily the most important concepts in a chapter.

7. Real data sets. Explanations of basic statistical concepts and methodology are
based on and motivated by the use of real scientific data sets. Four large data sets
are provided in the appendices for use as instructional vehicles:

Appendix m. Length, weight, and DDT measurements for 144 fish of various
species captured from the Tennessee River by the U.S. Army Corps
of Engineers.

Appendix IV. The central processing unit (CPU) times of 1,000 computer jobs
run by a small statistical consulting firm.

Appendix V. Percentage iron content for 390 I . 5-kilogram specimens of iron
ore selected from a 20,000-ton consignment of Canadian ore.

Appendix VI. Federal Trade Commission rankings of 372 domestic cigarette
brands .

These data sets are also available (in ASCII format) on floppy diskette. Consequently,
they can be loaded into computer storage and analyzed with SAS, MINITAB, or
some other statistical software package. For example, the data sets can be used by
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the instructor to illustrate the concept of a sampling distribution and the theoretical
interpretation of a "95% confidence interval."

8. Short answers to exercises provided. To aid the student in working the exercise
sets, short answers (mostly numerical in nature) to all exercises are provided at the
end of the text.

Revisions

Although the scope and coverage remain the same, the fourth e.dition contains several
substantial changes, additions, and enhancement s:

1. More computer printouts. Throughout the text, we have greatly increased the
number of SAS and MINITAB printouts. A printout now accompanies every sta­
tistical technique presented, allowin g the instructor to emphasize interpretations
of the statistical results rather than the calculations required to obtain the results.

2. Chapter 2: Summary frequency tables. A discussion of how to construct and use
summary frequency tables has been added to the section on describing qualitative
data (Section 2. I).

3. Chapter 4: Bernoulli distribution. A new section (Section 4. 5) describing Ber­
noulli trials and their importance in binomial experiments is included .

4. Chapter 5: Descriptive methods for assessing normality. A new section (Section
5.6) on determining whether a data set is approximately normal has been added
to the chapter on continuous probability distributions. In addition to the traditional
graphical methods (histogram, stern-and-leafdisplay), we present tp" ratio of the
interquartile range to the standard deviation as a check on normality. The emphasis
on these techniques early in the text makes the student aware of the importance
of checking assumptions in later chapters.

5. Chapter 9: More emphasis on p-values. Throughout the test of hypothesi s chap­
ter , we present both the rejection region approach and observed significan ce level
(p-value) approach to making decisions . Since a computer printout is provided
with nearly each example, it is easy for the instructor to emphasize the p-vaJue
approach to hypothesis testing.

6. Chapter 13: Comprehensive example on model building. The key ideas and
techniques of the chapter are applied to a practical probl em on detecting collusive
bidding in road construction (Section 13.11).

7. Chapter 14: Principles of experimental design. T wo new sections (Sections 14.4
and 14.5) present an overview of designed experiments and the principles of uoise­
reducing and volume-increasing designs.

8. Chapter 14: Regression approach to ANOYA. Although we present both the
traditional ANOYA approach and the regression approach to analyzing data from
designed experiments, our emphasis is on the regression approach . For each
design, we give the corresponding regression models and show how to conduct
the ANOYA F tests using the mod els.
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9. Chapter 16: Total quality management (TQM). A new section on total quality
management (Section 16. I) has been added to the chapter on statistical process
and quality control.

10. More exercises with real data. Many new "real-life" scientific exercises have
been added throughout the text. All of these are extracted from news articles,
magazines, and professional journals.

Numerous, less obvious changes in details have been made throughout the text in
response to suggestions by current users and reviewers of the text.

Supplements
The text is also accompanied by the following supplementary material:

1. Student's solutions manual (by Nancy S. Boudreau). The manual contains the
full solutions for all the odd-numbered exercises contained in the text. ISBN 0­
02-312718-X.

2. Instructor's solutions manual (by Mark Dummeldinger). The manual contains
the full solutions to all the even-numbered exercises contained in the text. ISBN
0-02-380582-X.

3. Data sets on diskette. All four large appendix data sets and numerous smaller
data sets (contain ing 20 or more observations) analyzed in exercises are available
(in ASCIl format) on a 31jz" IBM PC diskette . ISBN 0-02-380583-8.

4. ASP statistical software diskette. New to this edition, the text includes (inside
the back cover) a 3Ijz" micro disk containing the ASP program, A Statistical Package
for Business, Economics, and the Sciences. ASP, from DMC Software, Inc., is a
user-friendly, totally menu-driven program that contains all of the major statistical
applications covered in the text, plus many more. ASP runs on any IBM-compatible
PC with at least 512K of memory and two disk drives. With ASP, students with
no knowledge of computer programming can create and analyze data sets easily
and quickly. The appendix contains start-up procedures and a short tutorial on the
use of ASP. Full documentation is provided to adopters of the text.

5. ASP Tutorial and Student Guide (by George Blackford). Most students have little
trouble learning to use ASP without documentation . Some, however, may want
to purchase the ASP Tutorial and Student Guide. Bookstores can order the tutorial
from DMC Software, Inc., 6169 Pebbleshire Drive, Grand Blanc, MI 48439 .
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CHAPTER ONE
Introduction

Objective

To identify the role of statistics in the analysis of data
from enginee ring and the sciences

Contents

1.1 Statistics: T he Science of Data
1.2 Types of Data
1.3 The Role of Statistics
1.4 Summary

Computer lab Entering and Listing Data
Accessing an External Data File
(Optional)

.•••••... ......................•........•••••....



2 Chapter I I Introduction

1.1 Statistics: The Science of Data

According to The Random House College Dictionary, statistics is "the science that
deals with the collection, classification , analysis, and interpretation of numerical facts
or data. " In short, sta tist ics is the science of data .

Definition 1.1

Statistics is the science of data . This involves collecting, classifying, summariz­
ing, organizing, analyzing, and interpreting data.

The science of statistics is commo nly applied to two types of problems:

I. Summarizing, describing, and exploring data

2. Using sample data to infer the nature of the data set from which the sample was
selected

As an illustration of the descriptive applications of statistics, consider the United
States census, which involve s the co llection of a data set that purports to characterize
the socioeconomic characteristi cs of the approxima tely 250 million people living in
the United States. Managing this enormo us mass of data is a problem for the computer
scientist, and describing the data utili zes the meth ods of statistics. Similarly, an engineer
uses statistics to describe the data set consisting of th e daily emissions of sulfur oxides
of an industrial plant recorded for 365 days last year. T he bran ch of statistics devoted
to these applications is called descriptive statistics.

Definition 1.2

The branch ofstatistics devoted to the organization, summarization, and descrip­
tion of data sets is called descriptive statistics.

Sometimes the phenomenon of interest is cha racte rized by a data set that is either
physicall y unobtainable, or too costly or tim e-consuming to obta in . In such situations,
we sample the data se t and usc the sampl e information to infer its nature. To illustrate,
suppose the phenomenon of interest is the waiting time for a data-processing job to
be completed . You might expect the waiting time to depend on such factors as the
size of the job, the computer utili zation factor, ctc. In fact, if you were to run the
same job over and over again on the compu ter, the waiting times would vary, even
for the same computer utili zation factor. Thus, the phenomenon "waiting time before
job processing" is characterized by a large data sct that exists only conceptually (in
our minds). To determine the nature of thi s data set, we sample it-i.e., we process
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the job a number n of times, record the waiting time for each run, and then usc this
sample of n waiting times to infer the nature of the large conceptual data set of interest.
The branch of statistics used to solve this problem is called inferential statistics.

In statistical termino logy, the data set that we want to describe, the one that
characterizes a phenomenon of interest to us, is called a population. A sample is a
subset of data selected from a population. Sometimes the words population and sample
are used to represent the objects upon which the measurements are taken. In a
particular situation, the meaning attached to these terms will be clear by the context
in which they are used.

Definition 1.3

A population is a data set that is the target of our interest.

Definition 1.4

A sample is a subset of data selected from a population.

Definition 1.5

The branch of statistics concerned with using sample data to make an inference
about a population is called inferent ial statistics.

CASE STU DY 1.1 / Contam ination of Fish in the Ten nessee River................................................................................... .....
Chemical and man ufacturing plants often discharge
toxic waste materials into nearby rivers and streams.
These toxicants have a detrimental effect on the plant
and animal life inhabiting the river and the river's bank.
One type of pollutant, commonly known as DDT, is
especially harmful to fish and, indirectly, to people.
The Food and Drug Administration sets the limit for
DDT content in individual fish at 5 parts per million
(ppm). Fish with DDT content exceeding this limit are
considered potentially hazardous to people if con­
sumed. A study was undertaken to examine the DDT

content of fis h inhabiting the Tennessee River (in Ala­
bama) and its tributaries.

The Tennessee River Rows in a west-e ast direction
across the northern part of the state of Alabama,
through Wheeler Reservoir, a national wildlife refuge.
Ecologists fear that contaminated fish migrating from
the mouth of the river to the reservoir could endanger
other wildlife that prey on the fish. This concern is
more than academic. A manufacturing plant was once
located along Indian Creek, which enters the Tennessee
River 321 miles upstream from the mouth. Although
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the plant has been inactive for over 10 years, there is
evidence that the plant discharged toxic materials into
thc creek, contaminating all the fish in the immediate
area. Have the fish in the Tennessee River and its trib­
utary creeks also been contaminated ? And if so, how
far upstream have the contaminated fish migrated? To
answer these and other questions, members of the U.S.
Army Corps of Engineers in the summer of 1980 col­
lectcd fish specimens at differcnt locations along the
Tennessee River and three tributary creeks: Flint Creek
(which enters the river 309 miles upstream from the
river's mouth) , Limestone Creek (310 miles upstream),
and Spring Creek (282 miles upstream). Each fish was
first weighed (in grams) and measured (length in ccn­
timetcrs), then the fillet of the fish was extracted and
the DDT concentration (in parts per million) in the
fillet was measured.

Appendix III contains the length, weight, and
DDT measurements for a total of 144 fish specimens. *
Obviously, not all the fish in the Tennessee River and
its tributaries were captured. Consequentl y, the data are
based on a sample collected from the population of all
fish inhabiting the Tenn essee River. Here, the words
population and sample arc used to describe the objects

EXERCISES

upon which the measurements are taken, i.e., the fish .
We could also use the terms to represent data sets. For
example, the 144 DDT measurements representa sam­
ple collected from the population consisting of DDT
measurement s for all fi sh inhabiting the river.

Notice that the data set also contains information
on the location (i.e., where the fish were captured) and
species of thc fish. Three species of fish were examined:
channel catfish, largemouth bass, and smallmouth buf­
falo. The different symbols for location are interpreted
as follows. The first two characters represent the river
or creek, and the remaining characters represent the
distance (in miles) from the mouth of the river or creek.
For example, FCM 5 indicates that the fish wascaptured
in Flint Creek (Fe), 5 miles upstream from the mouth
of the creek (M5). Similarly, TRM380 denotes a fish
sample collected from the Tennessee River (TR), 380
miles upstream from the river's mouth (M380). In sub­
sequent chapters, we will use the data in Appendix III
to compare the DDT contents of fish at different loca­
tions and among the differentspecies, and to determine
the relationship (if any) of length and weight to DDT
content.

1.1 Pesticides applied to an extensively grown crop can result in inadvertent ambient air contamination. Envi­
ronmental Science & Technology (Oct. 1993) reported on thion residues of the insecticide chlorpyrifos used
on dormant orchards in thc San Joaquin Valley, California. Ambient air specimens were collected daily at
an orchard site during an intensive period of spraying-a total of 13 days-and the thion level (ng/m3) was
measured each day.
a. Identify the population of interest to the researchers.
b. Identify the sample.

I.l Research engineers with the University of Kentucky Transportation Research Program have collected data
on accidents occurring at intersections in Lexington, Kentucky, over a period of 5 years. One of the goals
of thc study was to compare the average number of left-turn accidents at locations with and without left­
turn-only lanes to develop numerical warrants (or guidelines) for the installation of left-turn lanes.
a. What is the population of interest?
b. What is the sample?
c. How can the sample information be used to attain the researchers' goal?

"Source: U.S. Army Corps of Engineers, Mobile District, Alabama.
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1.3 Electrica l engi nee rs recogn ize that high neutral cur rent in computer power systems is a po ten tial prob lem .
To determine the extent of the problem , a survey of the computer power system load cu rrents at 146 U.S .
sites was taken (IEEE Transactions on Industry Applications, July/Aug. 1990). The survey revealed tha t less
than 10% of the sites had high neutral to full- load cur rent ratios.
a. Ident ify the pop ulation of interest.
b. Identify the sample.
c. Use the sample infor ma tion to make an inferen ce abou t the population .

1.4 Researchers have developed a new precooling meth od for preparin g Florida vegetables for market. The
system employs an air an d water mixture designed to yield effect ive cooling with a m uch lower water flow
than conventional hydrocooling. To compare the effectiveness of the two system s, 20 batc hes of green
tomatoes were divided int o two groups; one group was precooled with th e new meth od, and the other with
th e conven tion al me tho d . The water flow (in gallons) required to effective ly coo l eac h batc h was reco rded.
a. Identi fy the population , the sam ples, an d the type of statistical inferen ce to be made for this prob lem .
b. How could the sample data be used to co mpare the coo ling effectiveness of the two systems ?

1.5 Co mpu ter tomography (CT) scan ne rs are highly sensitive, visua l com puter systems designed to aid a phy­
sician 's diagnosis by gene rating radiographl ike images of inner organs and physiologica l funct ions. Su ppose
you wan t to estima te the average scan time-that is, the average time required for a CT scanner to project
an image. Describe how you could collect the sample data necessary to make the desired inference. W ha t
is the pop ul ation of in terest?

1.6 Checking all manufactured items coming off an assem bly line for defectives would be a costly an d time­
consuming proced ure. O ne effective and economical method of checking for defectives involves the selection
and examination of a por tion of the items by a qu ali ty control engineer. T he percentage of examined items
that are defective is computed an d then used to estima te the percen tage of all item s manufactured Oil the
line that are defective. Identi fy th e populatio n, the sample, and a type of statistica l inferen ce to be mad e
for thi s probl em .

1.2 Types of Data

Data can be one of two types, quanti tative or qua litative. Quantitative data are those
that represent the quantity or amo un t of someth ing, measured on a nu merical scale .
For example, the power frequ en cy (measu red in megahertz) of a semi conductor is a
quantitative variable, as is the waiting tim e (meas ured in seconds) before a co mputer
job begins processing. In contrast, qualitative (or categorical) data possess no quan­
titative interpretation. They can on ly be classified . The sct of n occ upations corre­
sponding to a group of n en gineering gradua tes is a qualitative data set. A list of the
ma nufacture rs of n mi nicomputers owned by n sma ll businesses is a set of qua litative
data. ~

•A finer breakdown of data types into nominal, ordinal, interval, and ratio data is possible. Nominal data
arc qualitative data with categories that cannot be meaningfully ordered. Ordin al data are also qualitative
data, but a distinct ranking of the groups from high to low exists. Interval and ratio data arc two different
types of quantitativedata. For most statistical applications (and all the methods presented in this introductory
text), it is sufficient to classify data as either quantitative or qualitative.



6 Chapter I / Introduction

Definition 1.6

Quanti"'ti" da'" ." thaw that ,,",c'Ont thc quanmy m amount of ",meth;ng. ]

Definition 1.7

Qualitative data are those that have no -quantitative interpretat ion , I. e. , they
can only be classified into categories.

EXAMPLE 1.1 Refer to the data set in Appen dix III (see Case Study 1.1). C lassify eac h of the five
variables in the data set (location, spec ies, length, weigh t, and DDT con centration)
as qu antitative or qualitative.

Solution Length (in centimeters), weight (in grams), and DDT concentration (in parts per
million ) are all meas ured on a numerical scale; thu s, they represent qua ntitative data.
In contrast, location and species cannot be measured on a qu antitative scale; they can
only be classified (e.g., chan nel catfish, largemouth bass, and smallmouth buffalo for
species). Co nsequen tly, data on locat ion and species are qu alitative.

The proper statistical tool used to describe and analyze data will depend on the
type of data. Co nsequ ently, it is important to differentiate between qu antitative and
qualitative data.

EXERCISES..................................................................
1.7 Refer to the IEEE Transactions on Industry Applications (Ju ly/Aug. 1990) survey of computer power system

load cur rents in Exercise I. 3. In addition to the ratio of neu tral current to full-load current, the researche rs
also recorded th e type of load (line-to-line or line-to-n eutral) and the computer system vendor . Identify the
type of data for each variable recorded.

1.8 T he Journal of Performance of Constructed Facilities (Feb . 1990) repo rted on the performan ce d imen sions
of water distribution ne tworks in the Philadelphia area . For one part of the study, the following data were
collecte d for a samp le of water pipe sections. Identify the data as qua ntita tive or qua litative.
a. Pipe diameter (inches)
b. Pipe mat erial
e. Age (year of installation)
d. Location
e. Pipe length (feet)
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The theory of statistics uses probability to measure the uncertainty associated with
an inference. It enables us to calculate the probabilities of observing specific samples,
under specific assumptions about the population. The statistician then uses th ese
probabilities to evaluate the uncertainties associated with sample inferences.

Thus, the major contribution of statistics is that it enables us to make infcrences­
estimates of and decisi ons about population parameters-with a known measure of
un certainty. It enables us to evaluate the reliabilityof inferences based on sample data.

Although we will present some useful methods for exploring and describing data
sets (Chapter 2), the major emphasis in this text and in mod ern statistics is in the area
of inferential statistics. The Aowchart in Figure 1.1 is provided as an outline of the
chapters in this text and as a guide when selecting the statistical method appropriate
for your particular anal ysis.

1.4 Summary

Statistics-the science of data-is concerned with two types of problems: (l ) sum­
marizing and describing data (descriptive statistics), and (2) using sample data to make
inferences about a large set of data-a population-from which the sample has been
selected (inferen tial statistics).

The appropriate statistical method for describing and analyzing the data will
depend on whether the data are quantitative or qualitative. These methods allow us
to make inferences about a population and also provide a measure of reliability for
the inference.

Descriptive statistic s is the topic of Chapter 2. The remaining chapters are devoted
to inferential statistics.

SUPPLEMENTARY EXERCISES

1.11 The reliability of a computer system is measured in terms of the lifelength of a specified hardware component
(for example, th e disk drive). To estimate thc reliability of a particular system, 100 computer components
arc tested until the y fail, and their lifclengths arc recorded .
a. What is the population of interest?
b. What is the sample?
c. Arc the dat a quantitative or qualitative?
d. How could the sample information be used to estimate the reliability of the computer system?

1.12 Hundreds of sea turtle hatchlings, instinctivel y following the bright lights of condominiums, wandered to
their deaths across a coastal highway in Florida (Tampa Tribune, Sept. 16, 1990). This incident led researchers
to bcgin experimenting with special low-pres sure sodium lights. One night , 60 turtle hatchlings were relea sed
on a dark beach and their direction of travel noted . The next night, the special lights were installed and
the same 60 hatchlings were released. Finall y, on the third night, tar pap er was placed over th e sodium
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lights. Con sequentl y, the direction of travel was recorded for each hatchling under three experimental
conditions- darkness, sodium lights, and socl ium lights covered with tar paper.
a. Identify the population of interest to the researchers.
b. Identify the sample.
c. What type of data were collected, quantitative or qualitative?

1.13 Every 5 years the Mechanics Division of the American Society of Engineering Education (ASEE) conducts
a nationwide survey on undergraduate mechanics education at colleges and universities. In the latest survey,
66 out of the 100 colleges sampled covered fl uid statics in their undergraduate engineering program (Engi­
neering Education, April 1986).
a. What is the population of interest to the ASEE? The sample?
b. What type of data, quantitative or qualitative, are collected?
c. Use the sample information to make an inference about the population.

1.14 State whether each of the following data sets is quantitative or qual itative.
a. Arrival times of 16 reflected seismic waves
b. Types of computer software used in a database management system
c. Brands of calculator used by 100 engineering students on campus
d. Ash contents in pieces of coal from three different mines
e. Mileages attained by 12 automobil es powered by alcohol
f. Numbers of print charact ers per line of computer output for 20 line printers
g. Shift supervisors in charge of computer operations at an airline company
h. Accident rates at 46 machine shops

1.15 The data in the accompanying table were obtained from the Environmental Protection Agency (EPA) 1993
Gas Mileage Guide for new automobiles. State whether each of the variables measured is quantitative or
qualitative.

Engine Number Estimated Estimated
Model Size of Cit y Highway
Name Manufacturer Transmission (liters) Cylinders Miles/Gallon M iles/Gallon

NSX Acura Automatic 3.0 6 18 Z3
Colt Dodge Manu al 1.5 4 32 40
318i BMW Automatic 1.8 4 ZZ 30
Acrostar Ford Automatic 4.0 6 16 22
Camry Toyota Manu al 2.2 4 ZZ 30

Source: /993 Cas Mileage Guide, EPA Fue l Economy Estimates, Oct. 1992.

COMPUTER LAB: Entering and Listing Data

In the Computer Lab sections of this text, we give the commands necessary to conduct a statistical analysis of data
using one of two statistical software packages-SAS or MINITAB. Thes e two packages were selected because of
their current popularity, case of use, and availability at most university computing centers. In addition, both packages
have versions available for large mainframe computers and for personal computers (PCs).

Both software packages utilize the following three basic types of instructions:
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I. Data entry commands: Instructions on how the data will be entered

2. Input data values: Th e values of the variables in the data set

3. Statistical analysis commands: Instructions on what type of analysis is to be conducted on the data

In this section we give the data entry commands for each package. That is, we give the comma nds that will
enable you to create a data set ready for analysis. (The appropriate statistical analysis command s are provided in
the relevant sections of the text.) Th e data set of interest from Appendix III consists of location, species, length,
weight, and DDT levels of a sample of five fi sh. Th e data are listed in Table 1. 1.

Note: With few exceptions, the commands provided in the following sections are appropriate for the large
mainframe and PC versions of both softwa re packages. When a mainframe computer is being used, however,
these statements must be preceded by the job control language (JCL) commands required at your institution.

TABLE 1.1 Five Measuremen ts Selected from Append ix III

Observation Location Species Length Weight DDT Concentration

I FCM5 Catfish 42. :; 732 10.00
8 LCM3 Catfish 48.0 I, I51 7.70

31 TRM280 Buffalo 49.0 1,763 4.50
43 TRM285 Bass 28.5 778 .48
73 TRM300 Buffa lo 35.5 1,300 1.30

SAS
Command

line

Print instruction

Input data values
(l observation per line)

732 10 . 00 )
1151 7 . 70
176 3 a . 5 0

77 8 o. as
13 00 1. 30

1
2
3
4
5
6
7
8
9

10

DATA FI SH;
INPUT LOCATION $ SPECIE S $ LENGTH
LWRATIO = LENGTH/WEIGHT;
CARDS;
FCM5 CATF I SH a 2. 5
LCM3 CAT FISH as .o
TRM 2S 0 BUFFALO ag. o
TRM 285 BAS S 2S . 5
TRM300 BUFF ALO 35.5
PROC PRINT;

WE I GHT DDT; } Data entry
instructions

COMMAND I FISH is an arbitrarily chosen name used to identify the data set. (Data set names are restricted to a
maximum length of eight cha racters.)

COMMAND 2 LOCATION , SPECIES, LENGTH, WEIGHT, and DDT are arbitrarily chosen names for the varia­
bles in the data set. (Variable names are also restricted to a maximum length of eight characters.) A dollar sign
($) must follow the name of any nonnumeric variable in the data set.

COMMAND 3 LWRAT IO (Iength-to-weight ratio) is calculated by dividing LENGTH by WE IGHT. (The standard
arithmetic operations symbols, + , - , *, and /, are used for addition, subtraction, multiplication, and division,
respectively.)
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COMMAND 4 CARDS signals SAS that the input data values are to follow.

COMMANDS 5-9 Each data line gives the values of the variables in the data set for a single observation (fish) in the
order in which the variables arc listed in the INPUT command . Input data values must be separated by at least
one blank space; commas are not permitted in numeric values.

COMMAND 10 Th e PRINT procedure (PROC) will produce a listing of the entire data set (see Figure 1.2). In
addition to the INPUT variables, the data set will contain any variables created using the standard arithmetic
operations (e.g., LWRATIO) in command line 3.

GENERAL All SAS command s must end with a semicolon; the only exceptions to this rule are the input data values.

FIGURE 1.1 •
OBS LOCATION SPECIES LENGTH WEIGHT DDT LWRATIO

SAS output: Listing of the data in
Table 1.1 1 fernS catfish 42 .5 732 10 .00 0.058060

2 lcm3 catfish 48.0 1151 7.70 0.041703
3 trm280 buffalo 49.0 1763 4 .50 0.027794
4 trm285 bass 28 .5 778 0 .48 0 .036632
5 t=300 buffalo 35 .5 1300 1. 30 0.027308

MINITAB

Com mand
line

I READ Cl C2 C3 ca C5 Data entry instructions
2 1 1 a2,5 732 10.00 )
3 21 as .» 1151 7.70 Input data values
4 3 2 as. 0 1763 ll.50 ( I observation per linc)
5 a 3 2S.5 77S o.as
6 5 2 35.5 1300 1.30
7 DIVIDE C3 BY ca PUT INTO C6
8 NAME Cl = 'LOCATION' C2 = 'SPECIES' Data entry instructions
9 NAME C3= 'LENGTH' Cll= 'WEIGHT' C5='DDT' C6='LWRATIO '

10 PR I NT C1-C6 Print instruction
II STOP

COMMAND I The five variables to be read onto the MINITAB "worksheet" are identified by the "columns" into
which they are placed: CI, C2, C3, C4, and C5. (MINITAB does not, in general, recognize variable narnes.)
Thus, location will be read in column I, species in column 2, etc.

COMMANDS 2-6 Each data line gives the values of the variables read in the worksheet columns for a single obser­
vation (fish). Input data values must be separated by at least one blank space; commas are not permitted. MINI­
TAB also requires all data used in statistical analysis to be numerical. For example, the values of the
nonnumeric variable location are converted to numbers in C1. (Arbitrarily let I represent FCM5 , 2 represent
LCM3, etc.)

COMMAND 7 MINITAB uses the word commands ADD, SUBTRACT, MULTIPLY, and DIVIDE to perform the
usual arithmetic operations on variables. The ratio of length (C3) to weight (C4) is stored in C6.

COMMANDS 8-9 For labeling printed output , the NAME command can be used to give names to the variables
stored in the worksheet columns . If the NAME command is omitted, the columns will be labeled C I, C2, etc.,
on the MINITAB printouts.
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COMMAND 10 The PRINT command will produce a listing of the data in the MINITAB worksheet for the speci­
fied variables (columns). (See Figure 1. 3.)

COMMAND II All MINITAB programs terminate with the STOP command.

GENERAL MINITAB permits you to insert extraneous words within each command to help you follow the logic of
the program. For example, command line I could be entered as follows:

READ LDCATION IN c i . SPECIES IN C2. LENGTH IN C3. WEIGHT IN ca . DDT IN C5

fiGURE 1.3 ~ ROW Location Species Length Weight DDT LWRatio
MINITAB output listing of data in

1 1 1 42.5 732 10.00 0.0580601
Table 1.1 2 2 1 48 .0 1151 7.70 0.0417029

3 3 2 49.0 1763 4.50 0.0277935
4 4 3 28.5 778 0.48 0.0366324
5 5 2 35.5 1300 1. 30 0.0273077

COMPUTER LAB: Accessing an External Data File (Optional)

Data created by other software and saved in an external file as an ASCII data set can also be accessed and
analyzed by SAS and MINITAB. For example, the full data set of Appendix III (DDT measurements and other
data for 144 fish specimens) is saved in an ASCII file called FISH.DAT on a 3.5" micro disk or 5.25" floppy disk
available from the publisher (see the Preface). The program lines shown here give the commands for reading
and listing the data on this external file.

SAS
Command

line

I DATA FISH;
2 INFILE 'FISH.DAT ';
3 INPUT LDCATION $ SPECIES $ LENGTH WEIGHT DDT;
4 LWRATID=LENGTH/WEIGHT;
5 PROC PRINT;

MINITAB
Command

line

I READ 'FISH.DAT' CI-C5
2 DIVIDE C3 Cli CG
3 NAME Cl='LOCATIDN' C2='SPECIES' C3='LENGTH'
4 ClI='WEIGHT' C5='DDT' CG='LWRATIO'
5 PRINT CI-CG
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Accelerated life test, 1043
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moment generating function, 251
variance, 237
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Coeffic ient of determination (see
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Comparisonwise error rate, 891
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Complementary events, 94
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Complete model, 728
Completely randomized design, 794-795 ,
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assumptions, 816
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theoretical interpretation, 361
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difference in means, small sample, 374,

377
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least squares estimates (multiple

regression), 615
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mean of y (multiple regression), 642
multinomial experiment, 497-498
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regression), 574
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slope, 556
variance, 396
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Consume r's risk, 1020
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Continuity correction factor, 320
Continuous random variables, 204-206
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c-chart, 1009
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R-charl, 999
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Control limits: 984
c-chart, 1009
means, 991
p-chart, 1005
R-chart, 999
x-chart, 991

Correlation coeffic ient
definition, 279
Pearson product moment, 561
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Covariance, 278
Cumulative distribution function, 204

method for finding density functions,
295

Data
categorical, 5
observational, 676
qualitative, 5
quantitative, 5

Decision tree, 119
Degrees of freedom, 237
Density function, 206

bivariate joint, 265
conditional, 266
marginal, 266
properties, 207

Dependent events, 109
Dependent variable, 532, 535
Design of an experiment, 790

completely randomized, 794-795,
813- 814

factorial, 810, 803-804
randomized block, 794, 796, 828-8 29
three-stage nested sampling, 881
two-stage nested sampling, 875

Determination , coefficient of, 567
adjusted multiple, 63I
interpretation of, 569
multiple, 626

Deterministic model, 533
Discrete random variable, 144-145
Distribution-free tests, 921
Dot plot, 25
Double sampling plan, 1024
Dummy variables, 601, 735

Empirical Rule, 45
Error

probability of Type I, 424
probability of Type II, 425

Estimator
Bayes, 351
biased, 339-340
interval, 338
jackknife, 351
M-estimator, 351
maximum likelihood, 348
mean of exponential distribution, 1044
minimum variance unbiased, 340
moment, 345
point, 338
robust, 351
unbiased, 339-340

Events, 84
complementary, 94
compound, 91
dependent, 109
independent, 109
intersection, 92

Events (continued)
mutually exclusive, 106
probability of, 84, 86
simple, 79
union, 92

Evolutionary operation, 1025
Expectation theorems, 155
Expected value, 151,211 ,271
Experiment, 79
Experimental design, 790, 793

completely randomized, 794-79 5,
813- 814

factorial, 80I, 803-804
noise-reducing, 794
randomized block, 794, 796, 828- 829
sample size, 807
three-stage nested sampling, 88I
two-stage nested sampling, 875
volume-increasing, 801

Experimental unit, 791
Experimentwise error rate, 891
Exponential probability distribution, 213,

237-2 38
confidence interval for mean, censored

sampling, 1045
density function, 238
estimator of mean, 1044
mean, 238
moment generating function, 250
variance, 238

F distribution, 323, 400
Factor-level combination, 801
Factorial, 122
Factorial design, 80 I, 803-804

volume-increasing, 803
Factorial experiment. 803

assumptions, 845
F test, 844- 845
formulas, 853-8 54
fractional, 806
interaction, 844, 850
models, 844-845
notation, 854

Factors, 79I
Failure time, 1036

distribution, 1037
First-order model, 600, 704, 7J2
Fractional factorial experiment, 806
Frequency, relative, 16
Friedman F, test, 952- 953

Gamma-type random variable, 236
density function, 235
mean, 236
moment generating function, 250
variance, 236

Geometric probability distribution, 174
mean, 175
variance, 175

Hazard rate, 1039
Histogram, 25-26
Hypergeometric random variable

characteristics, 179
mean, 179
probability distribution, 179
variance, 179

In control, 983-9 84
Incomplete beta function, 247
Incomplete block design, 800
Incomplete gamma function, 236
Independent events, 108-1 09

multiplicative rule for, 111
Independent random variable, 273-27 4
Independent variable (regression), 532-5 33,

535
levels, 701

Index variable, 60 I
Individuals control chart, 987
Inferential statistics, 3
Interaction, 713- 715, 847

model, 714
Interaction sum of squares, 850
Interquartile range, 59
Intersection of events, 92
Interval estimator, 338

pivotal method, 352

Jackknife, 351, 659
estimator, 351

Joint probability distribution, 258-259

k-way classification of data, 864
Kruskal-Wallis H test, 945- 946

Latin cube design, 800
Latin square design, 800
Least squares

equations, 538
estimates, 538-539, 551
line, 537-538
matrix equation, 606
method of, 350, 532, 536
multiple regression, 603
prediction equation, 537
properties of estimators, 547, 612
solution (matrix algebra), 606
sum of squares for error.(SSE), 537

Levels, of independent variable, 701, 791
Life test, 1042

accelerated, 1043
censored, 1043
with replacement, 1043

Likelihood, 347
Likelihood ratio test statistic, 430
Line of means, 534
Linear function, 281

confidence interval (multiple regression),
641



Linear function (continued)
expected value, 282
variance, 282

Linear model, 532, 600
Linear relationships, 276
Linear statistical model, 532
Lower confidence limit, 354
Lower control limit (LCL), 985- 986
Lower quartile, 53

M-estimator;"351
Main effect sum of squares, 850
Main effect terms, 743, 805
Marginal density function, 266
Marginal probability, 506

distribution, 258, 261
Matched pairs, 382
Matched-pairs design, 382, 937
Matched-pairs experiment, 381

nonparametric, 939
Matrix, 604
Matrix algebra, 1065-1083
Maximum likelihood

estimators, 348
method, 344, 347

Mean (arithmetic), 39
Mean (random variable), 151
Mean square for error, 819
Mean square for treatments, 819
Mean squared error, 341
Means, control charts for, 989, 991

center line, 990-991
control limits, 990- 991
interpreting, 995

Measurement, 79
Median, 39

test for, 924-925, 941-942
Memoryless distribution, 1040
Method of least squares, 350, 532, 536,

600
Method of maximum likelihood, 344,

347
Method of moments, 344
Midquartile, 53
Military standard sampling plans, 1023,

1025
Minimum variance unbiased estimator,

340
MINITAB computer programs

accessing an external data file, 13
analysis of variance, 917
bar chart, 74
box plot, 74
completely randomized design, 917
confidence intervals for means, 417
contingency table, 528
entering data, 12
histogram, 74
multiple regression, 697
nonparametric tests, 976
random numbers, 333

MINITAB computer programs (continued)
randomized block design, 917
residual analysis, 697
simple linear regression, 596
stern-and-leaf display, 74
stepwise regression, 786
t test, 491
three-way factorial experiment, 917
two-sample t test, independent samples,

492
two-sample t test, paired samples, 492
two-way factorial experiment, 917

Mode, 39
Model

complete, 728
deterministic, 533
first-order, 600, 704, 712
linear, 532, 600
linear statistical, 532
nested, 728
parsimonious, 732
probabilistic, 534
pth-order polynomial, 675, 703
quadratic, 600
qualitative variables, 70I
quantitative variables, 70I
reduced, 728
regression, 532
second-order, 600, 704, 71 6
simple linear regression, 534- 53 5
straight-line, 600
third-order, 705
three-stage nested sampling design, 881
two-factor factorial experiment, 844-845
two-stage nested sampling design, 876

Model building, 700
one qualitative independent variable,

737
Moment, kth, 192
Moment estimators, 345

moment generating function, 193,
249-251

Monotonically increasing, 205
Mound-shaped distribution, 45
Multicollinearity, 675, 677, 680
Multinomial experiment, 168, 496

confidence intervals, 497-4 98
probability distribution, 168-169
properties, 168
test of hypothesis, 503

Multiple coefficient of determination, 626
adjusted, 631

Multiple comparisons procedure, 891
Multiple regression analysis, 533, 600

assumptions, 603
confidence interval, least squares

estimates, 615
confidence interval, linear function,

641
confidence interval, mean of y, 642
estimates, 606, 613
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Multiple regression analysis (continued)
extrapolation, 681
fitting the model, 603
linear models, 600
multicollinearity, 675, 677, 680
parameter estimability, 674
parameter interpretation, 675
prediction interval, 646
test of hypothesis, least squares

estimates, 616
test of model adequacy, 630

Multiplicative model, 651
Multiplicative rule, 120
Multiplicative rule of probability, 107-108

independent events, III
Multivariate probability distribution, 263
Mutually exelusive events, 106, 110

Negative binomial distribution, 174
mean, 174
moment generating function, 196
variance, 174

Nested model, 728
Nested sampling design, 875

three-stage, 881
two-stage, 875

Noise-reducing design, 794
completely randomized, 795
Latin cube, 800
Latin square, 800
randomized block, 796

Nonpararnetric methods, 920
completely randomized design, 945
independent samples, 929, 934
matched pairs, 939
med~n , 924-925, 941- 942
randomized block design, 952
rank correlation, 960
sign test, 924- 925
zero slope, 962

Nonparametric techniques, 921
Normal probability plot, 228, 230-231
Normal (Gaussian) random variable, 221

density function, ZZ I
mean, 221
moment generating function, 250
standard normal, 222
variance, 221

Normality, methods for assessing, 228
Null hypothesis, 423, 436
Numerical descriptive measures, 39

Observation, 79
Observational data, 676

coding procedure, 724
Observed significance level, 445
One-tailed statistical test, 431
One-way table, 496
Operating characteristic curve, 1020
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Outlier, 57, 658
detecting, 61, 658

p-chart, 1004
center line, 1005
control limits, 1005
interpreting, 1007

p-value, 445
calculating, 448
interpreting, 448

Paired observations, 381
Paired-difference experiment, 381
Parallel system, 1054

reliability, 1055
Parameter, 39
Pareto diagram, 18
Parsimonious model, 732
Parsimony, 732
Partitions rule, 124
Pearson product moment correlation

coeffic ient, 561
Percentile, 53
Permutation, 122
Permutations rule, 122
Pie chart, 16
Pivotal statistic, 353
Point estimate, 338
Point estimator, 338

methods of estimation, 344
properties, 339

Poisson random variable
characteristics, 185
mean, 185
probability distribution, 184-1 85
variance, 185

Polynomial regression model, 675,
703

Pooled estimate, 374
Pooled estimator of variance, 327
Population, 3

correlation coefficient, 564
moment, 344

Power of statistical test, 427
Prediction equation, 532
Prediction interval (regression)

multiple. 646
simple linear, 574

Primary unit, 875
Probabilistic model, 534
Probability, 78, 82

additive rule, 105
conditional, 98
multiplicative rule, 107-1 08
simple events, 82
unconditional, 98

Probability density function, 162
Probability distribution, 145, 147

beta, 245-246
binomial, 160
bivariate, 258-259
chi-square, 237

Probability distribution (continued)
conditional, 261-262
discrete, 147
exponential, 213, 237-238
failure time, 1037
gamma-type, 236
geometric, 174
hypergeometric, 179
joint, 258-259
marginal, 258, 261, 506
mean, 151
multinomial, 168-1 69
multivariate, 263
negative binomial, 174
normal, 221
normal approximation to binomial,

318-320
Poisson, 184-1 85
standard deviation, 152
uniform, 218
variance, 152
Weibull, 241

Producer's risk, 1019

Quadratic model, 600
Qualitative data, 5
Qualitative variable, 701
Quality control, 982

c-chart, 1009
means, 989
p-chart, 1004
R-chart, 999
runs analysis, 1002
x-chart, 989

Quantitative data, 5
Quantitative variable, 701
Quartile, 53

R-chart (see Range chart)
Random numbers, 291, 813
Random sample. 290

generating by computer, 332
Random sampling, 291
Random variable, 144

Bernoulli, 157
beta, 245
binomial, 159
chi-square, 237
continuous, 204- 206
discrete, 144-145
expected value, 151, 271
exponential, 238
gamma-type, 236
geometric, 174
hypergeometric, 179
independent, 273-274
negative binomial, 174
normal, 221
Poisson, 185
uniform, 217-21 8
Weibull,24 1

Random variation, 983-984
Randomized block design, 794, 796,

828-829
assumptions, 831
F test, 830-831
formulas, 836- 837
models, 830- 831
nonparametric, 952

Range, 26, 44
Range chart, 999

center line, 999
control limits, 999
interpreting, 100I

Rank correlation coefficicnt, Spearman's,
957

Rank statistics, 922
Rank sum, 929
Rank tests, 922
Rational subgroups, 995
Reduced model, 728
Regression analysis

model, 532
multiple, 600
simple linear, 532
stepwise, 760

Regression line, 537
Rejection region, 423
Relative frequency, 16

distribution, 28
histogram, 25-26
mound-shaped distribution, 45

Relative ranks, 921
Relative standing, measures of, 39
Reliability, 1036
Residual, 648
Residual analysis, 648, 660
Residual frequency plot, 899
Response curve, 712, 755
Response surface, 600, 712
Risk

consumer's, 1020
producer's, 1019

Robust estimator, 351
Run, 1002
Runs analysis, 1003

Sample, 3
random, 290

Sample moment, 344
Sample multiple coeffic ient of

determination, 626
Sample points, 81
Sample size determination, 405

difference between means, 408
difference between proportions, 409
mean, 408
proportion, 408

Sample space, 80
Sampling

with replacement, 178
without replacement, 178



Sampling distribution, 294
estimate of slope, 554
least squares estimators, 612
linear function (regression), 640
mean, 31I
simulation, 302
standard deviation, 311
sum of random variables, 315

Sampling errors (linear regression)
estimate of mean, 574
prediction, 574

Sampling plan
acceptance, 1018, 1025
double, 1024
military standard, 1023, 1025
sequential, 1024

SAS computer programs
accessing an external data file, 13
analysis of variance, 915
bar chart, 71
box plot, 71
completely randomized design, 915
contingency table, 527
entering data, II
histogram, 71
multiple regression, 696
nonparametric tests, 974
random numbers, 333
randomized block design, 915
residual analysis, 696
simple linear regression, 594
stern-and-leaf display, 71
stepwise regression, 786
I test, 489
three-way factorial experiment, 916
two-sample I test, independent samples,

490
two-sample t test, paired samples, 490
two-way factorial experiment, 916

Scale parameter, 235, 241
Scatterg rarn, 533
Second-order model, 600, 704, 716
Sequential sampling plan, 1024
Series system, 1054

reliability, 1055
Shape parameter, 235
Shewhart control limits, 982
Sign test, 922

large sample, 925
population median, 924-925

Signed ranks, 937, 939, 941-942
Significance level, 445
Simple event, 79

probabilityof, 82-83
Simple linear regression, 532, 586

assumptions, 533
confidence interval, mean of y, 574
confidence interval, slope, 556
model, 534-5 35
prediction interval, 574
test of model utility, 555

Skewness, 42
Spearman's rank correlation coeffic ient,

957
Specification limits, 1017
Standard deviation, 44

of probability distribution, 152
Standard error, 294
Standard normal random variable, 222
Statistic, 39
Statistical process control (SPC), 982
Statistical softwa re package, 10
Statistical test of hypothesis (see Test of

hypotheses)
Statistics

descriptive, 2
inferential, 3

Stem-and-leaf display, 28- 29
Stepwise regression analysis, 760
Straight-line model, 600
Student's t distribution, 322
Subsampling, 875
Sum of squares for error (SSE), 537, 811
Sum of squares for treatment (SST), 811

t distribution, 322
Tchebysheff's theorem, 46
Test of hypotheses, 422

alternative hypothesis, 423, 436
{3 parameters equal 0, 729
Bartlett's test of homogeneity of

variance, 900-902
completely randomized design, 816
difference between two means, large

sample, 450
difference between two means, matched

pairs, 459-460
difference between two means, small

sample, 452, 455
difference between two proportions, large

sample, 469
elements, 423
factorial, 844-845
Friedman F" 952-953
Kruskal-Wallis H, 946
linear correlation, 564
location, 922
mean, large sample, 438
mean, small sample, 441
median, 924-925, 941-942
model adequacy (multiple regression),

630
model building, 729
model utility (linear regression), 555
multinomial experiment, 503
multiple regression, 616
nested model, 729
null hypothesis, 423, 436
one-tailed, 431
proportion, 465
randomized block design, 830-83 1
rank correlation, 960
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Test of hypotheses (continued)
ratio of two variances, 477
rejection region, 423
simple linear regression, 555
test statistic, 423
three-stage nested design, 883
two-factor factorial design, 844- 845
two-stage nested design, 878
two-tailed, 431
variance, 473
Wilcoxon rank sum, 929, 934
Wilcoxon signed ranks, 939, 941-942
zero slope, 962

Test for location, 922
Test statistic, 423
Theil C test, 960
Theory of runs, 1002
Th ird-order model, 705
Three-stage nested sampling design, 881

F test, 883
formulas, 883-884
notation, 882- 883
probabilistic model, 881

Time series data, 659
Tolerance interval, 1014

nonparametric, 1016
normal population, 101 5

Tolerance limits, 1014
Total quality management (TQM), 982
Treatment, 791-792
Tukey's method, 891
Tukey's multiple comparisons procedure

equal sample sizes, 892
unequal sample sizes, 894

Two-factor factorial experiment, 843
assumptions, 845
F test, 844-845
formulas, 853-854
interaction, 844, 850
models, 844-845
notation, 854

Two-stage nested sampling design, 875
F test, 878
formulas, 879
notation, 878
probabilistic model, 876

Two-tailed statistical test, 431
Two-way table, 506
Type [ error, 424
Type II error, 425

calculating probability of 435

Unbiased estimator, 339- 340
Unconditional probability, 98

distribution, 261
Uniform random variable, 217-21 8

density function, 218
mean, 218
moment generating function, 250
variance, 218

Union of events, 92
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Upper confidence limit, 354
Upper control limit (Ue L), 985- 986
Upper quartile, 53

Variable
coded, 721-723
dependent, 532, 535
dumm y, 601, 735
independen t, 532-533 , 535
index, 601
levels, 701
qualitative, 70I
quantitative, 701

Variance, 44
of probability distribution, 152

Variance-stabilizing transformations, 652,
902

Variation
assignable cause, 983- 984
measures of, 39
random variation, 983-984

Venn diagram, 81
Volume-increasing design, 801

factorial design, 803

Weibull random variable, 241
density function, 241
mean , 241
moment generating function, 250
parameter estimation, 1048
variance, 241

Wilcoxon rank sum test, 928-929
large samples, 934

Wilcoxon signed ranks test, 937, 939,
941-942

x-chart (see Means, control charts for)

z-score, 53, 55
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7
9
7

1
4
o
1

3
3
7
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o
3
3
4

2
9
3
3

4
o
2
7

1
12
3
2

3
7
5
5

o
2
4
3

1
4
2
4

The accompanying table gives the number of scrams at each of 56 U.S. nuclear reactor units in a recent
year. A MINITAB printout showing both a graphical and numerical description of the data is provided.

Number of Scrams

2 10 6 5
3 820
7 13 4 2
8 524

~

l1initab printout for Exercise 2.47 Stem-and-leaf of SCRAMS
Leaf Unit = 0.10

N = 56

6 0 000000
10 1 0000
19 2 000000000

(10) 3 0000000000
27 4 00000000
19 5 00000
14 6 0
13 7 000000

7 8 00
5 9 00
3 10 0
2 11
2 12 0
1 13 0

--------1 + 1------------------ * *
+---------+---------+---------+---------+---------+------SCRAMS

0.0 2.5 5.0 7.5 10.0 12.5

SCRAMS
N

56
MEAN MEDIAN TRMEAN

4.036 3.000 3.820
STDEV SEMEAN
3.027 0.404

SCRAMS
MIN MAX

0.000 13.000
Ql

2.000
Q3

5.750

a. Fully interpret the results .
b. Would you expect to observe a nuclear reactor in the future with 11 unplanned scrams? Explain.

2.48 Industrial engineers periodically conduct "work measurement" analyses to determine the time required to
produce a single unit of output. At a large processing plant, the number of total worker-hours required per
day to perform a certain task was recorded for 50 days. The data are shown here.

128 119
113 109
146 128
124 131
100 112

95 97
124 132
103 135
133 131
III 150

124 128 142
97 138 133

114 109 100
88 118 116

117 122 97

98 108 120
136 120 1I2
III 131 113
98 112 138

116 92 122



Supplementary Exercises 65

a. Compute the mean, median , and mode of the data set.
b. Find the range, variance, and stand ard deviation of the data set.
c. Construct the intervals ji ± 5, Y± 25, and y ± 35. Count the number of observations that fall with in

each interval and find the corresponding proportions. Compare the results to the Empirical Rule. Do
you detect any outliers?

d. Construct a box plot for the data . Do you detect any outliers?
e. Find the 70th percentile for the data on total daily worker-hours. Interpret its value.

2.49 A marketing research study of consulting engineering services to industrial firms in the Midwest was recently
conducted. The main goal of the study was to gather information that will enable consulting engineers to
effectively market their services to industrial firms. Of the 70 firms surveyed , 40 indicated that they have
no need for outside consulting engineering services. The accompanying table gives the primary reason s cited
by the "nonneeders" and corresponding breakdown in percentages for both the large and small industrial
firms in the survey.

Reason

Assistance obtained from corporate headquarters
No wastes, therefore, no need to improve
No improvements planned
Assistance obtained from staff engineers
Unfamiliar with consulting
Waiting for regulations
Other reasons

TOTALS

Large Firms

62%
o
o

19
10
9
o

100%

Small Firms

30%
32
24
6
2
o
6

100%

Source: Carey. R. J., and Brunner, J. A. "A study of marketing of consulting engineering services to industria l firms."
Journal of the Boston Society of Civil Engineers Section, American Society of Civil Engineers, Vol. 71, Nos. 1 and
2, 1985, p. 152.

a. Construct a pie chart that describes the reasons cited for not needing consulting engineering services at
large industrial firms.

b. Repeat part a for small industrial firms.
c. Compare the two pie charts in parts a and b . Do you detect major differences in the reasons cited by

large and small firms?

2.50 The nuclear mishap on Three Mile Island near Harrisburg, Pennsylvania, on March 28, 1979, forced many
local residents to evacuate their homes-some temporarily, others permanently. To assess the impact of the
accident on the area population , a questionnaire was designed and mailed to a sample of 150 households
within 2 weeks after the accident occurred . Two questions asked of the sampled residents were: (I) W hen
did you learn about the accident? and (2) How did you learn about the accident? The responses to the two
questions are illustrated in the frequency distributions shown at the top of page 66 . Based on these graph ical
descriptions, find each of the following:
a. The percentage of the 150 respondents who learned about the acc ident on Wednesday afternoon
b. The percentage of the 150 respondents who learned about the accident on Friday
c. The percentage of the 150 respondents who learned about the accident from a radio report
d. The percentage of the 150 respondents who learned about the accident from television
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the sampling distributions for some useful statistics
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290 Chapter 7 I Sampling Distributions

7.1 Random Sampling

Recall from Chapter 1 that statistical inference involves sampling from a well-defined
population. How a sample is selected from a population is of vital importance because
the probability of an observed sample will be used to infer the characteristics of the
sampled population.

To illustrate, suppose you deal yourself 4 cards from a deck of 52 cards and all
4 cards are aces. Do you conclude that your deck is an ordina ry bridge deck, containing
only 4 aces, or do you conclude that the deck is stacked with more than 4 aces? It
depends on how the cards were drawn. If the 4 aces are always placed at the top of a
standard bridge deck, drawing 4 aces is not unusual-it is certain. On the other hand,
if the cards are thoroughly mixed, drawing 4 aces in a sample of 4 cards is highly
improbable. T he point, of course, is that in order to use the observed sample of
4 cards to draw inferences about the population (the deck of 52 cards), you need to
know how the sample was selected from the deck.

One of the simplest and most frequently employed sampling procedures produces
what is known as a random sample.

Definition 7.1

If n elements arc selected from a population in such a way that every set ·of n
elements in the population has an equal probability of being selected, the 11

elements are said to be a random sample. *

EXAMPLE 7./ An experiment was conducted in which each of 10 different antiscalants was added
to an aliquot of brine. One of the 10 brine solutions is to be selected, filtered, and
the amount of silica determined. How would you select the brine solution so that the
choice is random?

Solution If the choice is to be random, each brine solution must have the same probabilityof
being drawn. That is, each solution should have a probability of fa of being selected.
A method to achieve the objective of equal selection probabilities is to thoroughly mix
the 10 brine solutions and blindly pick one of the solutions. If this procedure were

"Strictly speaking, this is a simple random sample. T here arc many different types of random samples, FOI
example, a stratified random sample is obtained by partitioning the population into groups (strata) and
selecting a random sample of elements from each group; a cluster sample involves randomly selecting
groups (or clusters) of clements from the population and sampling all clements in each cluster; and a
systematic sample is collected by systematically selecting every kth element from the population. Since it
is the most common, we focus our discussion on the random sample.



EXAMPLE 7.2

~olution

7.1 I Random Sampl ing 291

repeatedly used , each tim e replacin g the selected solution, a particular solution should
be chosen appro ximately 10 of the time in a long series of draws. This method of
sampling is known as random sampling.

How can a random sample be generated? If a population is not too large and the
elements can be numbered on slips of paper, poker chips, etc . , you can physically
mix the slips of pape r or chips and remove n elements from the total. The nu m bers
that appear on the chips selected would indicate the population elements to be included
in the sample. Such a procedure will not guarantee a random sample, because it is
often difficult to ac hieve a thorough mix, but it provides a reasonabl y good approxi­
mation to random sampling.

Another, more formal , technique is to use a table of random numbers. Random
number tables are generated by computer in suc h a way that every number of the
same length (2-digit , 3-digit, 4-digit, etc.), occurs with equal probability. Further, the
occurrence of anyone number in the table is independent of any of the oth er nu mbers
in the table. Consequently, the numbers that are selected from a random nu mber
table identify the elements to be included in the random sample.

Alth ough thi s method of random sampling is easy to impl em ent, it can becom e
time-con suming and tedious if the number of observations in the sample is large.
Therefore, large-sample scientific studies rely on computers (with bu ilt-in random
number generators) to automatically select the random sample.

Suppose you want to randomly sample 5 (we will keep the number in the sample
sma ll to simplify our example) from a shipment of 100,000 bolts for quality control
testing.

a. Use a random number table to select this random sample.

b. Use the computer to generate the random sam ple.

a. Since there are 100,000 bolts in the sh ipme nt (target population ), we first number
the bolts from I to 100,000. Then , we turn to a table of random numbers (see
Tabl e 6, Append ix II), and select a page, say, the first page. (A partial reprod uction
of the first page of Tabl e 6 is shown in Table 7.1 on page 292 .) Now, rand omly
select a starting number, say, the random number appearing in the third row,
second column. This number is 48360. Proceed down the second column to obtain
the remaining four random numbers. (Proceeding down or across is an arb itrary
choice.) The five selected random numbers are shaded in Table 7. 1. Using the
first five digits to represent the bolts from I to 99 ,999 and the number 000 00 to
represent bolt 100,000, you can see that the bolts numbered

48,360 9 3,093 39,9 75 6,907 72,905

should be included in your sampl e.
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TABLE 7.1 Partial Reproduction of Table 6 of Append ix II

2 4

I 10480 15011 01536 020 11 81647 91646
2 22368 46573 25595 85393 30995 89198
3 24130 48360 22527 97265 76393 64809
4 42167 93093 06243 61680 07856 16376
5 37570 39975 81837 16656 06121 91782
6 77921 06907 11008 4275 1 27756 53498
7 99562 72905 56420 69994 98872 31016
8 96301 91977 05463 07972 18876 20922
9 89579 14342 63661 10281 17453 18103

10 85475 368 57 53342 53988 53060 59533
II 289 18 69578 8823 1 33276 70997 79936
12 63553 40961 48235 03427 49626 69445
13 09429 93969 52636 92737 88974 33488
14 10365 61129 87529 85689 48237 52267
15 07119 97336 71048 08 178 77233 13916

b. Almost all of the commercial statistical software packages available (e.g., SAS and
M1N1TAB) have procedures for generating random samples. The output from a
SAS program designed to generate a sample of size 5 from a population of 100,000
elements is displayed in Figure 7. I. ~ From the printout, you can see that bolts
numbered

6, 181 35 ,982 76, II O 58,667 59,592

comprise the random sample of size 5.

FIGURE 7.1 ~

SAS.generated random sample for
Example 7.2

OBS

1
2
3
4
5

SELECT

6181
35982
76110
58667
59592

Although random sampling represents one of the simplest of the multitud e of
sampling techniques available for research, most of the statistical methods presented

"The commands for generating a random sample in SAS and M1NITAB are provided in the Computer
Lab at the end of this chapler.
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in this text assume that such a sample has been collected. If a researcher knows that
a sample is nonrandom, any inferences derived from the analysis may be invalid.

EXERCISES..................................................................
7.1 Refer to the DDT levels for 144 contaminated fish specimens, Appendix III. Use Table 6 of Appendix II

or a computer to generate a random sample of n = 10 DDT levels from the data set.

7.2 Refer to the CPU times for 1,000 computer jobs, Appendix IV. Use Table 6 of Appendix II or a computer
to generate a random sample of n = 25 CPU times from the data set.

7J Refer to the percentage iron contents for 390 iron-ore specimens, Appendix V. Use Table 6 of Appendix II
or a computer to generate a random sample of n = 5 percentage iron measurements from the data set.

7.4 Laboratory tests were conducted to compare the permeability of open-graded asphalt concrete with asphalt
contents of 3% and 7% (Journal of Testing and Evaluation , July 1981). Eight batches of cement were
prepared-four with a 3% asphalt mix and four with a 7% asphalt mix. Use Table 6 of Appendix II to
randomly select the four batches that reeeive the 3% asphalt mix.

7.5 One of the most infamous examples of improper sampling was conducted in 1936 by the Literary Digest
to determine the winner of the Landon-Roosevelt presidential election. The poll, which predicted Landon
to be the winner, was conducted by sending ballots to a random sample of persons selected from among
the names listed in the telephone directories of that year. In the actual election, Landon won in Maine
and Vermont but lost in the remaining 46 states. The Literary Digest's erroneous forecast is believed to be
the major reason for its eventual failure.

What was the cause of the Digest's erroneous forecast? That is, why might the sampling procedure
described above yield a sample of people whose opinions might be biased in favor of Landon?

7.6 Every 10 years the United States population census provides essential information about our nation and its
people. The basic constitutional purpose of the census is to apportion the membership of the House of
Representatives among the states. However, the census has many other important uses. For example, private
business uses the census for plant location and marketing.

The 1990 census included questions on age, sex, race, marital status, family relationship, and income;
this census was mailed to every household in the United States. In some cities, however, a series of questions
was added for a 5% sample of the city's households. That is, each of a random sample of the city's households
was mailed a census form that included additional questions. Suppose that a particular city contained
100,000 households and, of these, 5,000 were selected and mailed the longer census form.
a. If you worked for the Bureau of the Census and were assigned the task of selecting a random sample of

5,000 of the city's households, describe how you would proceed.
b. Suppose that one of the additional questions on the long form of the census concerned energy con­

sumption. The city used this sample information to project the average energy consumption for the city's
100,000 households. Explain why it is important that the sample of 5,000 households be random .

c. Using the procedure you described in part a, randomly select a sample of 10 households from the 100,000
households in the city.
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7.2 Sampling Distributions..................................................................
Recall (C hapter 6) that the n measurements in a sample can be viewed as observations
on n random variables, Yl, Y2, . . . , y". Consequently, the sample mean y, the sample
variance 5 2, and other statistics are functions of random variables-functions that we
will use in the following chapters to make inferences about population parameters.
Thus, a primary reason for presenting the theory of probability and probability distri­
butions in the preceding chapters was to enable us to find and evaluate the properties
of the probability distribution of a statistic. T his probabil ity distribution is often called
the sampling distribution of the statistic. As is the case for a single random variable,
its mean is the expected value of the statistic. Its standard deviation is called the
standard error of the statistic.

Definition 7.2

The sampling distribution of a statistic is its probability distribution.

Definition 7.3

The standard error of a statistic IS the standard deviation of its sampling
distribution .

Th e mathematical techniques for finding the sampling distribution of a statistic
are difficult to apply and, except for very simple examples, are beyond the scope of
this text. We will introduce this topic in Section 7.3, where we will develop a procedure
for using a computer to generate random samples from theoretical populations of data.
We will use this simulated sampling procedure to draw many samples of a specified
size, calculate thc value of a statistic for each sample, and form a relative frequency
histogram of these values. Th e resulting relative frequency histogram will be an approx­
imation to the sampling distribution of the statistic.

Even if we are unable to find the exact mathematical form of the probability
distribution of a statistic and are unable to approximate it using simulation, we can
always find its mean and variance using the methods of Chapters 4-6. Then we C<ln
obtain an approximate description of the sampling distribution by applying the Empir­
ical Rule .
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7.3 Probability Distributions of Functions of
Random Variables (Optional)..................................................................

Th ere are essentially three methods for finding the density function for a function of
one or more random variables. Two of these- the moment generating function meth od
and the transformation method-are beyond the scope of this text, but a discussion
of them can be found in the references at the end of the chapter. The third method ,
which we will call the cumulative distribution function method, will be demonstrated
with examples.

Suppose w is a function of one or more random variables. The cumulative
distribution function method fi nds the density functi on for w by first finding the
probability P(w :5 wo), which (dropping the subscript 0) is equal to F(w). Th e density
function f(w) is then found by differentiating F(w) with respect to w. We will dem­
onstrate the method in Examples 7.3 and 7.4.

EXAMPLE 7.3

~olution

Suppose the random variable y has a density function

(

- y/{3

f( y) = T if 0 :5 y < 00

o elsewhere

and let w(y) = yZ. Find the density function for the random variable w.

A graph of w = y2 is shown in Figure 7.2 on page 296. We will denote the cumula­
tive distribution function s of wand y as G(w) and F(y), respectively. We note
from the figure that w will be less than Wo whenever y is less than Yo; it follows that
P(w:5 wo) = G(wo) = F(yo). Since w = yZ , we have Yo = V;;; and

J
~ f~ e -

y
/ {3 ]vW;;

F(yo) = F(YW;; ) = f( y)dy = - - dy = - e- y
/ {3 = I - e- (~/f3)

- 00 0 (3 0

Therefore, the cumulative distribut ion funct ion for w is

G(w) = I - e- cv ;;'/ (3 )

Differentiating, we obtain the density function for w:

dG(w) w- I / 2e- (V;/ (3)
- d-w- = f(w) = - -2-{3--
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EXAMPLE 7.4 If the random variables x and y possess a uniform joint density function over the unit
square, then f (x, y) = 1 for 0 :s x -s 1 and 0 :s y :s I . Find the density function fo r
the sum w = x + y.

Solution Each value of w corresponds to a series of points on the line wo = x + y (see Figure
7.3). Written in the slope- intercept form, y = Wo - x, this is the equation of a line
with slope equal to -I and y-intercept equal to woo Th e values of w that are less
than or equal to Wo are those corresponding to points (x, y) below the line Wo =
x + y. (This area is shaded in Figure 7.3.) Th en, for values of the y-intercept Wa,
o-s Wa :s I, the probability that w is less than or equal to wa is equal to the volume
of a solid over the shaded area shown in the figure. We could find this probability by
multiple integration, but it is easier to obtain it with the aid of geometry. Each of the
two equal sides of the triangle has length Wa. Therefore, the area of the shaded
triangular region is w5!2 , the height of the solid over the region is f(x, y) = I, and
the volume is

P(w :s wo) = F(wo) = w'6/2

We now drop the subscript to obtain

F(w) = w2/ 2 (O:s w :S I)

FIGURE 7.3 ~

Agraph showing the region of
integration to find F(wo),
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The equation for F(w) is different over the interval I ::s w::s 2. The probability
P(w ::s wo) = F(wo) is the integral of f(x, y) = lover the shaded area shown in Figure
7.4. The integral can be found by subtracting from I the volume corresponding to
the small triangular (nonshaded) area that lies above the line Wo = x + y. To find
the length of one side of this triangle, we need to locate the point where the line
Wo = x + y intersects the line y = I. Substituting y = I into the equation of the
line, we find

fiGURE 7.4 ~ y

Agraph showing the region of 2

integration to find F(wo), Wo

I :5 Wo -s 2

Wo = x + or x = Wo - I

.......""-'-''-=-- - - -----'-- - - - ....>O-----'-- x
o 2

The point (wo - I, I) is shown in Figure 7.4. The two equal sides of the triangle
each have length e = I - (wo - I) = 2 - wooThe area of the triangle lying above
the line Wo = x + y is then

Area = ~(Base)(Height)

I (2 - wO)2
= 2(2 - wo)(2 - wo) = -'-------::-2---"'-'--

Since the height of the solid constructed over the triangle is f (x, y) = I, the probability
that w lies above the line Wo = x + Y is (2 - wo )2/2 . Subtracting this probability
from I, we find the probability that w lies below the line to be

(2 - wo )Z
F(wo) = P(w :5 wo) = I - 2

We drop the subscript and simplify to obtain

F(w) = -I + 2w - w2/2 (l ::s w ::S 2)
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The density function for the sum of the two random variables x and y is now obtained
by differentiating F(w):

((w) = d~~) = d(~~2) = w (0 :5 w :5 1)

((w) = dF(w) = d(-1 + 2w - w
2/2

) = 2 - w (l :5 w:5 2)
dw dw

Graphs of the cumulative distribution function and the density function for w =
x + yare shown in Figures 7.5a and 7.5b, respectively. Note that the area under the
density function over the interval 0 :5 w :5 2 is equal to 1.

FIGURE 7.5 ~
Graphs of the cumulative
distribut ion function and density
funct ion for w = x + y

F(w)

1.0

.5

'""""-----'-------'-- w

f(w)

1.0

.5

L.- '-- ---''-- u·

o

a. Cumulative distribution function

2 o

b. Density function

2

One of the most useful functions of a single continuous random variable is the
cumul ative distribution function itself We will show that if y is a continuous random
variable with density function {(y) and cumulative distribution function F(y), then
w = F(y) has a uniform probability distribution over the interval 0 :5 w :5 I. Using
a computer program for generating random numbers, we can generate a random
sample of w values. For each value of w, we can solve for the corresponding value of
y using the equation w = F(y) and, thereby, obtain a random sample of y values from
a population modeled by the density function f(y ). We will present this important
transformation as a theorem, prove it, and then demonstrate its use with an example.



7.3 / Probability Distributions of Functions (Optional) 299

Theorem 7.1

Let y be a continuous random variable with density function f(y)and cumulative
distribution F( y). Then the density function of w = F( y) will be a un iform
distribution defined over the interval 0 :s: w::S; 1, i.c. ,

{(w) = 1 (O ::s; w::S; I)

PROOF OF THEOREM 7.1 Figure 7.6 shows the graph of w = F(y) for a continuous random
variable y. You can see from the fi gure that there is a one-to-one correspondence
between y values and w values, and that values of y corresponding to values of w in
the interval 0 ::s; w :s wo will be those in the interval 0 :s y :s Yo - Th erefore,

P(w:s wo) = P( y ::s; Yo) = F(yo)

But since w = F(y), we have F(yo) = wooTherefore, we can write

P(w :s wo) = F(yo) = Wo

Th e cumulative distribution function for w is obtained by dropping the subscript:

F(w) = w

fiGURE 7.6 ~
Cumulat ive distribution function
F(y)

1.0

w

w= F(y)

'"""'------~----- y
o Yo

Finally, we different iate over the range 0 :s w :s I to obtain the density function:

EXAMPLE 7.5

f(w) = dF(w) = I
dw

Use Th eorem 7. I to generate a random sample of n
exponential distribution with {3 = 2.

,

3 observations from an

lolution Th e density function for the exponential distribution with {3 = 2 is

(

e- Y12

f( y) = 0 2
if 0 -s y < 00

elsewhere
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and the cumulative distribution function is

F(y) = J Y f(t)dt = rr e-
I
/
z

dt = -e-t /Z] Y = I - e- Y/z
-e- cc J0 2 0

If we let W = F( y) = 1 - e- Y/ z, then Theorem 7.1 tells us that w has a uniform
density function over the interval 0 ~ w ~ 1.

To draw a random number y from the exponential distribution, we first randomly
draw a value of w from the uniform distribution . This can be done by drawing a
random number from Table 6 of Appendix II or using a computer. Suppose, for
example , that we draw the random number 10480. This corresponds to the random
selection of the value w] = . 10480 from a uniform distribution over the interval
o-s w ~ 1. Substituting this value of WI into the formula for w = F(y ) and solving
for y, we obtain

Wl = F(y) = 1 - e- Y1/ z

.10480 = I - e- Y1/ z

e- Y1/ z = .8952

-r = - .111

Yl = .222

If the next two random numbers selected are 22368 and 24130, then the corresponding
values of the uniform random variable are Wz = .22368 and W3 = .24130. By sub­
stituting these values into the formula w = 1 - e- Y/ z, you can verify that yz = .506
and Y3 = .552. Thus, Yl = .222, yz = .506, and Y3 = .552 represent three randomly
selected observations on an exponential random variable with mean equal to 2.

EXERCISES..................................................................
7.7 Consider the density function

_{2Y ifO~y~1
f( y) - 0 elsewhere

Find the density function of w, where:
a. W = yZ b. W = 2y - 1 c. W = Ify

7.8 Consider the density function

_ {e- (Y-3) if y > 3
f( y) - 0 elsewhere

Find the density function of w, where:
a. W = e- Y b. w = Y - 3 c. w = yj 3



if 0 < y < 5

if 5 < y < 10

7.4 I Approximating a Sampl ing Distribution by Simulation 301

7.9 The amount y of paper used per day by a line printer at a university computing center has an exponential
distribution with mean equal to fi ve boxes (i.e., f3 = 5). The daily cost of the paper is proportional to
c = (3y + 2). Find the probability density function of the daily cost of paper used by the line printer.

7.10 An environmental engineer has determined that the amount y (in parts per million) of pollutant per water
sample collected near the discharge tubes of an island power plant has probability density function

(
1
10 if 0 < Y < 10

f(y) = o elsewhere

A new cleaning device has been developed to help reduce the amount of pollution discharged into the
ocean. It is believed that the amount a of pollutant discharged when the device is operating will be related
to y by

a ~ {t;5
Find the probability density function of a.

7.11 Researchers at the University of Cal ifornia (Berkeley) have developed a switched-capacitor circuit for gen­
erating pseudorandom signals (International Journal of Circuit Theory and Applications, May/June, 1990).
The intensity of the signal (voltage), y, is modeled using the Rayleigh probability distribution with mean J.L .
This continuous distribution has density function:

f(y) = l'.exp- /;(2!L) (y> 0)
J.L

Find the density function of the random variable w = yZ. Can you name the distribution?

7.12 Use Theorem 7.1 to draw a random sample of n = 5 observations from a distribution with probability
density func tion

_{eY if y < 0
f(y) - 0 elsewhere

7.13 Use Theorem 7.1 to draw a random sample of n = 5 observations from a beta distribution with a = 2 and
f3 = 1.

OPTIONAL EXERCISE
7.14 The total time x (in minutes) from the time a computer job is submitted until its run is completed and the

time y the job waits in the job queue before being run have the joint density function

{
e- X if O :5 y :5 x < co

f(x, y) = 0 elsewhere

The CPU time for the job (i.e ., the length of time the job is in control of the computer's central processing
unit) is given by the difference w = x - y. Find the density function of a job's CPU time. [Hint: You
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may use the facts that

P(W::; wa) = P(W::; wo. x > wa) + P(W:::; Wa, x :::; wa)
= P(x - Wa -s Y ::; x, Wa < x < (0) + P(O ::; Y :::; x, 0 :::; X :::; wa )

= f'" l' e- X dy dx + (W( X e- X dy dx
Wo X - W C) )0 )0

and Jye- Y dy = -ye- Y + Je- Y d)' in determining the density function. ]

7.4 Approximating a Sampling Distribution by Simulation

We explained in Section 7.2 that a statistic W is a function of the n sample measure­
ments, )'1, Y2, . . . , Yn , and we have shown in Optional Section 7.3 how we can
use probability theory and mathematics to find its sampling distribution. However,
the mathematical problem of finding { (w) is often very difficult to solve. When such
a situation occurs, we may be able to find an approximation to {(w) by computer
simulation.

To illustrate the procedure, we will approximate the sampling distribution for the
sum W = YI + Y2 of a sample of n = 2 observations from a uniform distribution over
the interval 0 :::; Y ::; I. Recall that we found an exact expression for this sampling
distribution in Example 7.4 . Thus, we will be able to compare our simulated sampling
distribution with the exact form of the sampling distribution shown in Figure 7.5b.

To begin the simulation procedure, we used the computer to generate 10,000
pairs of random numbers, with each pair representing a sample ()' " )'2) from the
uniform distribution over the interval a-s )' :::; I. We then programmed the computer
to calculate the sum IV = )' , + )' 2 for each of the 10,000 pairs. A computer-generated
relative frequency histogram for the 10,000 values of W is shown in Figure 7.7. By
comparing Figures 7. 5b and 7.7, you can see that the simulated sampling distribution
provides a good approximation to the true probability distribution of the sum of a
sample of n = 2 observations from a uniform distribution .

EXAMPLE 7.6 Simulate the sampling distribution of the sample mean

- )', + )'2 + )'3 + )'4 + )'5
)' = 5

for a sample of n = 5 observations drawn from the uniform probability distribution
shown in Figure 7.8 on page 304. Note that the uniform distribution has mean J.L =

. 5. Repeat the procedure for n = 15, 25, 50, and 100. Interpret the results.
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Y

Solution We first obtained 1,000 computer-generated random samples of size n = 5 from the
uniform probability distribution, over the interval (0, I), and programmed the com­
puter (using SAS) to compute the mean

Yl + Y2 + Y3 + Y4 + Y5
5

for each sample. The horizontal relative frequency histogram for the I, 000 values of
y obtained from the uniform distribution is shown in Figure 7. 9a on page 304. Note
its shape for this small value of n.

The relative frequency histograms of y based on samples of size n = 15, 25, 50,
and 100, also simulated by computer, are shown in Figures 7.9b-e, respectively. Note
that the' values of y tend to cluster about the mean of the uniform distribution,
p., = .5. Furthermore, as n increases, there is less variation in the sampling distribution.
You can also see from the figures that as the sample size increases, the shape of the
sampling distribution of ytends toward the shape of the normal distribution (symmetric
and mound-shaped).

PERCENTAGE OF W

PERCENTAGE

* * * * * * * * * * * * * * * * *
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fiGURE 7.7 ~
Simulated sampling distribution for
the sum of two observations from
a uniform (0, I) distribution
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EXERCISE

In Section 7.5, we generalize the results of Examples 7.6 and 7.7 in the form of
a theorem.

OPTIONAL EXERCISE
7.15 Use the computer to simulate the sampling distribution of s2, the variance of a sample of n = 100 observations

from a
a. Uniform distribution on the interval (0, I)
b. Normal distribution , with mean 0 and variance 1
c. Exponen tial distribution with mean 1

7.5 The Sampling Distributions of Means and Sums

The simulation of the sampling distribution of the sample mean based on independent
random samples from uniform, normal, and exponential distributions in Examples
7.6 and 7.7 illustrates the ideas embodied in one of the most important theorems in
statistics. The following version of the theorem applies to the sampling distribution of
the sample mean, y.
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Theorem 7.2: The Central Limit Theorem

Ifa random sample of nobservations, YI, Yz, .. , ,Yn, isdrawn from a population
with finite mean fJ., and variance (Fz, then, whenn is sufficiently large, the
sampling distribution of the sample mean y can be approximated by a normal
density function.

Th e sampling distribution of y, in addition to being approximately normal for
large n, has other known characteristics, which are given in Definition 7.4.

Definition 7.4

Let YI, Yz, ... , Y" be a random sample of n observations from a population
with finite mean fJ., and finite standard deviation (F. Then, the mean and standard
deviation of the sampling distribution of y, denoted fJ.,y and (Fy, respectively,
are:

Th e significance of the central limit theorem and Definition 7.4 is that we can
use the normal distribution to approximate the sampling distribution of the sample
mean yas long as the population possesses a finite mean and variance, and the number
n of measurements in the sample is suffic iently large. How large the sample size must
be will depend on the nature of the sampled population. Youcan see from our simulated
experiments in Examples 7.6 and 7.7 that the sampling distribution of y tends to
become very nearly normal for sample sizes as small as n = 25 for the uniform,
normal, and exponential population distributions. When the population distribution
is symmetric about its mean, the sampling distribution of y will be mound- shaped
and nearly normal for sample sizes as small as n = 15. In addition, if the sampled
population possesses a normal distribution , then the sampling distribution of ywill be
a normal density function, regardless of the sample size. (This may be seen in Figure
7. 11.) In fact, it can be shown that the sampling distribution of any linear function
of normally distributed random variables, even those that are correlated and have
different means and variances, is a normal distribution. This important result is pre­
sented (without proof) in Th eorem 7.3 and illustrated in an example.
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Theorem 7.3

Let aI, ai , . . . , a" be constants and let YI, Yz, . . . , Y" be 11 normally distributed
random variables with E( Yi) = !-ti , V(Yi) = a"f, and COV(Yi, Y; ) = Ui;
(i = I, 2, ... , 11 ) . Then the sampling distribution of a linear combination of
the normal random variables

e = al YI + az)'z + ' .. + a")',,

possesses a normal density function with mean and variance"

E(f ) = !-t = al!-tl + az!-t z + .. , + a"!-t,,

and

V(e) = arur + (/1U1 + . . , + (/ f,uf,
+ 2al(/2 UIZ + 2ala3ul3 + .. . + 2ala"ul"
+ 2(/ Za 3U23 + ' .. + 2aza"uz"
+ . .. + 2a"_la"u"_I ,,,

(i = I, 2)

EXAMPLE 7.8

Solution

Suppose you select independent random samples from two normal population s, 11 \

observations from population I and ll Z observations from population 2. If the means
and variances for populations 1 and 2 are (!-tl, u T) and (!-t2, ( 1), respectively, and if
YI and Y2 are the corresponding sample means, find the distribution of the difference
(YI - Yz).

Since YI and yz are both linear functions of normally distributed random variables,
they will be normally distributed by Th eorem 7.3. Th e means and variances of the
sample means (see Example 6.13) are

2

E(Yi) =!-ti and V(Yi) = u i
11;

Then , e = YI - Y2 is a linear function of two normally distributed random variables,
}II and Yz. According to Th eorem 7.3, f will be normally distributed with

E(t) = !-te = E(YI ) - E(yz) = !-tl - !-t2

V(t ) = up= (l )2V(YI) + (_ l)2V(yZ) + 2(l )(-I )Cov(h yz)

But, since the samples were independently selected, YI and yz are independent and
COV(YI , yz) = O. Th erefore,

? z
V(f ) = UT + Uz

111 ll Z

"T he formulas for the mean and variance of a linear function of any random variables, Yl, Yz, . .. , Yn,
were given in Theorem 6.7.
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We have shown that (Y, - yz) is a normally distributed random variable with mean
(IL l - IL z) and variance (TUnj + (TYnz).

Typical applications of the central limit theorem, however, involve samples
selected from nonnormal or unknown populations, as illustrated in Examples 7.9
and 7.10.

Engineers responsible for the design and mainten ance of aircraft pavements tradition­
ally use pavement-quality concrete. A study was conducted at Luton Airport (United
Kingdom) to assess the suitability of concrete blocks as a surface for aircraft pavements
(Proceedings of the Institute of Civil Engineers, Apr. 1986). Th e original pavement­
quality concrete of the western end of the runway was overlaid with 80-mm- thick
concrete blocks. A series of plate-bearing tests was carried out to determin e the load
classification number (LCN)- a measure of breaking strength- of the surface. Let y
represent the mean LCN of a sample of 25 concrete block sections on the western
end of the runway.

a. Prior to resurfacing, the mean LCN of the original pavement-quality concrete of
the western end of the runway was known to be IL = 60, and the standard deviation
was (T = 10. If the mean strength of the new concrete block surface is no different
from that of the original surface, describe the sampling distribution of y.

b. If the mean strength of the new concrete block surface is no different from that
of the original surface, find the probability that y, the sample mean LeN of the
25 concrete block sections, exceeds 65.

c. Th e plate-bearing testson the new concrete block surface resulted in y = 73. Based
on this result, what can you infer about the true mean LCN of the new surface?

a. Although we have no information about the shape of the relative frequency dis­
tribution of the breaking strengths (LCNs) for sections of the new surface, we can
apply Theorem 7.2 to conclude that the sampling distribution of y, the mean LCN
of the sample, is approximately normally distributed. In addition, if IL = 60 and
(T = 10, the mean, ILy, and the standard deviation, (Ty, of the sampling distribution
are given by

ILy = IL = 60

and
(T 10

(T- = - = - - = 2
y V;; v'25
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b. We want to calculate P(y > 65). Since y has an approximate normal distribution ,
we have

P(y > 65) = p(y - J-ty > 65 - J-ty)
CTy CTy

(
65 - 60)= P z > 2 = P(z > 2.5)

where z is a standard normal random variable. Using Table 4 of Appendix II, we
obtain

P(z > 2.5) = .5 - .4938 = .0062

Therefore, P(y > 65) = .0062.

c. If there is no difference between the true mean strengths of the new and original
surfaces (i.e., J-t = 60 for both surfaces), the probability that we would obtain a
sample mean LCN for concrete block of 65 or greater is only .0062. Observing
y = 73 provides strong evidence that the true mean breaking strength of the new
surface exceeds J-t = 60. Our reasoning stems from the rare event philosophy of
Chapter 3, which states that such a large sample mean (y = 73) is very unlikely
to occur if J-t = 60.

EXAMPLE 7.10

Solution

Consider a binomial experiment with n Bernoulli trials and probability of success p
on each trial. Th e number y of successes divided by the number n of trials is called
the sample proportion of successes and is denoted by the symbol p = yi n. Explain
why the random variable

p- p
z = - -

1;
has approximately a standard normal distribution for large values of n.

If we denote the outcome of the ith Bernoulli trial as Yi (i = I, 2, . . . , n), where

. = {I if outcome is a success
Y, 0 if outcome is a failure

then the numb er Y of successes in n trials is equal to the sum of n independent
Bernoulli random variables:

n

2: v.
;=1

Th erefore, P = Yin is a sample mean and, according to Theorem 7.2, p will be
approximately normally distributed when the sample size n is large. To find the
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expected value and variance of {J , we can view pas a linear function of a single random
variable y:

p = e= aJ y, = (~) y where at = ~ and Yl = Y

We now apply Theorem 6.7 to obtain E(e) and V(e):

E(p) = lE(y) = l (np) = p
n n

V(p) = (1)2V()') = ~(npq) = pq
n n n

Therefore,

is equal to the deviation between a normally distributed random variable p and its
mean p, expressed in units of itsstandard deviation, VMin. Thi s satisfies the definition
of a standard normal random variable given in Section 5.5.

The central limit theorem also applies to the sum of a sample of n measurements
subject to the conditions stated in Theorem 7.2. The only difference is that the
approximating normal distribution will have mean nu: and variance nu2.

The Sampling Distribution of a Sum of Random Variables........................ ........

Ifa random sample of n observations, )'1, )' 2, . . . , )'n , is drawn from a population
with finite mean fJ- and variance u 2 , then, when n is sufficiently large, the
sampling distribution of the slim

11

2: v,
i=l

can be approximated by a normal density function with mean fJ-};),; = np: and
uil'; = nu2.

In Section 7.6, we apply the central limit theorem for sums to show that the
normal density function can be used to approximate the binomial probability distri­
bution when the number n of trials is large.
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EXERCISES

7.16 Let YZ5 represent the mean of a random sample of size n = 25 from a probability distribution with unknown
density f( y), mean J.L = 17, and standard deviation (J" = 10. Similarly, let Y100 represent the mean of a
random sample of size n = 100 selected from the same probability distribution.
a. Describe the sampling distributions of YZ5 and YIOO.

b. Which of the probabilities, P(l5 < YZ5 < 19) or P(l5 < Y100 < 19), would you expect to be larger?
e. Calculate approximations to the two probabilities of part b.

7.17 The National Institute for Occupational Safety and Health (NIOSH) recently completed a study to evaluate
the level of exposure of workers to the chemical dioxin, 2,3, 7,8-TCDD. Th e distribution of TCDD levels
in parts per trillion (ppt) of production workers at a Newark, New Jersey, chemical plant had a mean of
293 ppt and a standard deviation of 847 ppt (Chemosphere, Vol. 20, 1990). A graph of the distribution is
shown here.

o 500 1,000 J,500

TCCD level (ppt)

2,000

In a random sample of n = 50 workers selected at the New Jersey plant, let Y represent the sample mean
TCDO level.
a. Find the mean and standard deviation of the sampling distribution of y.
b. Draw a sketch of the sampling distribution of y. Locate the mean on the graph.
c. Find the probability that Yexceeds 550 ppt ,

7.18 Studies by neuroscientists at the Massachusetts Institute of Technology (MIT) reveal that melatonin , which
is secreted by the pineal gland in the brain, functions naturally as a sleep-inducing hormone (Tampa Tribune,
Mar. I, 1994). Male volunteers were given various doses of melatonin or placebos and then placed in a
dark room at midday and told to close their eyesand fall asleep on demand. Of interest to the MIT researchers
is the time y (in minutes ) required for each volunteer to fall asleep. With the placebo (i.e., no hormone),
the researchers found that the mean time to fall asleep was 15 minutes. Assume that with the placebo
treatment J.L = 15 and (J" = 5.
a. Consider a random sample of n = 20 men who are given the sleep-inducing hormone, melatonin. Let y

represent the mean time to fall asleep for this sample. If the hormone is not effective in inducing sleep,
describe the sampling distribution of y.

b. Refer to part a. Find P(Y :5 6).
c. In the actual study, the mean time to fall asleep for the 20 volunteers was y = 5. Use this result to make

an inference about the true value of J.L for those taking the melatonin.

7.19 Cost estimation is the term used to describe the processby which engineers estimate the cost of workcontracts
(e.g., road construction, building construction) that are to be awarded to the lowest bidder. Th e engineers'
estimate is the baseline against whieh the low (winning) bid is compared. A recent study investigated the
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factors that affect the accuracy of engineers' estimates (Cost Engineering, Oct. 1988), where accuracy is
measured as the percentage difference between the low bid and the engineers' estimate. One of the most
important factors is number of bidders-the more bidders on the contract, the more likely the engineers
are to overestimate the cost. For building contracts with five bidders, the mean percentage error was - 7.02
and the standard deviation was 24.66. Consider a sample of 50 building contracts, each with 5 bidders.
a. Describe the sampling distribution of y, the mean percentage difference between the low bid and thc

engineers' estimate, for the 50 contracts.
b. Find P(y < 0). (This is the probability of an overestirnate.)
c. Suppose you observe y = -1 7.83 for a sample of 50 building contracts. Based on the information given,

arc all these contracts likely to have five bidders? Explain.

7.20 Many species of terrestrial frogs that hibernate at or near the ground surface can survive prolonged exposure
to low winter temperatures. In freezing conditions, the frog's body temperature, called its supercooling
temperature, remains relatively higher because of an accumulation of glycerol in its body fluids. Studies have
shown that the supercooling temperature of terrestrial frogs frozen at - 6°C has a relative frequency distri­
bution with a mean of - 2.1SoC and a standard deviation of. 32°C (Science, May 1983). Consider the mean
supercooling temperature, y, of a random sample of n = 42 terrestrial frogs frozen at -6°C.
a. Find the probability that y exceeds -2.05°C.
b. Find the probability that y falls between - 2.20°C and - 2. 10°C.

7.21 General trace organic monitoring describes the process in which water engineers analyze water samples for
various types of organic material (e.g., contaminants). One such contaminant, commo nly found in treated
surface water, is the pesticide trihalomethane (THM). General trace organic monitoring at the Bedford
(England) water treatment works revealed a mean TH M level of 51 p.gll and a standard deviation of 14 p.g/l
(Journal of the Institut ion of Water Engineers and Scientists, Feb. 1986). Assume that these figures represent
the population mean p. and standard deviation a , respectively. Suppose we collect 45 water samples (called
water "profiles") at the Bedford plant and measure the T HM level in each.
a. Describe the sampling distribution of y, the mean T HM level of the 45 water profiles.
b. Find the probability that y exceeds 52 p.g/l.
c. Find the probability that y falls between 49.5 and 50.5 p.g/l.

7.22 The U.S. Army Engineering and Housing Support Center recently sponsored a study of the reliability,
availability, and maintainability (RAl'v1) characteristics of small diesel and gas-powered systems at commer­
cial and military facilities (IEEE Tra nsactions on Industry Applications, July/Aug. 1990). The study revealed
that the time, y, to perform corrective maintenance on continuous diesel auxiliarysystems has an approximate
exponential distribution with an estimated mean of 1,700 hours.
a. Assuming p. = 1,700, find the probability that the mean time to perform corrective maintenance for a

sample of 70 continuo us diesel auxiliary systems exceeds 2,500 hours.
b. If you observe y > 2,500, what inference would you make about the value of p.?

7.13 An article in Industrial Engineering (Aug. 1990) discussed the importance of modeling machine downtime
correctly in simulation studies. As an illustration, the researcher considered a single-machine-tool system
with repair times (in minut es) that can be modeled by a gamma distribution with parameters a = 1 and
(3 = 60. Of interest is the mean repair time, y, of a sample of 100 machin e breakdowns.
a. Find E( y) and Var(Y).
b. What probability distribution provides the best model of the sampling distribution of y?Wh y?
c. Calculate the probability that the mean repair time, y, is no longer than 30 minute s.
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7.24 A largc freight elevator can transport a maximum of 10,000 pounds (5 tons). Suppose a load of cargo
containing 45 boxes must be transported via the elevator. Experience has shown that the weight y of a box
of this type of cargo follows a probability distribution with mean JL = 200 pounds and standard deviation
c = 55 pounds. What is the probability that all 45 boxes can be loaded onto the freight elevator and
transported simultaneously? [Hint : Find P(L;ll Yi ::S; 10,000).]

OPTIONAL EXERCISES

7.25 Let PI be the sample proportion of successes in a binomial experiment with nl trials and let P2be the sample
proportion of successes in a binomial experiment with n2 trials, conducted independentl y of the first. Let
PI and P2 be the corresponding population parameters. Show that

has approximately a standard normal distribution for large values of n, and n2.

7.26 If Y has a X2 distribution with n degrees of freedom (see Section 5.7), then Y could be represented by
Y = L7= 1 Xi, where the x;'s are independent X2 distributions, each with I degree of freedom.
a. Show that z = (y - n)/~ has approximately a standard normal distribution for large values of n.
b. If y has a X 2 distribution with 30 degrees of freedom, find the approximate probability that y falls within

2 standard deviations of its mean, i.e., find P(JL - La < y < JL + 2u).

7.6 Normal Approximation to the Binomial Distribution
..................................................................

Consider the binomial random variable y with parameters n and p. Recall that y has
mean JL = np and variance u 2 = nbq. We showed in Example 7.10 that the number
y of successes in n trials can be regarded as a sum consisting of n values of a and I ,
with each a and I representing the outcome (failure or success, respectively) of a
particular trial, i. e. ,

~ {I if success
y = LJ Yi where Yi = a 'f t: '1

i=1 1 rat ure

Th en, according to the central limit theorem for sums, the binomial probability
distribution p( y)should become more nearly normal as n becomes larger. Th e normal
approximation to a binomial probability distribution is reasonably good even for small
samples-say, n as small as la-when p = .5 and the distribution of y is therefore
symmetric about its mean JL = rip , When p is near a (or. I), the binomial probability
distribution will tend to be skewed to the right (or left), but this skewness will disappear
as n becomes large. In general, the approximation will be good when n is large enough
so that JL - La = np - 2-v;;pq and JL + La = np + 2-v;;pq both lie between 0
and n. It can be shown (proof omitted) that for both JL - Lo and JL + Za to fall
between 0 and 11, both np and nq must be greater than or equal to 4.
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Condition Required to Apply a Normal Approximation to a
Binomial Probability Distribution... ..... ...... ..... . ............

The approximation will be good if both !.L - 20" = np - 2-v;;pq and
!.L + 20" = np + 2-v;;pq lie between 0 and n. This condition will be satisfied
if both np ~ 4 and nq ~ 4.

Let y be a binomial probability distribution with n = 10 and p = .5.

a. Graph p( y) and superimpose on the graph a normal distribution with !.L = np and
0" = ynpq.

b. Use Table I of Appendix II to find P(y :s 4).

c. Use the normal approximation to the binomial probability distribution to find an
approximation to P(y -s 4).

a. Th e graphs of p(y) and a normal distribution with

!.L = np = (1 0)(.5) = 5

and

0" = -v;;pq = Y(1 0)(.5)(.5) = 1.58

are shown in Figure 7. 13. Note that hath np = 5 and nq = 5 both exceed 4.
Thus , the normal density function with !.L = 5 and 0" = 1.58 provides a good
approximation to p( y).

fiGURE 7.13 ~ plY)

Abinomial probability distribution
(n = 10, P = .5) and the
approximating normal distribution
(jL = np = 5 and 0" =
vnpq = 1.58)

o 2 3 4 t 5 6 7
4.5

8 9 10

b. From Table I of Appendix II, we obtain
4

L p( y) = .377
)' ~ O

c. By examining Figure 7. 13, you can see that P(y:s 4) is the area under the normal
curve to the left of y = 4.5. Note that the area to the left of y = 4 would not be
appropriate because it would omit half the probability rectangle corresponding to
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y = 4. We need to add .5 to 4 before calculating the probability to correct for the
fact that we are using a continuous probability distribution to approximate a discrete
probability distribution. The value .5 is called the continuity correction factor for
the normal approximation to the binomial probability (see the box). The z value
corresponding to the corrected value y = 4.5 is

z = y - J.L = 4.5 - 5 = - .5 = _ 32
(T 1.58 I. 58 .

Th e area between z = 0 and z = .32, given in Table 4 of Appendix II, is A =
. 1255. Ther efore,

P(y::; 4) = . 5 - A = .5 - .1255 = .3745

Thus , the normal approximation to P(y -s 4) = .377 is quite good, although n is
as small as 10. Th e sample size would have to be larger to apply the approximation
if p were not equal to .5.

Continuity Correction for the Normal Approximation to a Binomial Probability................ . ... . . .. ........

Let y be a binomial random variable with parameters nand p, and let z be a
standard random variable. Thcn

P(y::; a) = p(z < (a + .5) ~ n
p)v;;pq

P( ) p(
(,a_-_ .-=5)=-_ n-,--p)y:2:a = z> - v;;pq

P( b) p((a - .5) - nlJ (b + .5) - np)
a ::; y ::; = < z < -'--------===--'-v;;pq . v;;pq

EXERCISES

7.27 Let y be a binom ial random variable with n = 15 and p = .3.
a. Use Table I of Appendix II to find P(y ::; 8).
b. Use the normal approximation to the binomial probability distribution to find an approximation to

P(y ::; 8). Compare to your answer in part a.

7.28 Consumer Reports (Feb. 1992) found widespread contamination of seafood in New York and Chicago
supermarkets. For example, 40% of the swordfish pieces available for sale have a level of mercury above
the Food and Drug Administration (FDA) limit. Consider a random sample of 20 swordfish pieces from
New York and Chicago supermarkets.
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a. Use the normal approximation to the binomial to calculate the probability that less than 2 of the
20 swordfish pieces have mercury levels exceeding the FDA limit.

b. Use the normal approximation to the binomi al to calculate the probability that more than half of the
20 swordfish pieces have mercury levels exceeding the FDA limit.

c. Usc the binomial tables to calculate the exact probabilities in parts a and b. Docs the normal distributi on
provide a good approximation to the binomial distribution?

7.29 The merging process from an acceleration lane to the through lane of a freeway constitutes an impo rtant
aspect of traffic operation at interchanges. A study of parallel interch ange ramps in Israel revealed that many
drivers do not usc the entire length of parallel lanes for acceleration, but seek as soon as possible an appropriate
gap in the major stream of traffic for merging (Transportation Engineering, Nov. 1985). At one site (Yavneh),
54% of the drivers use less than half the lane length available before merging . Suppose we plan to monitor
the merging patterns of a random sample of 330 drivers at the Yavneh site.
a. What is the approximate probability that fewer than 100 of the drivers will use less than half the

acceleration lane length before merging?
b. What is the approximate probability that 200 or more of the drivers will use less than half the acceleration

lane length before merging?

7.30 Occupational Outlook Quarterly (Spring 1993) reported that I % of all drywall installers employed in the
construction industry are women.
a. Approximate the probability that more than 100 of a random sampl e of 500 drywall installers arc women .
b. Approximate the probability that five or fewer of a random sample of 500 drywall installers are women .

7.31 One of the keys to developing successful information systems is to implement structured design and pro­
gramming techniques. Computer-aided software engineerin g (CASE) technology provides several automated
tools (e.g. , data flow diagrams) that can facilitate structured techniques. The Journal ofSystemsManagement
(July 1989) reported that 60% of information systems (IS) professionals make extensive use of data flow
diagrams in their work. In a sample of 150 IS professionals, what is the approximate probability that at least
half make extensive use of data flow diagrams?

7.32 Quality control is a problem with items that are mass produced. Th e producti on process must be monitored
to ensure that the rate of defective items is kept at an acceptably low level. One method of dealing with
this problem is lot acceptance sampling, in which a random sample of items produced is selected and each
item in the sample is carefully tested. The entire lot of items is then accepted or rejected, based on the
number of defectives observed in the sample. Suppose a manufa cturer of pocket caleulators randomly chooses
200 stamped circu its from a day's production and determines y, the number of defective circuits in the
sample. If a sample defective rate of 6% or less is considered acceptable and, unknown to the manufacturer,
8% of the entire day's production of circuits is defective, find the approximate probability that the lot of
stamped circuits will be rejected .

7.33 How well does a college engineering degree prepare you for the workplace? A 2-year nationwide survey of
engineers and engineering managers in "specifi c high-demand" industries revealed that only 34% believe
that their companies make good use of their learned skills (Chemical Engineering, Feb. 3, 1986). In a
random sample of 50 engineers and engineering managers, consider the number y who believe that their
employer makes good use of their college engineering background . Find the approximate probability that:

a. y::5 10 b. y 2= 25 c. 20 ::5 Y ::5 30
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7.7 Sampling Distributions Related to the Normal Distribution

In this section, we present the sampling distributions of several well-known statistics
that are based on random samples of observations from a normal population. These
statistics are the Xz, i, and F statistics. In Chapter 8, we show how to use these statistics
to estimate the values of certain population parameters. The foll owing results are stated
without proof. Proofs using the methodology of Chapter 6 can be found in the ref­
erences at the end of this chapter.

Theorem 7.4

If a random sample of n observations, Y}, Yz, . . . , Yn, is selected from a normal
distribution with mean J.L and variance u Z, then the sampling distribution of

(11 - l)sZ
XZ = Z

U

has a chi-square density function (see Section 5.7) with II = (n - 1) degrees of
freedom.

Theorem 7.5

If XI and X~ are independent chi-square random variables with III and li Z degrees
of freedom, respectively, then the sum (XI + xDhas a chi-square distribution
with (II} + liZ) degrees of freedom. .

Definition 7.5

Let z be a standard normal random variable and XZ be a chi-square random
variable with II degrees of freedom. If z and XZ are independent, then

t = __z_
VX Z

/ II

is said to possess a Student's t distribution (or, simply, t distribution) with II

degrees of freedom.
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Definition 7.6

. Let XI and X~ be chi-square random variables with 111 and li Z degrees of freedom,
respectively. If XI and X~ are independent, then

F = XTlIII
XYIIZ

is said to have an F distribution with 111 numerator degrees of freedom and li Z

denominator degrees of freedom.

Note: Th e sampling distributions for the t and F statistics can also be derived
using the methods of Optional Section 7.3. Both sampling distributions are related to
the density function for a beta-type random variable (see Section 5.9). It can be shown
(proof omitted) that a t distribution with II degrees of freedom is actually a special case
of an F distribution with 111 = I and lJ z = lJ degrees of freedom. Neither of the
cumulative distribution functions can be obtained in closed form. Consequently, we
dispense with the equations of the density functions and present useful values of the
statistics and corresponding areas in tabular form in Appendix II.

Th e following examples illustrate how these statistics can be used to make prob­
ability statements about population parameters.

Consider a cannery that produces 8-ounce cans of processed corn. Quality control
engineers have determined that the process is operating properlywhen the true variation
a Z of the fill amount per can is less than .0025. A random sample of n = 10 cans is
selected from a day's production, and the fill amount (in ounces) recorded for each.
Of interest is the sample variance, s2 If, in fact, a Z = .00I, find the probability that
sZ exceeds .0025. Assume that the fill amounts are normally distributed.

We want to calculate P(SZ > .0025). Assume the sample of 10 fill amounts is selected
from a normal distribution. Th eorem 7.4 states that the statistic

Z (n - l)sZ
X = a Z

has a chi-square probability distribution with II = (n - I) degrees of freedom. Con­
sequently, the probability we seek can be written

P(sz > .0025) = p[(n ~} )s Z > (n - ~~0025)]

_ p[ 2 (n - 1)(.0025)]
- X > 2a

Substituting n = 10 and a Z = .001, we have

P(s 2 > .0025) = p(X2 > 9( :~~i 5 )) = P(XZ > 22.5)
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Upper-tail areas of the chi-square distribution have been tabulated and are given
in Table 8 of Appendix II, a portion of which is reproduced in Table 7.2. The table
gives the values of X2, denoted x;, that locate an area (probability) a in the upper­
tail of the distribution, i.e., P(X2 > X;) = a. In our example, we want to find the
probability a such that x; > 22.5.

Now, for n = 10, we have v = n - I = 9 degrees of freedom. Searching
Table 7.2 in the row corresponding to u = 9, we find that X201 = 21.666
and X2005 = 23.5893. (These values arc shaded in Table 7.2.) Consequently, the
probability that we seek falls between a = .01 and a = .005, i.e.,

.005 < P(X 2 > 22.5) < .01 (see Figure 7.14)

Thus, the probability that the variance of the sample fill amounts exceeds .0025 is
small (between .005 and .01) when the true population variance (7'2 equals .001.

x;
x2

0

TABLE 7.2 Abbreviated Version of Table 8 of Appendix II: Tabulated Values of X 2

Degrees of
X

2100
X~50 X~25 X

2
OlO X

2OO5Freedom

I 2.70554 3.84146 5.02389 6.63490 7.87944
2 4.60517 5.99147 7.37776 9.21034 10.5966
3 6.25139 7.81473 9.34840 11.3449 12.8381
4 7.77944 9.48773 11.1433 13.2767 14.8602
5 9.23635 11.0705 12.8325 15.0863 16.7496
6 10.6446 12.5916 14.4494 16.8119 18.5476
7 12.0170 14.0671 16.0128 18.4753 20.2777
8 13.3616 15.5073 17.5346 20.0902 21.9550
9 14.6837 16.9190 19.0228 21.6660 23.5893

10 15.9871 18.3070 20.4831 23.2093 25.1882
II 17.2750 19.6751 2I. 9200 24.7250 26.7569
12 18.5494 Zl.0261 23.3367 26.2170 28.2995
13 19.8119 zz 36Zl 24.7356 27.6883 29.8194
14 Zl.0642 23.6848 26.1190 29.1413 31.3193
15 zz 3072 24.9958 27.4884 30.5779 32.8013
16 Z3. 5418 26.2962 28.8454 31.9999 34.2672
17 24.7690 27.5871 30.1910 33.4087 35.7185
18 25.9894 28.8693 31.5264 34.8053 37.1564
19 27.2036 30.1435 32.8523 36.1908 38.5822
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.005 < a < .01

IL- ---L x2

o 22.5

EXAMPLE 7.13

Solution

Suppose that yand 52 are the mean and variance of a random sample of n observations
from a normally distributed population with mean J.l, and variance (T2 . It can be shown
(proof omitted) that yand 52 are statistically independent when the sampled population
has a normal distribution . Use this result to show that

t = y - J.l,

5j~

possesses a t distribution with v = (n - I) degrees of freedom. *

We know from Th eorem 7.3 that y is normally distributed with mean J.l, and variance
(T 2j n . Th erefore,

y - J.l,
z = - -

(Tj~

is a standard normal random variable. We also know from Theorem 7.4 that

is a X2 random variable with lJ = (n - I) degrees of freedom. Then , using Defi ni­
tion 7.4 and the information that y and S2 are independent , we conclude that

z
t=--=

V X2j v

has a Student's t distribution with u = (n - I) degrees of freedom. As we will learn
in Chapter 8, the t distribution is useful for making inferences about the population

"T he result was first publ ished in 1908 by W. S. Cosset, who wrote under the pen name of Student.
T he reafter, this statistic becam e known as Student's t.
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mean f.L when the population standard deviation a is unknown (and must be estimated
by 8 2).

Theorem 7.4 and Examples 7.12 and 7.13 identify the sampling distributions of
two statistics that will play important roles in statistical inference. Others are presented
without proof in Tables 7.3a and 7.3b. All are based on random sampling from
normally distributed populations. The results contained in Table 7.3 will be needed
in Chapter 8.

TABLE 7Ja. Sampling Distributions of Statistics Based on Independent Random Samples of nl and n2
Observations, Respectively, from Normally Distributed Populations with Parameters (f.LI, an and (f.L2' aD

Statistic

Z _ (nj + nz - 2)s~
X - UZ

where

SZ = (n] - I)sy + (nz - I)s~

P nj + nz - 2

where

SZ = (n] - I)sy + (nz - I)s~
P n] + nz - 2

F = (~)(~D

Sampling Distribution

Chi-square with
u = (n] + nz - 2)
degrees of freedom

Student's t with
v = (n] + nz - 2)
degrees of freedom

F distribution with
VI = (nl - I)
numerator degrees
of freedom and
Vz = (nz - I)
denominator
degrees of freedom

Additional
Assumptions

None

Basis of Derivation of
Sampling Distribution

Theorems 7.4-7.)

Theorems 7.3-7.4
and Definition 7.4

Theorem 7.4
and Definition 7.6
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TABLE 7.3b. Sampling Distributions of Statistics Based on a Random Sample from a Single Normally
Distributed Population with Mean Il and Variance a.2

Additional Basis of Derivation of
Statistic Sampling Distribution Assumpt ions Sampl ing Distribution

(n - l )s2 Chi-square with No ne Me thods of Sectio n 7.2
X

2 = a 2 lJ = (n - I)
deg rees of freedom

t = Y - J.t Student's t with None T heorems 7.3-7.4 and

slY;; lJ = (n - I ) Definition 7.4
degrees of freedom

EXERCISES

7.34 Let YI, Y2, . . . , Yn, be a random sample of n observations from a normal distribution with mean Il and
variance a 2. Let S2 be the variance of the sample. Use Table 8 of Appendix II to estimate the following
probabiIities:
a. P(S2 > 8) when n = 10, a Z = 5
b. P(s2> 1.11) when n = 5, a 2 = .3
C. P(s2 > 199) when n = 22, a 2 = 107

7.35 IEEE Transactions (June 1990) presented a hybrid algorithm for solving polynomial 0-1 mathematical
programming problems. Th e solution time (in seconds) for a randomly selected problem solved using the
hybrid algorithm has a normal probability distribution with mean p: = .8 second and a = I. 5 seconds.
Consider a random sample of n = 30 problems solved with the hybrid algorithm.
a. Describe the sampling distribution of s2 , the variance of the solution times for the 30 problems.
b. Find the approximate probability that S2 will exceed 3.30.

OPTIONAL EXERCISES
7.36 Let Yl, Y2, . . . , Yn be a random sample of n I observations from a normal distribution with mean III and

variance aT. Let Xl , Xz, ... , xnz be a random sample of nz observations from a normal distribution with
mean 112 and variance a~. Assuming the samples were independently selected, show that

F = (~)(:D
has an F distribution with VI = (n 1 - I) num erator degrees of freedom and liZ = (nz - I) denominator
degrees of freedom.

1.37 Let sT and s ~ be the variances of independent random samples of sizes n I and n: selected from normally
distributed populations with parameters (Il l , ( 2) and (Il Z, ( 2), respectively. Thus, the populations have
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different means, but a common variance (Fz. To estimate the common variance, we can combine information
from both samples and use the pooled estimator

sZ = (nj - 1)sT + (nz - l)s~

nj + nz - 2

Use Theorems 7.4 and 7.5 to show that (n j + nz - 2)sZ/ (Fz has a chi-square distribution with v =

(nj + nz - 2) degrees offreedom.

7.38 Let)ll and )lz be the means of independent random samples of sizes nj and nz selected from normally
distributed populations with parameters (fJ-l, (FZ) and (fJ-z, (FZ), respectively. If

sZ = (nj - I)ST + (nz - 1)s~
nj + nz - 2

show that

has a Student's t distribution with v = (nj + nz - 2) degrees of freedom.

7.39 The continuous random variable y is said to have a lognormal distribution with parameters fJ- and (F if its
probability density function, f( y), satisfies

f( ) - 1 {_ (In y - fJ-)Z}
Y - ~ f-> exp 2 Z

(Fyv27f (F

Show that x = In( y) has a normal distribution with mean fJ- and variance (Fz.

7.8 Summary

In the following chapters, we will use sample statistics to make inferences about
population parameters; the properties of these statistics will be determined by their
probability distributions. The probability distribution of a statistic is called its sampling
distribution.

A simulation procedure may be used to approximate the sampling distribution
for a statistic. Random samples of a fixed size are drawn from a known population of
data. The value of some statistic-say, the sample mean )I-is computed for each
sample. The relative frequency distribution of the values of the statistic, generated by
repeated sampling, approximates the probability distribution of the statistic.

Evidence of the major role that the normal distribution plays in statistical inference
is given by the central limit theorem, Theorem 7.3, and the related Xz, F, and t
distributions. The central limit theorem explains why many statistics, especially those
based on large samples, possess sampling distributions that can be approximated by a
normal density function. Theorem 7.3, which states that linear functions of normally
distributed random variables will be normally distributed, provides further explanation



Supplementary Exercises 329

for the commo n occurrence of normally distributed sampling distributions. Th e X 2,

i , and F statistics are approximated when sampling from normally distributed popu­
lations. You will encounter them frequently in the statistical methodology to be devel­
oped in the following chapters.

SUPPLEMENTARY EXERCISES

7.40 Consider the density function

_ {3/ if 0 ::5 y ::5 I
f( y) - 0 elsewhere

Find the density function of w, where:
a. w = vy b. w = 3 - y c. w = -In(y)

7.41 A supplier of home heating oil has a 250-gallon tank that is filled at the beginning of each week. Since the
weekly demand for the oil increases steadily up to 100 gallons and then levels off between 100 and 250
gallons, the probability distribution of the weekly demand y (in hundreds of gallons) can be represented by

l
~ if 0 ::5 Y ::5 I

f(y ) = -O~ if I ::5 y ::5 2.5

elsewhere

If the supplier's profit is given by w = lOy - 2, find the probability density function of w.

7.42 Dioxin, often described as the most toxic chemical known, is created as a by-product in the manufacture
of herbicides such as Agent Orange. Scientists have found that .000005 gram (five-millionths of a gram) of
dioxin-a dot barely visible to the human eye- is a lethal dose for experimental guinea pigs in more than
half the animals tested, making dioxin 2,000 times more toxic than strychnine. Assume that the amount
of dioxin required to kill a guinea pig has a relative frequency distribution with mean J.t = .000005 gram
and standard deviation (J" = .000002 gram. Consider an experiment in which the amount of dioxin required
to kiJl each of n = 50 guinea pigs is measured, and the sample mean y is computed.
a. Calcul ate J.ty and (J"y.

b. Find the probability that the mean amount of dioxin required to kill the 50 guinea pigs is larger than
.0000053 gram.

7.43 The determination of the percent canopy closure of a forest is essential for wildlife habitat assessment,
watershed runoff estimation, erosion control, and other forest management activities. One way in which
geoscientists estimate percent forest canopy closure is through the use of a satellite sensor called the Landsat
Thematic Mapper. A study of the percent canopy closure in the San Juan National Forest (Colorado) was
conducted by examining Thematic Mapper Simulator (TMS) data collected by aircraft at various forest sites
(IEEE Transactions on Geoscience and Remote Sensing, Jan. 1986). The mean and standard deviation of
the readings obtained from TMS Channel 5 were found to be 12I. 74 and 27.52, respectively.
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a. Let ybe the mean TMS reading for a sample of 32 forest sites. Assuming the figures given are population
values, describe the sampling distribution of y.

b. Usc the sampling distribution of part a to find the probability that y falls between 118 and 130.

7.44 Refer to Exercise 7.43. Let 82 be the variance of the TMS readings for the 32 sampled forest sites. Assuming
the sample is from a normal population, estimate the probability that 82 exceeds 1,311.

7.45 Use Theorem 7. 1 to draw a random sample of n = 5 observations from a population with probability density
function given by

_{2 ye- / if 0 < Y < 00

f( y) - 0 elsewhere

7.46 Use Theorem 7.1 to draw a random sample of n = 5 observations from a population with probability density
function given by

f( ) = {2(y - I) if 1 -s y < 2
y 0 elsewhere

7.47 Thi s year a large architectural and engineering consulting firm began a program of compensating its
management personnel for sick days not used. Thc firm decided to pay each manager a bonus for every
unu sed sick day. ln past years, the numb er y of sick days used per manager per year had a probability
distribution with mean p. = 9.2 and variance (T 2 = 3.24. To determine whether the compensation program
has effcctively reduced the mean number of sick days used, the firm randomly sampled n = 80 managers
and recorded y, the numb er of sick days used by each at year's end.
a. Assuming the compensation program was not effective in reducing the average number of sick days used,

find the probability that y, the mean number of sick days used by the sample of 80 managers, is less
than 8.80 days, i.e. , find P(y < 8.80).

b. [f you observe y < 8.80, what inference would you make about the effectiveness of the compensation
program?

7.48 To determine whether a metal lathe that produces machine bearings is properly adjusted, a random sample
of 36 bearings is collected and the diameter of each is measured. Assume that the standard deviation of the
diameter of the machine bearings measured over a long period of time is .001 inch.
a. What is the probability that the mean diameter yof the sample of 36 bearings will lie within .0001 inch

of the population mean diameter of the bearings?
b. Suppose the mean diameter of the bearings produced by the machine is supposed to be .5 inch. The

company decides to use the sample mean to decide whether the process is in control-i. e., whether it
is producing bearings with a mean diameter of . 5 inch . Th e machine will be considered out of control
if the mean of the sample of n = 36 diameters is less than. 4994 inch or larger than. 5006 inch. If the
true mean diameter of the bearings produced by the machine is .501 inch, what is the probability that
the test will fail to imply that the process is out of control?

7.49 Refer to the problem of transporting neutral particles in a nuclear fusion reactor, described in Exercise 3.25.
Recall that particles released into a certain type of evacuated duct collide with the inner duct wall and are
either scattered (reflected) with probability .16 or absorbed with probability .84 (Nuclear Science and Engi­
neering, May 1986). Suppose 2,000 neutral particles are released into an unknown type of evacuated duct
in a nuclear fusion reactor. Of these, 280 are reflected. What is the approximate probability that as few as
280 (i.e. , 280 or [ewer) of the 2,000 neutral particles would be reflected offthe inner duct wall if the reflection
probability of the evacuated duct is .16?
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7.50 Shear block tests on epoxy-repaired timber indicate that the probability distribution of the bond strengths
of parallel grain, mill lumber specimens has a mean of 1, 31 2 pounds per square inch (psi) and a standard
deviation of 422 psi (Journal of Structural Engineering, Feb. 1986). Suppose a sample of 100 epoxy-repaired
timber specimens is randomly selected and the bond strength of each is determined.
a. Describe the sampling distribution of y, the mean bond strength of the sample of 100 epoxy-repaired

timber specimens.
b. Com pute P(y ~ 1,418).
c. If the actual sample mean is computed to be y = 1,418, what would you infer about the shear block

test results?

7.51 Refer to Exercise 7.50.
a. Describe the sampling distribution of sZ, the variance of the bond strengths of the 100 sampled epoxy­

repaired timber specimens. Assume the sample is from a normal population.
b. Estimate P(s > 500).

OPTIONAL SUPPLEMENTARY EXERCISES
7.52 Th e waiting time Y until delivery of a new component for a data-processing unit is uniformly distributed

over the interval from I to 5 days. T he cost c (in hundr eds of dollars) of this delay to the purchaser is given
by c = (2i + 3). Find the probability that the cost of delay is at least $2,000, i.e ., compu te P(c ~ 20).

7.53 Let YI and yz be a sample of n = 2 observations from a gamma random variable with parameters a =
and arbitrary {3, and corresponding density funct ion

{
.le-YJ 13 if v, > 0 (i = I, 2)

{(Yi) = {3
o elsewhere

Show that the sum w = (YI + yz) is also a gamma random variable with parameters a
[Hint: You may use the result

pew :S we) = P(O < yz :S W - YI, 0 :S Yl < w) = J~" Jo
W

- ) ' \ {(YI. yz)dyz dy,

Th en use the fact that

f(Y', yz) = {( YI )f( yz)

since YI and yz are independent.]

7.54 Let Yhave an exponential density with mean {3. Show that w = 2y/ {3 has a XZ density with IJ = 2 degrees
of freedom .

1.55 The lifetime y of an electronic component of a home minicomputer has a Rayleigh density, given by

if Y > 0

elsewhere



332 Chapter 7 / Sampling Oistributions

Find the probability density function for w = yZ , and identify the type of density function . [Hint: You
may usc the result

J~ e- lff3 dy = - e- lf f3

in determining the density function for w.]

7.56 Let Yl and yz be a random sample of n
variance (J'z.
a. Show that

z = Yl - yz
V2(J'

Z observations from a normal distribution with mean p, and

has a standard normal distribution.
b. Given the result in part a, show that z Z possesses a xZ distribution with 1 degree of freedom. [Hint: First

show that sZ = (Yl - Yz)z/Z; then apply Theorem 7.4.]

7.57 Refer to Exercise 7.1Z. Use the compute r to generate a random sample of n = 100 observations from a
distribution with probability density

_{eY if Y< a
f(y) - a elsewhere

Repeat the procedure 1,000 times and compute the sample mean 51 for each of the 1,000 samples of size
n = 100. Th en generate (by computer) a relative frequency histogram for the 1,000 sample means. Does
your result agree with the theoretical sampling distribution described by the central limit theorem?

COMPUTER LAB: Generating Random Samples

Most statistical computer software packages have built-in algorithms for generating random samples of observa­
tions from a variety of probability distributions. T he SAS and MINITAB commands for generating random
samples of size 50 from the uniform distribution are given in the following programs. Table 7.4 gives the corre­
sponding commands for generating samples from the normal, binomial, Poisson, exponen tial, and gamma
distributions.
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TABLE 7.4 Random Number Generators for SAS and MINITAB

Probability Distribution

Uniform (0, I)
Uniform (A, B)
Normal (mean = 0, std.dev. = I)
Normal (mean = M, std.dev = S)
Binomial (N, P)
Exponential (mean = I)
Exponential (mean = B)
Gamma (A, I)
Gamma (A, B)
Chi-square (df = V)
Poisson (mean = L)
Beta (A, B)

Wcibull (A, B)

Command
line

SAS

Y = RANUNI(seed);
Y = A+ B" RANUNI(seed);
Y = RANNOR(seed);
Y = lvl+S "RANNOR(seed);
Y = RANBIN(seed,N,P);
Y = RANEXP(seed);
Y = RANEXP(seed)/B;
Y = RANGAI\II (seed,A);
Y = B"RANGAI\II(seed,A);
Y = 2*RANGAM(seed,V/2);
Y = RANPOI(seed,L)

YI = RANGAM(seed,A);
Y2 = RANGAM(seed,B);
Y = YII(YI+Y2);

Not available

MINITAB

UNIFORM.
UNIFORM A B.
NORMAL.
NORMAL M S.
BI NOMIAL N P.
EXPONENTIAL.
EXPONENTIAL B.
GAMMA AI.
GAMMA A B.
CHISQUARE V
POISSON L.
BETA A B.

WEIBULL A B.

I
2
")

4
5
6
7
8

DATA SAMPLE;
DO N = 1 TO 50;
Y = RANUNI (213 );
X = 1 + 2000*R ANUN I (G) ;
X = ROUND ( X. 1 );
OUTPUT;
END;
PROC PRINT;

Data entry instruction

] C"",,,,, 50 randorn numbers

Prints the random numbers

COMMAND 3 RANUNI generates uniform random numbers in the interval (0, 1). The numerical "seed" (i.e. , the
number in parentheses following RANUNI) can be any integer value.

COMMANDS 4-5 Multiplying the uniform random numb er by 2,000 and adding I will generate a random number
between I and 2,000. Th e ROUND function (Command 5) will round the resulting random number to the
nearest integer.

NOTE: The output from this SAS program is displayed in Figure 7. 15 on page 334. SAS commands for the
random number generators of several other distributions are provided in Table 7.4.
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MINITAB Command
linc

I
Z
3
4

RANDDM 5 0 C1 ; .]

UN I FDRM. Generates 50 random numbers
RANDOM 5 0 C2;
UNIFORM 1 2000 .
PRI NT C1 C2 Prints thc random numbers

COMMANDS 1-2 RANDOM with the UNIFORM subcommand generates uniform random numbers in the interval
(0, 1).

COMMANDS 3-4 The UNIFORM subcommand followed by the values 1 and 2000 will generate a random number
between I and 2000.

NOTE: The output from this MINITAB program is displayed in Figure 7.16. Minitab subcommands for the ran­
dom number generators of several other probability distributions are provided in Table 7.4.

FIGURE 7.15 ~ N Y x
SAS printout for Computer Lab 1 0 .39703 1259

2 0.16258 505
3 0.30135 913
4 0.65456 502
5 0.60613 358
6 0.51486 1170
7 0.77299 622
8 0.84608 606
9 0.06631 1911

10 0.05092 493
11 0 .59439 1838
12 0.97203 359
13 0.34312 1965
14 0 .15364 1496
15 0 .08987 609
16 0 .14101 1814
17 0.34850 1806
18 0.59765 618
19 0.29204 1256
20 0.73898 1607
21 0 .47006 1092
22 0.64217 158
23 0.80029 303
24 0.55323 1762
25 0.91071 546
26 0.51053 1306
27 0.22638 1059
28 0.59268 1011
29 0.44032 591
30 0.68000 1031
31 0.26740 275
32 0.83772 1691
33 0.59476 1994
34 0.69763 1696
35 0.99709 624
36 0.27695 1930
37 0.61072 561
38 0.35919 1072
39 0.43803 1035
40 0.67097 1067
41 0.26741 471
42 0 .07262 1105
43 0.41368 10
44 0.87680 1626
45 0.68880 65
46 0.57243 1721
47 0 .89295 965
48 0 .64618 269
49 0.75235 180
50 0.68174 216
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FIGURE 7.16 ~ ROW Cl C2

MINITAB printout for Computer Lab 1 0 .262667 170.25
2 0 .833319 1166.89
3 0. 164871 1808.98
4 0 .608885 11 1. 94
5 0 .110577 18 74 . 77
6 0 .822181 339.32
7 0 .7 72671 312.60
8 0 .58383 2 969.6 1
9 0 .978965 11 37.29

10 0 . 3 70586 108. 39
11 0 .323264 1430.28
12 0 . 408010 7 50 .3 4
13 0 .001304 1714.99
14 0 .16 3034 357.3 1
15 0.379198 561. 50
16 0.399769 99.04
17 0 .971068 2 6 2 . 5 9
18 0 . 383489 715.27
19 0 .936076 1329.24
20 0 .009521 113.97
21 0 .190185 129.56
22 0 .77317 6 78 .92
23 0 .646953 1745 .57
24 0.869129 181.87
25 0.6410 75 620 .47
26 0.134382 1472.91
27 0 .797779 81.93
28 0.722374 121. 72
29 0 .296690 1097.71
30 0.086229 1157.76
31 0 .7 78634 667.47
32 0 .3 29 307 1350 .76
33 0 .163365 805.58
34 0 .420638 623.57
35 0.579784 1860.12
36 0 .473011 506 . 7 6
37 0 .1 26340 1251. 50
38 0 .792532 392 .08
39 0 .066484 909 .82
40 0 . 310511 1659 .03
41 0 .813840 1358.03
42 0 .7 299~2 1713 . 8 6
43 0 .245253 215.31
44 0 .656617 802.93
45 0 .077151 291.86
46 0 .643837 3 7 6 . 0 3
47 0 .479582 90 3 .08
48 0 .9 478 11 8 17 . 0 6
49 0 . 4 7642 1 59 .64
50 0 .5 526 7 7 133 3.67
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8.1 Estimators

An inference about a population parameter can be made in either of two ways-we
can estimate the unknown parameter value or we can make a decision about a hypoth­
esized value of the parameter. To illustrate, we can estimate the mean number fL of
jobs submitted per hour to a data-processing center or we might want to decide whether
the mean fL exceeds some value-say, 60. The method for making a decision about
one or more population parameters, called a' statistical test of a hypothesis, is the
topic of Chapter 9. This chapter will be concerned with estimation.

Suppose we want to estimate some population parameter , which we denote bye.
For example, e could be a population mean fL, a population variance 0- 2, or the
probability F(a ) that an observation selected from the population is less than or equal
to the value a. A point estimator, designated by the symbol () (i.e. , we place a "hat"
over the symbol of a parameter to denote its estimator), is a rule or formula that tells
us how to use the observations in a sample to compute a single number (a point) that
serves as an estimate of the value of e. For example, the mean yof a random sample
of n observations, YI, Y2 • . . . , Yn, selected from a population is a point estimator of
the population mean fL-i. e. , iL = y. Similarly, the sample variance s2 is a point
estimator of 0-2-i .e. , &-2 = 52 .

Definition 8.1

A point estimator is a rule or formula that tells us how to calculate a num erical
estimate based on the measurements contained in a sample. The single number
that results from the calculation is called a point estimate.

Another way to estimate the value of a population parameter eis to use an interval
estimator. An interval estimator is a rule, usuallyexpressed as a formula, for calculating
two points from the sample data. The objective is to form an interval that contains e
with a high degree of confidence. For example , if we estimate the mean number fL
of jobs submitted to a data-processing center to be between 40 and 60 jobs per hour,
then the interval 40 to 60 is an interval estimate of p:

Definition 8.2

An interval estimator is a formula that tells us how to use sample data to calculate
an interval that estimates a population parameter.

ln this chapter, we will identify desirable properties of point and interval estimators,
explain how to compare two or more estimators for a single parameter, and show how
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to measure how good a single estimate actually is. ln addition, we will present methods
for finding both point and interval estimators, give the formulas for some useful
estimators, and show how they can be used in practical situations.

8.2 Properties of Point Estimators
..................................................................

Since a point estimator is calculated from a sample, it possesses a sampling distribution.
T he sampling distribution of a point estimator completely describes its properties. For
example, according to the central limit theorem, the sampling distribution for a sample
mean will be approximately normally distributed for large sample sizes, say, n = 30
or more, with mean JL and standard error a-Iv;;. (see Figure 8.1). Th e fi gure shows
that a sample mean y is equally likely to fall above or below JL and that the probability
is approximately .95 that it will not deviate from JL by more than 2a-y = 2a] v;;..

fiGURE 8.1 ~ ICY)
lampling distribution of a sample
mean for large samples

L---==--_ J--_ --'-_ _ -'-_----J'--_-'-_ --="-----_ Y

The characteristics exhibited in Figure 8. 1 identi fy the two most desirable prop­
erties of estimators. First, we would like the sampling distribution of an estimator to
be centered over the parameter being estimated. If the mean of the sampling distribution
of an estimator {) is equal to the estimated parameter (), then the estimator is said to
be unbiased . If not, the estimator is said to be biased . The sample mean is an unbiased
estimator of the population mean JL . Sampling distributions for unbiased and biased
estimators are shown in Figures 8.2a and 8.2b, respectively.

fiGURE 8.2 ~
lampling distributions for unb iased
and biased estimators of ()

--= ----1... -=:..- A

a. Estimator A is unbiased.

-==-------'-- -'-------=- B
e J.1 n

-------­Bias

b. Estimator B is biased.
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Definition 8.3

An estimator 8 of a parameter e is unbiased if E( 8)
estimator is said to be biased.

Definition 8.4

e. If E( 8) =1= e, the

FIGURE 8.3 ~
Sampling distributions for two
unbiased estimators of ewith
different variances

The bias B of an estimator 8 is equal to the difference between the mean E(0)
of the sampling distribution of 0and 8, i.e . ,

B = E(O) - e

In addition to unbiasedness, we would like the sam pling distribution of an estimator
to have minimum variance, i. e., we want the spread of the sampling distribution to
be as small as possible so that estimates will tend to fall close to e.

Figure 8.3 portr ays the sampling distributions of two unbiased estimators, A and
B, with A having sma ller variance than B. An unbiased estima tor that has the minimum
variance among all unbiased estimators is called the minimum variance unbiased
estimator (MVUE). For example, y is the MVUE for u: That is, Var(y ) = u 2/n is
the smallest variance among all unbiased estimators of u: (Proof omitted .)

Definition 8.5

The minimum variance unbiased estimator (MVUE) of a parameter e is the
estimator 0 that has the smallest variance of all unbiased estimators.

Sometimes we canno t achi eve both unbiasedness and minimum varian ce in the
same estim ator. For example, Figure 8.4 shows a biased estimator A with slight bias,



fiGURE 8.4 ~
lampling distributions of biased
estimator Aand MVU EB
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but with a smaller variance than the MVUE B. In such a case, we prefer the estimator
that minimiz es the mean squared error, the mean of the squared deviations between
{} and e;

Mean squared error for {}; E[({} - e)Z]

It can be shown (proof omitted) that

E[({} - e)Z] = V( {}) + B2

Therefore, if {} is unbiased, i.e., if B = 0, then the mean squared error is equal to
V({}). Furth ermore, when B = 0, the estimator {} that yields the smallest mean
squared error is also the MVUE for e.

Let YI, Y2, . . . , Yn be a random sample of n observations from a normal distribution
with mean p- and variance 0' 2. Show that the sample variance S2 is an unbiased
estimator of the population variance 0'2 when;

a. The sampled population has a normal distribution.

b. The distribution of the sampled population is unknown.

a. From Th eorem 7.4, we know that when sampling from a normal distribution,

(n - I )s 2
-'-----"2-'.:- = X 2

a

where X2 is a chi-square random variable with II = (n - I) degrees of freedom.
Rearranging terms yields

from which it follows that
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Applying T heorem 5.2 , we obtain

(Jz
E(sZ) = E(XZ)

(n - I)

We know from Section 5.6 that E(XZ
) = vand V(XZ) = 2v; thu s

(Jz (Jz
E(sZ) = (n _ I)v = (n _ I)(n - I) = (Jz

Therefore, by Definit ion 8.3, we concl ude that sZ is an un biased estima tor of u Z•

b. By the defin ition of sample variance, we have

e ~ ~ rire JI y,rl ~ -J,-[i YT - n(W]
(n I)L =I n J n I ,=1

Fro m Theorem 4.4, (Jz = E(yZ) - p.z. Consequently, E(yZ) = (Jz + P.z for a
random variable y. Since each y value, y" Yz , . . . , Yn, was ran domly selected
from a popu lation with mean p. and variance (Jz, it follows that

E(YT) = (Jz + P.z (i = I , Z, . . . , n)

and

E(yZ) = (J~ + (p.y)2 = (Jz/n + P.z

Taking the expected value of sZ and substituting these expressions, we obtain

E(sZ) = E{_ I_ [ i yf - n(W]}
n - I i=!

= n ~ l{EL~ yf ] - E[n(W]}

= -J,-{ i E[ yf] - nE[(y)Z] }
n I ,=1

= _l_{i ((Jz + p.2) _ n((Jz + p.z)}
n - 1 ;=1 n

I= - - [( n(JZ + np.Z) - (JZ - np.Z]
n-I

I= - - [n(J2 - (JZ]
n - I

= (~) (JZ = (JZ
n - I

This shows that, regardless of the nature of the sam pled popul ation , sZis an unbiased
estimator of (Jz.
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EXERCISES

OPTIONAL EXERCISES

8.1 Let Yl, Y2 , Y3 be a random sample from an exponential distribution with mean e, i.e., E(Yi) = e, i =
I, 2, 3. Con sider three estimators of e:

Yl + yz
2

a. Show that all three estimators are unbiased.
b. Which of the estimators has the smallest variance? [Hint: Recall that, for an exponential distribution,

V(Yi) = ez.]

8.2 Let Yl , Yz , Y3, , Yn be a random sample from a Poisson distribution with mean A, i.e., E(Yi)
A, i = I, 2, , n. Consider four estimators of A:

Al = Y
A - Yl + yz

3 - 2

Az = n(YI + yz + .. . + Yn )

A4 = 2:'J..
n

a. Which of the four estimators are unbiased?
b. Of the unbiased estimators, which has the smallest variance? [Hint: Recall that, for a Poisson distri­

bution, V(Yj) = A.]

8.3 Suppose Y has a binomial distribution with parameters n and p.
a. Show that p = yin is an unbiased estimator of p.
b. Find the variance of b.

8.4 Let YI, Yz, .. . , Yn be a random sample from a gamma distribution with parameters a = 2 and f3 unknown.
a. Show that y is a biased estimator of f3. Compute the bias.
b. Show that {3 = y/2 is an unbiased estimator of f3.
c. Find the variance of (3 = y/2. [Hint: Recall that, for a gamma distribution, E(Yi ) = 2f3 and V(Yi) =

2f3z. ]

8.5 Show that E[(O - (J)Z] = V(O ) + BZ, where the bias B = E(O ) - e. [Hint: Write (0 - e)
[0 - E(O)] + [E(O ) - e].]

8.6 Let YI be a sample of size 1 from a uniform distribution over the interval from 2 to e.
a. Show that Yl is a biased estimator of eand compute the bias.
b. Show that 2(Yl - I) is an unbiased estimator of e.
c. Find the variance of 2(Yl - I) .

8.7 Let Yl, Yz, . . . , Yn be a random sample from a normal distribution, with mean JL and variance a Z. Shcw
that the variance of the sampling distribution of SZ is 2a4/(n - 1).
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8.3 Finding Point Estimators: Methods of Estimation
.............................................................................................................................

There are a numb er of different methods for finding point estimators of parameters.
Two classical methods, the method of moments and the method of maximum like­
lihood , are the main topics of this section. Th ese techniques produce the estimators
of the population parameters encountered in Sections 8.5-8. l l , A discussion of other
methods for finding point estimators is beyond the scope of this text; we give a brief
description of these other methods and refer you to the references given at the end of
this chapter.

METHOD OF MOMENTS The method of estimation that we have employed thus far is to
use sample numeri cal descriptive measures to estimate their population parameters.
For example, we used the sample mean y to estimate the population mean u : From
Definition 4.7, we know that the parameter E(y) = p. is the first moment about the
origin or, as it is sometimes called, the first population moment. Similarly, we define
the first sample moment as

n

L )';
- ; = 1y = - ­

n

The general techniqu e of using sample moments to estimate their corresponding
population moments is called the method of moments. For the parameters discussed
in this chapter, the method of moments yields estimators that have the two desired
properties mentioned earlier, i.e. , unbiased estimators and estimators with minimum
variance.

Definition 8.6

Let )' 1, )' 2 , . . . , )'n represent a random sample of size n from some probability
distribution (discrete or continuous). The kth population moment and kth
sample moment are defined as follows:

kth population moment: E(l)
n

Lyf
kth sample moment: mk = .i..=..!­

n

For the Case k = 1, the first population moment is E()') = p. and the first sample
moment is 111 = Y.
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Definition 8.7

Let Yl , )'2, ... , y,. represent a random sample of size 11 from a probability
distribution (discrete or continuous) with parameters 81, 8z, ... , 8m . Then
the moment estimators, OJ, O2 , .. . , Om, are obtained by equating the first
m sample moments to the corresponding first m population moments:

E(y) =*L v.

E(yZ) = 1- L if
11

E(ym) = 1- L i"
11 I

and solving for 8], 8z, ... ,8m , (Note that the first m population momen ts
will be functions of 8], 8z, ... ,8m . )

For the special case m = I , the moment estimator of 8 is some function
of the sample mean y.

The response rate y of auditory nerve fibers in cats has an approximate Poisson dis­
tribution with unknown mean A ( Journal of the Acoustical Society of America, Feb.
1986). Suppose the auditory nerve fiber response rate (recorded as number of spikes
per 200 milliseconds of noise burst) was measured in each of a random sample of
10 cats. The data follow:

15.114.612.0 19.2 16.115.511.31 8.71 7.117.2

Calculate a point estimate for the mean response rate Ausing the method of moments.

We have only one parameter, A, to estimate; therefore, the moment estimator is found
by setting the first population moment , E(y), equal to the first sample moment , y.
For the Poisson distribution, E(y) = A; hence , the moment estimator is

y =

For this example,

15.1 + 14.6 + ... + 17.2
10

15.68

Thus, our estimate of the mean auditory nerve fiber response rate A is 15.68 spikes
per 200 milliseconds of noise burst.
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EXAMPLE 8.3 (OPTIONAL)

Solution

The time y until failure from fatigue cracks for underground cable possesses an approx­
imate gamma probability distribution with parameters a and f3 (IEEE Transactions
on Energy Conversion, Mar. 1986). Let Yl, Y2, ... , Yn be a random sample of n
observations on the random variable y. Find the moment estimators of a and f3.

Since we must estimate two parameters, a and f3, the method of moments requires
that wc set the first two population moments equal to their corresponding sample
moments. From Section 5.6, we know that for the gamma distribution

J.L = E(y) = af3
(j2 = af32

Also, from Theorem 4.4, (j2 = E(/) - J.L2. Thus, E(y2) = (j2 + J.L2. Then for the
gamma distribution, the first two population moments are

E(y) = af3

E( y2) = (j2 + J.L 2 = af32 + (af3)2

Setting these equal to their respective sample moments, we have

as = y

aS2 + (as)2 = 2: yf
n

Substituting y for as in the second equation, we obtain

yS + (W = 2: yf
n

or,

-f3' - 2: yf ( -)2Y - -n- - y

n

(n - l)s2
n

n

Our two equations are now reduced to

as = y
yS = (n : l)s2

Solving these equations simultaneously, we obtain the moment estimators

and a= ( n )y2 (n) (y) 2
~ s2= ~ ~
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METHOD OF MAXIMUM LIKELIHOOD Th e method of maximum likelihood and an exposition
of the properties of maximu m likelihood estimators are the results of work by Sir
Ronald A. Fisher (1 890-1 962). Fisher's logic can be seen by considering the following
example: If we randomly select a sample of 11 observations, YI, yz, ... , Yn , of a
discrete random variable y and if the probability distribution p(y) is a function of
a single parameter a, then the probability of observing these n independent values
of Yis

P(YI , yz, ... , Yn) = P(Yl )P(YZ) ... P(Yn)

Fisher called this joint probability of the sample values, YI, Yz, . . . , Yn, the likelihood
L of the sample, and suggested that one should choose as an estimate of a the value
of athat maximizes L. If the likelihood L of the sample is a function of two parameters,
say, aJ and az, then the maximum likelihood estimates of aJ and az are the values
that maximize L. The notion is easily extended to the situation in which L is a function
of more than two parameters.

Definition 8.8

a. The likelihood L of a sample of 11 observations, YI. yz, ...• Yn, is the joint
probability function p( )'1 , yz, . . . • Yn) when YI , yz, ... , Yn are discrete
random variables.

b. T he likelihood L of a sample of 71 observations, )' 1, Yz , . . . , Yn, is the joint
density function ( (YI ,' yz, .. . , Yn) when YI, )'z, . . . , Yll are continuous
random variables.

Note: For fixed values of YI, yz, ... , YIl ' L will be a function of e.

Th eorem 8. I follows directly from the definition of independen ce and Definitions
6.8 and 6.9.

Theorem 8.1

a. Let Y1 , yz, . . . , Yn represent a random sample of 11 observations on a random
variable y. Then L = p(Ydp(yz) .. . P(Yn ) when y is a discrete random
variable with probability distribution p(y).

b. Let YI. yz, . . . , Yn represent a random sample of 11 observations on a random
variable y. Then L = ( (YI )((YZ) ... (( Yn ) when Yis a continuous random
variable with density function (( y).
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EXAMPLE 8.4

Solution

Definition 8.9

Let L be the likelihood of a sample, where L is a function of the parameters
81, O2 , •• • , Ok . Then the maximum likelihood estimators of 01, Oz, . ..• Ok
arc the values of 01, 8z, ... , Ok that maximize L.

Fisher showed that maximum likelihood estimators of population means and
proportions possess some very desirable properties. As the sample size n becomes larger
and larger, the sampling distribution of a maximum likelihood estimator etends to
become more and more nearly normal, with mean equal to 0 and a variance that is
equal to or less than the variance of any other estimator. Although these properties of
maximum likelihood estimators pertain only to estimates based on large samples, they
tend to provide support for the maximum likelihood method of estimation. The
properties of maximum likelihood estimators based on small samples can be acquired
by using the methods of Chapters 4, 5, and 6 to derive their sampling distributions
or, at the very least, to acquire their means and variances.

To simplify our explanation of how to find a maximum likelihood estimator, we
will assume that L is a function of a single parameter O. Then, from differential
calculus, we know that the value of 0 that maximizes (or minimizes) L is the value

for which ~~ = O. Obtaining this solution, which always yields a maximum (proof

omitted), can be difficult because L is usually the product of a number of quantities
involving O. Differentiating a sum is easier than differentiating a product, so we attempt
to maximize the logarithm of L rather than L itself. Since the logarithm of L is a
monotoni cally increasing function of L, L will be maximized by the same value of (J

that maximizes its logarithm. We illustrate the procedure in Examples 8.4 and 8.5.

Let Yl, Yz , . . . , Yn be a random sample of n observations on a random variable y
with the exponential density function

l
- Y/ {3

_e _ if 0 :s Y < 00

f( y) = {3
o elsewhere

Determine the maximum likelihood estimator of {3.

Since Yl, Y2 , ... , Yn are independent random variables, we have
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Taking the natural logarithm of L yields
n

2: Yi
In(L) = In (e-~7- 1 Yi/ (3) - n In(,8) = _ i=1 - n In(,B)

,8

Then
n

d In(L) i~ Yi n
dj3=7-~

Setting this derivative equal to 0 and solving for {3, we obtain
n

2: v.
i =l _!!:. = 0

{32 {3

This yields

or
n

n{3 = 2: v.
i =1

EXAMPLE 8.5 (OPTIONAL)

Solution

n

2: v.
f.I. i =1 ­
fJ = -n- = Y

Therefore, the maximum likelihood estimator (MLE) of,8 is the sample mean y, i.e.,

(3 = y.

Let YI , Y2, . . . , Yn be a random sample of n observations on the random variable
Y, where f( y) is a normal density function with mean p., and variance (1"2 . Find the
maximum likelihood estimators of p., and (1" 2.

Since YI , Y2 , .. . , Yn are independent random variables, it follows that

e-L7=I( Yi- J.,i / (200 2
)

= (1"n(2TT)n / 2

and
n

2: (Yi - p.,)2 n n
In(L) = _,=1 - -In((1"2) - - In(2TT)

2(1"2 2 2
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Taking derivatives of In(L) with respect to }.t and 0- and setting them equal to 0 yields
n

2: 2(v. - [J.)
i=1 2iT 2 - 0 - 0 = 0

and
11

d In(L) i~ (Yi - [J.)2 _ ~(l-)
~ = 2iT4 2 iT 2 - 0 = 0

The values of }.t and 0- 2 that maximize L [and hence In(L)] will be the simultaneous
solution of these two equations. The first equation reduces to

11

2: (Yi - [J.) = 0
i=!

and it follows that

11

or 2: Yi - njL = 0
i=1

n

njL = L Yi and }.t = Y
i~1

Substituting jL = ji into the second equation and multiplying by 2iT2, we obtain
11

2: (Yi - ji)Z
i=l

11

2: (Yi - ji)2
or iT 2 = :..::i=:....:.I _

n

Therefore, the maximum likelihood estimators of }.t and 0- 2 are

[J. = ji and

n

L (Yi - ji)2
iT2 = :....;=:....:.'----

n

Note that the maximum likelihood estimator of 0- 2 is equal to the sum of squares of
deviations ~7= I (Yi - ji)2 divided by n, whereas the sample variance S2 uses a divisor
of (n - 1). We showed in Example 8. 1 that S2 is an unbiased estimator of 0- 2. Therefore,
the maximum likelihood estimator

11

L (Yi - ji)2
'2 i= ! (n - 1) 2
0- = = - - - s

n n

is a biased estimator of 0- 2.

METHOD OF LEAST SQUARES Another useful technique for finding point estimators is the
method ofleast squares. This method finds the estimate of () that minimizes the mean
squared error (MSE):

MSE = E(O - W
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The method of least squares-a widely used estimation technique-is discussed in
detail in Chapter II . Several otherestimation methods are brieflydescribed here ;consult
the references at the end of this chapter if you want to learn more about their use.

JACKKNIFE ESTIMATORS Tukey (1 958) developed a "leave-one-out-at-a-time" approach to
estimation, called the jackknife, 'f that is gainin g increasing acceptance among prac­
titioners. Let YI, Y2, . . . , Yn be a sample of size n from a population with param­
eter e. An estimate 8u) is obtained by omittin g the ith observation (i.e., Yi) and
computing the estimate based on the remaining (n - I) observations. This calculation
is performed for each observation in the data set, and the procedure results in n
estimates of e: 8( 1), 8(2), .. . , 8('1)' The jackknife estimator of e is then some
suitably chosen linear com bination (e.g., a weighted average) of the n estimates.
Application of the jackknife is suggested for situations where we are likely to have
outliers or biased samples, or find it diffi cult to assess the variability of the more
traditional estimators.

ROBUST ESTIMATORS Many of the estimators discussed in Sections 8.5-8.11 are based
on the assumption that the sampled population is approximately normal. When the
distribution of the sampled population deviates greatly from normality, such estimators
do not have desirable properties (e.g., unbiasedness and minimum variance). An
estimator that performs well for a very wide range of probability distributions is called
a robust estimator. For example, a robust estimate of the populat ion mean u , called
the M-estimator, compares favorabl y to the sample mean 51 when the sampled pop­
ulation is norm al and is considerably better than 51 when the population is heavy­
tailed. See Mosteller and Tukey (1977) and Devore (1987) for a good practical dis­
cussion of robust estimation techniques.

BAYES ESTIMATORS The classical approach to estimation is based on the concept that the
unknown parameter 8 is a constant. All the information available to us about 8 is
contained in the random sample )'1, Y2 , ... , Yn selected from the relevant population.
In contrast, the Bayesian approach to estimation regards eas a random variable with
some known (prior) probability distribution g(e). Th e sample informatio n is used
to modify the prior distribut ion on e to obtain the posterior distribution, ((8 I )'1,

Y2, . . . , Yn). Th e Bayes estimator of e is then the mean of the posterior probability
distribution [see Mendenhall, Wackerly, and Seheaffer (1989)].

OPTIONAL EXERCISES
..................................................................
8.8 A binomial experiment consisting of n trials resulted in Bernoulli observations )'1 , Y2, . .. , )'n, where

v, = g if the ith trial was a success
if not

-and P(Yi = I) = p, P()'i = 0) = I - p. Let)' = 2:7~ I Yi be the num ber of successes in n trials.

' The procedure derives its name from the Boy Scout jackknife; like the jackknife, the procedure serves as
a handy tool in a variety of situations when specialized techniques may not be available.
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a. Find the moment estimator of p.
b. Is the momen t estimator unbiased?
c. Find the maximum likelihood estimator of p. [Hint: L = pY(l - p)n- y.]
d. Is the maximum likelihood estimator unbiased?

8.9 Let YI , Y2, .. . , Yn be a random sample of n observations from a Poisson distribution with probability
function

e-'\ V
p(y) = -y!- ( y = 0, I, 2, . . .)

a. Find the maximum likelihood estimator of A.
b. Is the maximum likelihood estimator unbiased?

8.10 Let Y1 , )' 2, . . . , Yn be a random sample of n observations on a random variable Y, where f(y) is a gamma
density function with a = 2 and unknown (3:

!
ye: ;/{3 if Y > 0

f( y) = I-'

o otherwise

a. Find the maximum likelihood estimator of {3.
b. Find £({3) and V({3) .

8.11 Refer to Exercise 8.10.
a. Find the moment estimator of {3.
b. Find £({3) and V({3).

8.12 Let YI, Y2, ... , Yn be a random sample of n observations from a normal distribution with mean 0 and
unknown variance a 2. Find the maximum likelihood estimator of a 2.

8.13 Let Y1, Y2, . . . , Yn be a random sample of n observations from an exponential distribution with density

!
l e-Y/{3 if Y > 0

f( y) = {3
o otherwise

a. Find the moment estimator of (3.
b. Is the moment estimator unbiased?
c. Find V({3).

8.4 Finding Interval Estimators: The Pivotal Method

In Section 8.1, we defined an interval estimator as a rule that tells how to use the
sample observations to calculate two number s that define an interval that will enclose
the estimated parameter with a high degree of confidence. Th e resulting random
interval (random, because the sample observations used to calculate the endpoints of
the interval are random variables) is called a confidence interval, and the probability
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(prior to sampling) that it contains the estimated parameter is called its confid ence
coefficient. If a confidence interval has a confidence coefficient equal to .95, we call
it a 95% confidence interval. If the confidence coefficient is .99, the interval is said
to be a 99% confidence interval, etc. A more practical interpretation of the confidence
coeffi cient for a confidence interval is given later in this section.

Definition 8.10

The confidence coefficient for a confi dence interval is equal to the probability
that the random interval, prior to sampling, will contain the estimated parameter.

One way to find a confi dence interval for a parameter 8 is to acquire a pivotal
statistic , a statistic that is a function of the sample values and the single parameter 8.
Because many statistics are approximately normally distributed when the sample
size n is large (central limit theorem), we can construct confi dence intervals for their
expected values using the standard normal random variable z as a pivotal statistic.

To illustrate, let (j be a statistic with a sampling distribution that is approximately
normally distributed for large samples with mean E({j) = e and standard error O"{).

Then,

(j - e
z= - -

O"{)

is a standard normal random variable. Since z is also a function of only the sample
statistic {jand the parameter e,we will use it as a pivotal statistic. To derive a confidence
interval for e, we first make a probability statement about the pivotal statistic. To do
this, we locate values Za /2 and - Za / 2 that place a probability of al2 in each tail
of the z distribution (see Figure 8.5), i.e., P(z > Za / 2) = a12. It can be seen from
Figure 8.5 that

P(- Za / 2 ::::; Z ::::; Za /2) = I - a

FIGURE 8.5 ~ !(z)

Locating za/2 lor a confidence
interval

L--'=-=--- --=---';-_ --L_ _ --'---_ ---"__----;----'--'-'="--_ Z

- Za /2
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Substituting the expression for z into the probability statement and using some
simple algebraic operations on the inequality, we obtain

( e- e )
P(- Zo / 2 $ Z $ Zo / 2) = P - Zo / 2 $ ~ $ Zo / 2

= P(- Zo/20"iJ $ e- e $ Zo/20"iJ)

= P(- e- Zo/20"iJ $ - e $ - e+ Zo/20"iJ)

= p(e- Zo/20"iJ $ e $ e+ zo/zO"iJ) = 1 - a

Th erefore, the probability that the interval formed by

LCL = e- Zo/ zO"iJ to UCL = e+ Zo/20"iJ

will enclose e is equal to (l - a). The quantiti es LCL and UCL are called the lower
and upper confidence limits, respectively, for the confidence interval. Th e confidence
coeffic ient for the interval will be (l - a).

Th e derivation of a large-sample (l - a)100% confidence interval for e is sum­
marized in Th eorem 8.2..

Theorem 8.2

Let ebe normally distributed for large samples with E(tJ)
error O"iJ. Then a (l - a)100% confidence interval for e is

e- Zo/2 0"iJ to e+ Zo/20"iJ

e and standard

Th e large-sample confidence interval can also be acquired intuitively by examining
Figure 8.6. Th e Z value corresponding to an area A = .475- i.e ., the Z value that
places area af ]: = .02. 5 in the upper tail of the Z distribution-is (see Table 4 of
Appendix II) Z.025 = 1.96. Therefore, the probability that ewill lie within 1.96ao
of e is .95. You can see from Figure 8.6 that whenever efalls within the interval
e ± 1.960"iJ, then the interval e± 1.960"iJ will enclose e. Therefore, e± 1.96ao
yields a 95% confi dence interval for e.

FIGURE 8.6 ~ f({j)

The sampling distribution 01 e for
large samples

L---=-_~,--_--,-_----",-,---_--,-_.......u__--=:::::1-_ {)
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We may encounter one slight difficulty when we attempt to apply th is confidence
interval in practice. It is often the case that ao is a function of the parameter () that
we are attempting to estim ate. However, when the sample size n is large (whic h we
have assumed throughout the derivation), we can substitute the estimate {) for the
parameter () to obta in an approximate value for ao.

In Example 8.6 we will use a pivotal statistic to find a confidence interval for J-L
when the sampl e size is small , say, n < 30.

EXAMPLE 8.6 Let )i and S2 be the sample mean and variance based on a random sample of n
observations (n < 30) from a normal distribution with mean J-L and variance a 2. Find
a 95 % confidence interval for J-L.

Solution A pivotal statistic for J-L can be con structed using the t statistic of Chapter 7. By
Definition 7.5,

z
t=--

YX2/ v
where z and X 2 are independent random variables and X 2 is based on v degrees of
freedom . We know that y is normally distributed and that

Y - J-Lz=--
a/V;

is a standard normal random variable . From Theorem 7.4, it follows that

(n - 1)S2 2
a2 = X

is a chi-square random variable with u = (n - I) degrees of freedom. We state (without
proof) that yand S2 are independent when they are based on a random sample selected
from a normal distribution . Therefore, z and X 2 will be independent random variables .
Substituting the expression s for z and X2 into the formula for t, we obtain

Y - J-L

a/V;

~(n ~})s2/(n _ I)

t - __z_ - -r=========
- YX2/ v -

Note that the pivotal statistic is a function only of J-L and the sample statistics y
and s2.

The next step in finding a confidence interval for J-L is to make a probability
statement about the pivotal statistic t. We will select two values of t, call them ta / 2
and - ta / 2, that correspond to probabilities of a /2 in the upper and lower tails,
respectivel y, of the t distribution (see Figure 8.7). From Figure 8.7 , it can be seen
that
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FIGURE 8.7 ~

The location of tall and -tall
for a Student's t distribution

t (l)

-/ [1/2

Substituting the express ion for t into the probability statement, we obtain

Multipl ying the inequal ity within the brackets by sfV-;;, we obtain

p[ -taI2(~) ~ Y- fL ~ taI2(~)] = 1 - a

Subtracti ng y from each part of the inequality yields

p[ -y - t a I2(~) ~ - fL ~ - y + t a I2(~)] I-a

Finally, we multiply each term of the inequality by (- 1), thereby reversing the ine­
quality signs. Th e result is

p[y - ta I2(~) ~ fL ~ Y+ taI2(~)] = 1 - a

Th erefore, a (l - a)1 00% confidence interval for fL when n is small is

y - tal2(~) to Y+ tal2(~)

We now apply the confi dence interval derived in Example 8.6 to a practical
situation.
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Solution
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Chemical plants must be regulated to prevent the poisoning of fish in nearby rivers
or streams. One of the measurements made on fish to evaluate the potential toxicity
of chemicals is the length of mature fish. If a river or stream is inhabited by an
abundance of mature fish with lengths less than the average length of mature members
of their species, we have strong evidence that the river is being chemically contami­
nated. A chemical plant, under investigation for chlorine poisoning of a stream, has
hired a biologist to estimate the mean length of fathead minnows (the main inhabitants
of the stream) exposed to 20 micrograms of chlorine per liter of water. The biologist
captures 20 newborn fathead minnows from the stream and rears them in aquaria with
this chlorine concentration. The length of each (in millimeters) is measured after a
lO-week maturation period, with the following results:

y = 27.5

s = 2.6

Construct a 95% confidence interval for the true mean length of fathead minnows
reared in chlorine-contaminated water. Assume that the lengths of the fathead minnows
are approximately normal.

Recall that the sampling distribution of the t statistic depends on its degrees of free­
dom, lJ. The tabulated values ta, such that P(t ;::: tal = a, are given in Table 7 of
Appendix II, for values of lJ from I to 29, as well as the value of ta when v becomes
infinitely large. An abbreviated version of this table is shown in Table 8.1 on page
358. For example, suppose a t statistic is based on lJ = 4 degrees of freedom (df) and
we want to find the value ta that places probability a = .025 in the upper tail of the
t distribution. The appropriate value, shaded in Table 8.1, is t025 = 2.776.

For our example, n = 20 and t will possess (n - I) = 19 degrees of freedom.
Since we want to find a 95% = (I - a)IOO% confidence interval for the mean
length j-t of fathead minnows, a = .05; we must find the value t.025 corresponding
to a = .025 and 19 degrees offreedom. This value is given in Table 7 of Appendix II
as ta/2 = t025 = 2.093. Then the confidence interval is

y ± t.025(~) = 27.5 ± 2.093(~)

= 27.5 ± l. 22 or (26.28, 28.72)

Since the confidence coefficient is .95, we say that we are 95% confident that the
interval from 26.28 to 28.72 millimeters contains the true mean length, j-t, of fathead
minnows reared in chlorine-contaminated water.
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1(1)

0

I"

TABLE 8.1 An Abbreviated Version of Table 7 of Appendix II

Degrees
of Freedom t.IOtI 1.0\0 t.02\ t.Olo t.OtIS

I 3.078 6.3\4 \2.706 31.82\ 63.657
2 \ .886 2.920 4.303 6.965 9.925
3 1.638 2.353 3. \82 4.54\ 5.84\
4 U33 2. 132 2.776 3.747 4.604
5 1.476 2.0\5 2.571 3.365 4.032
6 \.440 I. 943 2.447 3. \43 3.707
7 1.41 5 1.895 2.365 2.998 3.499
8 1.397 \. 860 2.306 2.896 3.355
9 1.383 I. 833 2.262 2.821 3.250

10 I. 372 1.8\ 2 2.228 2.764 3. \69

" 1.363 1. 796 2.20\ 2.7 \8 3. \06
12 1.356 1.782 2.\79 2.68\ 3.05;
13 1.350 \ .77\ 2. \60 2.650 3.0\2
14 1.345 1.761 2. 145 2.624 2.977
15 1.341 1.753 2. \ 3\ 2.602 2.947

To demonstrate the interpretation of a confidence interval, we programmed a
computer to draw 1,000 samples of size n = 10 from a normal distribution with mean
J1- = 10 and variance 0'2 = 1. A 95% confidence interval for J1- was computed for
each of the 1,000 samples. Th ese are shown in Table 8.2. Only the 50 intervals that
are starred (*) fail to enclose the mean J1- = 10. The proportion that enclose J1-, .95 ,
is exactly equal to the confidence coefficient. This explains why we are reasonably
confident that the interval calculated in Example 8.7 (26.28, 28.72), encloses the true
value of J1- . If we were to employ our interval estimator on repeated occasions, 95% of
the intervals constructed would contain J1-.
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TABLE 8.2 One Thousand 95% Confidence Intervals for the Mean of a Normal Distribution (f-t = 10, (J"l = I). [Note: Starred (*)
intervals fail to include f-t = 10.]

SA.~PLE LCL VCL SAMPLE LCL VCL SAMPLE LCL VCL SAMPLE LCL VC L SAM PLE LCL VCL

I ( 9. 5 74 11. 183) 2 ( 9. 370 11. 13;) 3 ( 9. 425 10 . 403) 4 ( 9 .356 10 . 77)) 5 ( 9 .956 11.455 )
6 ( 8 .807 10 .58 9) 7 ( 9 .1 88 10 . 588 ) 8 ( 9 .798 11. 390 ) 9 (l0 . 057 11 .561 )* 10 ( 9. 793 11. 00 9)

11 ( 9. 180 10 .848 ) 12 ( 9 . 735 10 . 399 ) 13 ( 9.518 10 . 785 ) 14 ( 9.872 11. 003 ) 15 ( 9 .028 10 . 90))
16 ( 9. 4 14 11.1 0)) 17 ( 9.603 10 .816 ) 18 ( 9 . 469 10 .896 ) 19 ( 8.758 9.889)* 20 ( 9 . 6 17 11. 285 )
2 1 ( 8 . 926 10 .389 ) 22 ( 9 .7 10 10 .512 ) 23 ( 8 .847 10 . 66 7) 24 ( 9. 148 10 .675 ) 25 ( 9 . 722 11.017 )
26 ( 9 .575 11. 22 I) 27 ( 8 .8 20 10 .664 ) 28 ( 9 . 222 11.01 5 ) 29 ( 9.525 10 .71 7) 30 ( 9 .036 10 . 802 )
31 ( 8 .758 10 .151 ) 32 ( 9 .043 10 .650 ) 33 ( 9 .8 19 10. 95 8 ) 34 ( 9 . 085 10 .610 ) 35 ( 8 .847 , 10 . 692 )
36 ( 9 . 590 10 . 551 ) 37 ( 9 . 826 11 . 063 ) 38 ( 9 .5 06 10 .61 5 ) 39 ( 9.322 10 .401 ) 40 ( 8 .892 10 . 239)
4 I ( 9 .5 19 10 . 812) 42 ( 9. 023 10 .640 ) 43 ( 9 . 560 10 .65 I ) 44 ( 8.885 10 . 32)) 45 ( 9.90 1 11. 353 )
46 ( 9 . 348 10 .324 ) 47 ( 9 .188 10 .766) 48 ( 9 . 173 10 . 56 3 ) 49 ( 9 .039 10.56)) 50 ( 9 . 234 10. 864 )
5 1 ( 8 .799 10 .503) 52 ( 9 . 870 1I. 382) 5 3 ( 8 . 706 10 .830 ) 54 ( 9 .690 I I . 002 ) 55 ( 9 .340 10 . 864 )
56 ( 9 . 244 10 . 666 ) 57 ( 9 . 910 I I . 487) 58 ( 8 .690 10 . 1 I I ) 59 ( 9 .149 10 .661) 60 ( 9 . 320 10 .740)
61 ( 9 .052 11.085) 62 ( 9 .593 10 .985 ) 63 ( 9 .103 10 .768 ) 64 ( 9.429 10 .023) 65 ( 9 . 275 10. 0 32 )
66 ( 9 .139 11.033 ) 67 ( 9 .621 10 .916) 68 ( 9 .464 10 .571 ) 69 ( 9.7 17 10 .938) 70 ( 8 .895 10 . 638 )
71 ( 9 .496 11 .260) 72 ( 9 .1 24 10 .437) 73 ( 9 . 4 16 10 .718 ) 74 ( 8 .516 10 .296 ) 75 ( 8 .991 10 . 290 )
76 ( 9 . 225 10 .554 ) 77 ( 8 . 64 1 10. 451 ) 78 ( 9 .5 98 I 1.359 ) 79 ( 9 .443 11. 21)) 80 ( 9 . 384 11.055)
8 1 ( 9 .088 10.592) 82 ( 9 .7 77 11. 142 ) 83 ( 9 . 160 10 .683 ) 84 ( 8 .969 10 . 122 ) 85 ( 9 .275 10 . 372 )
86 ( 9 .676 10. 772) 8 7 ( 9 . 0 75 10 .507) 88 ( 8 .425 , 10 .059 ) 89 ( 9 .382 10 .761 ) 90 ( 8 . 646 10 .648)
9 1 ( 9 .414 10 .410) 92 ( 9 .661 10 .909 ) 93 ( 9 .240 10 .679 ) 94 ( 9.138 10 . 469 ) 95 ( 9 .497 10 .824)
96 ( 8 .871 10 . 627) 97 ( 9 .402 10 .923) 98 ( 9 . 24 1 10 . 695 ) 99 ( 8.832 10 . 790 ) 100 ( 9 . 546 10 .472)

10 1 ( 9 .604 10.705) 102 ( 9 .315 10 . 5 19 ) 103 ( 9 . 306 10 . 5 72) 104 ( 9 . 129 10 . 750 ) 105 ( 9 .566 10 .658)
106 ( 9 .490 10.558) 10 7 ( 9 .052 10 . 387) 108 ( 9 .464 10 . 969 ) 109 ( 9 .899 10 . 91 9 ) 110 ( 9 .045 10 . 284 )
I I I ( 9 . I 12 10 .341) 112 ( 9 .593 10 . 836 ) 113 ( 8 .726 10 . 5 15 ) 114 ( 9 . 5 I I 10. 9 16 ) 115 ( 9 .535 10 . 938 )
116 ( 9 .526 10 . 690 ) 117 ( 8 .848 10. 395 ) 118 ( 8 . 765 10 . 126) 119 ( 9 . 15 I 10. 696 ) 120 ( 8 .764 10 . 382 )
121 ( 9 .598 10 . 5 78 ) 122 ( 8 .988 10 . 286 ) 123 ( 9 .435 10 . 890 ) 124 ( 8 . 83 3 10 . 335 ) 125 ( 9 .6 44 10 .7 44)
126 ( 9 . 589 10 . 5 33 ) 127 ( 9 .28 4 10 . 174 ) 128 ( 9 .1 10 10 . 522 ) 129 ( 9 . 502 10 . 728 ) 130 ( 9 . 144 11.044)
13 1 ( 9 .344 10 . 85 1) 132 ( 9 .915 I I .372) 133 ( 9 . 25 2 10 . 399 ) 134 ( 9. 833 I I. 188 ) 135 ( 9 .268 10 . 21 9)
136 ( 9 .68 1 10 .8 04 ) 137 ( 9 .082 10 . 719 ) 138 ( 9 .374 10.198) 139 ( 9. 303 10 . 78 1) 140 ( 9 .046 10 .329 )
14 1 ( 9 . 19 1 10 . 640 ) 142 ( 9 .777 10 . 8 12 ) 143 ( 8 .622 10 .513 ) 144 ( 9 . 175 10 .9 31) 145 ( 9 . 227 10. 863)
146 ( 9. 167 10 .455) 147 ( 9 . 32 3 11 . 067) 148 ( 9 .148 10 .282) 149 ( 9 .169 10 . 360 ) 150 ( 9 .635 10. 989)
15 1 ( 9.877 10 . 723 ) 152 ( 8 .950 10 .546 ) 153 ( 8 .9 11 9 .986)"" 154 ( 9 .039 10 . 502 ) 155 ( 9 .765 , 10. 749 )
156 ( 9.354 10 . 900 ) 157 ( 8 .566 9.779)"" 158 ( 9 . 218 10 . 508 ) 159 ( 9 .3 12 10 .97 1) 160 ( 9 .262 10.390)
16 1 ( 9 .584 10 . 8 38 ) 162 ( 9.62 I 11. 306 ) 163 ( 9 .1 14 10. 142) 164 ( 8 .680 10 . 564 ) 165 ( 9 . 249 10.030)
166 ( 9.5 18 10 .579 ) 16 7 ( 9 . 740 10 .844 ) 168 ( 9 . 183 10 . 795 ) 169 ( 8.686 10 .580) 170 ( 9 .4 42 10 . 740 )
171 ( 9 . 129 1I . 088 ) 172 ( 9 .542 1I .062) 173 ( 9 .201 10. 730 ) 174 ( 9 . 485 11. 251) 175 ( 8 .640 , 10.463)
176 ( 9 .382 10 . 690 ) 177 ( 9 .24 I 10 . 585 ) 178 ( 9 .495 10 .810) 179 ( 9 .859 I I. 136) 180 ( 9. 356 10 . 9 75 )
18 1 ( 9 .385 10 .51 6 ) 182 ( 8.884 10 .759) 183 ( 9 . 0 1I 10 .829) 184 ( 9 .401 10 . 73 1) 185 ( 8 .637 10 .468)
186 ( 8 .769 10 . 727) 187 ( 9 .9 25 11.065) 188 ( 9 .42 7 11.199) 189 ( 9.550 11.040) 190 ( 9 . 729 10.88))
191 ( 9 .157 10 .439 ) 192 ( 9.277 10.485 ) 193 ( 9 . 69 1 10 . 6 1I ) 194 ( 9. 358 10 .99)) 195 ( 9 .229 10 . 976 )

196 ( 9 .014 11.275 ) 19 7 ( 8 . 475 10 .1 20 ) 198 ( 9. 390 10 .469) 199 ( 9 .485 11.083 ) 200 ( 9 .238 10 . 72 1)
201 ( 9 .153 10 .465) 202 ( 9 . 12 1 10 .960 ) 203 ( 9 .596 10 . 440 ) 204 ( 9 .595 11. 125 ) 205 ( 9 .136 10 . 383 )
206 ( 8 .930 10 .040 ) 207 ( 9 . 045 10 . 714 ) 208 ( 8 .894 10 .830 ) 209 ( 9 .029 10 .821) 2 10 ( 9 . 320 10 . 355 )
21 I ( 9 .380 10 .707 ) 212 ( 9 . 28 3 10.236 ) 2 13 ( 9 . 280 10 . 681) 214 ( 8 .606 10 . 34 3 ) 2 15 ( 9 . 585 11.183)
2 16 ( 8 .958 9 .89 9 )* 217 ( 9 .51 I 10.89 1) 2 18 ( 9 .733 10 . 805 ) 2 19 ( 9 .037 10 .317) 220 ( 9. 777 10 .910 )
22 1 ( 9 . 312 10 . 209 ) 222 ( 9 .349 10 .646 ) 223 ( 9 .252 10 . 943) 224 ( 9 .682 11.676) 225 ( 8 .773 10 . 69 7)
226 ( 9 . 202 10 . 266 ) 22 7 ( 9 . 756 10 .685 ) 228 ( 9 . 54 4 10 .478 ) 22 9 ( 9 .523 10 .876 ) 230 ( 9 . 444 10. 866)
231 ( 9 . 31 6 10 .725) 232 ( 9 .5 34 11.093) 23 3 ( 9 . 455 10 .602 ) 234 ( 8 .962 10 .305 ) 235 ( 9 . 374 10.571 )
236 ( 9 .138 10 .986) 23 7 ( 9 . 778 11. 21 )) 238 ( 9 . 59 7 11. 095 ) 23 9 ( 8 .985 10 .318 ) 240 ( 8 . 9 15 10 .549 )
241 ( 9 .830 10 .732 ) 242 ( 9 .81 0 10 .923 ) 24 3 ( 8 .9 5 1 10 . 315 ) 244 (10 .451 11. 345)* 245 ( 9 . 170 10. 339 )
246 ( 9 .020 10 . 123 ) 247 ( 9 .296 10 . 288 ) 248 ( 9 .5 10 10 . 359 ) 249 ( 9 .031 10. 354) 250 ( 9 . 428 11.241)

251 ( 9 .445 10 .761 ) 252 ( 9.697 10 . 9 3 )) 25 3 ( 9 . 494 11. 246 ) 254 ( 9 .200 10 . 86 1) 255 ( 8.904 10 .378 )
256 ( 9 .129 10 .713) 25 7 ( 9. 383 10 .142) 258 ( 9 . 8 79 10.792) 259 ( 8 .852 10.912) 260 ( 9. 725 10 .517)
26 1 ( 9 .626 11. 264 ) 26 2 ( 8 .700 10 .547) 263 ( 8 .91 I 10 . 488 ) 264 ( 9 .289 10.694) 265 ( 9 .229 10 . 756 )
266 ( 9. 188 10 . 75 3) 26 7 ( 9 .396 11. 143) 268 ( 9 . 225 1I. 39 1) 269 ( 9.005 10 .1 5 3 ) 2 70 ( 9 . 196 10 . 50 5 )
2 71 ( 9 . 208 10 . 526 ) 272 ( 8 .902 10 . 389 ) 273 ( 8 . 742 11. 01 9 ) 274 ( 9. 069 10 . 41 0 ) 2 75 ( 9 .50 1 10 .632)
27 6 ( 9 . 32 4 10 . 635 ) 277 ( 9 .488 11.056 ) 278 ( 9 . 277 10 . 54 )) 279 ( 9.408 10 . 6 79 ) 280 ( 9 . 329 10 . 8 39 )
28 1 ( 8. 636 9 .820)* 282 ( 9 .646 10 .639) 283 ( 9 .403 10 . 74 2 ) 28 4 ( 9. 2 16 10 . 454 ) 285 ( 8 .598 9 .849)*
286 ( 9 . 26 6 11. 34 8 ) 287 ( 9 .208 10.449) 288 ( 9 . 113 10 . 90 1) 289 ( 8. 934 10 . 334 ) 290 ( 9 .306 10. 454 )
29 1 ( 9 . 5 73 11. 20 2) 292 ( 9 .063 10.685 ) 293 ( 10 . 229 11.040 )" 294 ( 9 .254 11. 01 8 ) 295 ( 9 . 137 10 . 709 )
296 ( 8.8 15 10 . 2 11) 297 ( 9 .007 10 . 592 ) 298 ( 8 . 787 10 .315 ) 299 ( 9.260 10 . 962 ) 300 ( 9 .3 19 10 . 8 76 )
30 1 ( 8.995 10 . 6 14 ) 302 ( 9 . 104 10 . 095 ) 303 ( 9 .306 10 .346) 30 4 ( 9 .239 10 . 968 ) 305 ( 9 . 113 9 . 934 )*
306 ( 9 .39 0 10 . 522 ) 307 ( 9 .639 10 .848) 308 ( 9 .209 10 . 601 ) 309 ( 8.866 11. 200 ) 3 10 ( 9 . 597 11. 396 )
31 1 ( 8.39 1 10 . 28 7) 3 12 ( 8 . 964 10 .791 ) 313 ( 9 .645 10 . 769 ) 314 ( 9 . 373 10 . 8 17) 3 15 ( 9 .420 10 . 751 )
3 16 ( 9 . 3 12 11.081 ) 317 ( 8 .90 1 10.1 41 ) 318 ( 9 . 730 10 . 5 25 ) 3 19 ( 9 . 636 11. 284 ) 320 ( 9 .2 9 1 10 . 78 1)
32 1 ( 9 . 72 3 10 . 775 ) 322 ( 9 .249 10 . 688 ) 323 ( 9 . 113 10 . 160 ) 324 ( 9 . 109 10 . 434 ) 325 ( 9 .329 11. 007)
326 ( 8 .959 10 . 22 6 ) 327 ( 9 .664 10 . 51 6 ) 328 ( 9 .856 11. 10 1) 32 9 ( 9 . 345 10 . 956 ) 330 ( 8 .908 10 . 843 )
33 1 ( 9. 69 3 11. 499 ) 332 ( 9 .423 11. 238) 333 ( 8. 9 78 10 . 768 ) 334 ( 9.534 11. 050 ) 335 ( 9 .576 11. 082 )
336 ( 9 . 37 1 10 . 638 ) 337 ( 8 .950 11. 271 ) 338 ( 9 .276 10 . 557) 339 ( 9.310 10 .619) 340 ( 9 .073 10 . 07 6 )
34 1 ( 9 .28 1 10 .795) 342 ( 9 .744 10 . 505 ) 34 3 ( 9 . 54 2 10.8 13) 344 ( 8.91 3 10 .3 16) 345 ( 9 .414 11. 246)
346 ( 9 .66 1 10 .722) 347 ( 8 .724 10 .361) 348 ( 9 . 224 11.1 79 ) 349 ( 9 .354 10 . 569 ) 350 ( 9 .318 10 . 665 )
35 1 ( 9 .174 10 . 89 5 ) 352 ( 9 .61 5 11.003) 353 ( 9 . 12 1 10 . 696 ) 354 ( 9 .517 10.884) 355 ( 8 . 73 0 10 . 328 )
356 ( 8 .942 10 . 684 ) 35 7 ( 8 .890 , 10 .399) 358 ( 9 .640 I I. 146 ) 359 ( 9 .349 11.253) 360 ( 9 .522 10 .452)
361 ( 9 .136 10 .555 ) 362 ( 8 .923 10 .764 ) 36 3 ( 9 .737 11. 5 13 ) 364 ( 9 .159 10 . 257) 36 5 ( 9 .736 11.236)
366 ( 9 .156 10 . 699 ) 36 7 ( 9 .51 5 11.037) 368 ( 9.175 10 . 724 ) 369 ( 9.475 10 . 408 ) 370 ( 9 . 108 10.933)
371 ( 9.135 10 . 92 4 ) 372 ( 9 .144 10 . 6 3 1) 373 ( 8 . 854 10 . 31 9 ) 374 ( 8.680 10. 513) 37 5 ( 9 .529 10 . 39 1)

(continued )
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TABLE 8.2 (continued)

SAMPLE LCI. UCL SAM PLE LCL UCI. SAMPLE LCL UCI. SAMPLE LCL UCI. SAMPLE LCL UCL

376 ( 9.886 11.506) 377 633 10 .961 ) 378 ( 252 11 .411 ) 379 ( 9.218 10.469 ) 380 ( 8 . 648 10.65 3)
38 1 ( 9 .193 10. 900 ) 382 9.331 10.868) 383 ( 072 10 634) 384 ( 8.974 10 . 078) 385 ( 9.1 70 10 . 652)
386 ( 9 .063 10 .490) 387 9.047 10 .4 84 ) 388 ( 202 10. 194) 389 ( 9 . 475 10. 655 ) 390 ( 9.5 53 10 . 720 )
391 ( 9 .396 11. 115) 392 9.2 36 10. 644) 393 ( 785 10. 183) 394 ( 9 . 145 10 . 765) 395 ( 9 . 34 0 11.055)
396 ( 9 .123 • 10 .534) 397 9.8 28 11.058) 398 ( 9. 386 10.229 ) 399 ( 9 . 234 10. 500) 400 ( 9 . 072 10 .405 )
401 ( 9.680 • 10 .752) 402 9.487 10. 849 ) 403 ( 9.5 39 11. 137) 404 ( 9 .795 11. 293 ) 405 ( 9 .566 10 . 792 )
406 ( 8 .98 3 10 . 842) 407 9 .4 10 10 . 964) 408 ( 9.892 10. 949) 409 ( 9 .09 7 11.117) 410 ( 9.229 • 11. 20 1)
41 1 ( 9 .4 5 1 • 10 . 924) 412 9.5 30 10 . 756 ) 413 ( 9 .328 11. 021) 414 ( 9 .5 12 10 .590) 415 ( 9 .027 10. 805 )
416 ( 8 .982 10 . 591 ) 4 17 9 .059 10 . 856 ) 418 ( 8.971 10 .620) 4 19 ( 9 .2 36 10 .456) 420 ( 9 .085 10 .768)
421 ( 8 .900 10 . 358 ) 422 9 .604 11.044) 423 ( 10 .265 11. 443 )" 424 ( 9 . 10 1 10 . 972) 425 ( 9 .229 10 .903)
426 ( 9 .092 10 . 530 ) 427 8 .971 10 .457) 428 (10 .1 16 11. 07 1) * 429 ( 9 .5 79 11.1 07) 430 ( 9 .066 10 . 596)
431 ( 8 .892 10 .710) 432 9 .684 11.258) 43 3 ( 8 .9 19 10 . 350 ) 434 ( 9 .2 26 11. 093 ) 435 ( 9 .012 10 . 969 )
436 ( 8 .582 • 10 .1 07) 43 7 9 .106 9 .925 )* 438 ( 8 .8 20 10 .324) 439 ( 9 . 03 1 10 . 282 ) 440 ( 9 . 206 10 . 57 2)
44 1 ( 9 .473 10 . 449 ) 442 9 . 075 10 . 210 ) 44 3 ( 9 .500 I I. 252) 444 ( 9 .5 13 10 . 446 ) 445 ( 8 .878 10 . 616 )
446 ( 8 .8 18 10 . 675 ) 447 9.399 11.045) 448 ( 8 .961 10 . 221 ) 449 ( 9 .866 10 . 829 ) 450 ( 9 .655 10 .4 63 )
45 1 ( 9 .835 • 10 . 905 ) 452 9.397 10. 600 ) 453 ( 9 .073 10.202 ) 454 ( 8 . 961 10 . 150) 455 ( 9 .322 10 .270 )
456 ( 9 .596 • 10 .959) 457 9 .479 II. 106 ) 458 ( 9 .978 11. 042) 459 ( 9 .006 10 . 141 ) 460 ( 8.759 10 .644)
46 1 ( 9 .574 11 .400) 462 9. 186 10. 611) 463 ( 9.646 11. 112) 464 ( 9 .63 7 10. 857) 465 ( 8.907 10 .885 )
466 ( 9 .2 11 10 . 779 ) 467 9 . 169 10 .604) 468 ( 9 .094 10.083 ) 469 ( 9 .58 7 10. 604 ) 470 ( 9. 66 1 11. 289 )
4 71 ( 9.798 : 11.143 ) 472 9.358 11. 244 ) 473 ( 8 . 485 10.234) 47 4 ( 8 . 755 10 .4 73) 475 ( 9.35 8 11.257)
476 ( 9 . 325 • 10 . 594 ) 477 8.85 7 10 . 668 ) 478 ( 9.487 10.684) 479 ( 9 .0 44 10. 299) 480 ( 9. 382 10 . 697)
48 1 ( 9.298 • 10 . 465 ) 482 9.594 10 . 939 ) 483 ( 9 .297 10.780) 484 ( 8 .896 10 .3 33 ) 485 ( 9.0 74 9.904)',"
486 ( 9.284 10. 777) 487 9.125 10 .4 38 ) 488 ( 9 .081 10.442) 489 ( 9 . 242 10. 483 ) 490 ( 9.420 10.687)
491 ( 9.284 10 . 471 ) 492 9.462 10 .845) 493 ( 9. 274 10.676) 494 ( 8 .96 1 10 . 458) 495 ( 9 . 796 11. 205 )
496 ( 9 . 080 10 .854) 49 7 9.399 10 . 606) 498 ( 8.593 10. 554 ) 499 ( 9 .52 7 10.925) 500 ( 9 . 340 10 .4 13 )
50 1 ( 8 .90 7 10 . 531) 502 9.243 10 .401 ) 503 ( 9.270 10.787) 504 ( 9 . 331 11. 183 ) 505 ( 9.200 10.602 )
506 ( 9 .422 10 . 835 ) 507 ( 9.279 10 .687) 508 ( 8.884 10. 683) 509 ( 9 .1 90 10 .255) 5 10 ( 8.733 10 .404)
5 11 ( 9 . 44 1 • 10 . 889 ) 5 12 ( 9 .070 10 .392 ) 5 13 ( 8 .946 9 .772)* 514 ( 8 .7 99 • 10 .236) 515 ( 9 .070 10 .830)
516 ( 8 .984 • 10 . 365 ) 5 17 ( 9 . 183 10 . 38 7 ) 5 18 ( 9 . 236 10 . 863 ) 5 19 ( 9 .826 11. 197) 520 ( 8.906 10 . 672)
521 ( 9 .755 10 .996) 522 ( 9. 400 10 .880) 523 ( 9 . 374 11. 276 ) 524 ( 9 .288 11. 211 ) 525 ( 9 .4 12 11. 000 )
526 ( 9 . 028 10 . 300 ) 527 ( 8 .647 10 . 285 ) 528 ( 9 . 190 10 .0 72 ) 529 ( 9 .238 10 . 465 ) 53 0 (1 0 . 003 11.190 )*
53 1 ( 9 .644 10 . 974 ) 532 ( 9.679 10 . 738 ) 533 ( 8 .5 59 10 .0\4 ) 534 ( 9 .895 • I I. 131 ) 535 ( 9 .653 11. 007 )
536 ( 9 .769 11. 144) 53 7 ( 8 .837 10 .1 36 ) 538 ( 9 .939 10 . 836 ) 539 ( 9 .553 • 10 . 853 ) 540 ( 9 . 351 10 . 552)
54 1 ( 9. 532 • 11.320) 542 ( 9.262 10 .728) 543 ( 8 .864 11.341) 54 4 ( 9 .052 10 . 482) 545 ( 9 . 551 10 . 610 )
546 ( 9 .564 11. 060) 54 7 ( 9.699 10 .912) 548 ( 8. 9 15 10 . 042) 549 ( 8 .801 10 . 648 ) 550 ( 9 .1 11 9 .9 13) *
551 ( 9 .81 1 11.558) 552 ( 8.593 10 . 128 ) 553 ( 8 .6 12 9.85 4)* 554 ( 9 .555 10 .986) 555 ( 9. 567 10 .666)
556 ( 9 .399 • 10 .979) 557 ( 9.1 68 11. 195 ) 558 ( 9.270 11 . 456) 559 ( 9 . 197 10 . 554 ) 560 ( 8.985 10 . 492 )
56 1 ( 9 .06 7 10 . 622 ) 562 ( 8.843 10 .48 4) 563 ( 9.346 11. 128) 564 ( 8 .692 10 .475 ) 565 ( 9. 41 3 10 .583)
566 ( 9.4 16 10 .6 78) 567 ( 9.451 11. 099) 568 ( 9 . 339 10.862) 569 ( 8. 933 10 . 698 ) 570 ( 9.212 10 .368 )
571 ( 8 .89 4 10.438) 572 ( 9.161 10. 964) 573 ( 9 . 84 1 11.306) 57 4 ( 8 .990 10 . 541 ) 575 ( 8.530 10 . 038)
576 ( 9 .68 7 11 . 005 ) 577 ( 9.131 10. 759 ) 578 ( 9.167 10.734) 579 ( 9 .30 1 10 .507) 580 ( 9.379 10 . 8 72)
581 ( 9 .298 10 . 91 7) 582 ( 8.407 10 . 030 ) 58 3 ( 9.080 10.523) 584 ( 9 .043 10. 509) 585 ( 9.636 11.032)
586 ( 9 .562 10 .527) 587 ( 9.224 10.279) 588 ( 9. 439 10.305) 589 ( 9 . 320 10 .4 82) 590 ( 9.36 3 11. 047)
59 1 ( 9 . 136 10 . 52 1) 592 ( 9 . 059 10 . 320 ) 593 ( 8 . 686 10.278 ) 59 4 ( 9 .280 • 10. 267) 595 ( 9.251 10 .964 )
596 ( 8 .6 93 10 . 114) 597 ( 8 .712 10 . 394 ) 598 ( 9 .3 40 10.71 0 ) 599 ( 8 .2 44 9 .68 4)* 600 ( 9 . 583 10 . 992 )
60 1 ( 9 .232 10 .346) 602 ( 9.014 10 .45 8 ) 60 3 ( 9.861 11. 485) 604 ( 9 . 1 3~ 11.097) 605 ( 9. 060 10 . 269)
606 ( 9 .712 11.648) 607 ( 8 .963 10 .055 ) 608 ( 8 .991 10 . 548 ) 609 ( 9 .540 10 . 769 ) 6 10 ( 9 .82 2 II. 243)
6 11 ( 9 .338 • 10. 357) 6 12 ( 8 .632 10 . 20 1) 6 13 ( 9 .371 10 . 898 ) 614 ( 9 . 155 10 . 582) 6 15 ( 8 .806 10 . 919 )
6 16 ( 9 . 182 10 . 488 ) 6 17 ( 9 .40 3 10 . 755) 6 18 ( 9 . 199 10 .5 27) 6 19 ( 9 .0 16 10 .844) 620 ( 9 .32 1 11. 077)
62 1 ( 9 . 475 • 10 . 651 ) 622 ( 9 .481 10 . 701 ) 62 3 ( 9 . 66 1 10 . 590 ) 624 ( 9 .358 10 . 81 2 ) 625 ( 9 .046 10 . 679 )
626 ( 9 .948 10 .9 07) 627 ( 8.649 9 .9 96) * 62 8 ( 9 .201 10 . 332 ) 629 ( 9 . 195 10 .9 08 ) 630 ( 9 .460 10 . 435)
63 1 ( 9 . 222 10 . 772) 632 ( 9 . 757 10 . 880 ) 633 ( 9 .9 26 10 . 885 ) 634 ( 9 .027 10 . 425 ) 635 ( 8 .436 10 . 0 11)
636 ( 9 . 160 10 . 474 ) 637 ( 9 .723 11. 075 ) 638 ( 8 .59 7 10 . 8 79 ) 639 (10 .024 10 . 931) * 640 ( 8 .475 10 . 397)
64 1 ( 8 . 712 10 . 702) 642 ( 10.038 11. 678 )* 643 ( 9.706 10.962 ) 644 ( 9.0 28 10 .2 75) 645 ( 9.395 10 . 414)
646 ( 9 .2 8 3 10 . 641 ) 647 ( 8.628 10 .10 7) 648 ( 9.456 10.8 20) 649 ( 9 .999 11.336) 650 ( 8.587 10 . 063)
65 1 ( 9 .616 11. 090 ) 652 ( 9 . 403 10 .5 37) 653 (10 .263 11. 277 )* 654 ( 9 .3 25 10 .7 17) 655 ( 9 . 795 10. 737)
656 ( 9 . 669 11 .77 8 ) 657 ( 9. 739 10. 636 ) 658 ( 9.285 10.965 ) 659 ( 9 .2 10 10 .552) 660 ( 9.384 10 .962)
66 1 ( 9 .0 4 1 10 . 347) 662 ( 9.38 0 10 .84 6 ) 663 ( 9.950 10.597) 664 ( 9 . 602 10. 584 ) 665 ( 9.092 10 . 439)
666 ( 9 .475 10. 844) 667 ( 9.192 10 .844 ) 668 (10.134 11.385)* 669 ( 8 . 52 3 10.431 ) 670 ( 9.657 11.222 )
67 1 ( 8 . 7 10 10 .470) 672 ( 8.854 10. 039 ) 673 ( 8.833 10.174) 674 ( 9 .500 10.956) 675 ( 9.546 10 .7 82)
676 ( 9.1 15 10. 545) 677 ( 9.005 10 .4 34) 678 ( 9.783 11.217) 679 ( 9 . 384 10.647) 680 ( 9.783 11. 586 )
68 1 ( 9 . 160 10 .040) 682 ( 8.822 10 .2 38) 683 ( 9. 374 11.064) 684 ( 8 .895 10. 274) 685 ( 8.986 10 .854 )
686 ( 8 .665 10 . 523 ) 687 ( 8. 630 10.270 ) 688 ( 9. 914 10.898) 689 C 8 .78 7 10.323) 690 ( 9.483 10. 850)
691 ( 9.369 • 10 . 797) 692 ( 9.271 10 .776 ) 693 ( 8.7 15 9.846 )* 694 ( 8 .7 64 • 10 .481 ) 695 ( 8.934 10 .05 3)
696 ( 9 . 280 10 .1 43) 697 ( 8 .354 9 .985 )* 698 ( 9 .599 11. 275 ) 699 ( 8 .488 10 .224) 700 ( 9 .278 10 . 213 )
70 1 ( 9 . 247 10 . 552) 702 ( 9 .043 10 . 327) 703 ( 9 .5 78 10.9 14) 704 ( 8 .8 15 10 . 387) 705 ( 8 .786 9 .901 )*
706 ( 9 .029 • 10 . 654) 70 7 ( 9 .731 10 . 545 ) 708 ( 9 . 143 10. 562) 709 ( 9 .254 10 . 501 ) 710 ( 9 .045 10.718)
711 ( 9 . 55 2 , 10 . 664 ) 712 (10. 039 II. 51 \ ),', 7 13 ( 9 .670 10 . 482) 7 14 ( 9 .491 10 .669 ) 715 ( 9 . 589 10 . 869 )
716 ( 8 . 900 • 10 . 986 ) 717 ( 9 .557 10 . 872) 7 18 ( 8 .845 10 . 578) 719 ( 9 . 316 11.041) 720 ( 9 . 42 0 10 . 645)
72 1 ( 9 .839 10 . 896 ) 722 ( 9 .264 \0 . 440 ) 723 (10 .020 11. 239)" 724 ( 9 . 235 11. 200 ) 725 ( 9 . 194 11. 026)
726 ( 9 .497 10 . 654) 727 ( 9 .2 12 10 . 904) 728 ( 9 . 328 10 . 619 ) 729 ( 9 . 563 10 . 672 ) 730 ( 9 .646 11. 070 )
73 1 ( 9 .082 10.1 94 ) 732 ( 9 . 171 10 . 78 1) 733 ( 9 . 0 16 10 . 9 14) 734 ( 8 .944 • 10 .604) 735 ( 9 .028 10 . 664)
736 ( 9 .074 9 .924)* 737 ( 9 .050 10 . 604 ) 738 ( 8 .6 4 1 10 .155) 739 (10 .052 II. 660 ) * 740 ( 9.806 10 . 831)
74 1 ( 9 .05 1 10 . 307) 742 ( 9. 180 10 . 632) 743 ( 9 . 18 1 10.306) 744 ( 9 . 751 10 . 867) 745 ( 9. 162 10 .229 )
746 ( 9 .088 10 .658) 74 7 ( 9.184 9.982 l'" 748 ( 8.697 10. 393 ) 749 ( 9.292 10 .612) 750 ( 9. 331 10 . 615)

(continued )
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TABLE 8.2 (continued)

SAMPLE LCL UCL SAMPLE LCL UCI. SAMPLE LCL UCL SAMPLE LCL UCL SA.~PLE LCL UCL

75 1 ( 9 .138 10 .36 1) 752 ( 9 .6 04 11 . 20 I ) 753 ( 8 .92 1 10 . 326 ) 754 ( 8 .943 10 . 219) 7 r, ~ ( 9. 22 2 10 . 216)
756 ( 9 .530 10 . 981) 75 7 ( 9. 248 10. 720 ) 758 ( 9.646 10 . 700) 7j9 ( 8 . 895 10 .0 36) 760 ( 9 .6 18 10 . 742)
76 1 ( 9 .290 10 . 929 ) 762 ( 9 .5 04 10. 942 ) 763 ( 9 . 053 10 . 474 ) 764 ( 9 . 754 10. 946 ) 765 ( 9. 198 10 . 35 1)
766 ( 9 . 146 10 . 468 ) 767 ( 9 . 180 10. 399 ) 765 ( 9 . 177 10.305 ) 769 ( 9 .130 10. 580 ) 770 ( 9 .9 60 11. 238 )
771 ( 8 .6 94 10 .742) 772 ( 9 . 463 10.594 ) 773 ( 9 .3 48 II. 102) 774 ( 9 .224 10.726) 775 ( 9 . 229 11. 217)
776 ( 9 .082 10.29 1) 777 ( 9 .3 52 10 . 366 ) 778 ( 9 . 604 11. 415) 779 ( 8.366 9 . 595 )* 780 ( 9. 622 I I. 160)
78 1 (10 .0 24 11.043 ) '" 782 ( 9 . 247 10 .505) 783 (10 .0 53 II. 078)'" 784 ( 8 .640 10.792) 78) ( 9 .2 78 10. 767)
786 ( 9 .486 , 11.021 ) 787 ( 9 .2 15 10.090) 788 ( 9. 647 11.227) 789 ( 8 . 559 10.444) 790 ( 8 .495 10 . 529)
791 ( 9 .86 7 10 .967) 792 ( 9 .0 95 10.364) 793 ( 8 .8 15 10. 275 ) 794 ( 8 . 648 10.216) 795 ( 9 .8 59 11.008)
796 ( 8 . 862 10 . 274) 797 ( 9 . 2 18 10 . 439) 798 ( 9 .299 10. 668 ) 799 ( 9.0 15 10.139 ) 800 ( 8 .87 3 10. 58 1)
801 ( 9 .502 I I. 150 ) 802 ( 9. 59 8 11.290) 803 ( 9 . 843 11 204) 804 ( 9 .37 7 10.387) 805 ( 9 .3 88 10 .6 40)
806 ( 8 . 571 9 .804) '" 807 ( 9 . 369 10 . 5 23 ) 808 ( 8 . 432 10 .584 ) 809 ( 9 .305 10 .629 ) 810 ( 9 . 263 10 .718 )
811 ( 9 .2 53 9 .991)* 8 12 ( 9 . 060 10.301 ) 8 13 ( 9 .323 11. 395 ) 8 14 ( 9.26 1 10 .79 1) 815 ( 9 .6 55 10 .995 )
8 16 ( 9 .425 10 . 722 ) 8 17 ( 9 . 166 10. 566 ) 818 ( 9 . 5 11 10 . 630 ) 819 ( 9 . 185 10.674 ) 820 ( 9 . 6 12 10 . 713)
82 1 ( 9 .795 11. 330 ) 822 ( 9 .4 9 1 I I. 104) 823 ( 9 .1 33 10 . 491 ) 824 ( 9 .4 59 10 . 78 7) 825 ( 9 . 197 10 .4 51)
826 ( 9 .276 10 .493) 827 ( 9 . 528 10. 964) 828 ( 8 .9 6 1 10. 897) 82 9 ( 8 .8 14 10 .0 37) 8 30 ( 9 . 439 10. 769 )
83 1 ( 9 .4 30 10 . 786 ) 83 2 ( 10 . 506 11. 206 )* 83 3 ( 9 .0 33 10 .450) 834 ( 9 . 64 1 11.223) 835 ( 9 . 383 10 .561)
836 ( 9 .046 10 .512 ) 837 ( 9 . 281 10 .414) 838 ( 8 . 707 10.181 ) 839 ( 9 . 8 70 11. 157) 840 ( 9 .3 21 10. 426 )
841 ( 9 .058 10 .378) 84 2 ( 9.480 11.349) 84 3 ( 8 . 897 10 . 717) 844 ( 9. 6 11 10 . 216) 845 ( 8 ,722 9 . 934)'·'
846 ( 9 .350 10.886 ) 847 ( 9 .4 11 10.844) 848 ( 8 . 98 4 10.566) 849 ( 8 .968 10.537) 850 ( 9 ,08 1 10.380 )
851 ( 9 .054 10 .647) 852 ( 8 . 873 9.791)* 853 (10 .021 11 ..515)* 854 ( 9 .554 11.099) 855 ( 8 .524 10 .378)
856 ( 8 .78 1 10 .739) 85 7 ( 9 , 385 10.910) 858 ( 8, 945 10.416) 859 ( 9 .183 10.624 ) 860 ( 9 .46 2 10. 607)
861 ( 9 .099 10 . 434) 86 2 ( 9. 33 1 10.806) 86 3 ( 9 ,771 10.995) 864 ( 9 . 327 10.73 1) 865 ( 8.96 3 10.438)
866 ( 9 .259 1.1.270) 867 ( 9 .211 10.51 9 ) 868 ( 9 , 82 1 11.420) 869 ( 9 .3 35 10 . 5 13 ) 870 ( 9.078 10 .2 10)
871 ( 10 .080 10 .769)* 872 ( 9 .3 75 10 . 590 ) 873 ( 8 .5 35 9 .890)* 874 ( 9 . 4 14 10.75 1) 875 ( 8 .87 7 9 . 994)"
876 ( 9 .587 , 10 .795) 877 ( 9 . 121 10 .960) 8 78 ( 9 . 486 10 . 822 ) 8 79 (10 . 29 3 11. 456 )* 880 ( 9.5 14 10 .926 )
88 1 ( 9 .058 10. 909 ) 882 ( 8 .9 90 10. 0 79 ) 88 3 ( 9 . 580 11. 05 1) 884 ( 9 . 185 10 . 505 ) 885 ( 8 . 8 12 10 . 42 1)
886 ( 9 .3 01 . 10 .096) 887 ( 9 . 194 10 . 273 ) 888 ( 9 . 278 11. 004) 889 ( 8 .658 10.1 70 ) 890 ( 9 . 36 7 10 .074)
89 1 ( 8 .630 • 10 . 978 ) 892 ( 9 .84 2 11.724) 893 ( 9 .504 10 . 998 ) 894 ( 9 . 28 7 10 . 866 ) 895 ( 9 . 234 10 . 570 )
896 ( 9 .9 86 10 . 907) 897 ( 9 .7 58 11 . 048) 898 ( 9 .68 7 10. 993 ) 899 ( 9 . 381 10.822) 900 ( 9 . 518 10 . 493 )
901 ( 9 .1 14 10 . 575) 90 2 ( 8 .869 10 . 508 ) 903 ( 9 .363 10 .59 5) 904 ( 9 .2 52 10 . 6 18 ) 905 ( 9 .784 10. 718 )
906 ( 9. 147 10.241 ) 907 ( 9.448 10 .569) 908 ( 9 . 330 10 .693) 909 ( 9. 096 10.499 ) 9 10 ( 9.780 10 . 687)
911 ( 9.047 10.283) 9 12 ( 9 .036 10 .381 ) 913 ( 9 . 655 11.262) 914 ( 9 .400 9.964 )* 9 15 ( 9 .368 11.079 )
916 ( 9.456 10. 747) 91 7 ( 8 . 768 10 . 250 ) 9 18 ( 9 .270 10.158) 9 19 ( 9. 4 19 10.101) 920 ( 9.15 9 10. 773)
921 ( 9 . 736 , 11. 113) 92 2 ( 9 . 445 10.763) 923 ( 9 . 423 10.674) 924 ( 8.777 10.774) 925 ( 9.155 10 .204 )
926 ( 9 .08 7 10.368 ) 92 7 ( 9 .07 9 10.049) 928 ( 9. 245 10.969) 929 ( 9. 096 10.402 ) 930 ( 9 .106 10. 613 )
931 ( 9 .60 3 10 .9 6!) 932 ( 9 ,5 11 11. 157) 933 ( 9. 650 10. 768) 934 ( 9 .149 10. 002 ) 935 ( 10 .0 15 11. 540 )*
936 ( 9 .676 10.788) 937 ( 9 .7 00 11.167) 938 ( 9 . 61 5 11.085) 939 ( 9 .5 55 10.694) 940 ( 9 .382 10 .570 )
941 ( 8 . 498 9.897)* 942 ( 9 . 216 10 .700) 943 ( 9 .140 10 .459) 944 ( 9 .5 43 10. 540 ) 945 ( 8 .824 10 .129)
946 ( 9 . 523 10 .824) 947 ( 9 . 147 10 . 406 ) 948 ( 9 . 068 10 . 536 ) 949 ( 9 . 119 10 .1 72 ) 950 ( 8 . 709 10 . 638 )
95 1 ( 9 . 850 11. 41 0 ) 952 ( 9 . 729 10 . 940 ) 95 3 ( 9 .067 10 .090) 954 ( 9 .5 99 11. 064 ) 955 ( 9 . 753 10. 920 )
956 ( 9 .501 . 10 . 5 23 ) 957 ( 9 .598 10 . 705 ) 958 ( 9 . 220 10. 626 ) 959 ( 8 . 39 1 9. 950)* 960 ( 9 . 629 10 . 594 )
961 ( 9 . 105 10 . 5 74) 962 ( 9 .504 10 .543) 96 3 ( 9 . 137 10 . 475 ) 964 ( 9 .303 10.9 10) 965 ( 9 . 563 10 .871)
966 ( 9 .161 10 .453) 967 ( 9. 487 10 . 75 2) 968 ( 9 . 53 1 11. 014) 96 9 ( 8 .920 10. 599) 970 ( 9 .058 10 .4 40 )
971 ( 9 .409 10 .760) 972 ( 8 . 981 10.788) 973 ( 9 .09 7 10 . 186) 974 ( 8 .67 4 10.776 ) 975 ( 9 .010 10 .745)
976 ( 8.7 14 10.52 1) 977 ( 9. 176 10 . 30!) 978 ( 9. 263 10.555) 979 ( 8 .700 10.244) 980 ( 9.3 34 10 . 959)
981 ( 9 .577 10 .8 73 ) 98 2 ( 9 .38 3 10.970) 983 ( 9 .462 10.826) 984 ( 9 . 367 10.726) 985 ( 8 .657 10 .496 )
986 ( 9 . 436 : 10 .970) 987 ( 9 .532 11.605) 988 ( 9 .309 10.876) 989 ( 9 .536 10.799) 990 ( 9 .8 27 10 .698)
991 ( 8 .83 4 9. 807) " 992 ( 8 . 672 10. 247) 993 ( 8 . 974 10.373) 994 ( 9 .169 10.891 ) 995 ( 8.704 10 . 044)
996 ( 9 . 713 10.932) 99 7 ( 9 . 169 10.769 ) 998 ( 9 .595 10 . 769 ) 999 ( 9. 648 10.762 ) 1000 ( 9 .029 10 .6 84 )

Theoretical Interpretation of the Confidence Coefficient (I - a)

If we were to repeatedly collect a sample of size 11 from the population and
construct a (I - a)100% confidence interval for each sample, then we expect
(l - a)100 % of the intervals to enclose th e tru e parameter value.

Confi dence inter vals for popu lation paramet ers othe r than the population mean
can be der ived using the pivotal m ethod outlined in thi s section. The estimators and
pivotal statistics for many of these parameters are well known. In Sections 8.5-8.11,
we give the confidence interval form ulas for severa l population parameters that are
commonly encoun tered in practice.
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EXERCISES

8.14 Usc Table 7 of Appendix II to determin e the values of t o: / 2 that would be used in the construction of a
confidence interval for a population mean for each of the following comb inations of confidence coeffic ient
and sample size:
a. Confidence coeffi cient. 99, n = 18
b. Confidence coefficient .95, n = 10
c. Confidence coefficient .90, n = 15

8.15 It can be shown (proof omitted) that as the sample size n increases, the t distributi on tends to normality
and the value l« , such that P(t > ta) = a, approaches the value Za, such that P(z > za) = a. Use Table 7
of Appendix II to verify that as the sample size n gets infinitely large, t ,05 = Z 05, t ,025 = Z,025 , and
t, OI = Z.Ol ·

8.16 Let Y be the nu mber of successes in a binomial experiment with n trials and probability of success p.
Assuming that n is large, use the sample proportion of successes p = yi n to form a confidence interval
for p with confidence coefficient (l - 0:) . [Hint: Start with the pivotal statistic

and use the fact (proof omitted) that for large n, Z is approximately a standard normal random variable.]

8.17 Let Yl, Y2, . . . , Yn be a random sample from a Poisson distribution with mean A. Suppose we use yas
an estimator of A. Derive a (l - 0:)100% confidence interval for A. [Hint: Start with the pivotal statistic

y- A
z = - -
~

and show that for large samples, Z is approximately a standard normal rand om variable. Th en substitute
y for A in the denomin ator (why can you do this?) and follow the pivotal method of Example 8.6. ]

8.18 Let YI, Y2, . . . , Yn be a random sample of n observations from an expone ntia l distribution with mean f3.
Derive a large-sample confidence interval for {3. [Hint: Start with the pivotal statistic

z =Y - {3
{3/'V;;

and show that for large samples, Z is approximately a standard norm al random variable. Then substitute
y for {3 in the denomin ator (why can you do this?) and follow the pivotal method of Exampl e 8.6. ]

OPTIONAL EXERCISES
8./9 Let Yl and Sf be the sample mean and sample variance, respectively, of n l observations randomly selected

from a populati on with mean J1-l and variance O'T. Similarly, define Y2 and s~ for an independ ent random
sample of n2 observations from a population with mean J1- 2 and O'~. Derive a large-sampl e confidence
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interval for (f..t , - f..tz ). [H int: Start with the pivotal statistic

(Yj - yz) - (f..tl - f..tz)
z =

a Z a Z
-'-+-1
n, nz

and show that for large samples, z is approximately a standard normal random variable. Substitute ST for
aT and s~ for a~ (why can you do this?) and follow the pivotal method of Example 8.6.]

8.20 Let (YI, sf) and (Yz , s ~ ) be the means and variances of two independent random samples of sizes n, and
nz, respectively, selected from normal populations with different means, f..tJ and f..t z, but with a common
variance, a Z.

a. Show that E(YI - yz) = f..tl - f..tz·
b. Show that

V(y, - yz) = az(-l + -l)
n, nz

c. Explain why

(Yl - yz) - (f..t , - f..tz)
z=

a~1 + I
n l nz

is a standard normal random variable.

8.21 Refer to Exercise 8.20. According to Theorem 7.4,

z (nl - I)ST d z (nz - I)s~
Xl = aZ an Xz = a Z

are independent chi-square random variables with (n l - I) and (nz - I) df, respectively. Show that

z (nl - I)ST + (nz - l)s~
X = aZ

is a chi-square random variable with (n , + n: - 2) df.

8.22 Refer to Exercises 8.20 and 8.21. Th e pooled estimator of the common variance a Z is given by

SZ = (n l - l)sT+ (nz - I )s~
P n, + nz - 2

Show that

t = (YI - yz) - (J.LI - f..tz )

S ~ 1 + 1
P nl nz

has a Student's t distribution with (n j + nz - 2) df. [Hint: Recall that t = z/VX z/v has a Student's t
distribution with v df and use the results of Exercises 8.20c and 8.2 I.]



364 Chapter 8 I Estimation

8.23 Usc the pivotal statistic t given in Exercise 8.2Z to derive a (1 - a)100% small-sample confidence interval
for (J.Ll - J.L z).

8.5 Estimation of a Population Mean

From our discussions in Section 8.3, we already know that a useful point estimate of
the population mean J.L is y, the sample mean. According to the central limit theorem
(T heorem 7.2), we also know that for suffic iently large n , the sampling distribution
of the sample mean y is approximately normal with £(y ) = J.L and V(y) = (T z/n . The
fact that £(Y) = J.L implies that y is an unbiased estimator of J.L . Furthermore, it can
be shown (proofomitted) that yhas the smallest variance among all unbiased estimators
of J.L . Hence, y is the MVUE for J.L . Therefore, it is not surprising that y is considered
the best estimator of J.L.

Since yis approximately normal for largen, wecan apply Theorem 8.2 to construct
a large-sample (I - a)lOO% confidence interval for J.L. Substituting {; = Y and
(T{) = (T/ V; into the confi dence interval formula given in Th eorem 8.2, we obtain
the formula given in the foll owing box.

~~.r~~.-~~.~p.I~J! ..~ ..~).I ~.~~ .~onfidence Interval for the Population Mean, /.L

_ _ ((T) _ (s)y ± Zc< /Z(Ty = Y ± Zc</Z V; = y ± Zc< /2 V;

where Zc</2 is the Z value that locates an area of a /2 to its right, (T is the standard
deviation of the population from which the sample was selected, n is the sample
size, and y is the value of the sample mean .

[Note: When the value of (Tis unknown (as will usually be the case), the sample
standard deviation s may bc used to approximate (T in the formula for the
confidence interval. The approximation is generally quite satisfactory when
n ~ 30.]

Assumptions: None (since the central limit theorem guarantees that yis approx­
imately normal regardless of the distribution of the sampled population)

Note: Th e value of the sample size n required for the sampling distribution
of y to be approximately normal will vary depending on the shape (distribution) of the
target population (sec Examples 7.6 and 7.7). As a general rule of thumb, a sample
size n of 30 or more will be considered sufficiently large for the central limit theorem
to apply.
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Suppose a regional computer center wants to evaluate the performance of its disk
memory system. One measure of performance is the average time between failures of
its disk drive. To estimate this value, the center recorded the time between failures
for a random sample of 45 disk-drive failures. The following sample statistics were
computed :

y = 1,762 hours s = 215 hours

(
21 5)1,762 ± Z.os V45

Solution

a. Estimate the true mean time between failures with a 90% confi dence interval.

b. If the disk memory system is runnin g properly, the true mean time between failures
will exceed 1,700 hours. Based on the interval, part a, what can you infer about
the disk memory system?

a. For a confidence coefficient of I - a = .90, we have a = .10 and a f]: = .05;
therefore, a 90% confidence interval for J1- is given by

y ± Za / 2 (~) = Y± z os(~)

= y ± z.os(V;)
(

21 5 )= 1,762 ± Z.o s V45

where Z.os is the z value corresponding to an upper-tail area of .05. From
Table 4 of Appendix II , Z.os = 1.645 . Then the desired interval is

I 762 ± 1.645(~), V45

1,762 ± 52.7

or 1,709.3 to 1,814.7 hours. We are 90% confident that the interval (1 ,709.3,
1,814. 7) encloses J1-, the true mean time between disk failures.

b. Since all values within the 90% confidence interval exceed 1,700 hours, we can
infer (with 90% confidence) that the disk memory system is running properly.

Sometimes, time or cost limitations may restrict the number of sample observations
that may be obtained for estimating J1- . In the case of small samples, (say, n < 30),
the following two problems arise:

I. Since the central limit theorem applies only to large samples, we are not able to
assume that the sampling distribution of y is approximately normal. Th erefore, we
cannot apply Theorem 8.2. For small samples, the sampling distribution of y
depends on the particular form of the relative frequency distribution of the pop­
ulation being sampled.
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EXAMPLE 8.9

2. Th e sample standard deviation s may not be a satisfactory approximation to the
population standard deviation (J" if the sample size is small.

Fortun ately, we may proceed with estimation techniques based on small samples
if we can assume that the population from which the sample is selected has an
approximate normal distribution. If this assumption is valid, then we can use the
procedure of Example 8.6 to construct a confidence interval for f-L . The general form
of a small-sample confidence interval for u, based on the Student's t distribution, is
as shown in the next box.

~~~~I.-~~.~p'I~JI ..~ ..~).I.~~~. ~onfidence Interval for the Population Mean, I-t

y ± ta / z(V;)
where the distribution of t is based on (n - I) degrees of freedom.

Assumption: Th e population from which the sample is selected has an approx­
imate normal distribution.

The Geothermal Loop Experimental Facility, located in the Salton Sea in southern
California, is a U.S. Department of Energy operation for studying the feasibility of
generating electricity from the hot, highly saline water of the Salton Sea. Operating
experience has shown that these brines leave silica scale deposits on metallic plant
piping, causing excessive plant outages. Jacobsen et al. (Journal of Testing and Eval­
uation, Mar. 1981 ) have found that scaling can be reduced somewhat by adding
chemical solutions to the brine. In one screening experiment, each of five ant iscalants
was added to an aliquot of brine, and the solutions were filtered. A silica determin ation
(parts per million of silicon dioxide) was made on each filtered sample after a holding
time of 24 hours, with the following results:

229 255 280 203 229

Solution

Estimate the mean amount of silicon dioxide present in the five antiscalant solutions.
Use a 99% confi dence interval.

The first step in constructing the confidence interval is to compute the mean , y, and
standard deviation , s, of the sample of fi ve silicon dioxide amounts. These values,
y = 239.2 and s = 29.3, are shaded in the MINITAB printout, Figure 8.8.

FIGURE 8.8 ~
N MEAN MEDIAN TRMEAN STDEV SEMEAN

MINITAB descript ive statistics for PPM 5 239 .2 229 .0 239.2 29 .3 13 .1
Example 8.9

MIN MAX Q1 Q3
PPM 203.0 280 .0 216.0 267.5
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For a confidence coefficient of 1 - a = .99, we have a = .01 and a/2 = .005.
Since the sample size is small (n = 5), our estimation technique requires the assump­
tion that the amount of silicon dioxide present in an antiscalant solution has an
approximately normal distribution (i.e., the sample of 5 silicon amounts is selected
from a normal population).

Substituting the values for y, s, and n into the formula for a small-sample con­
fi dence interval for u , we obtain

y ± ta/z(~) = y ± t.oos(~)

(
29.3)

= 239.2 ± t.oos V5

where t. 005 is the value corresponding to an upper-tail area of .005 in the Student's t

distribution based on (n - 1) = 4 degrees of freedom. From Table 7 of Appendix II,
the required t value is t oos = 4.604. Substitution of this value yields

239.2 ± t . oo s (~) = 239.2 ± (4 . 604) (~)

= 239.2 ± 60.3

or, 178.9 to 299.5 ppm. Thus, if the distribution of silicon dioxide amoun ts is approx­
imately normal, we can be 99% confident that the interval (178.9, 299.5) encloses
J-t, the true mean amount of silicon dioxide present in an antiscalant solution.

Th e 99% confi dence interval can also be obtained with a statistical softwa re
package. Figure 8.9 shows a MINITAB printout of the analysis . You can see that the
computer-generated interval (shaded in Figure 8.9) is identical to the one wecalculated.

TEST OF MU = 300.000 VS MU H.E. 300 .000
fiGURE 8.9 ~
MINITAB confide nce interval for
Example 8.9

ppm
H
5

MEAN
239.2

STDEV SE MEAN
29.3 13.1

99.0 PERCENT C.I .
( 178.9, 299 .5)

Jj~rore we conculoc this'section, two comments are necessary. the hIst concerns
the assumption that the sampled population is normally distributed. In the real world,
we rarely know whether a sampled population has an exact normal distribution.
However, empirical studies indicate that moderate departures from this assumption
do not seriously affect the confi dence coefficients for small-sample confidence intervals.
For example, if the population of silicon dioxide amounts for the antiscalant solutions
of Example 8.9 has a distribution that is mound-shaped but nonnorrnal, it is likely
that the actual confidence coeffi cient for the 99% confidence interval will be close to
.99- at least close enough to be of practical use. As a consequence, the small-sample
confidence interval given in the box is frequen tly used by experimenters when esti­
mating the population mean of a nonnormal distribution as long as the distribution
is mound-shaped and only moderately skewed. For populations that depart greatly
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from normality, other estimation techniques (such as robust estimation) or methods
that are distribution-free (called nonparametries) arc recommended. Nonparametric
statistics are the topic of Chapter 15.

Th e second comment focuses on whether CT is known or unknown. We have
shown (Example 7.7) that when CT is known and the sampled population is normally
distributed, the sampling distribution of yis normal regardlessof the size of the sample.
Th at is, if you know the value of CT and you know that the sample comes from a
normal population , then you can use the z distribution rather than the t distribution
to form confi dence intervals. In reality, however, CT is rarely (if ever) known. Conse­
quently, you will always be using s in place of CT in the confidence interval formulas,
and the sampling distribution of y will be a t distribution. This is why the formula
for a large-sample confidence interval given earlier in this section is only approximate;
in the large-sample case, t = z. Many statistical software packages give the results for
exact confid ence intervals when CT is unknown; thus, these results are based on the t
distribution. For practical reasons, however, we will continue to distinguish between
z and t confi dence intervals based on whether the sample size is large or small.

EXERCISES

8.24 Chemical engineers at the University of Murcia (Spain) conducted a series of experiments to determine the
most effec tive membrane to use in a passive sampler (Environmental Science & Technology, Vol. 27, 1993).
Th e effec tiveness of a passive sampler was measured by the sampling rate, recorded in cubic centimeters
per minute. In one experiment, six passive samplers were positioned with their faces parallel to the air fl ow
and with an air velocity of 90 centimeters per second. After 6 hours, the sampling rate of each was determined.
Based on the results, a 95% confidence interval for the mean sampling rate was calculated to be (49.66,
51.48).
a. What is the confidence coeffic ient for the interval?
b. Give a theoretical interpretation of the confidence coefficient, part a.
e. Give a practical interpretation of the confidence interval.
d. What assumptions, if any, are required for the interval to yield valid inferences?

8.25 Th e theoretical relationship between heat flux and temperature gradient for homogeneous materials is well
known and described by a Fourier equation. However, this relationship does not hold for nonh omogeneous
materials such as porous-capillary bodies, cellular systems, suspensions, and pastes. An experiment was
conducted to estimate the mean thermal relaxation time (defined as the mean time needed for accumul ating
the thermal energy required for propagative transfer of heat) for several nonh omogeneous materials (Journal
of Heat Transfer, Aug. 1990). A 95% confidence interval for the mean thermal relaxation time of sand was
found to be 20.0 ± 6.4 seconds.
a. Give a practical interpretation of the 95% confidence interval.
b. Give a theoretical interpretation of the 95% confidence interval.

8.26 Unusual rocks at "T he Seven Islands," located along the lower St. Lawrence River in Canada, have attracted
geologists to the area for over a century. A major geological survey of "The Seven Islands" was recently
completed for the purpose of developing a three-dimensional gravity model of the area (Canadian Journal
of Earth Sciences, Vol. 27, 1990). One of the keys to an objective model is obtaining an accurate estimate



8.5 1 Estimation of a Population Mean 369

of th e rock densiti es. Based on samples of severa l varieties of rock, th e following info rmation on rock den sity
(grams per cubic centimeter) was obtained .

Type of Rock

Late gabbro
Massive gabbro
C um berlandite

Sample Size

36
148
135

Mean Density

3.04
2.83
3.05

Standard Deviation

.13

.11

.31

Source: Lonca rcvic , B. D. , Peninge r, T., and Lefebvre, D. "T he Sept-l ies layered mafic int rusion : Ge o­
physica l expression ." Canadian Journal of Earth Sciences, Vol. 27, Aug. 1990, p. 505.

a . For eac h roc k type, estima te the mean density with a 90 % confidence interval.
b. Interpret the in tervals, pa rt a.

8.27 An evalua tion of trace metal che m istry and cycl ing in an ac idic Adiro ndac k lake was repo rted in Environ­
mental Science & Technology (Dec. 198 5). Twenty-four (24) water samples were collected from Darts Lake,
New York, and ana lyzed for con centration of both lead and alumi n um particu lates.
a. The lead concentration measurements had a me an of 9.9 nmol/ l an d a stan dard deviation of

8.4 nmol l1. Calcul ate a 99 % con fidenc e in terval for the tru e mean lead concen tratio n in water samples
collected from Darts Lake,

b. The aluminum concentration measurem ents had a mean of 6.7 nmolll and a stan dard deviation of
10.8 nmoll1. Calculate a 99% con fidence interval for the true mean aluminum concentration in water
samples collected from Darts Lake.

c. What assumptions are necessary for the intervals of parts a and b to be valid?

8.28 Acco rding to on e study, "The ma jority of peop le who die from fire and smok e in compartmented fire­
resistive bu ildin gs-the type used for hotels, mo tels, apartme nts, an d other hea lth care facilities-die in
the attempt to evac ua te" (Risk Management, Feb. 1986). The accompan ying data represent the nu mbers
of victims who attem pted to evacuate for a sample of 14 recent fires at co mpa rtmen ted fire-resistive bu ildings
rep orted in th e study.

Fire

Las Vegas Hilton (Las Vegas)
Inn on the Park (Toron to)
Wcstchase Hilton (Houston)
Holiday Inn (Ca mb ridge, Ohio)
Conrad Hilton (Chicago)
Providence Coll ege (Providence)
Baptist Towers (Atlan ta)
Howard Joh nson (New O rleans )
Corne ll University (Ithaca , New York)
Wesport Centra l Apartmen ts (Kansas City, Missouri )
O rrington Hotel (Evanston, Illinois)
Hartford Hospital (Ha rtford, Co nnecticut)
M ilford Plaza (New York)
MGM G rand (Las Vegas)

Died in Attempt
to Evacuate

5
5
8

10
4
8
7
5
9
4
o

16
o

36

Source : Macd on ald,}. N . "Is evacuation a fatal Haw in fire fighting ph ilosoph y?" Risk Iv/anagemelll,
Vol. 33, No.2 , l-cb . 1986, p 37.
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a. State the assumption, in terms of the problem, that is required for a small-sample confidence interval
technique to be valid.

b. Use the information in the accompanying MINITAB printout to construct a 98% confidence interval
for the true mean number of victims per fire who die in an attempt to evacuate compartmented fi re­
resistive buildings.

c. Interpret the interval constructed in part b.

numdied
N

14
MEAN
8.36

BTDEV
8.94

BE MEAN
2.39

98.0 PERCENT C.l.
( 2.02, 14.69)

8.29 The Journal of the American l'vledical Association (Apr. 2\, 1993) reported on the results of a National
Health Interview Survey designed to determine the prevalence of smoking among U.S. adults. Over 40,000
adults responded to questions such as "Have you smoked at least \00 cigarettes in your lifetime?" and "Do
you smoke cigarettes now?" Cur rent smokers (over 11,000 adults in the survey) were also asked: "On the
average, how many cigarettes do you now smoke a day?" The results yielded a mean of 20.°cigarettes per
day with an associated 95% confidence interval of (19.7, 20.3).
a. Interpret the 95% confi dence interval.
b. State any assumptions about the target population of current cigarette smokers that must be satisfied for

inferences derived from the interval to be valid.
c. A tobacco industry researcher claims that the mean num ber of cigarettes smoked per day by regular

cigarette smokers is less than 15. Comment on this claim.

8.30 Tropical swarm-founding wasps, like ants and bees, rely on workers to raise their offspring. Interestingly,
the workers of this species of wasp are mostly female, capable of producing offspring of their own. Instead,
they rear the young of others in the brood. One possible explanation for this strange behavior is inbreeding,
which increases relatedness among the wasps and makes it easier for the workers to pick out and aid their
closest relatives. To test this theory, 197 swarm-founding wasps were captured in Venezuela, frozen at
- 70°C, and then subjected to a series of genetic tests (Science, Nov. 1988). The data were used to generate
an inbreeding coeffi cient, x, for each wasp specimen, with the foll owing results: x = .044 and s = .884.
a. Construct a 90% confidence interval for the mean inbreeding coeffi cient of this species of wasp.
b. A coefficient of 0 implies that the wasp has no tendency to inbreed. Use the confidence interval,

part a, to make an inference about the tendency for this species of wasp to inbreed.

8.3/ The data for Exercise 2.S7 are reproduced here. The numbers in the table represent the CPU solution times
(in seconds) for 52 random polynomial 0- 1 mathematical problems solved using a hybrid algorithm. A
stem-and-leaf display and descriptivestatistics for the data set are provided in the accompanying SAS printout.
Usc this information to estimate, with 95% confidence , the mean solution time for the hybrid algorithm
Interpret the result.

.045 . 136 8.788 .079 3.985 1.267 .379 .327

.136 . 130 .036 .136 .600 .209 .506 .064

.088 .194 .118 .258 4.170 .554 .412 .045

.361 .049 .070 1.639 .258 .670 .567

.182 I. 055 .091 .579 1.894 .291 .445

. 179 .336 .145 .394 1.070 .227 .258

. 182 .242 .209 .333 .912 3.046 3.888

Source: Snyder. W. S., and Chrissis, J. W. "A hybrid algorithm for solving zero-one mathematical pro­
gramming problems." 1/£ Transactions, Vol. 22. No. 2, June 1990. p. 166 (Table I).
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UNIVARIATE PROCEDURE

Variab1e=SOLTIME

Moments

H
Mean
Std Dev
Skewness
USS
CV
T:Mean=O
Sgn Rank
Hum '= 0
W:Hormal

52
0.812192

1. 50476
3.65356

149.7816
185.2714
3.892183

689
52

0.530623

Sum Wgts
Sum
Variance
Kurtosis
CSS
Std Mean
prob>IT/
Prob> S

Prob<W

52
42.234

2.264303
15.73264
U5.4795
0.208673

0.0003
0.0001

0.0

Quanti1es(Def=5)

100% Max 8.788 99% 8.788
75% Q3 0.5895 95% 3.985
50% Med 0.2745 90% 1.894
25% Q1 0.136 10% 0.07

0% Min 0.036 5% 0.045
1% 0.036

Range 8.752
Q3-Q1 0.4535
Mode 0.136

Extremes

Lowest
0.036(
0.045(
0.045(
0.049(
0.064(

Obs
22)
50)

1)
51)
45)

Highest
3.046(
3.888(
3.985(

4.17(
8.788(

Obs
49)
35)
33)
43)
17)

Stem Leaf
8 8
8
7
7
6
6
5
5
4
4 02
3 9
3 0
2
2
1 69
1 U3
o 5666679
o 00001111111111122222222333333344444

----+----+----+----+----+----+----+

#
1

2
1
1

2
3
7

35

Boxp1ot
*

*

o
I

+--+--+

8.6 Estimation of the Difference Between Two Population Means:
Independent Samples

In Section 8.5, we learned how to estimate the parameter /.L from a single population.
We now proceed to a technique for using the information in two samples to estimate
the difference between two population means, (/.Ll - /.Lzl, when the samples are
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collected independently. For example, we may want to compare th e mean starting
salaries for college graduates with me chanical engineering and civil engi neering
degre es, or the me an opera tin g costs of automobiles with rotary engines and standard
engines, or the mean failure times of two electron ic com ponents. The techniqu e to
be presented is a straightforward exten sion of that used for estimation of a single
population mean.

Suppose we select independent random samples of sizes 111 and I1Z from populations
with means IJ- l an d IJ- z, respectively. Intuitively, we want to use the differen ce between
the sample means, (YJ - )iz), to estima te (IJ- I - IJ-z). In Example 7.5 , we showed
that

You can see that (Yl - yz) is an unbiased estimator for (IJ-I - IJ-z). Further , it can be
shown (proo f om itted) that V( Yl - yz) is sma llest among all unbiased estima tors , i.e.,
(Yl - yz ) is the MVUE for (IJ- l - IJ-z).

Acco rding to the cen tral limit the orem , (Yt - yz) will also be app roximately
normal for large n I an d I1Z regardl ess of the distributions of the sam pled populations.
Thus, we can apply T heo rem 8. Z to construc t a large-sample confide nce interval
for (IJ- J - IJ- z). T he procedure for forming a large-sampl e confidence interval for
(IJ- I - IJ-z) appears in the box.

large-Sample (I - a) I00% Confidence Interval for (ILl - IL2):
Independent Samples........ .. . ... ..... .............

(J' z (J'Z
--.!+-l
11\ I1Z

S2 SZ
-1+ --.£
111 I1Z

[Note: We have used the sample varian ces sf and s ~ as approximatio ns to the
corr esponding popul ation parameters.]

Assumptions: I. T he two random samples are selected in an ind ependent
ma nner from the target populations. That is, the ch oice of
elements in one sam ple does not affect, and is not affected
by, the choice of clements in the othe r sam ple.

Z. T he sample sizes n1 and 112 are sufficiently large for the central
limit theorem to apply. (We reco m me nd 111 2: 30 and
112 2: 30. )
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Solution
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We want to estimate the difference between the mean starting salaries for recent
graduates with mechanical engineering and civil engineering degrees from the Uni­
versity of Florida (UF). The following information is available:"

1. A random sample of 59 starting salaries for UF mechanical engineering graduates
produced a sample mean of $32,675 and a standard deviation of $4,430.

2. A random sample of 30starting salaries for UF civil engineeringgraduates produced
a sample mean of $27,460 and a standard deviation of $4,286.

We will let the subscript 1 refer to the mechanical engineering graduates and the
subscript 2 to the civil engineeringgraduates. We will also define the following notation:

fJ.-t = Population mean starting salary of all recent UF mechanical engineering
graduates

fJ.- z = Population mean starting salary of all recent UF civil engineering graduates

Similarly, let Yt and yzdenote the respective sample means; SI and Sz , the respective
sample standard deviations; and n I and n z, the respective sample sizes. The given
information is summarized in Table 8.3.

TABLE 8.3 Summary of Information for Example 8.10

Sample Size
Sample Mean
Sample Standard Deviation

Mechanical
Engineers

nl = 59
YI = 32,675
8 1 = $4,430

Civil
Engineers

n2 = 30
Y2 = 27,460
82 = 4,286

Source: Career Resource Center, University of Florida.

The general form of a 95% confidence interval for (fJ.- l fJ.-z), based on large,
independent samples from the target populations, is given by

01 - Yz) ± Z .OZ5

Recall that Z OZ5 = 1.96 and use the information in Table 8.3 to make the following
substitutions to obtain the desired confidence interval:

(32,675 - 27,460) ± 1.96Ya-T/59 + a-~/30

= (32,675 - 27,460) ± 1.96yr;-;(4----:,4-::C3O~)Z'--;-/=59-+-----;-:-(4---:::,2-:::-C86=)2;-;:/ 3=0

= 5,21 5 ± 1,905

or ($3,310, $7,120).

"T he information for this example was extracted from a 1990 survey of graduates conducted by the Career
Resource Center, University of Florida.
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EXAMPLE 8.11

If we were to usc this method of estimation repeatedly to produce confidence
intervals for (IJ-I - IJ-z), the difference between population means, we would expect
95% of the intervals to enclose (IJ- l - IJ- z). Hence, we can be reasonably confident
that the mean starting salary of mechani cal engineering graduates of UF was between
$3,310 and $7, 120 higher than the mean starting salary of civil engineering graduates.

A confidence interval for (IJ- t - IJ-z ), based on small samples from each population,
is derived using Student's t distribution. As was the case when estimating a single
population mean from information in a small sample, we must make specific assump­
tions about the relative frequency distributions of the two populations, as indicated in
the box. These assumptions are required if either sample is small (i.e. , if either n1 <
30 or 11 Z < 30).

Small-Sample (I - a)I00% Confidence Interval for (j'/"I - IL2):
Independent Samples and a~ a~.. .. .. .. . . . .... . . . . . .. . . .. . . . . . .

where

SZ = (nl - l )sI + (nz - l )s~
P 111 + nz - 2

and the value of ta l Z is based on (n1 + 11z - 2) degrees of freedom .

Assumptions: I. Both of the populations from which the samples are selected
have relative frequency distributions that are approximately
normal.

2. The variances (TT and (T ~ of the two populations arc equal.

3. The random samples are selected in an independ ent manner
from thc two populations.

Note that this procedure requires that the samples be selected from two normal
populations that have equal variances (i.e. , (TT = (T ~ = (T2 ). Since we are assuming
the variances are equal, we construct an estimate of (T2 based on the information
contained in both samples. This pooled estimate is denoted by s ~ and is computed
as shown in the previous box. You will notice that s~ is a weighted average of the two
sample variances, ST and st with the weights proportional to the respective sample
sizes.

The Journal ofTesting and Evaluation (July 1981 ) reported on the results of laboratory
tests conducted to investigate the stability and permeability of open-graded asphalt
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concrete. In one part of the experiment, four concrete specimens were prepared for
asphalt contents of 3% and 7% by total weight of mix. The water permeability of each
concrete specimen was determined by flowing deaeratcd water across the specimen and
measuring the amount of water loss. The permeability measurements (recordcd in
inches per hour) for the eight concrete specimens are shown in Table 8.4. Find a
95% confidence interval for the difference between the mean permeabilities of concrete
made with asphalt contents of 3% and 7%. Interpret the interval.

TABLE 8.4 Permeability Measurements for 3% and 7% Asphalt
Concrete. Example 8.11

Asphal t (on tent 3%
7%

1,189
853

840
900

\ ,020
733

980
785

Solution

Sourec: Woclfl, C ., Wei, I. , Faulstich, c., and Litwack, H. "Laboratory
testing of asphalt concrete for porous pavements." Journal of Testing and
Evaluation. Vol. 9, No. 4. July 1981, PI' 175-181. Copyright American
Society for Testing and Materials.

First, we calculate the means and variances of the two samples, using the computer.
A SAS printout giving descriptive statistics for the two samples is shown in Figure
8.10. For the 3% asphalt, YI = 1,007.25 and Sf = 20,636.92; for the 7% asphalt,
YZ = 817.75 and s~ = 5,420.92.

4 ASPH3PCT 4 10 07 .2 5
ASPH7PCT 4 817.7500000

2063 6 .92 143 .6 555487
5420 .9 2 73 . 62687 46

fiGURE8.1 0 ~
SAS descriptive statistics fo r
Example 8.11

N Obs Variab l e N Mean Va r iance Std Dev

Since both samples are small (n I = n: = 4), the procedure requires the assumption
that the two samples of permeability measurements are independently and randomly
selected from normal populations with equal variances. The 95% small-sample con­
fidence interval is

(YI - yz) ± I.OZ 5~S~U I + ~J

= (1 ,007.25 - 817.75) ± I O Z 5 ~S~ (~ +~)

where IOZ 5 = 2.447 is obtained from the 1 distribution (Table 7 of Appendix II) based
on n l + n: - 2 = 4 + 4 - 2 = 6 degrees of freedom, and

sZ = (n l - 1)ST + (nz - 1 )s ~ _ 3(20,636.92) + 3(5,420.92)
P nl + nz - 2 - 6

= 13,028.92
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is the pooled sample variance. Substitution yields the interval

(1,007.25 - 817.75) ± 2.447~13,028.92(~ +~)
= 189.5 ± 197.50

or, - 8.00 to 387.00. This interval could also be obtained using the computer. The
MINITAB-generated 95% confidence interval is displayed in Figure 8. I 1. Our cal­
culatcd interval agrees with the MINITAB result. The interval is interpreted as follows:
We are 95% confident that the interval (-8, 387) encloses the true difference between
the mean permeabilitics of the two types of concrete. Since the interval includes 0,
we are unable to conclude that the two means differ.

FIGURE 8.11 ~
asph3pct VS asph7pct

MINITAB printout for Example 8.11
TWOSAMPLE T FOR

N MEAN STDEV SE MEAN
asph3pct 4 1007 144 72
asph7pct 4 817 .8 73.6 37

95 PCT CI FOR MU asph3pct - MU asph7pct: (-8, 387)

TTEST MU asph3pct

POOLED STDEV =

MU asph7pct (va NE): T= 2.35 P=0.057 DF= 6

114

As with the one-sample case, the assumptions required for estimating (JLl - iLz)
with small samples do not have to be satisfied exactly for the interval estimate to be
useful in practice. Slight departures from these assumptions do not seriously affect the
level of confidence in the procedure. For example, when the variances CTf and CT~ of
the sampled populations are unequal, researchers have found that the formula for the
small-sample confidence interval for (JLl - JLz ) still yields valid results in practice as
long as the two populations are normal and the sample sizes are equal, i.e., n1 = nz.

This situation occurs in Example 8.11. Th e sample variances given in Figure
8.10 are sf = 20,636.92 and s~ = 5,420.92. Thus, it is very likely that the population
variances, CTf and CT L are unequ al. * However, since n1= nz = 4, the inference derived
from this interval is still valid if we use sf and s~ as estimates for the population
variances (rather than using the pooled sample variance, s~ ).

In the case where CT ¥ i= CT ~ and n I i= nz, an approximate confidence interval for
(JL I - JL z) can be constructed by modifying the degrees of freedom associated with
the t distribution, and, again, substituting sf for CTf and d for CT ~. These modifications
are shown in the box.

• A method for comparing two popul ation variances is presented in Section 8. 11.



8.6/ Estimation of the Difference Between Two Population Means: Independent Samples 377

Approximate Small-Sample Inferences for (ILl - 1L2) when (J"~ * O"~. .. .... . ........................

To obtain approxima te confidence intervals and tests for (JLI - JLz) wh en
CTr +- CT~ , makc the following modifications to the degrees of freedom v used in
the t distribution and the estimated standard error:

v=11, +- I1Z:
(sTln, + S~/112F

(sTln ,F + (sY nzF
nl - 1 nz - 1

[Note: In the case of n I +- nz, the value of v will not generally be an integer.
Round v down to the nearest integer to use the t table .

Assumptions: 1. Both of the populations from which the samples are selected
have relative frequency distributions that are approximately
normal.

2. The random samples are selected in an independent manner
from the two populations.

EXERCISES

8.31 Epidem iologists have theorized that the risk of coronary heart disease can be reduced by an increased
consumption of fish . One study, begun in 1960, monitored the diet and health of a random sample of
middle-age Dutchmen (New England Journal of Medicine, Ma y 1985). The men were divided into groups
according to the number of grams of fish consumed per day. T wen ty years later , the level of dietary cholesterol
(one of the risk factors for co rona ry disease) present in eac h was record ed . The results for two groups of
subjects, the "no fish consumption" group (0 grams per day) and the "high fish consumption" group (greater
than 45 grams per day), are summa rized in the table . (Die tary cho lestero l is measured in mill igrams per
1,000 calori es.)

Sample Size
Mean
Standard Deviation

No Fish Consumption
ograms/day

159
146
66

High Fish Consumption
45 grams/day

79
158
75

Source: Krornhout, D" Bosschieter, E, B" and Coulander, C. L. "111e inverse relationship between fish
consumption and 20.year mortality from coronary heart disease," New England Journal of Medicine,
May 9,1985, Vol. 31Z, No, 19, pp. IZ05-1209, Reprinted by permission,
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a. Calculate an approximate 99% confi dence interval for the difference between the mean levels of dietary
cholesterol present in the two groups.

b. Based on the interval constructed in part a, what can you infer about the true difference? Explain.

8.33 Marine biochemists at the University of Tokyo studied the properties of crustacean skeletal muscles (The
lournai of Experimental Zoology , Sept. 1993). It is well known that certain muscles contract faster than
others. The main purpose of the experiment was to compare the biochemical properties of fast and slow
muscles of crayfish. Using crayfish obtained from a local supplier, twelve fast-muscle fiber bundles were
extracted and each fiber bundle tested for uptake of the protein Ca2+ . Twelve slow-muscle fiber bundles
were extracted from a second sample of crayfish, and Ca2+ uptake measured. Th e results of the experiment
are summarized here. (All Ca2+ measurements are in moles per milligram.) Analyze the data using a 95%
confi dence interval. Make an inference about the difference between the protein uptake means of fast and
slow muscles.

Fast Muscle Slow Muscle

n, = 12 n2 = 12

Yl = .57 Y2 = .37

Sl = . 104 S2 = .035

Source: Ushio, H.• and Watabc, S. "Ultra­
structural and biochemical analysis of the sar­
coplasmic reticulum from crayfish fast and slow
striated muscles." The loumal of Experimental
Zoology. VoL 267, Sept. 1993, p. 16Crable 1).

8.34 Refer to the Harris Corporation/ University of Florida study to determine whether a manufacturing process
performed at a remote location can be established locally, Exercise 2. 12. Test devices (pilots) were set up
at both the olel and new locations and voltage readings on 30 production runs at each location were obtained.
The data are reproduced in the table. Descriptive statistics are displayed in the accompanying SAS printout.
[Note: Larger voltage readings are better than smaller voltage readings.]

Old Location New Location

9.98 10.12 9.84 9.19 10.01 8.82
10.26 10.05 10.15 9.63 8.82 8.65
10.05 9.80 10.02 10.10 9.43 8.5 1
10.29 10.15 9.80 9.70 10.03 9.14
10.03 10.00 9.7 3 10.09 9.85 9.75
8.05 9.87 10.01 9.60 9.27 8.78

10.55 9.5 5 9.98 10.05 8.83 9.35
10.26 9.95 8.72 10.12 9.39 9.54
9.97 9.70 8.80 9.49 9.48 9.36
9.87 8.72 9.84 9.37 9.64 8.68

Source: Harris Corporation, Melbourne, Fla.
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Analysis Variable : VOLTAGE

---------------------------- LOCATION=OLD -----------------------

N Obs N

30 30

Minimum

8.0500000

Maximum

10.5500000

Mean

9.8036667

std Dev

0.5409155

---------------------------- LOCATION=NEW -----------------------

N Obs N

30 30

Minimum

8.5100000

Maximum

10.1200000

Mean

9.4223333

std Dev

0 .4788757

a. Compare the mean voltage readings at the two locations using a 90% confidence interval.
b. Based on the interval, part a, does it appear that the manufacturing process can be established locall y?

8.35 The methodologyfor conducting a stressanalysis of newlydesigned timber structures is well known. However,
few data are available on the actual or allowable stress for repairing damaged structures. Consequently,
design engineers often propose a repair scheme (e.g., gluing) without any knowledge of its structural
effectiveness. To partially fill this void, a stress analysis was conducted on epoxy-repaired truss joints (Journal
of Structural Engineering, Feb. 1986). Tests were conducted on epoxy-bonded truss joints made of various
species of wood to determine actual glue-line shear stress recorded in pounds per square inch (psi). Summary
information for independent random samples of southern pine and ponderosa pine truss joints is given in
the accompanying table. Estimate the diffcrcnce between the mean shear strengths of epoxy-repaired truss
joints for the two species of wood with a 90% confi dence interval.

Sample Size
Mean Shear Stress, psi
Standard Deviation

Southern Pine

100
1, 31 2

422

Ponderosa Pine

47
1,352

271

Source: Avent, R. R. "Design criteria for epoxy repair of timber structu res." Journal of
Structural Engineering. Vol. II Z, ~o . Z, Feb. 1986, pp. Z3Z.

8.36 To investigate the possible link between fl uoride content of drinking water and cancer, Yiamouyiannis and
Burk (1977) recorded cancer death rates (number of deaths per 100,000 population) from 1952-1 969 in 20
selected U.S. cities-the 10 largest fluoridated cities and the 10 largest cities not fluoridated by 1969. Maritz
and Jarrett (Applied Statistics, Feb. 1983) used the data collected by Yiamouyiannis and Burk to calculate
for each city the annual rate of increase in cancer death rate over this 18-year period for each of four age
groups: under 25, 25-44, 45-64, and 65 or older. Th e data for the 45- 64 age group are reproduced in the
table at the top of page 380, followed by a MINITAB analysis of the data.
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.8875
1.7358
1.01 65
.4923

4.01 55
-1.1744

2.81 32
I. 7451

-.5676
2.4471

Nonfluoridated
Annual Increase in
Cancer Death RateCity

Los Angeles
Boston
New Orleans
Seattle
Cincinnati
Atlanta
Kansas City
Columbus
Newark
Portland

1. 0640
1.411 8
2.111 5
I. 9401
3.8772
-.4561
4.8359
1.8875
4.4964
1.4045

Fluoridated
Annual Increase in
Cancer Death RateCity

Ch icago
Philadelphia
Baltimore
Cleveland
Washington
Milwaukee
St. Louis
San Francisco
Pittsburgh
Buffalo

Sour ce: Mari tz . }. S ., and Jarrett, R. C . "The use of statistics to exam ine the association between fluoride in dr inking water
and cance r dea th rates." Applied Statistics, Vol. 32, No . 2, 198 3. PI'. 97- 101.

TWOBAMPLE T FOR fluorat VB nonflrat
N MEAN BTDEV BE MEAN

fluorat 10 2.26 1.66 0.52
nonflrat 10 1. 34 1. 56 0.49

95 PCT CI FOR MU fluorat - MU nonflrat: (-0.60, 2.43)

TTEBT MU fluorat = MU nonflrat (VB NE): T= 1.27 P=0.22 DF= 18

POOLED BTDEV = 1.61

a. Find a 95% confidence interval for the difference between the mean annual increases in cancer death
rates for fluoridated and nonfluoridated cities.

b. Interpret the interval obtained in part a.
c. What assumptions are necessary for the validity of the interval estimation procedure and any inferences

derivcd from it? Do you think these assumptions are satisfied?

8.37 Agricultural experts in Israel have developed a new method of irrigation, called [ertigaiion, in which fertil izer
is addcd to water and the mixture is dripped periodically onto the roots of the plants. Very little water-a
precious commodity in Israel-is wasted, and the nutrients go directly where they are needed . To test this
new process, 100 acres were randomly selected and their historical yields were recorded. Th e fertigation
process was then applied to the new crop and the new yields were recorded. Th e accompanying table
summarizes the results,

Sample Size
Mean Yield
Standard Deviation

Before Fertigation

100
40%

8%

After Fertigation

100
75%
6%

a. Estimate the difference between the true mean yields before and after fertigation. Use a 90% confidence
interval.

b. Interpret the confidence interval of part a.
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8.38 Sintering, one of the most important techniques of materials science, is used to convert powdered material
into a porous solid body. Th e following two measures characterize the final product:

Vv = Percentage of total volume of final product that is solid

= ( Solid volume ) . 100
Porous volume + Solid volume

Sv = Solid-pore interface area per unit volume of the product

Wh en Vv = 100%, the product is completely solid- i.e., it contains no pores. Both Vv and Sv are estimated
by a microscopic examination of polished cross sections of sintered material. Th e accompanying table gives
the mean and standard deviation of the values of Sv (in squared centimeters per cubic centimeter) and Vv
(percentage) for n = 100 specimens of sintered nickel for two different sintering times.

S v Vv
Time y s y s

10 minutes 736.0 181.9 96.73 2. 1
150 minutes 299.5 161.0 97.82 1.5

Data and experimental information provided by Cuoquan l.iu while visiting at the
University of Florida in 1983

a. Find a 95% confidence interval for the mean change in Sv between sintering times of 10 minutes and
150 minutes. What inference would you make concerning the difference in mean sintering times?

b. Repeat part a for Vv .

8.7 Estimation of the Difference Between Two Population Means:
Matched Pairs..................................................................

The large- and small-sample procedures for estimating the differe nce between two
population means presented in Section 8.6 were based on the assumption that the
samples were randomly and independently selected from the target populations. Some­
times we can obtain more information about the difference between population means,
(IL l - IL z), by selecting paired observations.

For example, suppose you want to compare two methods for drying concrete using
samples of fi ve cement mixes with each method. One method of sampling would be
to randomly select 10 mixes (say, A, B, C. D• . .. , J) from among all available mixes
and then randomly assign five to drying method I and five to drying method 2 (see
Table 8.5 on page 382). T he strength measurements obtained after conducting a series
of strength tests would represent independent random samples of strengths attained by
concrete specimens dried by the two different methods. Th e difference between the
mean strength measuremen ts, (IL l - ILz ), could be estimated using the confidence
interval procedure described in Section 8.6.
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TABLE 8.5 Independent Random
Samples of Cement Mixes Assigned to
Each Method

Method I Method 2

Mix A Mix B
Mix E MixC
Mix F Mix 0
Mix H MixG
Mix J Mix J

A better method of sampling would be to match the concrete specimens in pairs
according to type of mix. From each mix pair, one specimen would be randomly
selected to be dried by method I; the other specimen would be assigned to be dried
by method Z, as shown in Table 8.6. Th en the differences between matched pairs of
strength measurements should provide a clearer picture of the difference in strengths
for the two drying methods because the matching would tend to cancel the effects of
the factors that formed the basisof the matching (i.e., the effects of the different cement
mixes).

TABLE 8.6 Set-up of the Matched-Pairs Design
for Comparing Two Methods of Drying Concrete

Type of Mix

A
B
C
o
E

Method I

Specimen 2
Specimen 2
Specimen I
Specimen 2
Spccimcn I

Method 2

Specimen I
Specimen I
Specimen 2
Specimen I
Specimen 2

In a matched-pairs experiment, the symbol J1..d is comm only used to denote the
mean difference between matched pairs of measurements, where J1..d = (J1.. 1 - J.tz).
Once the diffe rences in the sample are calculated, a confidence interval for J.Ld
is identical to the confidence interval for the mean of a single population given in
Section 8.5.

Th e procedure for estimating the difference between two population means based
on matched-pairs data for both large and small samples is given in the box.
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(I - a)100% Confidence Interval for ILd = (ILl - IL2): Matched Pairs

Let d l , d: . . . . . d; represent the differences between the pairwise observations
in a random sample of n matched pairs, a= mean of the n sample differences,
and Sci = standard deviation of the n sample differences.

Large Sample

- ( (Tel )d ± Z<r/ Z vi;:;

where (Tel is the popul ation deviation
of differen ces.

Assumption: 12 2: 30

[Note: When (Tel is unknown (as is
usually the case), usc Sci to
approximate (T<!. ]

Small Sample

a± t<r / Z(~)

where t <r /z is based on (n - 1)
degrees of freedom.

Assumption: T he population of
paired differences is normally
distribut ed.

EXAMPLE 8./2 On e desirable characte ristic of water pipes is that the quality of water they deliver be
equ al to or near the quali ty of water entering the system at the water treatment plant.
A type of ductile iron pipe has provided an excellent water delivery system for the
St. Louis County Water Co mpany. T he chlorine levels of water eme rging from the
South water treatment plant and at the Fire Station (Fenton Zone 13) were measur ed
over a 12-month period, with the results shown in Table 8.7 . Find a 95% confidence
interval for the mean difference in monthly chlorine con ten t between the two locations.

TABLE 8.7 Chlorine Content Data for Example 8.12

Month
.. .. . .. . ... . . . . . . ... . . . . . .... . . . . .. ...... ... ..... . .. .. ... . .. . . ... . . . ... . .. . . .... . .. ... . .. ..... . ... . ..... . . . .. .... . .. . .. .. . . . ... ...

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Location South Plant 2.0 2.0 2.1 1. 9 1.7 1. 8 1.7 1. 9 2.0 2.0 2. 1 2. 1
Fi re Station 2.2 2.2 2.1 2.0 1. 9 1. 9 1. 8 1.7 1. 9 1. 9 1.8 2.0

Diflerence - .2 - .2 0 - .1 - .2 - .1 - .1 .2 .1 . 1 .3 .1

Source: "S1. Louis County Standardizes Pipe and Procedures for Reliability." Stafl Report. Water and Sewage Works, Dec. 1980

Solution Since the chlorine levels at the two plan ts were recorded over the same 12 mon ths,
the data are collected as matched pairs. We want to estimate ILd = (IL l - IL Z), where

IL l = Mean mon thly chlorine level at the South Plant

IL z = Mean monthly chlorine level at the Fire Station
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Th e differences between pairs of monthly chlorine levels are computed as

d = (South Plant level) - (Fire Station level)

and are shown in the last row of Table 8.7.
Since the number of differences, n = 12, is small, we must assume that these

differences are from an approximately normal distribution in order to proceed. The
mean and standard deviation of these sample differences are shown (shaded) on the
SAS printout, Figure 8.12. From the printout, a= - .0083 and Sd = .1676.

Analysis Variable : DIFF (Plant minus station)
FIGURE 8.12 ~

SAS descriptive statistics for
matched pairs, Example 8.12

N Obs N Minimum Maximum Mean std Dev

12 12 -0.2000000 0.3000000 -0.0083333 0.167 6486

EXERCISES

The value of t .025, based on (n - 1) = (12 - 1) = 11 degrees of freedom, is
given in Table 7 of Appendix II as t .025 = 2.20 1. Substituting these values into the
formula for the small-sample confidence interval, we obtain

a± t .025(V;)
-. 0083 ± 2.20{~)

- .0083 ± . 1065

or (-. 1148, .0982).
We estimate, with 95% confidence, that the difference between the mean monthly

chlorine levels of water at the two St. Louis locations falls within the interval from
- . 1148 to .0982. Since 0 is within the interval, there is insuffici ent evidence to
conclude there is a difference between the two means.

In an analysis of matched-pair observations, it is important to stress that the pairing
of the experimental units (the objects upon which the measurements are taken) must
be performed before the data are collected. Recall that the objective is to compare two
methods of "treating" the experimental un its. By using the matched pairs of un its that
have similar characteristics, we are able to cancel out the effects of the variables used
to match the pairs.

8.39 Pesticides applied to an extensively grown crop can result in inadvertent area-wide air contamination.
Environmental Science & Technology (Oct. 1993) reported on air deposition residues of the insecticide



Date

Jan. II
12
13
14
15
16
17
18
19
20
ZJ

8.7 I Difference Between Two Population Means: Matched Pairs 385

diazinon used on dormant orchards in the San Joaquin Vall ey, California. Ambient air samples were collected
and analyzed at an orchard site for each of II days during the most intensive period of spraying. The levels
of diazinon residue (in ng/rn ' ) during the day and at night are recorded in the table. The researchers want
to know whether the mean diazinon residue levels differ from day to night.

Diazinon Residue
Day Night

5.4 24.3
2.7 16.5

34.2 47.2
19.9 12.4
2.4 24.0
7.0 21.6
6.1 104.3
7.7 96.9

18.4 105.3
27.1 78.7
16.9 44.6

Source: Seiber, J. N., et al. "Air and fog deposi­
lion residues for organophosphate insecticides used
on dormant orchards in the San Joaquin Valley,
Californ ia ." Environmental Science &- Technologv,
Vol. 27, No. 10, Oct 1993, p. 2240 (Table IV)

a. Analyze the data using a 90% confidence interval.
b. What assumptions arc necessary for the validity of the interval estimation procedure of part a?
c. Use the interval, part a, to answer the researchers' question.

8.40 The Journal of Environmental Engineering (Feb. 1986) reported on a heat transfer model designed to predict
winter heat loss in wastewater treatment clarifiers. Th e analysis involved a comparison of clear-sky solar
irradiation for horizontal surfaces at different sites in the midwest. Th e day-long solar irradiation levels (in
BTU/sq. ft.) at two midwestern locations of different latitudes (St. Joseph, Missouri, and Iowa Great Lakes)
were recorded on each of seven clear-sky winter days. Th e data are given in the table. Find a 95% confidence
interval for the mean difference between the day-long clear-sky solar irradiation levels at the two sites.
Interpret the results.

Date

December 21
January 6
January 21
February 6
February 21
March 7
March ZJ

St. Joseph, Mo.

782
965
948

1,1 81
1,414
1,633
1,852

Iowa Great Lakes

593
672
750
988

1,226
1,462
1,698

Source: Wall, D. J. , and Peterson. C . "Model for winter 1.",,1loss in uncovered
clarifiers." Journal of Environmental Engineering, Vol. 112, 1\0. I, Feb. 1986,
p. 128
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8.41 A federal traffic safety researcher was hired to ascertain the effect of wearing safety devices (shoulder harnesses,
scat belts) on reaction times to peripheral stimuli. To investigate this question, he randomly selected
15 subjects from the students enrolled in a driver education program. Each subject performed a simulated
driving taskthat allowed reaction times to be recorded under two conditions, wearinga safetydevice (restrained
condition) and no safety device (unrestrained condition). Th us, each subject received two reaction-time
scores, one for the restrained condition and one for the unrestrained condition. Th e data (in hundredths
of a second) are shown in the accompanying table, followed by a MINITAB printout of the analysis.

Driver 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Restrained 36.7 37. 5 39.3 44.0 38.4 43.1 36.2 40.6 34.9 31.7 37.5 42.8 32.6 36.8 38.0
Unrestrained 36. 1 35.8 38.4 41.7 38.3 42.6 33.6 40.9 32.5 30.7 37.4 40.2 33. 1 33.6 37.5

N MEAN STDEV SE MEAN 90.0 PERCENT C.!.
Rminusu 15 1.180 1.191 0.307 0.638, 1. 722)

a. Find a 90% confi dence interval for the difference between mean reaction-time scores for the restrained
and unrestrained drivers.

b. Wh at assumptions are necessary for the validity of the interval estimation procedure of part a?
e. Based on the interval of part a, what would you infer about the mean reaction times for the driving

conditions?

8.42 Medical researchers believe that exposure to dust from cotton bract induces respiratory disease in susceptible
field workers. An experiment was conducted to determine the effect of air-dried green cotton bract extract
(GBE) on the cells of mill workers not exposed to dust (Environmental Research, Feb. 1986). Blood samples
taken on eight workers were incubated with varying concentrations of GBE. After a short period of time,
the cyclic AMP level (a measure of cell activity expressed in picomoles per million cells) of each blood
sample was measured. The data for two GBE concentrations, 0 mg/ml (salt buffer, control solution) and
.2 mg/ml, arc reproduced in the table. [Note that one blood sample was taken from each worker, with one
aliquot exposed to the salt buffer solution and the other to the GBE.]

GBE Concentration,
Worker mg/ml

0 .2

A 8.8 4.4
B 13.0 5.7
C 9.2 4.4
D 6.5 4.1
F 9.1 4.4
H 17.0 7.9

Source: Butcher, B. T., Reed, M. A., and O'Ne il,
C. E. "Biochemical and imm unologic characterization
of calion bract extract and its effect on in vitro cyclic
AMP production." Environmental Research, Vol. 39,
No. I, Feb. 1986, p. 119.

a. Find a 95% confi dence interval for the mean difference between the cyclic AMP levels of blood samples
exposed to the two concentrations of GBE.

b. Based on the interval obtained in part a, is there evidence that exposure to GBE blocks cell activity?
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8.43 Many Vietnam veterans have dangerously high levels of the dioxin 2,3,7,8-TCDD in blood and fat tissue
as a result of their exposure to the defoliant Agent Orange. A study published in Chemosphere (Vol. 20,
1990) reported on the TC DD levels of 20 Massachusetts Vietnam veterans who were possibly exposed to
Agent Orange. The amounts of TCDD (measured in parts per trillion) in blood plasma and fat tissue drawn
from each veteran are shown in the table followed by a SAS printout giving summary statistics. Use the
information on the printout to construct a confidence interval that will allow you to compare the mean
TCDD level in plasma to the mean TC DD level in fat tissue for Vietnam veterans exposed to Agent Orange.
Interpret the result.

TCDD Levels TCDD Levels TCD D Levels TCDD Levels
Veteran in Plasma in Fat Tissue Veteran in Plasma in Fat Tissue

I 2.5 4.9 II 6.9 7.0
2 3.1 5.9 12 3.3 2.9
3 2. 1 4.4 13 4.6 4.6
4 3.5 6.9 14 1.6 1.4
5 3.1 7.0 15 7.2 7.7
6 1.8 4.2 16 1.8 l. 1
7 6.0 10.0 17 20.0 [l. 0
8 3.0 5.5 18 2.0 2.5
9 36.0 41.0 19 2.5 2.3

10 4.7 4.4 20 4.1 2.5

Source: Sch ecte r. A., el. a l. "Partiti on ing of 2, >,i ,8-chlorinated dibenzo-p-dioxius and dibcnzofura ns between adipose tissue and plasma
lipid of 20 Massach usetts Vietnam veterans." Chemosphere, Vol. 20, Nos. 7- 9, 1990, pp. 954- 955 (Table I & II).

N Obs Variable N Minimum Maximum Mean Std Dev

20 PLASMA
FAT
DIFF

20
20
20

1 .6000000
1 .1000000

-5 .0000000

36.0000000
41 .0000000

9.0000000

5.9900000
6.8600000

-0.8700000

8 .1279829
8.4656209
2.9773001

8.8 Estimation of a Population Proportion

We will now consider the method for estimating the binomial proportion p of suc­
cesses-that is, the proportion of elements in a population that have a certain char­
acteristic. For example, a quality control inspector may be interested in the proportion
of defective items produced on an assembly line; or a supplier of heating oil may be
interested in the proportion of homes in its service area that are heated by natural gas.

A logical candidate for a point estimate of the population proportion p is the
sample proportion p = yi n, where y is the number of observations in a sample of
size n that have the characteristic of interest (i.e., y is the number of "successes"). In
Example 7.7, we showed that for large 11, p is approximately normal with mean

E(p) = P
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EXAMPLE 8.13

and variance

Therefore, pis an un biased estimator of pand (proof omitted) has the smallest variance
among all unb iased estimators; that is, p is the MVUE for p. Since pis approximately
normal, we can usc it as a pivotal statistic and apply T heorem 8. Zto derive the formula
for a large-sample confidence interval for p shown in the box.

Large-Sample (I - a) I00% Confidence Interval for a Population Proportion, p........ .............. ..........

where pis the sample proportion of observations with the charact eristic of interest,
and q = I - p.

[Note: T he interval is approximate since we must substitute the sample pand
qfor the corresponding populat ion values for O"p.]

Assum!Jtion: The sample size n is sufficiently large so that the approximation
is valid. As a rule of thumb, the condition of a "sufficientl y large" sample size
will be satisfied if np ;::: 4 and nq ;::: 4.

Note that we must substitute pand qinto the formul a for O"p = YM/n to construct
the interval. Thi s approximation will be valid as long as the sample size n is suffic iently
large. Many researchers adopt the rule of thumb that n is "suffic iently large" if the
interval p ± ZYpq/n does not contain 0 or I. Recall (Section 7.6) that this rule is
satisfi ed if np ;::: 4 and nq ;::: 4.

Stainless steels arc frequen tly used in chemical plants to hand le corrosive fluids. H OII'­

ever, these steels are especially susceptible to stress corrosion cracking in certain cnvi­
ronm ents. In a sample of 295 steel alloy failures that occurred in oil refineries and
petrochemical plants in Japan over the last 10 years, 118 were caused by stresscorrosion
cracking and corrosion fatigue (Materials Performance, June 1981). Construct a 95%
confidence interval for the true proportion of alloy failures caused by stress corrosion
cracking.
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The sample proportion of alloy failures caused by corrosion is

A _ Number of alloy failures in sample caused by corrosion
p - Number of alloy failures in sample

11 8
= 295 = .4

Thus, q = I - .4 = .6. The approximate 95% confi dence interval is then

p± Z02 5~ = .4 ± 1.96\t~~56) = .4 ± .056

or (.344, .456). [Note that the approximation is valid since np = 11 8 and nq= 177
both exceed 4.]

We are 95% confident that the interval from .344 to .456 encloses the true
proportion of alloy failures that were caused by corrosion. If we repeatedly selected
random samples of n = 295 alloy failures and constructed a 95% confidence interval
based on each sample, then we would expect 95% of the confidence intervals con­
structed to contain p.

Small-sample procedures are available for the estimation of a population propor­
tion p. The se techniques are similar to those small-sample procedures for estimating
a population mean u , (Recall that p= Yin can be thought of as a mean of a sample
of 0-1 Bernoulli outcomes.) The details are not included in our discussion, however,
because most surveys in actual practice use samples that are large enough to employ
the procedure of this section.

8.44 An American Housing Survey (AHS) conducted by the U.S. Department of Commerce revealed that 705
of 1,500 sampled homeowners are "do-it-yourselfers"-they did most the work themselves on at least one
of their home improvements or repairs (Bureau of the Census, Stat istical Brief, May 1992). Estimate the
true proportion of American homeowners who do most of the home improvement or repair work themselves
using a 95% confidence interval. Interpret the result.

8.45 The "Black Hole" survey, sponsored by the Professional Employment Research Council, reports on the
toughest jobs to fill on recruiters lists. In the most recent survey, 95 of 285 recruiters listed engineering
positions as the "toughest to fill " (Industrial Engineering, Aug. 1990). Estimate the true percentage of
recruiters who find it toughest to fill engineering positions. Use a 99% confidence interval.

8.46 Refer to the Journal of the Medical Association (Apr. 21 , 1993) report on the prevalence of cigarette smoking
among U.S. adults, Exercise 8.29. Of the 43,732 survey respondents, 11 ,239 indicated that they were
current smokers and 10,539 indicated they were former smokers.
a. Construct and interpret a 90% confidence interval for the percentage of U.S. adults who currently smoke

cigarettes.
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b. Construct and interpret a 90% confi dence interval for the percentage of U.S. adults who are former
cigarette smokers.

8.47 According to a study conducted by the California Division of Labor Research and Statistics (Engineering
News Record, Mar. 10, 1983), roofing is one of the most hazardous occupations. Of 2,5 14 worker injuries
that caused absences for a full workday or shift after the injury, 23% were attributable to falls from high
elevations on level surfaces, 21% to falling hand tools or other materials, 19% to overexertion, and 20% to
burns or scalds. Assume that the 2,5 14 injuries can be regarded as a random sample from the population
of all roofing injuries in California.
a. Con struct a 95% confidence interval for the proportion of all injuries that are due to falls.
b. Construct a 95% confidence interval for the proportion of all in juries that are due to burns or scalds.

8.48 As part of a cooperative research agreement between the United States and Japan, a full-scale reinforced
concrete building was designed and tested under simulated earthquake loading conditions in Japan (Journal
of Structural Engineering, Jan . 1986). For one part of the study, several U.S. design engineers were asked
to evaluate the new design. Of the 48 engineers surveyed, 36 believed the shear wall of the structure to be
too lightly reinforced. Find a 95% confidence interval for the true proportion of U.S. design engineers who
consider the shear wall of the building too lightly reinforced.

8.49 Astronauts often report episodes of disorientation as they move around the zero-gravity spacecraft. To
compen sate, crew members rely heavily on visual information to establish a top-down orientation. An
empirical study was conducted to assess the potential of using color brightness as a body orientation cue
(Human Factors, Dcc. 1988). Ninety college students, reclining on their backs in the dark, were disoriented
when positioned on a rotating platform under a slowly rotating disk that fill ed their entire field of vision.
Half the disk was painted with a brighter level of color than the other half. The students were asked to say
"stop" when they believed they were right-side up, and the brightness level of the disk was recorded. Of the
90 students, 58 selected the brighter color level.
a. Use this information to estimate the true proportion of subjects who usc the bright color level as a cue

to bcing right-sidc up. Construct a 95% confidence interval for the true proportion.
b. Can you infer from the result, part a, that a majority of subjects would select bright color levels over

dark color levels as a cue to being right-side up? Explain.

8.50 The U.S. Food and Drug Administration (FDA) recently approved the marketing of a new chem ical solution,
Caridcx, which dissolves cavities. In a study conducted by dental researchers at Northwestern University,
21 of 35 patients with cavities preferred treatment with Caridex to drilling (Gainesville Sun , Feb. II , 1988).
Estimate the true proportion of dental patients who prefer having their cavities dissolved with Caridex rather
than drilled. Usc a 99% confidence interval and interpret the result.

8.9 Estimation of the Difference Between Two Population Proportions

Thi s section extends the method of Section 8.8 to the case in which we want to
estimate the difference between two binomial proportions. For example, we may be
interested in comparing the proportion PI of defective items produced by machine I
to the proportion P2 of defective items produced by machine 2.

Let Yl and Y2 represent the numbers of successes in two independ ent binomial
experiments with samples of size n I and n2, respectively. To estimate the difference
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(PI - pz), where Pl and pz are binomial parameters-s-i.e., the probabilities of success
in the two independent binomial experiments- consider the proportion of successes
in each of the samples:

and
, )' z
pz =­

I1Z

Intuit ively, we would expect (PI - pz) to provide a reasonable estimate of (PI - pz).
Since (PI - pz) is a linear function of the binomial random variables y, and yz, where
E()';) = I1;P; and V( y;) = I1;P;q; , we have

E(PI - pz) = E(PI ) - E(pz) = E(~J - E(~~)
I I I 1

= -E(YI ) - -E(),z) = - (l1lpIl - -(I1ZPZ)
111 I1Z III I1Z

= PI - pz

and

V(PI - pz) = V(PI) + V(pz) - 2 COV(PI , pz)

= V(~~ ) + V(~~) - 0 since YI and YZare independent

I I= ZV(YI ) + zV(yz)
111 I1Z

I I
= Z (I1IPlql) + Z (I1 Zp zQZ)

111 I1Z

= p,Qj + PzQ~

11, I1Z

Thus, (PI - pz) is an unbiased estimator of (PI - pz) and , in addition, it has minim um
variance (proof omitted).

The central limit theorem also guarantees that , for sufficiently large sample sizes
111 and I1Z, the sampling distribution of (PI - P2) will be approximately normal. It
follows (Theorem 8.2) that a large-sample confidence interval for (PI - pz) may be
obtained as shown in the box on page 392.

Note that we must substitute the values of PI and pz for PI and oi. respectively,
to obtain an estimate of uU'I- i)2)' As in the one-sample case, this approximation is
reasonably accurate when both 111 and I1Z are suffi ciently large, i.e., if the intervals

PI ± 2 ~Plql and pz ± 2~PZq2
111 I1Z

do not contain 0 or the sample size (11] or I1Z). This will be true if I1IP I, ll ZP Z, 111211,

and I1 Zq2 are all greater than or cqual to 4.
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Large-Sample (I - a) I00% Confidence Interval for (PI - P2)................................

PIC,] + pzC,Z
nl nZ

EXAMPLE 8.14

Solution

where PI and pz are the sample proportions of observationswith the characteristic
of interest.

[Note: We have followed the usual procedure of substituting the sample values
PI, C,I, pz, and C,z for the corresponding population values required for
U(P l -P2)'

Assumption: The samples are sufficiently large that the approximation is
valid. As a general rule of thumb, we will require that nlPI 2: 4, 111C,1 2: 4,
nzpz 2: 4, and nzc,z 2: 4.

A traffic engineer conducted a study of vehicular speeds on a segment of street that
had the posted speed limit changed several times. When the posted speed limit on
the street was 30 miles per hour, the engineer monitored the speeds of 100 randomly
selected vehicles traversing the street and observed 49 violations of the speed limit.
After the speed limit was raised to 35 miles per hour, the engineer again monitored
the speeds of 100 randomly selected vehicles and observed 19 vehicles in violation of
the speed limit. Find a 99% confidence interval for (PI - pz), where PI is the true
proportion of vehicles that (under similar driving conditions) exceed the lower speed
limit (30 miles per hour) and pz is the true proportion of vehicles that (under similar
driving conditions) exceed the higher speed limit (35 miles per hour) . Interpret the
interval.

In this example,

A 49 49 d A I9 19PI = 100 = . an pz = TOO = .

Note that

nlPI = 49

nzpz = 19

nlc,1 = 51

l1 ZC,z = 81

all exceed 4. Thus, we can apply the approximation for a large-sample confidence
interval for (PI - pz).

For a confidence interval of (l - a) = .99, we have a = .01 and Za / 2 :::

Z .00 5 = 2.58 (from Table 4 of Appendix II). Substitution into the confidence interval
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formula yields:

p,ql + pzqz
nl nz

= (.49 - . 19) ± 2 . 58~( · 4;~05 1) + ( . 1 ;~08 1 )

= .30 ± .164

Our interpretation is that the true difference, (PI - pz), falls between .136 and .464
with 99% confi dence. Since the lower bound on our estimate is positive (. 136), we
are fairl y confi dent that the proportion of all vehicles in violation of the lower speed
limit (30 miles per hou r) exceeds the corresponding proportion in violation of the
higher speed limit (35 miles per hour) by at least . 136.

Small-sample estimation procedures for (PI - pz) will not be discussed here for
the reasons outlined at the end of Section 8.8.

EXERCISES

8.51 Geneticists at Duke University Medical Center have identified the E2Fl transcription factor as an important
component of cell proliferation control (Nature, Sept. 23, 1993). The researchers induced DNA synthesis
in two batches of serum-starved cells. Each cell in one batch was micro-in jected with the E2Fl gene,
whereas the cells in the second batch (the controls) were not exposed to E2Fl . After 30 hours, the number
of cells in each batch that exhibited altered growth was determined. Th e results of the experiment are
summarized in the table.

Total Number of Cells
Number of Growth-Altered Cells

Control

158
15

E2F 1 Treated Cells

92
41

Source: Johnson , D. C., ct al. "Expression of transcription factor E2FI induces quie scen t to enter
S phase." Nature, Vol. 365, ~o. 6444, Sept. 23, 1993, p. 351 Cfable I).

a. Compare the percentages of cells exhibiting altered growth in the two batches with a 90% confi dence
interval.

b. Use the interval, part a, to make an inference about the ability of the E2F l transcription factor to induce
cell growth.

8.52 The nuclear mishap at Three Mile Island near Harrisburg, Pennsylvania, on March 28, 1979, forced many
local residents to evacuate their homes-some temporarily, others permanently. To assess the impact of the
accident on the area population, a questionnaire was designed and mailed to a sample of 150 households
within 2 weeks after the accident occurred. Residents were asked how they felt both before and after the
accident about having some of their electricity generated from nuclear power. Th e summary results are
provided in the table on page 394.
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Before Accident
After Accident

Attitude Toward Nuclear Power
Favor Oppose Indifferent

62 35 53
52 72 26

Totals

150
150

Source: Brown. A.. et al. Fina l Report on a Su rvey of T hree Mile Island Area Residents. Departm ent of
C eography, Mich igan State Un iversity, Aug. 1979.

a. Con struct a 99% confidence interval for the difference in the true proportions of Thre e Mile Island
residents who favor nuclear power before and after the accident.

b. Construct a 99% confidence interval for the difference in the true proportions of Three Mile Island
residents who oppose nuclear power before and after the accident.

8.53 The Journal ofFish Biology (Aug. 1990) reported on a study comparing the prevalence of parasites (tapeworms)
found in species of Mediterranean and Atlantic fish. In the Mediterranean Sea, 588 brill were captured and
dissected, and 211 were found to be infected by the parasite. In the Atlantic Ocean , 123 brill were captured
and dissected, and 26 were found to be infected. Compare the proportions of infected brill at the two capture
sites using a 90% confidence interval. Interpret the interval.

8.54 The Egyptian National Scientific and Technical Information Network (ENST INET) operates an en-line
database search service of existing U.S. databases. A database "search" occurs when a specific request is
executed by ENSTINET during a single session. In situations when the search produces irrelevant or no
output , the search is "rerun." According to Information Processing & Management (Vol. 22, No.3, 1986),
ENSTINET performed 342 database searches in 1982, of which 40 were rerun . In 1985, 83 of 2, III
searches required reruns. Assuming that the two samples of database searches are independent and random,
construct a 95% confidence interval for the difference between the proportions of database search reruns
performed by ENSTINET in 1982 and 1985. Interpret the interval.

8.55 Refer to the marketing research study of consulting engineering services to industrial firms in the Midwest,
Exercise 2.49. Forty of the firms surveyed (20 large and 20 small firms) indicated they have no need for
outside consulting engineering services (Journal of the Boston Society of Civil Engineers, Vol. 71, 1985 ).
The primary reason cited by the "nonn eeders" was that they obtained consulting assistance from corporate
headquarters whenever necessary. However, twice as many large firms (1 2) as small firms (6) cited this
reason. Establish a 90% confidence interval for the difference in the percentages of large and small industria)
firms that cite assistance from corporate headquarters as the primary reason why they have no need for
outside consulting engineering services.

8.10 Estimation of a Population Variance

In the previous sections, we considered interval estimates for population means and
proportions. In this section, we discuss confidence intervals for a population variance
(T2, and, in Section 8. II , confi dence intervals for the ratio of two variances, (TTl aJ
Unlike means and proportions, the pivotal statistics for variances do not possess a
normal (z)distribution or a t distribution. In addition, certain assumptions arc required
regardless of the sample size.



8.10 I Estimation of a Population Variance 395

Let y" Y2, . . . , Yn be a random sample from a normal distribution with mean
j.t and variance (J'2 From Theorem 7.4, we know that

(n - l )s2
X

2 - -'--------------'-- (J'2

possesses a chi-square distribution with (n - I) degrees of freedom. Confidence inter­
vals for (J'2 are based on the pivotal statistic, X2

.

Recall that upper-tail areas of the chi-square distribution have been tabulated and
are given in Table 8 of Appendix II. Unlike the z and t distributions, the chi-square
distribution is not symmetric about O. To find values of X2 that locate an area a in
the lower tail of the distribution, we must find XI- a' where P(X2 > XI- a) = 1 - a.
For example, the value of X2 that places an area a = .05 in the lower tail of the
distribution when df = 9 is X I- a = X295 = 3.32511 (see Table 8 of Appendix 11). We
use this fact to write a probability statement for the pivotal statistic X2:

P(XI-a /2 :5 X2
:5 X~/2) = I - a

where X~/2 and XfI - a/ 2) are tabulated values o' X2 that place a probability of a/Z in
each tail of the chi-square distribution (see Figure 8.13).

fiGURE 8.13 ~ j(x2
)

The location of XlL a/2) and
X~/l for a chi-square distribution

o X~I _ a 12)

Substituting [(n - I)S2J/ (J"2 for X 2 in the probability statement and performing
some simple algebraic manipulations, we obtain

P(Xfl- a/2) :5 (n ~21 )s2 :5 X~/2)

= p( Xfl-a/2) -< -.L -< X; /2 )
(n - 1)S2 - (J' 2 - (n - I )S2

= p((n -; l)s2 :5 (r2 :5 (n 2- !£) = I - a
Xa/2 X(I-u /2)

Thus, a (l - a)IOO% confidence interval for (J' 2 is

(n - 1)s2 (n - l )s2
2 :5 (J' 2 :5 ~2"-----'-

Xa/2 X(I- aj2)
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EXAMPLE 8.15

Solution

A(I - a)I00% Confidence Interval for a Population Variance, (J"2..... ................~ .

(n - I)S2 2 (n - l )s2
2 $. a $. -'------,2-~

X a / 2 XO-a/ Z)

where X ; / 2 and X fJ - a/Z) are values of X Z that locate an area of a 12 to the right
and a l2 to the left, respectively, of a chi-square distribution based on (11 - I)
degrees of freedom.

Assumption : The population from which the sample is selected has an approx­
imate normal distribution.

Note that the estimation technique applies to either large or small 11, and that
the assumption of normality is required in either case.

A quality control supervisor in a cannery knows that the exact amount each can
contains will vary, since there are certain uncontrollable factors that affect the amount
of fil l. Th e mean fill per can is important, but equally important is the variation 00 2

of thc amount of fill. If a Z is large, some cans will contain too little and others too
much. To estimate the variation of fill at the cannery, the supervisor randomly selects
10 cans and weighs the contents of each. The following weights (in ounces) are
obtained:

7.96 7.90 7.98 8.01 7.97 7.96 8.03 8.02 8.04 8.02

Constuct a 90% confidence interval for the true variation in fill of cans at the cannery.

Th e supervisor wishes to estimate a Z, the population variance of the amou nt of fill .
A (l - a )I00% confi dence interval for a Z is

(n - l )sZ (n - l )sZ
2 -s a Z :s ~Z-~

Xa / Z X(I -a / Z)

For the con fi dence interval to be valid, we must assume that the sample of observations
(amounts of fill ) is selected from a normal population.

To compute the interval, we need to calculate either the sample variance s2or
the sample standard deviation s. Descriptive statistics for the sample data are provided
in the SAS printout shown in Figure 8. 14. The value of s, shaded in Figure 8.14, is
s = .043.

Now, (l - a) = .90 and al2 = .10/ 2 = .05. Ther efore, the tabulated values
XZ05 and X~5 for (11 - I) = 9 df (obtained from Table 8, Appendix II) are

X205 = 16.9190 and X29S=3.32511
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Variab1e=FILL

Moments

FIGURE 8.14 ~
SAS descriptive statistics fo r
Example 8.15

N
Mean
std Dev
Ske wne s s
USS
CV
T:Mean=O
Sgn Rank
NUIIl A= 0

10
7.989

0 .043r.63
-0 .8538

638 .2579
0 .539032
586.6587

27.5
10

SUIIl Wgts
SUIIl
Variance
Kurtosis
CSS
std Mean
prob>'IT I
Prob> S

10
79.89

0.001854
0 .479371

0 .01669
0.013618

0 .0001
0.0020

EXAMPLE 8.16

Solution

Quanti1es(Def=5)

100% Max 8.04 99 % 8 .04
75% Q3 8 .02 95% 8 .04
50% Med 7.995 90% 8 .035
25% Q1 7.96 10% 7.93

0% Min 7.9 5% 7.9
1% 7.9

Ra nge 0.14
Q3-Ql 0 .06
Mode 7.96

Substituting these values into the formula, we obtain

(10 - ])(.043)Z 2 (IO - 1)(.043)Z
-'---------,---,---:-'-:'-=--:----'---- <: (T <: -'---------,-----::-::,,:,=-:-,-----'----

]6.9]90 - - 3.325]1

.00098 :s (T 2 :s .00500

We are 90% confident that the true variance in amount of fill of cans at the cannery
falls between .00098 and .00500. The quality control supervisor could use this interval
to check whether the variation of fill at the cannery is too large and in violation of
government regulatory specifi cations.

Refer to Example 8. ]5. Find a 90% confi dence interval for (T, the true standard
deviation of the can weights.

A confidence interval for (T is obtained by taking the square roots of the lower and
upper endpoints of a confidence interval for (T 2 . Thu s, the 90% confidence interval
is

V.00098 :s (T:S V .00500

.031 :s (T :S .071

We are 90% confi dent that the true standard deviation of can weights is between .031
and .071 ounce .
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EXERCISES

8.56 For each of the following combina tions of a and degrees of freedom (df ), find the value of chi-square,
X~, that places an area a in the upper tail of the chi-square distribution :
a. a = .05, df = 7 b. a = .10, df = 16 c. a = .01, df = 10
d. a = .02 5, df = 8 e. a = .005, df = 5

8.57 Jitter is a term used to describe the variation in conduction time of a modular pulsed-water power system.
Low throu ghput jitter is critical to successful waterline techn ology. An investigation of throughput jitter in
the plasma opening switch of a prototype system (Journal of Applied Ph ysics, Sept. 1993) yielded the following
descriptive statistics on conducti on time for n = 18 trials:

y = 334.8 nanoseconds s = 6.3 nanoseconds

(Conduction time is defined as the length of time required for the downstream current to equal 10% of the
upstream current. )
a. Construct a 95% confi dence interval for the true standard deviation of conduction times of the prototype

system.
b. A system is considered to have low throughput jitter if the true conduction time standard deviation is

less than 7 nanoseconds. Docs the prototype system satisfy this requirement? Explain.

8.58 Refer to the IEEE Transactions (June 1990) study of a new hybrid algorithm for solving polynomial 0- 1
mathematical programs, Exercise 8.3 1. A SAS printout giving descriptive statistics for the sample of 52
solution times is reproduced here. Use this information to compute an approximate 95% confidence interval
for the variance of the solution times. Interpret the result.

Analysis Variable : CPU

N Obs N Mean Variance std Dev

52 52 0.8121923 2.2643035 1.5047603

8.59 An interlaboratory study was conducted to determine the vari ation in the measured level of polychlorinated
biphenyls (PCBs) in environmentally contaminated sediments (Analytical Chemistry, Nov. 1985). Samples
of sediment from New Bedford I larbor (Massachusetts) known to be contaminated with PCBs were collected
and aliquot solutions prepared. For one part of the study, the PCB concentration in each of a random
sample of five aliquots was determined by a single laboratory using the Webb-McCall procedure. The
analysis yielded a mean PCB concentration of 56 mg/kg and a standard deviation of .45 mg/kg. Find a
90% confidence interval for the variance in the PCB levels of contaminated sediment , determin ed using
the Webb-McCall procedure.
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8.60 An experiment was conducted to investigate the precision of measurements of a saturated solution of iodine
aftcr an extended period of continuous stirring. Th e data shown in the table represent n = 10 iodine
concentration measurements on the same solution. The population variance (J"zmeasures the variability­
i.e. , the precision-of a measurement. Use the information in the accompanying MINITAB printout to
find a 95% confidence interval for o ' , Interpret the result.

Run Concentration Run Concentration

1 5.507 6 5.527
2 5.506 7 5.504
3 5.500 8 5.490
4 5.497 9 5.500
5 5.506 10 5.497

N MEAN MEDIAN TRMEAN STDEV SEMEAN
conctrat 10 5.5034 5.5020 5.5021 0.0098 0.0031

MIN MAX Q1 Q3
conctrat 5.4900 5.5270 5.4970 5.5062

8.61 Geologistsanalyze fluid inclusions in rockto infer the compositions of fluidspresent when the rockscrystallized.
A new techniqu e, called laser Raman microprobe (LRM) spectroscopy, has been developed for this purpose.
An experiment was conducted to estimate the precision of the LRM technique (Applied Spectroscopy, Feb.
1986). A chip of natural Brazilian quartz with several artificially produced fluid inclusions was subjected to
LRM spectroscopy. Th e amount of liquid carbon dioxide (COz) present in the inclusion was recorded for
the same inclusion on four different days. Th e data (in mole percentage) follow:

86.6 84.6 85.5 85.9

(n, - 1) and V; =
l )sZj(J" z for XZ (see

a. Obtain an estimate of the precision of the LRM technique by constructing a 99% confidence interval
for the variation in the CO z concentration measurements,

b. What assumption is required for the interval estimate to be valid?

8.11 Estimation of the Ratio of Two Population Variances..................................................................
The common statistical procedure for comparing two population variances, (J"t and
(J"L makes an infercnce about the ratio (J"f! (J" ~ . This is because the sampling distri­
bution of the estimator of (J"f! (J" ~ is well known when the samples are randomly and
independentl y selected from two normal populations. Under these assumptions, a
confi dence interval for (J" f! (J" ~ is based on the pivotal statistic

F = xtlVj
xYvz

where xt and x~ are chi-square random variables with VI

(nz - I) degrees of freedom, respectively. Substituting (n
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I)
F - xUVI - _ _ -=---~___;__-_

- xYvz -

Theorem 7.4), we may write

(n l - I)sr/(
z nl

0-1

(nz - I)s~/(n z _ I)
(T ~

SZ/ (T z_ _ 1__'

- s~/ o- ~

= (~) (~D

From Definition 7.2 we know that F has an F distribution with VI = (n I - I) numerator
degrees of freedom and V z = (nz - I) denominator degrees of freedom. An F distri­
bution can be symmetric about its mean, skewed to the left, or skewed to the right;
its exact shape depends on the degrees of freedom associated with Sf and s~, i.e.,
(n l - I) and (nz - I).

To establish lower and upper confi dence limits for (T Tlo-t we need to be able to
find tabulated F values corresponding to the tail areas of the distribution. Th e upper­
tail F values can be found in Tables 9, 10, II , and 12 of Appendix II for a = .10,
.05, .025, and .01, respectively. Table 10 of Appendix II is partially reproduced in
Table 8.8. The column s of Tables 9-12 of Appendix II correspond to various degrees
of freedom for the numerator sample variance, Sf, in the pivotal statistic, whearas the
rows correspond to the degrees of freedom for the denominator sample variance, S1­
For example, with num erator degrees of freed om VI = 7 and denominator degrees of
freedom V z = 9, we have F o, = 3.29 (shaded in Table 8.8). Thus, a = .05 is the
tail area to the right of 3.29 in the F distribution with 7 numerator df and 9 denominator
df, i.e. , P(F > F 05) = .05.

Lower-tail values of the F distribution are not given in Tables 9-12 of Appendix
II. However, it can be shown (proof omitted) that

I
FI- a(VI' VZ) = -F- ­

a( vz, VI)

where F l-a(VI ' vz) is the F value that cuts offan area a in the lower tail of an F distribution
based on Vi num erator and V z denominator degrees of freedom, and F a( V2, VI ) is the F
value that cuts offan area a in the upper tail of an F distribution based on V z numerator
and VI denominator degrees of freedom. For example, suppose we want to find the
value that locates an area a = .05 in the lower tail of an F distribution with VI = 7
and V z = 9. That is, we want to find F I -a( VI ' VZ) = F9 5(7 ,9 ). First, we find the upper­
tail values, F.05(9,7) = 3.68, from Table 8.8. (Note that we must switch the numerator
and denom inator degrees of freedom to obtain this value.) Th en, we calculate

I I
F'.95(7.9) = -F-- = 3 68 = ,272

.05(9,7) .
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j(F)

<-- ---L-~_ ____'.......:.::....___ F
o

TABLE 8.8 Abbreviated Version of Table 10 of Append ix II: Tabulated Values of the FDistribution; a = .05
VI Numerator Degrees or Freedom

I
2
3
4

lO 5
~

~ E 6
':.g 7
o '"
~ J: 8
.~ '0 9
li;

<::> 10
II
12
13
14

161.4
18. 51
10.13
7.71

6.61
5.99
5.59
5.32
5.12

4.96
4.84
4.75
4.67
4.60

2

199.5
19.00
9.55
6.94

5.79
5.14
4.74
4.46
4.26

4. 10
3.98
3.89
3.81
3.74

215.7
19.16
9.28
6.59

5.41
4.76
4.35
4.07
3.86

3.71
3.59
3.49
3.41
3.34

4

224.6
19.25
9.12
6.39

5.19
4.53
4. 12
3.84
3.63

3.48
3.36
3.26
3. 18
3.11

230.2
19.30
9.01
6.26

5.05
4.39
3.97
3.69
3.48

3.33
3.20
3. 11
3.03
2.96

6

234.0
19.33
8.94
6.16

4.95
4.28
3.87
3.58
3.37

3.22
3.09
3.00
2.92
2.85

7

236.8
19.35
8.89
6.09

4.88
4.21
3.79
3.50
3.29

3.14
3.01
2.91
2.83
2.76

8

238.9
19.37
8.85
6.04

4.82
4.15
3.73
3.44
3.23

3.07
2.95
2.85
2.77
2.70

240.5
19.38
8.81
6.00

4.77
4.10
3.68
3.39
3.18

3.02
2.90
2.80
2.71
2.65

Using the notation established previously, we can write a probability statement
for the pivotal statistic F (see Figure 8. 15):

P(Fl-a/2( lIl,IIZ ) :5 F :5 Fa / 2( 1I1, IIZ)) = 1 - a

FIGURE 8.15 ~ f(F)

F distribution with VJ =
(01 - I) and V2 = (n2 - I)

I-.L ---'- ~ F
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EXAMPLE 8.17

or

p(rl . 1 <: Uf <: rl . 1 ) = 1 - a
s~ F a / Z(v,.vz) - u~ - s~ F 1- a / Z(vI 'vz)

Replacing F I - a / Z(v"vz) with I/Fa / Z( vz. vI )' we obtain the final form of the confidence
interval:

(Sf 1 Uf Sf ) _
p "2 . F ~ 2 ~ "2 • F a /Z (vz. vI ) - 1 - a

Sz a /Z( vI ' VZ ) Uz Sz

A(I - a) I00% Confidence Interval for the Ratio of
Two Population Variances, o"U (T~. .......................... .....

Z 1 Z Z
~. <: U l <: ~F ?
sZ F - u Z - sZ a /- (vZ, vI )

Z a/Z( vI ' vZ) Z Z

where f :' / z("I 'vz) is the value of F that locates an area a f]: in the upper tail of
the F distribution with VI = (nl - I) numerator and Vz = (nz - I) denominator
degrees of freedom, and Fa / Z(vz,vI ) is the value of F that locates an area al2
in the upper tail of the F distribution with Vz = (nz - 1) num erator and VI =
(n l - 1) denominator degrees of freedom.

Assumptions: 1. Both of the populations from which the samples are selected
have relative frequency distributions that are approximately
normal.

2. The random samples are selected in an independent manner
from the two populations.

As in the one-sample case, normal populations must be assumed regardless of the
sizes of the two samples.

A firm has been experimenting with two different physical arrangements of its assembly
line. It has been determined that both arrangements yield approximately the same
average number of finished units per day. To obtain an arrangement that produces
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greater process control, you suggest that the arrangement with the smaller variance in
the number of finished units produced per day be perman ently adopted. Two inde­
pendent random samples yield the results shown in Table 8.9. Construct a 95%
confidence interval for aU a~, the ratio of the variances of the number of finished
units for the two assembly line arrangements. Based on the result, which of the two
arrangements would you recommend?

First, we must assume that the distributions of the numbers of finished units for the
two assembly lines are both approximately normal. Since we want a 95% confidence
interval, the value of al2 is .025, and we need to find F OZ5(vI' vz) and F OZ5(vz, vI)' The
sample sizes are nl = 21 and nz = 25; thus, f OZ5(vj ,vz) is based on III = (nl - I) =
20 numerator df and Il Z = ( n z - 1) = 24 denominator df. Consulting Table 11 of
Appendix II, we obtain F OZ5(zo , Z4) = 2.33. In contrast, f OZ5(vj ,vz) is based on Il Z =
( nz -I ) = 24 numerator df and III = ( n l - I) = 20 denominator df; hence
(from Table II of Appendix II), F.OZ5(Z4, ZOJ = 2.41. Substituting the values for
sf, s~, F OZ5(vI' vz) and f OZ5(vz,vI) into the confi dence interval formula, we have

1,432( 1) aT 1,432
3,761 2.33 :5 a~ :5 3,761 (2.41)

(J' z

.163 :5 ---i :5 .918
a z

We estimate with 95%confidence that the ratio aUa~ of the true population variances
will fall between .163 and .91 8. Since all the values within the interval (.163,.918)
are less than 1.0, we can be confident that the variance in the number of units finished
on line 1 (as measured by aT) is less than the corresponding variance for line 2 (as
measured by a~) .

Assembly
line 2

nz = 25 days
s~ = 3,761

TABLE 8.9 Summary Statistics
for Example 8.17

Assembly
line I

Solution

nl = 21 days
Sf = 1,432

EXERCISES

b. Numerator df = 10, denomin ator df = 8
d. Numerator df = 15, denominator df = 4

8,62 Find Fa for an F distribution with 15 numerator df and 12 denominator df for the following values of a:
a. a = .025 b. a = .05 c. a = .10

8.63 Find f0 5 for an F distribution with:
a. Numerator df = 7, denomin ator df = 25
c. Numerator df = 30, denominator df = 60

8.64 In Environmental Science & Technology (Oct. 1993), scientists reported on a study of the transport and
transformation of PCDD, a pollutant emitted from solid waste incineration, motor vehicles, steel mills, and
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metal production . Ambient air specimens were collected over several different days at two locations in Swden:
Rorvik (11 days) and Gothenburg (3 days). Th e level of rCDD (measured in pg/rn ') detected in each
specimen is recorded here. Use interval estimation to compare the variation in PCDD levels at the two
locations. Draw an inference from the analysis.

2.38
.50
.46

Rorvik

3.03 1.44
.22 .26

1.09 2.14

.47

.31

Gothenburg

.50 .61 .90

Source: Tysklind, M.• et al. "Atmospheric transport and transformation of poly­
chlorinated d ibenzo-p-d ioxius and d ibenzofurans." Environmental Science & Tech­
nology, Vol. 27, No. 10. Oct. 1993. p. 2193(Table Ill).

8.65 Refer to the Journal of Structural Engineering (Feb. 1986) experiment with epoxy-repaired truss joints,
Exercise 8.35. Th e data are reproduced here for convenience. Construct a 90% confidence interval for the
ratio of the shear stress variances of epoxy-repaired truss joints for the two species of wood. Based on this
interval, is there evidence to indicate that the two shear stress variances differ? Explain.

Sample Size
Mean Shear Stress, psi
Standard Deviation

Southern Pine

100
1,312

422

Ponderosa Pine

47
1,352

271

Source: Avent, R. R. "Design criteria for epoxy repair of timber structures." Journal of
Structural Engineering. Vol. 112, i'\o. 2, Feb. 1986, pp. 232.

8.66 Refer to the strength and capacity guidelines for manual materials handling activities, Exercise 2.52. The
guidelines were established by observing the maximum weight that random samples of men and women
can safely lift from the floor to knuckle height (Human Factors, June 1980). When lifting at the rate of
I lift per minute, males lifted a mean maximum weight of 30.25 kilograms (kg) with a standard deviation
of 8.56 kg, whereas the mean and standard deviation for females was 19.79 kg and 3.11 kg, respectively.
a. Assuming the sample consisted of 60 males and 60 females, construct a 90% confidence interval for the

ratio of the variances of the maximum weights that can safely be lifted by males and females.
b. What assumptions must be satisfied to ensure the validity of the interval estimate of part a?

8.67 Refer to the cancer death rate increases for fluoridated and nonfluoridated cities given in Exercise 8.36. The
data are reproduced here for convenience. Find a 95% confidence interval for the ratio of the variances of
the cancer death rate increases for the two groups of cities. Based on the interval, does it appear that the
assumption of equal variances required to conduct the analysis of Exercise 8.36 is satisfied?
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.8875
1.7358
1.01 65
.4923

4.0155
-1.1 744

2.8132
I. 7451

-. 5676
2.4471

Nonfiuoridated
Ann ual Increase in
Cancer Death RateCity

Los Angeles
Boston
New Orleans
Seattle
Cincinnati
Atlanta
Kansas City
Columbus
Newark
Portland

1. 0640
1.4118
2. 1115
1.9401
3.8772

- .4561
4.8359
1.8875
4.4964
1.4045

Fluoridated
Annual Increase in
Cancer Death RateCit y

Chicago
Philadelphia
Baltimore
Cleveland
Washington
Milwaukee
St. Louis
San Francisco
Pittsburgh
Buffalo

Source: Mantz, J. S., and Jarrell . R. C . "T he usc of statistics to examine the associati on between Auorid e in dr inking
water and cance r dea th rates." A pplied St ati stics, Vol. 32. No. 2. 1983. pp. 9:-- 101.

8.68 Refer to the PCB study described in Exercise 8.59. Recall that level of PCB was measured in each of a
sample of five aliquots using the Webb-McCall procedure. Another sample of fi ve aliquots of sediment was
measured for PCBs using a difffcrent procedure, called the Aroclor Standard comparison. Summary statistics
on PCB concentration for the two samples are given in the table.

Sample Size
Mean PCB Concentra tion, mglkg
Standard Deviation

Webb- McCall

5
56

.45

Aroclor Standard

5
60

.89

Source: Alford-Stevens, A. L. , Budde, w. l... . and Bellar , T. A. "Interlabora tory stud y on determi natio n
of polychlorinated biphenyls in environme ntally contamina ted sediments." Ana lytical Chemistry. Vol. 57,
No . 13, Nov. 1985. p, 2454. Rep rinted with permission from Analytical C hemistry. Copyright 1985 Ame r­
ican Ch em ical Soc iety.

a. Construct a 90% confidence interval for the ratio of the variances in the PCB levels measured by the
two techniques.

b. Wha t assumptions are required for the interval estimate to be valid?

8.12 Choosing the Sample Size

One of the first problems encountered when applying statistics in a practical situation
is to decide on the num ber of measurements to include in the sample(s). The so.ution
to this problem depends on the answers to the following questions: Approximately
how wide do you want your confi dence interval to be? What confidence coeffic ient
do you require?

You have probably noticed that the half-widths of many of the confidence intervals
presented in Sections 8.5- 8.11 are functions of the sample size and the estimated
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EXAMPLE 8.18

Solution

standard error of the point estimator involved. For examp le, the half-width H of the
small-sample confidence interval for iL is

H = t a I2(~)

where tal 2 depends on the sample size n , and s is a statistic com puted from the sample
data. Since we will not know s before selecting the sample and we have no control
over its value, the easiest way to decrease the width of the confi dence interval is to
increase the sample size n . Generally speaking, the larger the sample size, the more
information you will acquire and the smaller will be the width of the confidence
interval. We illustrate the procedure for selecting the sample size in Exam ples 8.18
and 8.19.

As part of a Department of Energy (DOE) survey, American families will be randomly
selected and questioned about the amoun t of money they spent last year on home
heating oil or gas. Of particular interest to the DOE is the average amount iL spent
last year on heating fuel. If the DOE wants the estima te of iL to be correct to within
$10 with a confidence coefficient of .95, how many families should be ineluded in
the sample?

The DOE wants to obtain an interval estimate of u , with con fidence coefficient equal
to (l - a) = .95 and half-width of the interval equa l to 10. T he half-width of a large­
sample confidence interval for iL is

H = Za l 2ay = Za12(~)

In this example, we have H = 10 and Za l2 = Z.025 = 1.96. To solve the equation
for n, we need to know a . But, as will usually be the case in practice, a is unknown.
Suppose, however, that the DOE knows from past records that the yearly amounts
spent on heating fuel have a range of approximately $520. T hen we could approximate
a by letting the range equal 4a .* Th us,

4a = 520 or a = 130

Solving for n, we have

"From the Empirical Rule, we expect about 95% of the observationsto fall between f.L - La and f.L + ZCT.
Thus,

Range = (f.L + Zer) - (f.L - Zer) = 4er



EXAMPLE 8.19

Solution
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or

Consequently, the DOE will need to elicit responses from 650 American families to
estimate the mean amount spent on home heating fuel last year to within $10 with
95% confidence. Since this would require an extensive and costly survey, the DOE
might decide to allow a larger half-width (say, H = 15 or H = 20) to reduce the
sample size, or the DOE might decrease the desired confidence coefficient. The
important point is that the experimenter can obtain an idea of the sampling effort
necessary to achieve a specified precision in the final estimate by determining the
approximate sample size before the experiment is begun.

A production supervisor suspects a difference exists between the proportions PI and pz
of defective items produced by two different machines. Experience has shown that the
proportion defective for each of the two machines is in the neighborhood of .03. If
the supervisor wants to estimate the difference in the proportions correct to within
.005 with probability .95, how many items must be randomly sampled from the
production of each machine ? (Assume that you want nl = nz = n.)

Since we want to estimate (PI - pz) with a 95% confidence interval, we will usc Za /Z

= Z.OZ5 = 1.96. For the estimate to be correct to within. 005, the half-width of the
confidence interval must equal .005. Then , letting PI = pz = .03 and nl = nz = n,
we find the required sample size per machine by solving the following equation
for n:

_ _ ~Plql pzqzH - za / ZIJCPt - p, ) or H - Za /Z - + -• nl nz

.005 = 1. 96~(·03 )(.97 ) + (.03)(.97)
n n

.005 = 1.96~2( .0 3~(.97)

= (1.96j2(2)( .03)(.97) = 8944
n (.005)" ,

You can see that this may be a tedious sampling procedure . If the supervisor insists
on estimating (PI - pz) correct to within .005 with probability equal to .95, approx­
imately 9,000 items will have to be inspected for each machine.

You can see from the calculations in Example 8.19 that IJCPI -PZ) (and hence the
solution, nl = nz = n) depends on the actual (but unknown) values of PI and Pz. In
fact, the required sample size n l = nz = n is largest when PI = o: = .5. Therefore,
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if you have no prior information on the approximate values of PI and Pz, use PI
pz = .5 in the formula for U(jJ[ - pz)- If PI and pz are in fact close to _5, then the
resulting values of 111 and IIZ will be correct. If PI and pz differ substantially from. 5,
then your solutions for 11 I and II Z will be larger than needed. Consequently, using
PI = pz = . 5 when solving for 11 I and IIZ is a conservative procedure because the
sample sizes n I and IIZ will he at least as large as (and probably larger than ) needed.

The formulas for calculating the sample size(s) required for estimating the param­
eters u, (J-t l - J-tz), P, and (PI - pz) are summarized in the following boxes. Sample
size calculations for variances require more sophisticated techniques and are beyond
the scope of this text.

Choosing the Sample Size for Estimating a Population Mean /.L to Within H
Units with Probability (I - a)........... . ... . .... ............

= (Za /zU) Z
n H

[Note: The population standard deviation U will usually have to be approx­
imated.]

Choosing the Sample Sizes for Estimating the Difference (/.LI - /.L2) Between a
Pair of Population Means Correct to Within H Units with Probability (I - a)........... ..... . . . . .. ... .......

( )'Za /Z - Z Z
nl = nz = H (Uj + uz)

where nI and IIZ are the numbers of observations sampled from each of the two
populations, and uyand u~ are the variances of the two populations.

Choosing the Sample Size for Estimating a Population Proportion p to Within
H Units with Probability (I - a).. . . . . .. .... . . .... .. . .. . . . . .. . . .

(
z /,)2

n= ;-:1- pq

where P is the value of the population proportion that you are attempting to
estimate and q = I - p.

[Note: This techniqu e requires previous estimates of P and q. If none are
available, use P = q = . 5 for a conservative choice of n.]
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--
Choosing the Sample Sizes for Estimating the Difference (PI - 1>2) Between Two
~.~~~~~~i~.~.~~?P~.~!?~~.~?~!~~in HUnits with Probability (I - a)

where PI and pz are the proportions for populations 1 and 2, respectively, and
nl and nz are the numbers of observations to be sampled from each population .

EXERCISES

8.69 Cost Engineering (Oc t. 1988) reports on a study of the percen tage differen ce between the low bid and the
engineer's estim ate of the cost for building contracts (see Exercise 7. 19). For contracts with four bidders,
the mean percentage error is !-t = - 7.02 and the standa rd deviation is 0" = 24.66. Suppose you want to
estima te the mean percentage error for building contracts with five bidders. How many five-bidder contracts
must be sampled to estim ate with 90% confidence the mean to witihin 5 percentage points of its true value?
Assume that the standa rd deviation for five-bidd er contracts is approxima tely equal to the stand ard deviation
for four-bidder contracts.

8.70 Refer to the Human Factors study on the use of color brightness as a body orientation cue, Exercise 8.49.
How many subjects are required for a similar experime nt to estima te the tru e proportion who use a bright
color level as a cue to being right- side up to within .05 with 95% confidence? Use the sample proportion
calculated in Exercise 8.49 as an estimate of p.

8.71 The federal governme nt requires states to certify that they are enforcing the 55-mi les-per-ho ur speed lim it
and that motorists are driving at that speed. A state is in jeopardy of losing millions of dollars in federal
road fund s if more than 60% of its veh icles on 55-m iles-per-hour h ighways are exceeding the speed limi t.
The state h ighway patrol conducts 70 radar surveys each year at a total of 50 sites to estima te the proportion
p of vehicles exceeding 55 miles per hou r. Each sample survey involves at least 400 vehicles .
a. How large a sam ple sho uld be selected at a particular site to estimate p to with in 3% with 90 % con fidence?

Last year appro xima tely 60% of all veh icles exceeded 55 miles per hour .
b. T he highway patrol also estimates !-t, the average speed of vehicles on state highways. Accord ingly, it

wan ts to know whethe r the sample size determined in part a is large eno ugh to also estimate !-t to with in
.2 5 mile per hour with 90% confidence. Assume that the standard deviation of vehicle speeds is approx­
imately 2 mil es per hour. How large a sample shoul d be taken at a particular site to estimate !-twith the
desired reliab ility?

8.72 A consumer protection agency wants to compare the work of two electrical contractors to evaluate their
safety records. The agency plans to inspect residences in which each of these contractors has don e the wiring
to estima te the differen ce in the proportions of residences that are electrically deficient. Sup pose the pro ­
'portions of deficient work are expected to be about . 10 for both contractors. How many hom es sho uld be
inspected to estimate the differen ce in proport ions to withi n .05 with 90% con fidence?
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8.73 A large steel corporation conducted an experiment to compare the average iron contents of two consignments
of lumpy iron ore . In accordance with industrial standards, n increments of iron ore were randomly selected
from each consignment and measured for iron content. From previous experiments , it is known that iron
contents vary over a range of roughly 3%. How large should n be if the steel company wants to estimate
the difference in mean iron contents of the two consignments correct to within .05% with 95% confidence?
[Hint: To obtain an approximate value for 0"1 and 0"2, set 0"1 = 0"2 = 0" and set Range = 40". Then 3 ~
40" and 0" = ~.]

8.74 Materials requirements planning (MRP) systems are computerized planning and control systems for man­
ufacturing operations. Since their introduction in the mid-1960s, MRP systems have been used to manage
raw materials and work-in-process inventories while improving customer service. Suppose you want to
estimate the proportion p of manufacturing firms that use MRP systems. Approximately how large a sample
would be required to estimate p to within .02 with a confidence coefficient of .9 5? (Use a conservative
estimate of p = .5 in your calculations.)

OPTIONAL EXERCISE
8.75 When determining the sample size required to estimate p, show that the sample size n is largest when

p = . 5.

8.13 Summary

Estimation is a procedure for inferring the value(s) of one (or more) population param­
eters. An estimator, a rule that tells how to calculate a particular estimate of a parameter
based on information contained in a sample, can be one of two types. A point estimator
uses the sample data to calculate a single number that serves as an estimate of a
population parameter. An interval estimator uses the sample data to calculate two
numbers that define an interval that is intended to enclose the estimated parameter
with some predetermined probability.

Point and interval estimators can be acquired intuitively; it seems reasonable to
use sample statistics to estimate the corresponding population parameters (the method
of moments). In addition, point estimators can be acquired using the method of
maximum likelihood (Section 8.3) or the method ofleast squares (Chapter II); interval
estimators can be constructed using pivotal statistics and the procedure illustrated in
Section 8.4. In gene ral, we prefer point estimators that are unbiased and possess
minimum variance, i.e., minimum variance unbiased estimators (MVUE). For a
given confidence coefficient, we prefer interval estimators with a mean interval width
that is small and subject to a small amount of variation.

We presented a number of point and interval estimators and demonstrated how
they can be applied in practical situations. (T hese result s are summarized in Tab les
8. lOa and 8. lOb.) By reviewing the examples, you can see that estimation as a method
of inference attempts to answer the question, "What is the value of the parameter 8?"
We will approach inference-making from a different point of view in Chapter 9.



TABLE 8.10a Summary of Estimation Procedures: One-Sample Case

Parameter Estimator Approximat ion (I - a)IOO% Additional
() 8 E(8) (To to (To Confidence Interval Sample Size Assumptions

Mean p- y p- a s
y ± Za/2(V;)

n ~ 30 None

~ v;

y ± ta/2(V; )
n < 30 Normal

population

where ta/2 is based on
(n - I) df

Binomial • y p
~ ~ . ~ n large enough so None

proportion p p= - p ± za/2 -; that the intervaln

p± l~ does not

contain 0 or I

Variance a 2 S2 a 2 Not Not needed (n - l )s2 2 (n - l )s2 All n Normal
needed 2 :s:; u :s:; 2

populationXa/2 X(I - a/2)

where X; /2 and x lI- a/2) are
the tabulated values of X2,
given in Table 8 of Appendix
II, that locate a l 2 in each tail
of the chi-square distribution
with (n - I) df, i.e.,
P(X2 ~ X; /2) = all and
P(x 2 ~ Xb - a/2j) = I - a l 2

?O

......
c:
3
3...
~

..,.



TABLE 8.IOb Summary of Estimation Procedures: Two-Sample Case

Parameter Est imator Approximation (I - a) loo%
(J 0 E(O) u. to ue Confidence Interval

(I'-I - I'- z) (Yt - yz) (I'-I - I'- z) ~!!l + ~ ~!i +!l ( - - ) ~Difference Difference YI - Y2 ± za / Z - + -
between between

n , n2 " I nz n l n 2

population sample ~uz(J- +!-) ~~(!- +!-) !YI - Yz ) ± t. /2~s~(!- +!-)means: means
" I " 2 "\ nz n, nz

Independent
wheresamples where t. /z is based on

(nl - I)sl + (nz - 1)s1
(n) + nz - 2) df

~= n l + nz - 2

1J.d = a= "J:.d,/n IJ.d Ud Sd a± z. /z(~)(1'-1 - I'- z) Mean of V;;;; V;;;;
Difference sample where Sd is the standard

d ± t ./z (~)between differences deviation of the sample of
population differences where t. /z is based on (nd - 1) dfmeans:
Matched
pairs

(PI Pz) (PI - Pz ) (PI Pz) ~Plql + pzqz ~Plql + pzqz (p p ) + ~Plql + pzqz
Difference Difference 1 - 2 - Za /Z - -

nl " 2 nl " 2 "I " 2between two between
binomial the sample
parameters proportions

PI = yi/nl
and
pz = yz/nz

Sample
Sizes

nl 2: 30, nz 2: 30

Either n I < 30 or
nz < 30, or both

nd 2: 30

Od < 30

nl and nz large
enough so that the
intervals

. !!.!·Iql dPI ± 2 - an
nl

pz ± 2 fPiiz
y~

do not contain
oor 1

Additional
Assumptions

None

Both populations
normal with
equal variances
(UI = un

None

Population of
differences d, is
normal

Independent
samples

..........

'""':s-
. '". ~

~
co

~
~.

o '
:>

uUu1
Ratio of
population
variances

sUs1
Ratio of
sample
variances

uUul Not needed Not needed
(Sl) 1 UI (sT)- - - - < - < - F
sl F. / 2(vl 'vz ) - u1- sl . /Z(vz· .,)

where F . / z('1 'vz ) and F. / z(vz,vI ) are the
tabulated values of F (Tables 9, 10,
I I, and 12 of Appendix II) that place
an area equal to a / 2 in the upper tail
of the F distribution, where F . / 2(vl'VZ)

is based on VI = (nl - I) numerator
and Vz = (nz - I) denominator
degrees of freedom, and F. / 2(vz.vl ) is
based on v i = (nz - I) numerator
and VI = (nl - I) denominator
degrees of freedom

All n\ and nz Independent
samples from
two normal
populations



Supplementary Exercises 413

SUPPLEMENTARY EXERCISES..................................................................
8.76 What do college recruiters think are the most important topics to be covered in a job interview? To answer

this and other questions, Taylor and Sniezek elicited the opinions of recruiters interviewing at a small
midwestern college and a large midwestern university ( Journal of Occupational Ps ychology, 1984). Recruiters
were asked to rate on a 105-point scale the importance of each in a list of 25 interview topics [where 0 =
least important (can sometimes be omitted without hurting the interview), 52.5 = average importance (can
sometimes be omitted without hurtin g the interview), and 105 = most important (can never be omitted
without hurt ing the interview)]. The topic concerning "applicant's skill in communicating ideas to others"
received the highest ratings of the n = 58 college recruiters who return ed the questionnaire. The sample
mean rating and sample standard deviation for this topic were y = 84.84 and s = 15.67, respectively.
a. Give a point estimate for the true mean rating of the importance of "applicant's skill in communicating

ideas to others" by all college recruiters.
b. Use the sample information to construct a 95% confidence interval for the true mean rating.
c. What is the confidence coefficient for the interval of part b? Interpret this value.

8.77 When new instruments are developed to perform chemical analyses of products (food, medicine, etc.), they
are usually evaluated with respect to two criteria: accuracy and precision. Accuracy refers to the ability of
the instrument to identify correctly the nature and amounts of a product's components. Precision refers to
the consistency with which the instrument will identify the components of the same material. Thus, a large
variability in the identification of a single sample of a product indicates a lack of precision. Suppose a
pharmaceutical firm is considering two brands of an instrument designed to identify the components of
certain drugs. As part of a comparison of precision, ten test-tube samples of a well-mixed batch of a drug
are selected and then five are analyzed by instrument A and five by instrument B. The data shown in the
table are the percentages of the primary component of the drug given by the instruments. A SAS printout
giving descriptive statistics follows.

Instrument A

Instrument B

43

46

48

49

37

43

52

41

45

48

Analysis Variable : READING

---------------------------- INSTRMNT=A -------------------------

N obs N Minimum Maximum Mean Std Dev

5 5 37.0000000 52.0000000 45.0000000 5.6124861

---------------------------- INSTRMNT=B -------------------------

N obs N Minimum Maximum Mean Std Dev

5 5 41.0000000 49.0000000 45.4000000 3.3615473

a. Constru ct a 90% confidence interval to compare the precision of the two instruments.
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b. Based on the interval estimate of part a, what would you infer about the precision of the two instruments?
c. What assumptions must be satisfied to ensure the validity of any inferences derived from the estimate?

8.78 A regional computer center wants to evaluate the performance of its disk memory system. One measure of
performance is the average time between failures of a disk drive. Since the computer center operates two
disk drives, it wants to compare the mean times between failures of the two disk drives. Independent random
samples of n I = 10 and n: = 15 failures produced the following statistics:

Disk Drive 1

YI = 92 hours

Sl = 16 hours

Disk Drive 2

Y2 = 108 hours

S2 = 12 hours

Which of the two disk drives appears to give better performance?

8.79 According to a report by the U.S. surgeon general, electrical engineers have the lowest smoking rate among
all workers surveyed (lEEE Spectrum, Apr. 1986). Only 16% of the male c1ectrical engineers in the sample
smoke cigarettes regularly. How many male electrical engineers must be sampled to estimate the proportion
of all male electrical engineers who smoke regularly to within 3% of its true value with 95% confidence?

8.80 The pesticide Temik is used for controlling insects that feed on potatoes, oranges, and other crops. According
to federal standards, drinking water wells with levels of Temik above I part per billion are considered
contaminated. The accompanying table lists the results of tests for Temik contamination conducted in five
states over the past few years. For each state, construct a 95% confidence interval for the true proportion
of wells contaminated with Temik. Interpret the results.

State

New York
Wisconsin
Maine
Florida
Virginia

Number of
Wells Tested

10,500
700
124
825

76

Number of
Contaminated Wells

2,750
105
82
4

17

Source: Orlando Sentinel, July 4, 1983.

8.81 A machine used to fill beer cans must operate so that the amount of beer actually dispensed varies very
little. If too much beer is released, the cans will overflow, causing waste. If too little beer is released, the
cans will not contain enough beer, causing complaints from customers. A random sample of the fills for
20 cans yielded a standard deviation of .07 ounce. Estimate the true variance of the fills using a 95%
confidence interval.

8.82 Refer to the LRM spectroscopy experiment described in Exercise 8.61. The amount of liquid CO2 present
in each of two different fluid inclusions (named FREO and FRITZ) was measured on each of four randomly
selected days. The data are reproduced in the table. Use interval estimation to compare the mean difference
between the CO2 concentrations (in mole percentage) of the two fluid inclusions.



Day

1
2
3
4

Inclusion FREO

86.6
84.6
85. 5
85.9

Inclusion FRITZ

83.8
85.3
84.6
83.4
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Source: Wopcnka, B. . and Pastcris, J. D. "Limitations to quantitative
analysis of fluid inclusions in geological samples by laser Raman micro­
probc spectroscopy:' Applied Spectroscopy. Vol. 40. No.2. Feb. 1986.
p. 149.

8.83 Some power plants are located near rivers or oceans so that the available water can be used for cooling the
condensers. As part of an environm ental impact study, suppose a power company wants to estimate the
difference in mean water temperature between the discharge of its plant and the offshore waters. How man y
sample measurements must be taken at each site to estimate the true difference between means to within
.2°C with 95% confidence? Assume the range in readings will be about 4°C at each site and the same
number of readings will be taken at each site.

8.84 A study was conducted to compare the attitudes of American and Soviet teenagers on nuclear war (New
England Journal of Medicine, Aug. 18, 1988). A team of American and Soviet researchers surveyed 3,370
public school students in Maryland and 2,148 students in central Russia. On e question asked whether the
students believe a nuclear war will occu r in their lifetime. Forty-two percen t of the Maryland students and
9% of the Russian students responded affi rmatively.
a. Calculate a 99% confidence interval for the difference between the proportions of Maryland and Russian

students who believe that a nuclear war will occur in their lifetime. Interp ret the interval.
b . How could the width of the in terval of part a be reduced?
c. Although Maryland students were recruited randomly for the study, there is specula tion that the Soviet

students were selected much more carefully. How could the nonrandom Soviet sample bias the results
obtained in part a?

8.85 Two alloys, A and B, are used in the manufacture of steel bars. Suppose a steel producer wants to compare
the two alloys on the basis of average load capacity, where the load capacity of a steel bar is defined as the
maximum load (weight in tons) it can support without breaking. Steel bars containing alloy A and steel bars
containing alloy B were randomly selected and tested for load capacity. T he results arc summarized in the
accompanying table.

Alloy A

n j = 11
YI = 43.7
Sf = 24.4

Alloy B

nz = 17
yz = 48.5
s ~ = 19.9

a. Find a 99% confidence interval for the difference between the true average load capacities for the two
alloys.

b. For the interval of part a to be valid, what assumptions must be satisfied?
c. Interpret the interval of part a. Can you conclude that the average load capacities for the two alloys are

different?
d. How many steel bars of each type should be sampled to estimate the true difference in average load

capacities to within 2 tons with 99% confidence? (Assume n I = nz = n. )
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OPTIONAL SUPPLEMENTARY EXERCISES

8.86 Let )II be the mean of a random sample of n I observations from a Poisson distribution with mean AI, and
let )12 be the mean of a random sample of n 2 observations from a Poisson distribution with mean A2 . Assume
the samples are independent.
a. Show that ( )II - 512) is an unbiased estimator of (AI - A2).
b. Find V( 511 - 512) . How could you estimate this variance?
c. Construct a large-sample (l - 0')100% confidence interval for (AI - A2) . [Hint: Consider

(YI - 512) - (AI - A2)
z =

~YI + 512
nl n 2

as a pivotal statistic.]

8.87 Let YI, Y2 , .. . , Yn denote a random sample from a uniform distribution with probability density

_{I if e~ Y ~ e+ 1
f(Y) - 0 elsewhere

a. Show that 51 is a biased estimator of e, and compute the bias.
b. Find V( 51) .
c. Wh at function of 51 is an unbiased estimator of e?

8.88 Suppose y is a random sample of size n = 1 from a normal distribution with mean 0 and unknown
variance 0'2.

a. Show that l j O'2 has a chi-square distribution with 1 degree of freedom. [Hint: The result follows
directly from Theorem 7.4.]

b. Derive a 95% confidence interval for 0'2 using y2j O'2 as a pivotal statistic.

8.89 Suppose Y is a random sample of size n = I from a gamma distribution with parameters a = I and
arbitrary {3.
a. Show that 2yj {3 has a gamma distribution with parameters a = I and {3 = 2. [Hint: Use the distribution

function approach of Section 7.2.]
b. Usc the result of part a to show that 2y/{3 has a chi-square distribution with 2 degrees of freedom.

[Hint: The result follows directly from Section 5.7.]
c. Derive a 95% confidence interval for {3 using 2yj {3 as a pivotal statistic.

8.90 Suppose y is a single observation from a normal distribution with mean fL and variance 1. Use Y to find a
95% confidence interval for fL. [Hint: Start with the pivotal statistic z = (y - fL). Since z is a standard
normal random variable,

P(- Z. 025 ~ Y - fL ~ Z.025) = .95

Follow the method of Example 8.6.]

8.91 A.confidence interval for e is said to be unbiased if the expected value of the interval midpoint is equal
to e.
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a. Show that the small-sample confidence interval for p"

y - ta lZ(~) -s p, ::; y + talZ(~)

is unbiased.
b. Show that the confidence interval for (F2,

(n - l)sZ Z (n - l)s2
Z ::; (T ::; ":""""';z,-------'-----

X a lZ X(I-a IZ)

is biased.

8.92 Suppose y is a single observation from a uniform distribution defined on the interval from 0 to e. Find a
95% confidence limit LCL for esuch that P(LCL < e< (0) = .95. [Hint: Start with the pivotal statistic
y/eand show (using the method of Chapter 7) that y/e is uniformly distributed on the interval from 0 to
1. Then observe that

p(o < ~ < .95) = J~95 (l )dy = .95

and proceed to obtain LCL.]

COMPUTER LAB: Confidence Intervals for Means

Most commercial statistical software packages (e.g., SAS) do not have modules for computing confidence inter­
vals for the parameters discussed in this chapter. Those that do (e.g., MINITAB) are limited in scope. For exam­
ple, MINITAB will produce confidence intervals for means but not for variances or proportions. The MINITAB
programs presented here give the confidence interval commands for estimating the parameters p" P,I - P, z , and
IJ-d . The outputs of the programs are shown in Figures 8.16-8.18, on pages 418-419 , respectively.

MINITAB
a. Confidence Interval for p,-Data from Example 8.9

Command
line

I SET SILICON PPM IN Cl Data entry instruction
2 229 255 280 203 229 Input data (5 observations per line)
3 NAME Cl = 'PPM'
4 T INTERVAL 99 C1 99% confidence interval

COMMAND 4 The TINTERVAL command produces a confidence interval for the mean of the data stored in Cl.
The confidence interval (in this case, 99%) is specified following TINTERVAL. (The default is a 95% confi­
dence interval.)

NOTE When (F is unknown, as is usually the case, TINTERVAL uses the appropriate value from the t distribu­
tion to calculate the interval regardless of the size of the sample. For large samples, recall that ta l Z = za l Z,
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FIGURE 8.16 ~

Output for MINITAB program a. ppm
N
4

MEAN
241. 8

STDEV SE MEAN 99. 0 PERCENT c . r .
33 .2 16.6 ( 144.8, 338.7 )

b. Confidenc e Interval for P- l - P-z, Independ ent Samples-Da ta from Example 8. 11

Command
line

I
2
3
4
5
6
7
8

READ THREE IN C1, SEVEN I N C2 Data en try command

11 B9 B53 ]
sao 900 Input data values

10 2 0 733 (l observation per line)
9S 0 7S5

NAME C1 = '3'X,ASPH ' C2 = ' n, ASPH '
TWOSAMPLE 95 C1 C2; } .
POOLED. 95% con fidence interval

COMMAND 7 TWOSAMPLE produces a confidence interval on the difference between the mean of the data in Cl
and the me an of the data in C2 . By default, a 95 % confidence interval is computed . To change the confidence
level, specify 99, 90, etc., following the T WOSAMPLE command .

COMMAND 8 The POOLED subc ommand instructs MINITAB to use s~ in the calculation of a small-sample confidence
interval. Omit the POOLED subcommand if you want MINITAB to compute a large sample confidence interval
for P-l - P-z·

NOTE TWOSAMPLE uses the appropriate value from the t distribution to compute the confidence interval regardless
of the sample size. For large samples, recall that t a l Z = Za I Z,

FIGURE 8.11 ~

Output for MINITAB program b.
TWOSAMPLE T FOR 3%asph VS 7%asph

N MEAN STDEV SE MEAN
3%asph 4 1007 144 72
7%asph 4 817.8 73.6 37

95 PCT cr FOR MU 3%asph - MU 7%a sph: (-8 , 387)

TTEST MU 3%asph = MU 7%asph (VS NE) : T= 2 . 35 P=O.057 DF= 6

POOLED STDEV = 114

c. Confidence Interval for P-d = (P-l - P-z), Paired Samples-Data from Exampl e 8. 12

C ommand
line

I
2

13
14
15
16

READ PLANT DATA IN C1, STATION DATA IN C2

2 .02.2 }

: inp ut data (l observation per line)

2.1 2. (I

SUBTRACT C2 FROM C1, PUT IN C3
NAME C3 = "DIFF "
T INTERVAL 95 C3 95% confidence interval

Data entry instruction
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COMMAND 14 Use the SUBTRACT command to calculate the differences for the paired observations in Cl
and C 2.

COMMAND 16 Use the T1NT ERVAL command to com pute a 95% confidence interval for the mean of the differ­
ences in C3 .

FIGURE 8.18 ~
Output for MINITAB program c.

References

di f f
N MEAN STDEV SE MEAN 95.0 PERCENT C. l.

12 - 0 . 0083 0 . 16 76 0 .0484 ( - 0.1149, 0 .0982 )
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9.1 The Relationsh ip Between Statistical Tests
of Hypotheses and Confidence Intervals

As stated in Chapter 8, there are two general methods available for making inferences
about population parameters. \Ve can estimate their values using confidence intervals
(the subject of Chapter 8) or we can make decisions about them . Making decisions
about specific values of the population parameters-testing hypotheses about these
values-is the topic of this chapter.

Con fidence intervals and hypothesis tests are related and can be used to make
decisions about parameters. For example, suppose an investigator for the Environ­
men tal Protection Agency (EPA) wants to determine whether the mean level I-.t of a
certain type of pollutant released into the atmosphere by a chemical company meets
the EPA guidelines. If 3 parts per million is the upper limit allowed by the EPA, the
investigator would want to use sample data (daily pollution measurements) to decide
whether the company is violating the law, i.e. , to decide whether I-.t > 3. If, say, a
99% confidence interval for I-.t contained only num bers greater than 3, then the EPA
would be confident that the mean exceeds the established limit.

As a second example, consider a manufacturer that purchases terminal fuses in
lots of 10,000, and suppose that the supplier of the fuses guarantees that no more than
I% of the fuses in any given lot are defective. Since the manufacturer cannot test
each of the 10,000 fuses in a lot, he must decide whether to accept or reject a lot
based on an examination of a sample of fuses selected from the lot. If the nu mber y
of defective fuses in a sample of, say, n = 100, is large, he will reject the lot and send
it back to the supplier. Thus, he wants to decide whether the proportion p of defectives
in the lot exceeds. 0I, based on information contained in a sample . If a confidence
interval for p faJls below. 0I, then the manufacturer will accept the lot and be confident
that the proportion of defectives is less than I %; otherwise, he wiJl reject it.

T he examples in the preceding paragraphs illustrate how a confidence interval
can be used to make a decision about a parameter. Note that both applications are
one-directional; the EPA wants to determine whether I-.t > 3 and the manufacturer
wants to know if p > .01. (In contrast, if the manufacturer is interested in determining
whether p > .01 or p < .01, the inference would be two-directional.)

Recall, from Chapter 8, that to find the value of z (or t) used in a (I - a) IOO%
confi dence interval, the value of a is divided in half and a/2 is placed in both thc
upper and lower tails of the z (or t) distribution. Consequently, confidence intervals
are designed to be two-directional. Use of a two-directional technique in a situation
where a one-directional method is desired will lead the researcher (e.g., the EPA or
the manufacturer) to understate the level of confidence associated with the method.
As we will explain in this chapter, hypothesis tests are appropriate for either one- or
two-directional decisions about a population parameter.
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.2 Elements of a Statistical Test

We now return to the EPA example to introduce the concepts involved in a test of a
hypothesis. We will use a method analogous to proof by contradiction. The theory
the EPA wants to support, called the alternative (or research) hypothesis, is that J-L >
3, where J-L is the true mean level of pollution in parts per million. The alternative
hypothesis is denoted by the symbol Ha . Th e theory contradictory to the alternative
hypothesis, that J-L is at most equal to 3, say, J-L = 3, is called the null hypothesis and
is denoted by the symbol Ho. Thus, the EPA hopes to show support for the alternative
hypothesis, J-L > 3, by obtaining sample evidence indicating that the nuJl hypothesis,
J-L = 3, is false. That is, the EPA wants to test

Ho: J-L = 3

Ha : J-L > 3

Th e decision whether to reject the null hypothesis is based on a statistic, called
a test statistic, computed from sample data. For example, suppose the EPA plans to
base its decision on a sample of n = 30 daily pollution readings. If the sample mean
y of the 30 pollution measurements is much larger than 3, the EPA would tend to
reject the null hypothesis and conclude that J-L > 3.However, if y is smaller than 3,
say, y= 2.8 parts per million, there is insuffic ient evidence to refute the null hypothesis.
Thus, the sample mean y serves as a test statistic,

The values that the test statistic ycan assume will be divided into two sets. Those
larger than some specihed value, say, y~ 3. I, wiII imply rejection of the null hypothesis
and acceptanc e of the alternat ive hypothesis. Th is set of values of the test statistic is
known as the rejection region for the test. A test of the null hypothesis, Ho: J-L = 3,
against the alternative hypothesis, Ha : J-L > 3, employing the sample mean yas a test
statistic and y 2: 3.1 as a rejection region, represents one particular test that possesses
specific properties. If we change the rejection region to y~ 3.2, we obtain a different
test with different properties.

The preceding discussion indicates that a statistical test consists of the four elements
summarized in the box.

Elements ofa Statistical Test
. .................................

1. Null hypothesis, H«, about one or more population parameters

2. Alternative hypothesis, l-C , that wc will accept if we decide to reject the null
hypothesis

3. Test statistic , computed from sample data

4. Rejection region, indicating the values of the test statistic that will imply
rejection of the null hypothesis
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In Section 9.3, we will show how to evaluate the reliability of a statistical test,
how to compare one test with another, and how to evaluate the reliability of a particular
test decision. We will apply the results to several practical examples.

9.3 Evaluating the Properties of a Statistical Test

Since a statistical test can result in one of only two outcomes-rejecting or not rejecting
the null hypothesis-the test conclusion is subject to only two types of error. To
illustrate, consider the EPA example of Section 9.2. Recall that the investigator wants
to test Ho: /.L = 3 against Ha : /.L > 3, where /.L = mean level of pollutant released
into the atmosphere by a chemic al company. If the investigator concludes that Ha is
true (i.e., if he rejects Ho), then the EPA will charge the company with violating its
pollution standards. Th e two errors that the EPA can make are shown in Table 9.1.

TABLE 9.1 Conclusions and Consequences for the EPA's Test of Hypothesis

True State of Nature

EPA Decision

Company in Violation (Reject Ha)
Company Not in Violation (Accept Ha)

Company Not in Violation
(H 0 true)

Type I error
Correct decision

Company in Violation
(H, true)

Correct decision
Type II error

The EPA might reject the null hypothesis if, in fact, it is true. That is, the EPA
might charge the company with violating its standards, when , in fact, the company
is innocent (Type I error). Or the EPA might decide to accept the null hypothesis if,
in fact, it is false. That is, the EPA may conclude that the comp any is not in violation
of the pollution standards when, in fact, the company is in violation (Type II error).
Th e probabilities of making these two types of errors measure the risks of making
incorrect decisions when we perform a test of hypothesis and, consequently, provide
measures of the goodness of this inferential decision-making procedure.

Definition 9.1

Rejecting the null hypothesis if it is true is a Type I error . The probability of
making a Type I error is denoted by the symbol a .
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Definition 9.2

Accepting the null hypothesis if it is false is a Type II error. T he probability of
making a Type II error is denot ed by the symbol {3.

Wh ich of the two errors, Type [ or Type II, is more serious? From the EPA's
perspective, the Type [ error is the more serious error. If the EPA falsely accuses the
compan y of violating the pollution limits, a costly lawsuit will likely occur. On the
other hand, the residents who live near the chemical company would probably view
the Type II error as more serious; if this error occurs, the EPA is failing to charge the
company when it is, in fact, polluting the surrounding air. In either case, it is important
to compute the probabilities, a and {3, to assess the reliability of inferences derived
from the hypothesis test. T he next four examples illustrate how to compute these
probabilities.

EXAMPLE 9.1 A man ufacturer of minicomputers believes that it can sell a particular software package
to more than 20% of the buyers of its compu ters. Ten prospective purc hasers of the
computer were randomly selected and questioned about their interest in the software
package. Of these, four indicated that they planned to buy the package. Does this
sample provide sufficient evidence to indicate that more than 20% of the comp uter
purchasers will buy the software package?

Solution Let p be the true proportion of all prospective com puter buyers who will purchase the
software package. Since we want to show that p > .2, we choose Ha : P > .2 for the
alternative hypothesis and Ho: P= .2 for the null hypothesis. We will use the binomial
random variable y, the nu mber of prospective purchasers in the sample who plan to
buy the software, as the test statistic and will reject Ho: P = .2 if Y is large. A graph
of p(y) for n = 10 and p = .2 is shown in Figure 9. 1.

FIGURE 9.1 ~ p(y)

Graph of p(y) for n = 10 and
p = 1. i.e.• if the null hypothesis .3

is true

.2

. 1
0: =.J2 1

9 10765
3 1~._4 8

- Rejection region

2o
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Large values of y will support the alternative hypothesis, Fla : P > .2, but what
values of y should we include in the rejection region? Suppose that we select values
of y ~ 4 as the rejection region. Then the elements of the test are:

Ho: P = .2

Ha : p > .2

Test statistic: y

Rejection region: y ~ 4

To conduct the test, we note that the observed value of y, y = 4, falJs in the rejection
region. Thus, for this test procedure, we reject the null hypothesis, Ho: P = .2, and
conclude that the manufacturer is correct, i.e. , p > .2.

EXAMPLE 9.2

Solution

EXAMPLE 9.3

What is the probability that the statistical test procedure of Example 9.1 would lead
us to an incorrect decision if, in fact, the null hypothesis is true?

We will calculate the probability a that the test procedure would lead us to make a
Type I error, i.e., to reject Ho if, in fact, Ho is true. This is the probability that y fall s
in the rejection region if in fact p = .2:

3

a = P(y ~ 4 if in fact p = .2) = I L p(y)
y=o

Th e partial sum L~= O p(y) for a binomial random variable with n = 10 and p = .2
is given in Table I of Appendix II as .879. Therefore ,

3

a = I - L p(y) = I - .879 = .121
y=O

The probability that the test procedure would lead us to conclude that p > .2, if in
fact it is not, is .121. This probability corresponds to the area of the shaded region ill
Figure 9.1.

In Example 9.1, we computed the probability a of committing a Type I error.
The probability f3 of making a Type II error, i.e. , failing to detect a value of p greater
than.2, depends on the value of p. For example, if p = .2000I, it will be very dif­
ficult to detect this small deviation from the null hypothesized value of p = .2. III
contrast, if p = 1.0, then every prospective purchaser of the minicomputer will
want to buy the software package, and in such a case it will be very evident from the
sample information that p > .2. We will illustrate the procedure for calculating f3 ill
Example 9.3.

Refer to Example 9.2 and suppose that p is actually equal to .60. What is the probabili ty
f3 that the test procedure will fail to reject Ho: P = .2 if, in fact, p = .6?
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Solution Th e binomial probability distribution p(y) for n = 10 and p = .6 is shown in Figure
9.2. Th e probability that we will fail to reject Ho is equal to the probability that y =

0, I, 2, or 3, i.e., the probability that y does not fall in the rejection region. This
probability, {3, corresponds to the shaded area under the probability histogram in the
figure. Th erefore,

3

(3 = P(y ~ 3 if in fact p = .6) = 2: p(y) for n = 10 and p = .6
y=o

FIGURE 9.2 ~
Graph of p(y) for n = 10 and
p = .6, i.e., if the alternative
hypothesis is true

p(y)

.3

.2

.1

9 1076542 1 ~· _3 8
~ Rejecti on region

o

This partial sum, given in Table I of Appendix II for a binomial random variable
with n = 10 and p = .6, is .055. Therefore, the probability that we will fail to reject
Ho: P = .2 if P is as large as .6 is {3 = .055.

Another important property of a statistical test is its ability to detect departures
from the null hypothesis when they exist. Thi s is measured by the probability of
rejecting Ho when, in fact, Ho is false. Note that this probability is simply (l - (3):

P(Reject Ho when Ho is false) = 1 - P(Accept Ho when Ho is false)

= 1 - P(Type II error)

=1-{3

The probability (l - (3) is called the power of the test. T he higher the power, the
greater the probability of detecting departures from Ho when they exist.

Definition 9.3

The power of a statistical test, (I - (3), is the probability of rejecting the null
hypothesis Ho when, in fact, Ho is false.
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EXAMPLE 9.4

Solution

EXERCISES

Refer to the test of hypothesis in Example 9.1. Find the power of the test if in fact
p = .3.

From Definition 9.3, the power of the test is the probability (I - (3). The probability
of making a Type II error, i.e., failing to reject Ho: P = .2, if in fact p = . 3, will be
larger than the value of f3 calculated in Example 9.3 because p = . 3 is much closer
to the hypothesized value of p = .2. Thus,

3

(3 = P(y::s 3 ifin fact p = .3) = L p(y) for n = 10 and p = .3
y=o

The value of this partial sum, given in Table 1 of Appendix II for a binomial random
variable with n = 10 and p = .3, is .650. Th erefore, the probability that we will
fail to reject Ho: P = .2 if in fact p = .3 is {3 = .650 and the power of the test
is (I - f3) = (I - .650) = .350. You can see that the closer the actual value of pis
to the hypothesized null value, the more unlikely it is that we will reject Ho: P = .2.

The preceding examples indicate how we can calculate 0' and f3 for a simple
statistical test and thereby measure the risks of making Type [ and Type II errors.
These probabilities describe the properties of this inferential decision-makin g procedure
and enable us to compare one test with another. For two tests, each with a rejection
region selected so that 0' is equal to some specified value, say, . 10, we would select
the test that, for a specified alternative, has the smaller risk of making a Type II error,
i.e., one that has the smaller value of f3 . This is equivalent to choosing the test with
the higher power.

We will present a number of statistical tests in the following sections. In each
case, the probability 0' of making a Type I error is known, i.e. , 0' is selected by the
experimenter and the rejection region is determin ed accordingly. In contrast, the value
of f3 for a specific alternative is often difficult to calculate. Thi s explains why we
attempt to show that Ha is true by showing that the data do not support Ho. We hope
that the sample evidence will support the alternative (or research) hypothesis. If it
does, we will be concerned only about making a Type I error, i.e ., rejecting Ho if it
is true. Th e probability 0' of committing such an error will be known.

9.1 Define 0' and f3 for a statistical test of hypothesis.

9.2 Explain why each of the following statements is incorrect:
a. The probability that the null hypothesis is correct is equal to 0' .

b. If the null hypothesis is rejected, then the test proves that the alternative hypothesis is correct.
c. In all statistical tests of hypothesis, 0' + f3 = I.
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9.3 Pharmaceutical companies are continually searching for new drugs. Testing the thousands of compounds
for the few that might be effective is known in the pharmaceutical industry as drug screening. Dunnett
(1978) views the drug-screening procedure in its prelim inary stage in terms of a statistical decision problem:
"In drug screening, two actions are possible: (I ) to ' reject' the drug, meanin g to conclude that the tested
drug has little or no effect, in which case it will be set aside and a new drug selected for screen ing; and
(2) to 'accept' the drug provisionally, in which case it will be subjected to further, more refined expcrirnenta­
tion.?" Since it is the goal of the researcher to fi nd a drug that effects a cure, the null and alternative
hypotheses in a statistical test would take the following form:

Ho: Drug is ineffective in treating a particular disease

Ha : Drug is effective in treating a particular disease

Dunnett comments on the possible errors associated with the drug-screening procedure: "To abandon a drug
when in fact it is a useful one (a false negative) is clearly undesirable, yet there is always some risk in that.
On the other hand , to go ahead with further, more expensive testing of a drug that is in fact useless (a false
positive) wastes time and mone y that could have been spent on testing other com pound s."
a. A false negative corresponds to which type of error, Type I or Type II?
b. A false positive corresponds to which type of error, Type I or Type II?
c. Whi ch of the two errors is more serious? Explain .

9.4 Pascal is a high-level programming language used frequently in minicomputers and microprocessors. An
experiment was conducted to investigate the proportion of Pascal variables that are array variables (in contrast
to scalar variables, which are less efficient in terms of execution time). Twenty variables are randomly
selected from a set of Pascal programs and y, the number of array variables, is recorded. Suppose we want
to test the hypothesis that Pascal is a more effi cient language than Algol, in which 20% of the variables are
array variables. That is, we will test Ho: P = .20 against Ha : P> .20, where p is the probability of observing
an array variable on each trial. (Assume that the 20 trials are independent. )
a. Find Q' for the rejection region y :2: 8.
b. Find Q' for the rejection region y :2: 5.
c. Find f3 for the rejection region )' :2: 8 if P = . 5. [Note: Past experience has shown that approximately

half the variables in most Pascal programs are array variables.]
d. Find f3 for the rejection region )' :2: 5 if P = .5.
e. Whi ch of the rejection regions, y:2: 8 or y :2: 5, is more desirable if you want to minimize the probability

of a Type 1 error? Type II error?
f. Find the rejection region of the form )' :2: a so that Q' is approximately equal to .01.
g. For the rejection region determined in part f, find the power of the test, if in fact p = .4.
h. For the rejection region determin ed in part f, find the power of the test, if in fact p = .7.

9.5 A manufacturer of power meters, which are used to regulate energy thresholds of a data-communications
system, claims that when its production process is operating correctly, only 10% of the power meters will
be defective. A vendor has just received a shipment of 25 power meters from the manufacturer. Suppose
the vendor wants to test Ho: P = . 10 against H,,: p > . 10, where p is the true proportion of power meters
that are defective. Use )' :2: 6 as the rejection region.
a. Determine the value of Q' for this test procedure.

"From Tan ur, J. M., et al. , eds. Statistics: A Guide to the Unknown. San Fran cisco: Holden -Day, 1978.
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b. Find {3 if in fact p = .2. What is the power of the test for this value of p7
c. Find {3 if in fact p = .4. What is the power of the test for this value of P?

OPTIONAL EXERCISE
9.6 Show that for a fixed sample size n, ex increases as (3 decreases, and vice versa.

9.4 Finding Statistical Tests: An Example of a Large-Sample Test

r

To find a statistical test about one or more population parameters, we must (I ) find
a suitable test statistic and (2) specify a rejection region. One method for finding a
reasonable test statistic for testing a hypothesis was proposed by R. A. Fisher. For
example, suppose we want to test a hypothesis about the sole parameter 6of a probability
func tion p(y ) or density function f( y), and let L represent the likelihood of the sample.
T hen to test the null hypothesis, Ho: 6 = 60, Fisher's likelihood rat io test statistic is

A = Likelihood assuming 6 = 6? = L( 6~ )

Likelihood assuming 6 = 6 L(6 )

where {j is the maximum Iikelihood estimator of 6. Fisher reasoned that if 6 differs
from 80, then the value of the likelihood L when 8 = {j will be larger than when
6 = 80 . Thus, the rejection region for the test contains values of A that are small­
say, smaller than some value AR.

If you are interested in learning more abou t Fisher's likelihood ratio test, consult
the references at the end of this chapter. Fortunate ly, most of the statistics that we
would choose intuitively for lesl statistics are functions of the corresponding likelihood
ratio statistic A. T hese are the pivotal sta tistics used to construct confidence intervals
in Chap ter 8.

Recall that most of the pivotal statistics in Cha pter 8 have approximately normal
sampling distributions for large samples. Th is fact allows us to easily derive a large­
sample statistical test of hypothesis. To illustrate, suppose that we want to test a
hypothesis, Ho: 8 = 80, about a parameter 8 and that the estima tor (j possesses a
normal sampling distribution with mean 8 and standard deviation ae. We will further
assume that a{) is known or that we can obtain a good approximation for it when the
sample size(s) is (are) large. It can be shown (proof omitted) that the likelihood ratio
test statistic A reduces to the standard norma l variable z:

(j - 80z = - - -
a{)

The location of the rejection region for this test can be deduced by examining
the formula for the test statistic z. Th e farther {j departs from 80 , i.e., the larger the
absolute value of the deviation 1{j - 60 I, the greater will be the weight of evidence
to indicate that 8 is not equal to 60. If we want to detect values of 8 larger than 80,

i.e., Ha : 8 > 80 , we locate the rejection region in the upper tail of the sampling
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distribution of the standard normal z test statistic (see Figure 9.3a). If we want to detect
only values of (J less than (Jo, i.e. , Ha : (J < 80, we locate the rejection region in the
lower tail of the z distribution (see Figure 9. 3b). Th ese two tests are called one-tailed
statistical tests because the entire rejection region is located in only one tail of the
z distribution. However, if we want to detect eith er a value of (J larger than 80 or a
value smaller than 80 , i.e., Ha : 8 =1= 80, we locate the rejection region in both the
upper and the lower tails of the z distribution (see Figure 9.3c). Thi s is called a two­
tailed statistical test.

j (z)

a. One-tailed test:
Ha : 8 > 80

1

Reje ction

reg ion

f( z)

Reject ion ~I
region

- z a /2

c. Two-railed test:
/-fa: 8cfc 80

Reje ction ~I
region

b. One-tailed test;
Ha: 8 < 80

1

Rejection
reg ion

za/2

FIGURE 9.3 •
Rejection regions for one- and
two-tailed tests

The large-sample statistical test that we have described is summarized in the box
on page 432. Many of the population parameters and test statistics discussed in the
remaining sections of Chapter 9 satisfy the assumptions of this test. We will illustrate
the use of the test with a practical example on the population mean J.L .
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ALarge-Sample Test Based on the Standard Normal z Test Statistic

Test statistic:

One-Tailed Test

Ho:O = 00

Ha : 0 >00

(orHa : 0 < (0 )

rt: .. {j-Oo
J est statistic: Z = --­

(J'iJ

Rejection region: Z > Za

(or Z < -za)

where P(z > za) = a

Two-Tailed Test

Ho: 0 = 00

Ha : 0 =F 00

{j - 00z=---
(J'iJ

Rejection region: IZ I > Za/2

where P(z > zad = aj2

EXAMPLE 9.5 The Department of Highway Improvements, responsible for repairing a 25-mile stretch
of interstate highway, wants to design a surface that will be structurally efficient. One
important consideration is the volume of heavy freight traffic on the interstate. State
weigh stations report that the average number of heavy-duty trailers traveling on a
25-mile segment of the interstate is 72 per hour. However, the section of highway to
be repaired is located in an urban area and the department engineers believe that the
volume of heavy freight traffic for this particular sector is greater than the average
reported for the entire interstate. To validate this theory, the department monitors the
highway for 50 l-hour periods randomly selected throughout the month. Suppose the
sample mean and standard deviation of the heavy freight traffic for the 50 sampled
hours are

51 = 74.1 s = 13.3

Solution

Do the data support the department's theory? Use a = .10.

For this example, the parameter of interest is /L, the average number of heavy-duty
trailers traveling on the 25-mile stretch of interstate highway. Recall that the sample
mean 51 is used to estimate /L, and that for large n, 51 has an approximately normal
sampling distribution. Thus, we can apply the large-sample test outlined in the box.

The elements of the test are

Ho: /L = 72

Ha : /L > 72

Test statistic: Z = 51 - 72 = 51 - 72 = 51 - 72
(J'y (J'j-V;; sj-V;;

Rejection region: Z > 1.28
(since Z 10 = 1.28, from Table 4 of Appendix II)
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We now substitute the sample statistics into the test statistic to obtain

z = 74. 1 - 72 = 1.12
13 .3/V50

Thus, although the average numb er of heavy freight trucks per hour in the sample
exceeds the state's average by more than 2, the z value of 1.12 does not fall in the
rejection region (see Figure 9.4). Th erefore, this sample does not provide suffic ient
evidence at a = . 10 to support the Department of Highway Improvements' theory.

FIGURE 9.4 ~ I (z)

Location of the test statistic for
Example 9.5

o
1.121 _ Rejection

region

1.28

EXAMPLE 9.6

Solution

What is the risk of making an incorrect decision in Example 9.5? If we reject the
null hypothesis then we know that the probability of making a Type I error (rejecting
Ho if it is true) is a = .10. However, we failed to reject the null hypotheses in Exam­
ple 9.5 and, consequently, we must be concerned about the possibility of making a
Type II error (accepting Ho if in fact it is false). We will evaluate the risk of making
a Type II error in Example 9.6.

Refer to the one-tailed test for J-L, Example 9.5. If the mean number J-L of heavy freight
trucks traveling a particular 25-mile stretch of interstate highway is in fact 78 per hour,
what is the probability that the test procedure of Example 9.5 would fail to detect it?
That is, what is the probability f3 that we would fail to reject Ho: J-L = 72 in this one­
tailed test if J-L is actually equal to 78?

To calculate f3 for the large-sample z test, we need to specify the rejection region in
terms of the point estimator e, where, for this example, e= y. From Figure 9.4,
you can see that the rejection region consists of values of z 2 1.28. To determine the
value of y corresponding to z = 1.28, we substitute into the equation

- -
Y - J-Lo )' - J-Loz = --- = --- or
a/ V;; s/V;;

1.28 = y - 72
13 .3/V50
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Solving for y, we obtain y = 74.41. Th erefore, the rejection region for the test is
z ::2: 1.28 or, equivalently, y ::2: 74.41.

The dotted curve in Figure 9.5 is the sampling distribution for y if Ho: }-t = 72
is true. This curve was used to locate the rejection region for y(and, equivalently, z),
i.e., values of ycontradictory to Ho: J.L = 72. The solid curve is the sampling distribution
for y if J.L = 78. Since we want to find f3 if Ho is in fact false and J.L = 78, we want
to find the probability that y does not fall in the rejection region if J.L = 78. This
probability corresponds to the shaded area under the solid curve for values of y <
74.41. To fi nd this area under the normal curve, we need to find the area A corrc­

spending to

z = Y - 78 = 74.41 - 78 = - 1.91
a/~ 13.3/ \/56

FIGURE 9.5 ~
The probab il ity f3 of making a
Type II error if J.L = 78 in
Example 9.6

»»
,.­

'"'",,,,,,,,,,,,
,.",'"

---"'
f1 =72

The value of A, given in Table 4 of Appendix II, is .4719. T hen from Figure 9.5, it
can be seen that

f3 = .5 - A = .5 - .4719 = .0281

T herefore, the probability of failing to reject Ho: J.L = 72 if J.L is, in fact, as large as
J.L = 78, is only. 0281.

Example 9.6 illustrates that it is not too diffi cult to calculate f3 for various alter­
natives for the large-sample z test (see box). However, it may be extremely difficult to
calculate f3 for other tests. Although sophisticated techniq ues are available for cval­
uating the risk of making a Type II error when the exact value of f3 is unavailable or
is difficult to calculate, they are beyond the scope of this text. Consult the references
at the end of this chapter if you are interested in learn ing about these methods.
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Calculating f3 for a large-Sample z Test...... ........... ........... ......

Consider a large-sample test of Ho: e = eo at significance level a. The value
of f3 for a specific value of the alternative e= ea is calculated as follows:

Upper-tailed test: f3 = P (z < eo - .ea
)

" 0"(J "

where 00 = eo + Z~O"ij is the value of the estimator corresponding
to the border ofthe rejection region "

Lo 'I d p"( eo - ea )wer-tai e test: f3 = Z > .
" 0"(J

where 00 = eo - zaO"fJ is the value of the estimator corresponding to
the border of the rejection region

T '1 d f3 p(Oo.L - e. " Oo,li - ea )wo-tai e test: = " " < Z < . .
0"fJ 0"fJ

where Oo,u = eo + ZaO"ij and eO,L =eo ~ ZaO"ij are the values of
the estimator corresponding to the borders of the rejection region

EXERCISES

OPTIONAL EXERCISES
9.7 Suppose Yl, Y2, ... , Yn is a random sample from a normal distribution with unknown mean /Land varianc e

0" 2 = I, i.e .,

((y) = -'- e-(r/1i /2

\/2;

Show that the likelihood L of the sample is

L(/L) = (_I_)ne-2::~I ( yi-,Ji/2
\/2;

9.8 Refer to Optional Exercise 9.7. Suppose we want to test Ho: /L = 0 again st the alternative H a : /L > O. Since
the estimator of /L is jL = y, the likelihood ratio test statist ic is

L(/Lo) L(O)
A = L(jL) = L(y)

Show that

_ A = e- n(y)2/ 2
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9.9 Refer to Optional Exercises 9.7 and 9.8. Show that the rejection region A 5 Aa is equivalent to the rejection
region Y~ Yw where P(A 5 Aa ) = a and P( y ~ Ya) = a . [Hint: Use the fact that e- az~ 0 as a~ 00. ]

9.5 Choosing the Null and Alternative Hypotheses

Now that you have conducted a large-sample statistical test of hypothesis and have
seen how to calculate the value of ,B-the probability of failing to reject Ho: e = 80

if eis in fact equal to some alternative value, e= ea-the logic for choosing the null
and alternative hypotheses may make more sense to you. T he theory that we want to
support (or detect if true) is usually chosen as the alternative hypothesis because, if
the data support Ha (i.e. , if we reject Ho), we immediately know the value of a, the
probability of incorrectly rejecting Ho if it is true. For example , in Example 9. 5, the
Department of Highway Improvements theorized that the mean number of heavy­
duty vehicles traveling a certain segmen t of interstate exceeds 72 per hour . Conse­
quen tly, the department set up the alternative hypothesis as Ha: J-t > 72. In contrast,
if we choose the null hypothesis as the theory that we want to support, and if the data
support this theory, i.e., the test leads to nonrejection of Ho, then we would have to
investigate the values of f3 for some specific alternatives. Clearly, we want to avoid
this tedious and sometimes extremely diffic ult task, if possible.

Another issue that arises in a practical situation is whether to conduct a one- or
a two-tailed test. Th e decision depends on what you want to detect. For example,
suppose you operate a chemical plant that produces a variable amount y of product
per day and that if J-t, the mean value of y, is less than 100 tons per day, you will
eventually be bankrupt. If J-t exceeds 100 tons per day, you are financially safe. To
determine whether your process is leading to financial disaster, you will want to detect
whether J-t < 100 tons, and you will conduct a one-tailed test of Ho: J-t = 100 versus
Ha : J-t < 100. If you were to conduct a two-tailed test for this situation, you would
reduce your chance of detecting values of J-t less than 100 tons, i.e., you would increase
the values of f3 for alternative values of J-t < 100 tons.

As a different example, suppose you have designed a new drug so that its mean
potency is some specifi c level, say, 10%. As the mean potency tends to exceed 10%,
you lose money. If it is less than 10% by some specified amount, the drug becomes
ineffective as a pharmaceutical (and you lose money). To conduct a test of the mean
potency J-t for this situation, you would want to detect values of J-t either larger than
or smaller than J-t = 10. Consequently, you would select Ha : J-t =1= 10 and conduct a
two-tailed statistical test (or alternatively, construct a confidence interval).

These examples demonstrate that a statistical test is an attempt to detect departures
from 1-1 0; the key to the test is to define the specific alternatives that you want to
detect. We must stress, however, that Ho and Ha should be constructed prior to
obtaining and observing the sample data. If you use information in the sample data
to aid in selecting Ho and Ha , the prior information gained from the sample biases
the test results-specifically, the true probability of a Type I error will be larger than
the preselected value of a .
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Solution

EXERCISES
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A metal lathe is checked periodically by qualitycontrol inspectors to determine whether
it is producing machine bearings with a mean diameter of .5 inch . If the mean diameter
of the bearings is larger or smaller than .5 inch, then the process is out of control and
needs to be adjusted. Formul ate the null and alternative hypotheses that could be
used to test whether the bearing production process is out of control.

The hypotheses must be stated in terms of a population parameter. Thus, we define

J.L = True mean diameter (in inches) of all bearings produced by the lathe

If either J.L > . 5 or J.L < .5, then the metal lathe's production process is out of control.
Since we wish to be able to detect either possibility, the null and alternative hypotheses
would be

Ho: J.L = .5 (i.e., the process is in control)

Ha: J.L =1= . 5 (i.e. , the process is out of control)

In Sections 9.6-9.13, we will present applications of the hypothesis-testing logic
developed in this chapter. The cases to be considered are those for which we developed
estimation procedures in Chapter 8. Since the theory and reasoning involved are based
on the developments of Chapter 8 and Sections 9. 1-9.5, we will present only a
summary of the hypothesis-testing procedure for one-tailed and two-tailed tests in each
situation.

In Exercises 9. 10-9. I5, formulate the appropriate null and alternative hypotheses.

9.10 A herpetologist wants to determin e whether the egg-hatching rate for a certain species of frog exceeds . 5
when the eggs are exposed to ultraviolet radiation .

9.11 A manufacturer of fi shing line wants to show that the mean breaking strength of a competitor's 2Z-pound
line is really less than 2Z pounds.

9.12 A craps player who has experienced a long run of bad luck at the craps table wants to test whether the
casino dice are "loaded," i.e., whether the proportion of "sevens" occurring in many tosses of the two dice
is different from ~ (if the dice are fair, the probability of tossing a "seven" is ~ ) .

9.13 Each year, Computerworld magazine reports the Datapro ratings of all computer software vendors. Vendors
are rated on a scale from I to 4 (I = poor, 4 = excellent) in such areas as reliability, efficiency, ease of
installation , and ease of use by a random sample of software users. A software vendor wants to determine

~ whether its product has a higher mean Datapro rating than a rival vendor's product.

9.14 The Environmental Protection Agency wishes to test whether the mean amount of radium- 226 in soil in
a Florida county exceeds the maxiurn allowable amount, 4 pCi/L.



438 Chapter 9 I Tests of Hypotheses

9.15 Industrial engineers want to compare two methods of real-time scheduling in a manufactur ing operation.
Specifically, they want to determine whether the mean number of items produced differs for the two methods.

9.6 Testi ng a Popu lation Mean

In Example 9. 5, we developed a large-sample test for a population mean based on
the standard normal z statistic. The elements of this test are summarized in the box.

~.r~~.-~~~p.I~. ~~.~. ~~)..~~s~. ~.f Hypothesis About a Population Mean /.L

- -_ )' - P-o Y - P-o
z -~ = s/ "V;;

Rejection region: Iz I > Za l 2

Test -statistic:

Two-Tailed Test -

Ho: p- = P-o

Ha : p- i=- P-o

- -
z = )' - P-o = Y - P-o

(J"y s/"V;;
Rejection-region:

z > Zot (or z < -Zot)

where Zot is the z value such that P(z > zc,) = a; and z" /Z is the z value such
that P(z > Zot /z) = a/Z. [Note: P-o is our symbol for the particular numerical
value specified for p- in the null hypothesis.]

Assumptions: None (since the central limit theorem guarantees that yis approx­
imately normal regardless of the distribution of the sampled population )

One-Tailed Test

Ho: p- = P-o

Ha : p- > P-o
(or Ha : p- < P-o)

Test statistic:

EXAMPLE 9.8 Humerus bones from the same species of animal tend to have approximately the same
length-to-width ratios. When fossils of hum erus bones are discovered, archeologists
can often determine the species of animal by examining the length-to-width ratios of
the bones. It is known that species A has a mean ratio of 8.5. Suppose 41 fossils of
hum erus bones were unearthed at an archeological site in East Africa, where species
A is believed to have inhabited. (Assume that the unearthed bones are all from the
same unknown species.) The length-to-width ratios of the bones were measured and
are listed in Table 9. Z.
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TABLE 9.2 Length-to-Width Ratios of a Sample of Humerus Bones

10 .73 8.89 9.07 9.20 10.33 9.98 9.84 9.59
8.48 8.7 \ 9.57 9.29 9.94 8.07 8.37 6.85
8.52 8.87 6.23 9.4\ 6.66 9.35 8.86 9.93
8.91 11 .77 10.48 10.39 9.39 9. 17 9.89 8.17
8.93 8.80 10.02 8.38 11.67 8.30 9.17 12.00
9.38

We wish to test the hypothesis that J-L, the popul ation mean ratio of all bones of this
particular species, is equal to 8.5 against the altern ative that it is different from 8.5,
i.e. , we wish to test whether the un earthed bones are from species A.

a. Suppose we want a very small chance of rejectin g Ho, if, in fact, J-L is equal to
8.5. That is, it is important that we avoid making a T ype I error. Select an
appro priate value of the significance level, a .

b. Test whether J-L, the population mean length-to-width ratio, is different from 8.5,
using the signifi cance level selected in part a.

a. The hypothesis-testing procedure that we have developed gives us the advantage
of being able to choose any significance level that we desire. Since the significance
level, a, is also the probab ility of a Type I error, we will choose a to be very small.
In general, researchers who consider a Type I error to have very seriou s practical
consequences should perform the test at a very Iowa value-say, a = .01. Other
researchers may be willing to tolerate an a valu e as high as . 10 if a T ype I error
is not deemed a serious error to make in practice. For this example, we will test
at a = .0 1.

b. We formulate the following hypoth eses:

Ho: J-L = 8.5

Ha : J-L of=. 8.5

Note that this is a two-tailed test, since we want to detect departures from !J- = 8.5 ­
in either direction . T he sample size is large (n = 41 ); thu s, we may proceed with
the large-sampl e test about J-L.

At significance level a = .0 I, we will reject the null hypoth esis for this two­
tailed test if

jzl > za /Z = Z.005

i.e. , if z < - 2.58 or if z > 2.58. This rejection region is shown in Figure 9.6 on
page 440.
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FIGURE 9.6 ~ f( z)

Rejection region for Example 9.8

Reject HoI
z '" -2.58

IReject No r
: 0· 2.58 :

I
Observed value of test sta tistic

z '" 4.03

After entering the data of Table 9.2 into a computer, we obtained the summary
statistics shown in the SAS printout , Figure 9.7. The values y = 9.257 and s =
1. 203 (shaded in the printout) are used to compute the test statistic

z = y - fLo = 9.257 - 8.5 = 4.03
sj~ I. 203jY4l

Since this value lies within the rejection region (see Figure 9.6), we reject Ho
and conclude that the mean length-to-width ratio of all humerus bones of this
particular species is significantly different from 8.5. If the null hypothesis is in fact
true (i.e., if fL = 8.5), then the probability that we have incorrectly rejected it is
equal to (l' = .01.

Analysis Variable : LWRATIOFIGURE 9.7 ~
SAS printout for Example 9.8

N Obs

41

Minimum

6.2300000

Maximum

12.0000000

Mean

9.2575610

std Dev

1.2035651

The practical implications of the result obtained in Example 9.8 remain to be
studied further. Perhaps the animal discovered at the archeological site is of some
species other than A. Alternatively, the unearthed humerus bones may have larger
than normal length-to-width ratios because of unusual feeding habits of species A. It
is not always the case that a statistically significant result implies a practically sig­
nificant result. Th e researcher must retain his or her objectivityand judge the practical
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signifi cance using, among other criteria, his or her knowledge of the subject matter
and the phenomenon under investigation.

A small-sample statistical test for making inferences about a population mean is
(like its associated confi dence interval of Section 8.5) based on the assumption that
the sample data are independent observations on a normally distributed random var­
iable. Th e test statistic is based on the t distribution given in Section 8.5.

The elements of the statistical test are listed in the accompanying box. As we
suggested in Chap ter 8, the small-sample test will possess the properties specifi ed in
the box even if the sampled population is moderately nonnorm al. However, for data
that departs greatly from normality (i.e., highly skewed data), we must resort to one
of the nonparametric techniques discussed in Chapter 15 .

Small-Sample Test of Hypothesis About a Population Mean /L................................

One-Tailed Test

Ha: JL = JLa

Ha : JL > JLa
(or Ha : JL < JLa)

Two-Ta iled Test

Ha: JL = JLa

Ha : JL ~ JLa

t.= .y -JLu
. sl y;:,

Reiection region: Itl > ta/2

Test statistic:

Reiection region: t > t;
(ar t < -ta )

where the distribution of t is based on (n - I) dcgreesof freedom; ta is the t value
such that P(t > ta) = a; and ta / 2 is the t value such that P(t > tad = a 12.

Assumption: The relative frequency distribution of the population from which
the sample was selected is approximately normal.

Warning: If the data departs greatly from normality, this small-sample test may
.. lead to erroneous inferences. In this case, use the nonparametric sign test that

is discussed in Section 15.2.

EXAMPLE 9.9 Scientists have labeled benzene, a chemical solvent commonly used to synthesize
plastics, as a possibl e cancer-causing agent. Studies have shown that people who work
with benzene more than 5 years have 20 times the incidence of leukemia than the
general population. As a result, the federal government has lowered the maximum
allowable level of benzene in the workplace from 10 parts per million (ppm) to I ppm
(reported in Florida Times-Union , Apr. 2, 1984). Suppose a steel manufactur ing plant,
which exposes its workers to benzene daily, is under investigation by the Occupational
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Safetyand Health Administration (OSHA). Twenty air samples, collected over a period
of 1 month and examined for benzene content, yielded the followingsummary statistics:

y = 2.1 ppm s = 1.7 ppm

Solution

Is the steel manufacturing plant in violation of the new government standards? Test
the hypothesis that the mean level of benzene at the steel manufacturing plant is
greater than 1 ppm, using a = .05.

Th e OSHA wants to establish the research hypothesis that the mean level of benzene,
u ; at the steel manufacturin g plant exceeds 1 ppm. Th e elements of this small-sample
one-tailed test are

y - j.t0
Test statistic: t = ---

slY-;;
Assumption: Th e relative frequenc y distribution of the population of benzene

levels for all air samples at the steel manufacturing plant is approx­
imately normal.

Rejection region: For a = .05 and df = (n - 1) = 19, reject Ho if t > t. 05 =

I. 729 (see Figure 9.8)

FIGURE 9.8 ~ 1(1)

Rejection region for Example 9.9

___ Rejection
region

1.729

We now calculate the test statistic:

y - 1 2.1 - 1
t = slY-;; = 1.7/V20 = 2.89

Since the calculated t falls in the rejection region, the OSHA concludes that j.t > I
part per million and the plant is in violation of the new government standards. The
reliability associated with this inference is a = .05. Thi s implies that if the testing
procedure was applied repeatedly to random samples of data collected at the plant,
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the OSHA would falsely reject Ho for only 5% of the tests. Consequently, the OSHA
is highly confident (95% confi dent) that the plant is violating the new standards.

EXERCISES

9.16 Radium-226 is a naturall y occurri ng radioactive gas. Elevated levels of radium-226 in metropolitan Dade
Coun ty (Florida) were recentl y investigated (Florida Scientist, Summer/Autumn 1991). Th e data in the
table are radium-226 levels (measured in pCi/L ) for 26 soil specimens collected in southern Dade County.
T he Envi ronm ental Protection Agency (EPA) has set maximum exposure levels of radium-226 at 4. 0
pCi/L. Use the information in the accompan ying MINITAB printout to determin e whether the mean
radium-226 level of soil specimens collected in southern Dade County is less than the EPA limit of 4.0
pCi/L. Use a = . 10.

1.46
1.30
5.92

. 58
8.24
1.86

4.31
3.51
I. 41

1.02
6.87
I. 70

. 17
I. 43
2.02

2.92
1.44
1.65

.9 1
4.49
I. 40

.43
4.21

.75

.91
1.84

Source: Moore. H. E., and C ussow, D. C. "Radium and radon in Dade County ground water and soil
samples." Florida Scientist , Vol. 54, No. 3/4, Summer/Autumn, 1991, p 155 (portion of Table 3).

RadLevel
N

26
MEAN MEDIAN

2.413 1.555
TRMEAN

2.264
STDEV
2.081

SEMEAN
0.408

RadLevel
MIN

0.170
MAX

8.240
Q1

0.993
Q3

3.685

9.17 The effect of machin e breakdowns on the performanc e of a manufacturin g system was investigated using
computer simulation (Industrial Engineering, Aug. 1990). T he simulation study focused on a single machine
tool system with several characteristics, includ ing a mean interarrival time of 1.25 minutes, a constant
processing time of I minute , and a machine that breaks down 10% of the time. After n = 5 independent
simulation runs of length 160 hours, the mean throughput per 40-hour week was y = 1,908.8 parts. For
a system with no breakdowns, the mean throughput for a 40-hour week will be equal to 1,920 parts.
Assuming the standard deviation of the 5 sample runs was s = 18 parts per 40-hour week, test the hypothesis
that the true mean throughput per 40-hour week for the system is less than 1,920 parts. Test using
a = .05 .

9.18 Refer to the Science (Nov. 1988) study of inbreeding in tropical swarm-founding wasps, Exercise 8.30. A
sample of 197 wasps, captured, frozen, and sub jected to a series of genetic tests, yielded a sample mean
inbreeding coefficient of y = .044 with a standard deviation of s = .884. Recall that if the wasp has no
tendency to inbreed, the true mean inbreeding coeffi cient f..t for the species will equal O.
a. Test the hypothesis that the true mean inbreeding coeffi cient f..t for this species of wasp exceeds O. Use

a = .05.
b. Compare the inference, part a, to the inference obtained in Exercise 8. 28 using a confi dence interval.

Do the inferences agree? Explain.
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9.19 Results of the second National Health and Nutrition Examination Survey indicate that the mean blood
lead concentration of individuals between the agesof 6 months and 74 years is 14 J.Lg/dl (Analytical Chemistry,
Feb. 1986). However, the blood lead concentration in black children under the age of 5 years was found
to be signifi cantly higher than this figure. Suppose that in a random sample of 200 black children below
the age of 5 years, the mean blood lead concentration is 21 J.Lg/dl and the standard deviation is 10 J.Lg/dl.
Is there suffi cient evidence to indicate that the true mean blood lead concentration in young black children
is greater than 14 J.Lg/dl? Test using ex = .01.

9.20 The EPA sets a limit of 5 parts per million on PCB (a dangerous substance ) in water. A major manufacturing
firm producing PCB for electrical insulation discharges small amounts from the plant. The company
management, attempting to control the amount of PCB in its discharge, has given instructions to halt
production if the mean amount of PCB in the efAuent exceeds 3 parts per million . A random sampling of
50 water specimens produced the following statistics:

y = 3. I parts per million s = . 5 part per million

a. Do these statistics provide suffi cient evidence to halt the production process? Use ex = .01.
b. If you were the plant manager, would you want to use a large or a small value for ex for the test in part

a? Explain.

9.21 "Deep hole" drilling is a family of drilling processes used when the ratio of hole depth to hole diameter
exceeds 10. Successful deep hole drilling depends on the satisfactory discharge of the drill chip. An experiment
was conducted to investigate the performance of deep hole drilling when chip congestion exists (Journal of
Engineering for Industry, May 1993). The length (in millimeters) of 50 drill chips resulted in the following
summary statistics: y = 81.2 mrn , s = 50.2 mm. Conduct a test to determine whether the true mean drill
chip length, J.L , differs from 75 mm. Use a significance level of ex = .01.

9.22 Environmental Science & Technology (Oct. 1993) reported on a study of contaminated soil in The Neth­
erlands. A total of 7Z 400-gram soil specimens were sampled , dried, and analyzed for the contaminant
cyanide. The cyanide concentration (milligrams per kilogram of soil) of each soil specimen was determined
using an infrared microscopic method. The sample resulted in a mean cyanide level of y = 84 mg/kg and
a standard deviation of s = 80 mg/kg. Use this information to test the hypothesis that the true mean cyanide
level in soil in Th e Netherlands falls below 100 mg/kg. Test at ex = . 10.

9.23 The building specifications in a certain city require that the sewer pipe used in residential areas have a
mean breaking strength of more than 2,500 pounds per lineal foot. A manufacturer who would like to
supply the city with sewer pipe has submitted a bid and provided the following addition al information: An
independent cont ractor randomly selected seven sections of the manufacturer's pipe and tested each for
breaking strength. The results (pounds per lineal foot) follow:

2,610 2,750 2,420 2,510 2,540 2,490 2,680

Is there suffi cient evidence to conclud e that the manufacturer's sewer pipe meets the required specifications?
Use a significance level of ex = . 10.

9.24 Refer to Examples 9.5 and 9.6. Find the value of f3 for J.La = 74. What is the power of the test?

9.25 Refer to Example 9.9.
a. Find the value of f3 for J.La = 1.015.
b. Find the power of the test for J.La = 1.045.
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9.26 Refer to Optional Exercises 9.7-9.9. Show that the rejection region for the likelihood ratio test is given by
Z > Za, where P(z > za) = a. [Hint: Under the assumption that Ho: J-L = 0 is true, show that V;(y) is
a standard normal random variable.]

9.7 The Observed Significance level for a Test

According to the statistical test procedures described in the preceding sections, the
rejection region and the corresponding value of a are selected prior to conductin g the
test and the conclusion is stated in terms of rejecting or not rejecting the null hypothesis.
A second method of presentin g the result of a statistical test is one that reports the
extent to which the test statistic disagrees with the null hypothesis and leaves the reader
the taskof deciding whether to reject the null hypothesis. This measure of disagreement
is called the observed significance level (or p-value) for the test. "

Definition 9.4

Thc-observed significance level, or p-value, for a specific statistical test is the
probability (assuming Ho is true) of obscrvinga value of the test statistic that is
at least as contradictory tothc null hypothesis, and supportive of the alternative
hypothesis, as thc one computed from the sample data.

Wh en publishing the results of a statistical test of hypothesis in journals, case
studies, reports, etc., many researchers make use of p-values. Instead of selecting a a
priori and then conducting a test as outlined in this chapter, the researcher may
compute and report the value of the appropriate test statistic and its associated p-value.
It is left to the reader of the report to judge the significance of the result, i.e ., the
reader must determine whether to reject the null hypothesis in favor of the alternative
hypothesis, based on the reported p-value. Usually, the null hypothesis will be rejected
only if the observed significance level is less than the fixed significance level a chosen
by the reader. Th ere are two inherent advantagesof reporting test results in this manner:
(I ) Readers are permitted to select the maximum value of a that they would be willing
to tolerate if they actually carried out a standard test of hypothesis in the manner
outlin ed in this chapter, and (2) it is an easy way to present the results of test calculations
performed by a computer. Most statistical software packages perform the calculations
for a test, give the observed value of the test statistic, and leave it to the reader to
formulate a conclusion . Other s give the observed significance level for the test, a
procedure that makes it easy for the user to decide whether to reject the null hypothesis.

"T he term p-value or probability value was coined by users of statistical methods. Th e p in the expression
p-value should not be confused with the binomial parameter p.
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EXAMPLE 9.1 0

Solution

Find the observed significance level for the statistical test of Example 9. 5 and interpret
the result.

In Example 9.5, we tested a hypothesis about the mean J.L of the number of heavy
freight trucks per hour using a particular 25-mile stretch of interstate highway. Since
we wanted to detect values of J.L larger than P,o = 72, we conducted a one-tailed test,
rejecting Ho for large values of )I, or equivalently, large values of z. Th e observed
value of z, computed from the sample of n = 50 randoml y selected I-hour periods,
was z = 1.12. Since any value of z larger than z = 1.12 would be even more
contradictory to Ho, the observed significance level for the test is

p-value = P(z 2: 1.12)

FIGURE 9.9 ~ I( z)

Finding the p-value for an upper­
tailed test when z = 1.12

p -value = .13 14

o

z = 1.I2

This value corresponds to the shaded area in the upper tail of the z distribution
shown in Figure 9.9. Th e area A corresponding to z = 1.12, given in Table 4 of
Appendix II, is .3686. Th erefore, the observed significance level is

p-value = P(z 2: 1.12) = .5 - A = .5 - .3686 = .1314

This result indicates that the probability of observing a z value at least as contradictory
to Ho as the one observed in this test (if Ho is in fact true) is . 1314. Therefore, we
will reject Ho only for preselected values of ex greater than .1314. Recall that the
Department of Highway Improvements selected a Type I error probability of ex = .10.
Since ex = .10 is less than the p-value, the department has insufficient evidence to
reject Ho. Note that this conclusion agrees with that of Example 9.5.

EXAMPLE 9.11 Suppose that the test of Example 9.5 had been a two-tailed test, i.e., suppose that the
alternative of interest had been I-Ia : J.L =1= 72. Find the observed significance level for
the test and interpret the result. Assume that ex = .10, as in Example 9. 5.
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FIGURE 9.10 ~
Finding the p-value for a two­
ta iled test when z = 1.12
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If the test were two-tailed, either very large or very small values of z would be con­
tradictory to the null hypothesis Ho: /.L = 72. Consequently, values of z ;:::: LIZ or
z ~ -1 .1Z would be more contradictory to Ho than the observed value of z = 1.1Z.
Th erefore, the observed significance level for the test (shaded in Figure 9.10) is

p-value = P(z ;:::: LIZ) + P(z ~ -LIZ)
= Z(. 1314) = .Z6Z8

Since we want to conduct the two-tailed test at a = .10, and since the p-value exceeds
a, we again have insufficient evidence to reject Ho.

f ez)

p-value =.2628

.1314

o
z = -1. 12 z = J. 12

EXAMPLE 9.12

Solution

FIGURE 9.11 ~

The observed significance level for
the test of Exam pie 9.12

Find and interpret the observed significance level for the small-sample test described
in Example 9.9. Recall that the test was conducted using a = .05.

The test of Example 9.9 was a small-sample test of Ho: /.L = I versus Ha : /.L > 1.
Since the value of t computed from the sample data was t = Z.89, the observed
significance level (or p-value) for the test is equal to the probability that t would assume
a value greater than or equal to Z.89, if in fact Ho were true. Thi s is equal to the area
in the upper tail of the t distribution (shaded in Figure 9.11). To find this area, i.e.,
the p-value for the test, we consult the t table (Table 7 of Appendix II).

/(1)

I distribu tion with 19 df

/ p. value

L..:=~1.-_-L_ _ L..._ ...L._--...l_ _ ..L_...LC~==-- I

o I
2.89
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Unlike the table of areas under the normal curve, Table 7 gives only the I values
corresponding to the areas . 100. .050.025.010, .005. .001. and .0005. Therefore.
we can only approximate the p-value for the test. Since the observed I value was based
on 19 degrees of freedom, we use the df = 19 row in Table 7 and move across the
row until we reach the I values that are closest to the observed I = 2.89. Th e I values
corresponding to p-values of .001 and .005 are 3.579 and 2.861, respectively. Since
the observed I value falls between 1.001 and 1.005, the p-value for the test lies between
.001 and .005. We could interpolate to more accurately locate the p-value for the
test, but it is easier and adequate for our purposes to choose the larger area as the
p-value and report it as .005. Thus, we would reject the null hypothesis, Ho: JL = I
part per million, for any value of a larger than .005. Since a = .05 for this test, the
correct conclusion is to reject Ho.

Calculating p-Yalues

Large-sample tests:p-valuc = P(z 2 zcl if upper-tailed

f)-value = P(z :::; ze) if lower-tailed

p-valuc = 2P(Z2 IZeD if two-tailed

where Ze is the computed value of the test statistic.

Small-sample tests:p-value = P( I -2 te ) if upper-tailed

p-valuc = P(I :::; te ) if lower-tailed

p-value =2P(1 2 Itel) if two-tailed

where Ie is the computed value of the test statistic.

[Note: IZel and Ilel denote the absolute values of Ze and Ie and will always be
positive.]

Interpreting p-Yalues......... .... - .

1. Choose the maximum value of a that you are willing to tolerate.

2. If the observed signifi cance level(p-value) of the test is lessthan the maximum
value a, then reject the null hypothesis.

You can see from Example 9. 12 that caleulating a p-value for a I test by hand
will rarely lead to an exact value. If we desire an exact p-value , we need to resort to
the use of a computer. The SAS printout for the I test of Examples 9.9 and 9.12 is
shown in Figure 9.12. The p-value for a two-tailed test (shaded) is given under the
heading PROS > ITI. The p-value for a one-tailed test is equal to the reported value
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divided by 2. Thus, the p-value for the one-tailed test Ho: /.L = 1 versus Ho: /.L > 1
IS

.0088
p-value = - Z- = .0044

Analysis Variab l e : BENZLEVFIGURE 9.12 ~

SAS printout lor t test of
Example 9.12

N a bs T Prob>ITI

EXERCISES

20 2 . 893 73 50 0 .0088

9.27 For a large-sample test of Ho: e = eoversus He: e> eo, compute the p-value associated with each of the
following test statistic values:
a. Z = 1.96 b. z = 1.645 c. z = Z.67 d. z = 1.25

9.28 For a large-sample test of Ho: e = eoversus Ha : e =1= eo, compute the p-value associated with each of the
following test statistic values:
a. Z = - 1.01 b. z = -Z.37 c. z = 4.66 d. z = 1.45

9.29 Compute and interpret the p-value for the test of Example 9.8, assuming the test is two-tailed.

9.30 Compute and interpret the p-values for the tests conducted in the following exercises.
a. Exercise 9. 16 b. Exercise 9. 17 c. Exercise 9. 18 d. Exercise 9. 19 e. Exercise 9.20

9.31 A SAS printout for the t test of Exercise 9. 23 is shown here. Find and interpret the p-value of the test.
Does the result agree with your inference in Exercise 9.Z3?

Analysis Variab l e : Y (strength - 2500)

N a bs T Pr ob>I TI

7 1 .6 4192 03 0 .1517

9.8 Testing the Difference Between Two Population Means:
Independent Samples

Consider independent random samples from two populations with means /.L I and /.L z,
respectively. When the sample sizes are large (i.e. , nl :;:= 30 and nz :;:= 30), a test of
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Ho: ( J1- J ~. J1- z) = Do

I{,: (J1- J -'- J1-z) =1= Do
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hypothesis for the difference between the population means (J1- l - J1-z) is based on the
pivotal z statistic given in Section 8.6. A summary of the large-sample test is provided
in the box.

Large-Sample Test of Hypothesis About (J.LI- J.L2):lndependent Samples
a ••••••• • •••••••••• ••• • ••••• • •••

One-Tailed Test

Ho: (J1-1 - J1-z) = Do

H o : (J1- J - J1- z) > Do
[or H,, : (J1-1 - J1-z ) < Do]

(5'1 - jiz) - Do
Test statistic: z = -'-'---''------'--::..:-- ---''

Reiectiou region:

z > za (or z < ~zo:)

sZ sZ
-1+--1.
II I liZ

Beiection region:

Izl > za/Z

EXAMPLE 9.13

[Note: Do is our symbol for the particular num erical value specified for
(J1- J - J1- z) in the null hypothesis. In many practical applications, we wish to
hypothesize that there is no difference between the population means; in such
cases, Do = 0.]

Assumptions: 1. Th e sample sizes 11 I and I1 Z arc sufficiently large-say, 111 2::

.. 30 and 11 2 2:: 30.
2. Th e two samples are selected randoml y and independently

from the target populations.

To reduce costs, a bakery has implem ented a new leaveni ng process for preparing
commercial bread loaves. Loaves of bread were randomly sampled and analyzed for
calorie content both before and after implementation of the new process. A summary
of the results of the two samples is shown in the table. Do these samples provide
sufficient evidence to conclude that the mean nu mber of calories per loaf has decreased
since the new leavening process was implemented? Test using IX = .0 5.

New Process

111 = 50
)'1 = 1,2 55 calories

Sl = 215 calories

Old Process

nz = 30
),z = 1,3 30 calories
Sz = 238 calories

Solution We can best answer this question by performin g a test of a hypothesis. Defining III
as the mean calorie content per loaf manufactured by the new process and J1-z as the
mean calorie content per loaf manufactured by the old process, we will attempt to
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support the research (alternative) hypothesis that f.L z > f.LI [i.e., that (f.L I - f.Lz ) < 0].
Thus, we will test the null hypothesis that (f.L 1 - f.L z) = 0, rejecting this hypothesis
if ( )II - )lz) equals a large negative value. Th e clements of the test are as follows:

Ho: (f.Ll - f.Lz) = 0 (i.e., Do = 0)

Ha : (f.L I - f.Lz) < 0 (i.e. , f.Ll < f.Lz)

Test statistic: z = ()I I - )12) - Do = ()I I - )lz) - 0
0"(Y' - Y2) O"( y,- 5'2)

(since both n I and nz are greater than or equal to 30)

Rejection region: z < -Za = -1.645 (see Figure 9.13)

Assumptions: The two samples of bread loaves are independently selected.

o

a = .05

I
- IAI

Rejection
region ---

- 1.645

FIGURE 9.13 ~ f( z)

Rejection region for Example 9.13

We now calculate

- 75
=-r==

- 75

(215)Z (238)Z
50+30

- 75
53.03

-1.41

As you can see in Figure 9.13, the calculated z value does not fall in the rejection
region. The samples do not provide sufficient evidence, with ex = .05, to conclude
that the new process yields a loaf with fewer mean calories.

When the sample sizes nl and nz are inadequate to permit use of the large-sample
procedure of Example 9.13, modifications may be made to perform a small-sample
test of hypothesis about the difference between two population means. The test pro­
cedure is based on assumptions that are, again, more restrictive than in the large­
sample case. The elements of the hypothesis test and the assumptions required are
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listed in the box. Reminder: When the assumption of norm al population is grossly
violated, the small-sample test outlined here will be invalid. In this case, we must
resort to a nonpararnetric method.

Small-Sample Test of Hypothesis About (J.LI - J.L2): Independent Samples. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

One-Tailed Test

I-lo: (JL l - JL z) = Do

rIa: (JL I - JLz) > Du
[or I-l,,: (JLj - JLz) < Dul

Test statistic:

Reiection region: i > ta
[or t < -tal

where

8Z = (n l - l)sT + (T1Z - l ).s ~
' p T1j+nz-2

Two-Tailed Test

I-lo: (JL I - JLz ) = Do

I-l a : (JL I - JLz ) =1= Do

Rejection region: ItI > ta/Z

EXAMPLE 9.14

and the distribution of t is based on 11\ + nz - 2 df.

Assumptions: I . The populations from which the samples are selected both
have approximately normal relative frequency distributions.

2. Th e variances of the two populations are equal, i.e.,
ur= u~ .

3. The random samples are selected in an independent manner
from the two populations.

Warning: When the assumption of normal populations is violated, the test may
lead to erroneous inferences. In this case, usc the nonpararnetric Wilcoxon test
described in Section 15.3.

Computer response time is defined as the length of time a user has to wait for the
computer to access information on the disk. Suppose a data center wants to compare
the average response times of its two computer disk drives. If JL l is the mean response
time of disk I and JLz is the mean response time of disk 2, we want to detect a difference
between JLI and JLz-if such a difference exists. Therefore, we want to test the null
hypothesis

I-lo: (JLl - JL z) = 0
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against the alternative hypothesis

Ha : (J.LI - J.Lz) -4= 0 (i.e., J.L l > J.L z or J.LI < J.Lz)

Independent random samples of 13 response times for disk 1 and 15 response times
for disk 2 were selected. The data (recorded in milliseconds), as well as summary
statistics, are given in Table 9.3. Is there suffic ient evidence to indicate a difference
between the mean response times of the two disk drives? Test using ex = .05.

TABLE 9J Response Times for Two Disk Drives

Disk I (nl = 13) Disk 2 (nl = IS)

59 73 74 6\ 7\ 6> 40 >4
92 60 84 >8 48 60 75
54 73 47 47 41 44 86

\02 75 B 5> 68 >9

)II = 68.2 51 = 18.6 )lz = 5> .8 5z = 15.8

We first calculate

SZ = (n l - I )S1 + (nz - l )s ~
P nl + nz - 2

(13 - 1)(18.6)Z + (l 5 - 1)(15. 8)Z
- 13+15-2

= 7 , 6;~ , 48 = 294, 09

Then, if we can assume that the distributions of the response times for the two disk
drives are both approximately normal with equal variances, the test statistic is

t = (Yl - yz) - Do = ----'(r68=,=2 =-=5=3=.8=) =-=0=

~S~Ul + ~J ~294.09U3 + /5)
= 1

6
\ 4 = 2.22

Since the observed value of t (t = 2.22) falls in the rejection region (see Figure 9.14
on page 454), the samples provide suffi cient evidence to indicate that the mean response
times differ for the two disk drives. Or, we say that the test results are statistically
significant at the ex = .05 level of significance. Because the rejection was in the positive
or upper tail of the t distribution , it appears that the mean response time for disk drive
1 exceeds that for disk drive 2.
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FIGURE 9.14 ~
Rejection region for Example 9.14

ex2 = .025

- 2.056

Rejection I
. ----+

region

o 2.056 t

1

2.22
_ Rejection

region

FIGURE 9.15 ~

SAS printout for Example 9.14

Refer to Example 9.14 . The same conclusion can be reached using the p-value
approach. Th e SAS printout for the t test of Example 9.14 is shown in Figure 9. 15 .
The test statistic and p-value for the test are both shaded on the printout. Note that
the two-tailed p-value (for the equal variances case), p = .0356, is less than a = .05;
thus, there is sufficient evidence to reject Ho.

TTEST PROCEDURE

Var i able : Y

DISK N Mean Std Dev Std Er ro r Min imum Maximum

1 13 68 . 23076923 18 .659 91178 5 .17532836 33. 00 000000 10 2 .0000000
2 15 53 .8 0000000 15 . 80777386 4.08154966 34 . 00000000 86. 0000000

Var i an c e s

Unequa l
Equal

T

2. 1894
2 .2163

DF

23 .7
26.0

Prob> IT I

0 . 038 7
0 .0356

For HO : Varianc e s are equal, F ' = 1 .39 DF = ( 12 , 14) Pr ob>F ' = 0 .548 2

Recall from Section 8.6 that valid small-sample inferences about (J.Ll - J.Lz) can
still be made when the assumption of equal variances is violated. We conclude this
section by giving the modifications required to obtain approximate small-sample tests
about (J.L l - J.L z) when crT =1= (T ~ for the two cases described in Section 8.6 : nj = nz
and n l =1= ni.
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Modifications to Small-Sample Tests About (tLl - tL2) When if? =1= if~:
Independent Samples............... .......: .

III = Il z = 11

.Test statistic:

(y, - yz) - D o (YI - YZ) - D o
t = = -"-'--;====== =="

sy s~ I 7- + -=- - (Sz + s;)
III Il z 11' -

Degrees o f freedom: IJ = III + Il z .: 2 = 2(n - 1)

nJ =f:. Ilz

Test statistic:

(Sti ll 1 + sYn z)Zv= · . -
. .[(sT/nd + (sYnz)Z] .

nl-1 · nz - 1

Note: Thc value of IJ will generally not be an integcr. Round down to thc
nearestinteger to use the t table (Table 7 of Appendix II).

EXERCISES

9.32 Does competition between separate research and development (R&D) teams in the U.S. Department of
Defense, working independently on the same project, improve performance? To answer this question,
performance ratings were assigned to each of 58 multisource (competitive) and 63 sole source R&D contracts
(IEEE Transactionson Engineering Management, Feb. 1990). With respect to quality of reports and products,
the competitive cont racts had a mean performance rating of 7.62, whereas the sa le source contracts had a
mean of 6.95.
a. Set up the null and alternative hypothesis for determining whether the mean quality performance rating

of competitive R&D contracts exceeds the mean for sole source contracts.
b. Find the rejection region for the test using a = .05.
c. The p-value for the test was reported to be between .02 and .03. What is the appropriate conclusion?

9.33 a. Use a random number table (Table 6 of Appendix II) to generate a random sample of n = 40 observations
on DDT concentra tion in fi sh from the data of Appendix III. Com pute x and s for the sample
measurements.
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b. Th e Food and Drug Administration (FDA) sets the limit for DDT content in individual fis h at 5 parts
per million (ppm). Does the sample of part a provide sufficient evidence to conclude that the average
DDT content of individual fi sh inhabiting the Tennessee River and its creek tributaries exceeds 5 ppm?
Test using a significance level of a = .01.

c. Suppose the test of hypothesis, part b, was based on a random sample of only n = 8 fish. What are the
disadvantages of conducting this small-sample test?

d. Repeat part b using only the information on the DDT contents of a sample of 8 fish (randomly selected
from the 40 observations of part a). Compare the results of the Jarge- and small-sample tests.

9.34 Many computer software packages utilize menu-driven user-interfaces to increase "user-friendliness." One
feature that can be incorporated into the interface is a stacked menu display. Each time a menu item is
selected, a submen u is displayed partially over the parent menu , thus creating a series of "stacked" menus.
Th e Special Interest Group on Computer Human Interaction Bulletin (July 1993) reported on a study to
determine the effects of the presence or absence of a stacked menu structure on search time. Twenty-two
subjects were randomly placed into one of two groups, and each was asked to search a menu-driven software
package for a particular item. In the experimental group (nl = II ), the stacked menu format was used; in
the control group (n2 = 11 ), only the current menu was displayed.
a. Th e researcher's initial hypothesis is that the mean time required to find a target item docs not differ

for the two menu displays. Describe the statistical method appropriate for testing this hypothesis.
b. What assumptions are required for inferences derived from the analysis to be valid?
c. Th e mean search times for the two groups were 11 .02 seconds and 11 .07 seconds, respectively. Is this

enough information to conduct the test? Explain.
d. Th e observed significance level for the test, part a, exceeds .10. Interpret this result.

9.35 Environmental Science & Technology (Oct. 1993) reported on a study of insecticides used on dormant
orchards in the San Joaquin Valley, California. Ambient air samples were collected and analyzed daily at
an orchard site dur ing the most intensive period of spraying. The thion and oxon levels (in ng/m ' ) in the
air samples are recorded in the table, as well as the oxon/thion ratios. Compare the mean oxon/thion ratios
of foggy and clear/cloudy conditions at the orchard using a test of hypothesis. Use a = .05.

Date Condition Thion a xon OxonlThion Ratio

Jan. 15 Fog 38.2 10.3 .270
17 Fog 28.6 6.9 .241
18 Fog 30.2 6.2 .205
19 Fog 23.7 12.4 .523
20 Fog 62.3 (Air sample lost)
20 Clear 74.1 45.8 .618
21 Fog 88.2 9.9 .112
21 Clear 46.4 27.4 .591
22 Fog 135.9 44.8 .330
23 Fog 102.9 27.8 .270
23 Cloudy 28.9 6.5 .225
25 Fog 46.9 11.2 .239
25 Clear 44.3 16.6 .375

Source: Seiber. J. N.• ct al. "Air and fog deposition residues of four organophosphate insecticides used on
dormant orchards in the San Joaquin Valley, California." Environmental Science & Technology, Vol. 27.
No. 10. Oct. 1993. p. 2240 (Table V).
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9.36 Percentage of body fat can be a good indicator of an individual's energy metabolic status and general health .
In an American Journal of Physical Anthropology (Jan. 1981) study of the percentage of body fat of college
students in India, two groups of healthy male students, from urban and rural colleges in eastern India, were
independently and randomly selected. Th e percentage of body fat in each was measured, with the results
summarized in the table. Does the sample information provide sufficient evidence to conclude that the
mean percentage of body fat in healthy male college students residing in urban areas of India differs from
the corresponding mean for students residing in rural areas? Use a significance level of a = .05.

Urban Students Rural Students

n l 193 n2 = 188

YI 12.07 Y2 = 11.04

Sl 3.04 S2 = 2.63

Source: Bandyopadhyay, B., anel Chattopadhyay,
H. "Bodyfat in urban and rural male collegestudents
of eastern India." American Journal of Physical
Anthropology, Jan. 1981. Vol. 54. PI' 119-1 22

9.37 According to a popular model of managerial behavior, the current state of automation in a manufacturing
firm inAuences managers' perceptions of problems of automation. To investigate this proposition, researchers
at Concordi a University (Montreal) surveyed managers at firms with a high level of automation and at firms
with a low level of automation (IEEE Transactions on Engineering Management, Aug. 1990). Each manager
was asked to give his/h er perception of the problems of automation at the firm. Responses were measured
on a 5-point scale (I : No problem, ... 5: Major Problem). Summ ary statistics for the two groups of
managers, provided in the table, were used to test the hypothesis of no difference in the mean perceptions
of automation problems between managers of highly automated and less automated manufacturing firms.

Low Level
High Level

Sample Size

17
8

Mean

3.274
3.280

Standard Deviation

.762

.721

Source: Farhoornand, A. F., Kira D.. and Williams. ). "Managers' perceptions towards
automation in manufacturing." IEEE Transactions on Engineering rvtanagement. Vol. 37,
No. 3. Aug. 1990. p. 230.

a. Conduct the test for the researchers, assuming that the perception variances for the two groups of managers
are equal. Use a = .01.

b. Conduct the test for the researchers, if it is known that the perception variances differ for managers at
low-level and high-level firms.

9.38 An industrial plant wants to determine which of two types of fuel-gas or electric- will produce more
useful energy at the lower cost. One measure of economical energy produc tion, called the plant investment
perdelivered quad, is calculated by taking the amount of money (in dollars) invested in the particular utility
by the plant, and dividing by the delivered amount of energy (in quadrillion British thermal units). The
smaller this ratio, the less an industrial plant pays for its delivered energy. Random samples of II plants
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using electrical utilities and 16 plants using gas utilities were taken, and the plant investment/quad wa.
calculated for each . The data are listed in the table, followed by a MINITAB printout of the analysi s of the
data.

Electric
204.15 .57 62.76 89.72

.35 85.46 .78 .65
44.38 9.28 78.60

Gas

.78 16.66 74.94 .01

.54 23.59 88.79 ,64

.82 91.84 7.20 66.64

.74 64.67 165.60 .36

TWOSAHPLE T FOR electric VS gas
N MEAN STDEV

electric 11 52 .4 62 .4
gas 16 37 .7 49.0

SE MEAN

19
12

95 PCT CI FOR MU electric - MU gas: (-30, 59)

TTEST MU electric = MU gas (VS NE) : T= 0.68 P=0.50 DF- 25

POOLED STDEV - 54.8

a. Do these data provide sufficient evidence at the a = .05 level of significance to indicate a difference in
the average investment/quad between the plants using gas and those using electrical utilities?

b. What assumptions are required for the procedure to be valid?
c. Check whether the assumptions, part b , are reasonably satisfied . How does this impact on the validity

of the result, part a?

9.39 A field experiment was conducted to ascertain the impact of desert granivores (seed-eaters) on the density
and distribution of seeds in the soil (Ecology, Dec . 1979). Since some desert rodents are known to hoard
seeds in surface caches, the study was specifically designed to determine whether these caches eventually
produce more seedlings, on the average, than an adjacent control area. Forty small areas excavated by
rodents were located and covered with plastic cages to prevent rodents from reusing the caches. A caged
control area was set up adjacent to each of the caged caches . The numbers of seedlings germinating from
the caches and from the control areas were then observed. A summary of the data is provided in the
accompanying table . Is there sufficient evidence (at a = .05)to indicate that the average number of seedlings
germinating from the seed caches of desert rodents is significantly higher than the corresponding average
for the control areas?
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Caches Control Areas

nl = 40 nz = 40

YI 5.3 yz = 2.7

Sl = 1.3 Sz = .7

Source: Reich man, O. ). "Desert granivore for­
aging and its impact on seed densities and distri­
butions." Ecology, Dec. 1979, Vol. 60, pp. 1085­
1092. Copyr ight 1979, the Eco logical Socie ty of
America. Reprinted by perm ission.

9.9 Test.ing the Difference Between Two Population Means:
Matched Pairs

........................................................ ..................................................
It may be possible to acquire more information on the d ifference between two pop­
ulat ion means by using data co llected in m atched pairs ins tead of ind epend ent sam ples.
Consider, for example, an expe riment to investigate the effectiveness of cloud seeding
in the ar tificia l produ ction of rainfa ll. Two farming areas with sim ilar past me teoro ­
logical records were selected for the expe riment. One is seed ed regularly; the othe r is
left unseeded. The monthly precipitation at the farms will be recorded for 6 ran dom ly
selected mon ths. T he resul ting data, match ed on mon ths, can be used to test a
hypothesis abo ut the difference between the mean monthly prec ipi tatio n in the seeded
an d unseeded areas. T he app ropriate procedures are su mmarized in the boxes.

Large-Sample Test of Hypothesis About (JL, - JL2): Matched Pairs.. ........ . . ....... ......... .....

One-Tailed Test

Ho: (J-LI - J-L z) = Do

Ha : (J-L I - J-Lz) > Do
[or Ha : (J-LI - J-L z) < Dol

Test statistic:

Two-Tailed Test

Hq: (J-Ll - J-Lz ) = Do
1-l.: (J-Ll - J-Lz) =1= Do

Rejection region: Izl :> za/Z

whe re aan d Sd represent the mean and standard deviation of the sample of
differences.

Rejection region: Z > Za

[or Z < - za]

[Note: Do is our sym bo l for the particular n umerical value specified for
(J-LI - J-Lz) in Ho: In manyapplieat ions, we want to hypothesize tha t there is
no d ifference between th e population me ans; in such cases, Do = 0.]
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Small-Sample Test of Hypothesis About(JL, - JL2): Matched Pairs
. . ... ... . . . . . . . . . . . . . . ... . . . . . . .

One-Tailed Test

Ho: (P- l - p-z ) = Do

Ha : (P- l - P- z)> O Il

[or H a : (P- l - p-z) < Do]

Test statistic:

Two-Tailed Test

Uo: (P- l - ,."z) = D o

Ha : (""1 - ,."z) =1= Do

Rejection region: It I > ta/z

EXAMPLE 9.15

wh ere aand Sd represen t the m ean and standard deviation of the sam ple of
differences.

Rejection region: t > ta
[or t > -tal

where the t-clistributionisbased on (n - I) degrees of freed om .

[Note: Do is our sym bol for the part icular numerical value specified for
(P-l - p-z) in the null hypothesis. In many prac tical appli cations , we want to
h ypothesize that there is no difference between th e population means; in such
cases, Do = 0 .]

Assumptions: 1. The relativ e frequency distr ibution of th e population of dif­
feren ces is approximately norm al.

2. The paired differences arc randomly selected from the pop-
ul at ion of differences.

Warning: When the assumption of normality is grossly violated. th e t test may
lead to erroneous inferen ces. In this case, usc the nonparametric Wilcoxon test
described in Section 15.4.

Consider th e cloud seeding expe rim en t to compare monthly precipi tation at the two
farm areas. Do th e data given in Table 9.4 provide suffic ient eviden ce to indicate that
the mean mon thl y precipi tation at the seeded farm area exceeds th e co rresponding
mean for the unseeded farm a rea? Tes t usin g (\' = .0 5.

TABLE 9.4 Monthly Precipitation Data (in Inches) for Example 9.15

Farm Area 4

Seeded 1.75 2.12 1.53 l.10 1.70 2.42
Unseeded 1. 62 1. 83 I. 40 .75 1.7 1 Z.33

d ,13 .29 .13 .35 - .01 .09
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Let IL l and /-L z represent the mean monthly precipitation values for the seeded and
unseeded farm areas, respectively. Since we want to be able to detect ILl > IL z, we
will conduct the one-tailed test:

Ho: (IL l - IL Z) = 0

Ha : (ILl - IL z) > 0

Assuming the differences in monthly precipitation values for the two areas are from
an approximately normal distribution, the test statistic will have a t distribution based
on (n - 1) = (6 - 1) = 5 degrees of freedom. We will reject the null hypothesis if

t > l 05 = 2.0 15 (see Figure 9.16)

fiGURE 9.16 ~ fit)

Rejection region lor Example 9.15

rdistri bution with 5
degrees of freedom

o
r=;'0 15 iReject Ho

Observed value of test statistic
t = 3.00

To conduct the test by hand, we must first calculate the difference d in monthl y
precipitation at the two farm areas for each month. Th ese differences (where the
observations for the unseeded farm area is subtracted from the observation for the
seeded area within each pair) are shown in the last row of Table 9.4. Next, we would
calculate the mean aand standard deviation Sd for this sample of n = 6 differences
to obtain the test statistic.

Rather than perform these calculations, we will rely on the output from a com­
puter. The MINITAB printout for the analysis is shown in Figure 9.17. The test
statistic, shaded in Figure 9.17, is t = 3.01.

TEST OF MU = 0 .0000 VS MU N.E . 0 . 0000fiGURE 9.17 ~
Hinitah printout for Example 9.17

d iff
N
6

MEAN STDEV SE MEAN
0.1633 0 .1 331 0.054 3

T
3.01

P VALUE
0.030
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Substituting the values a= .1633 and Sd = .1331 into the formula for the test
statistic, we have

t = a- Do = .1633 - 0 = 3.01
Sd/ V;; . 1331/ V6

Since this value of the test statistic exceeds the critical value t .05 = 2.015, there is
suffic ient evidence (at a: = .05) to indicate that the mean monthl y precipitation at
the seeded farm area exceeds the mean for the unseeded farm area.

The same conclusion can be reached by examining the p-value of the test. The
two-tailed p-value, shaded on the MINITAB printout, is .030. Consequ ently, the one­
tailed p-value is p = .030/2 = .015. Since this value is less than the chosen a: level
(.05), we reject Ho.

In the experiment of Example 9.15, why did we collect the data in matched pairs
rather than use independent random samples of month s, with some assigned to only
the seeded area and others to only the unseeded area? Th e answer is that we expected
some months to have more rain than others. To cancel out this variation from month
to month , the experiment was designed so that precipitation at both farm areas would
be recorded during the same months. Th en both farm areas would be subjected to
the same weather pattern in a given month . By comparing precipitation within each
month , we were able to obtain more information on the difference in mean monthly
precipitation than we could have obtained by independent random sampling.

EXERCISES
...................... CII ..

9.40 Researchers at Purdue University compared hum an real-time scheduling in a processing environment to an
automated approach that utilizes computerized robots and sensing devices (IEEE Transactions, Mar. 1993).
The experiment consisted of eight simulated scheduling problems. Each task was performed by a human
scheduler and by the automated system. Performance was measured by the throughput rate, defined as the
number of good jobs produced weighted by product quality. The resulting throughput rates are shown in
the accompanying table. Analyze the data using a test of hypothesis.

Human Automated Human Automated
Task Scheduler Method Task Scheduler Method

I 185.4 180.4 5 240.0 269.3
2 146.3 248.5 6 253.8 249.6
3 174.4 185.5 7 238.8 282.0
4 184.9 21 6.4 8 263.5 315.9

Source: Yih, Y , Liang, T., and Moskowitz, H. "Robot scheduling in a circuit board produ ction line : A
hybrid O R/ANN approach." IEEE Transactions, Vol. 25, No.2, March 199 3, p. 31 (Table I).
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9.41 For the perception of speech, profoundly deaf persons rely mainly on speechreading, i.e ., they perceive
spoken language by observin g the articulatory movements, facial expressions, and gestures of the speaker.
Can speech perception be improved by supplementing the speechreader with auditorily presented information
about the prosod y of the speech signal ? To investigate this phenomenon , 10 normal-hearing subjects par­
ticipated in an experiment in which they were asked to verball y reproduce sentences spoken but not heard
on a video monitor (Journal of the AcousticalSociety of America , Feb. 1986). The sentences were presented
to the subjects under each of two conditions: (I ) speech reading with information about th e frequency and
amplitude of the speech signal (denoted S + F + A), and (2) speech reading onl y (denoted S). For each of
the 10 subjects, the difference between the percentage of corr ectly reproduced syllables under condition
S + F + A and under condition S was calculated . The mean and standard deviation of the differen ces are
as follows:

a= 20.4 Sd = 17.44

Test the hypothesis that the mean percentage of correct syllables under cond ition S + F + A exceed s the
corresponding mean under condition S. Use a = .05.

9.42 Tetrachlorodibenzo-p-dioxin (T C D D) is a highl y toxic substance found in industrial wastes. A study was
conducted to determine the amount ofTCDD present in the tissues of bullfrogs inhabiting the Rocky Branch
Creek in central Arkansa s, an area known to be contaminated by TCDD (Chemosphere, Feb. 1986). The
level of TCDD (in part s per trillion ) was measured in several specific tissues of four fem ale bull frogs; the
ratio of TCDD in the tissue to TCDD in the leg muscle of the frog was recorded for each. The relative
ratios of contaminant for two tissues, the liver and the ovarie s, are given for each of the four frogs in the
accompanying table. According to the researchers, "the data set suggests that the [mean] relative level of
TCDD in the ovaries of female frogs is higher than the [me an] level in the liver of th e frogs." Test this
claim using a = .05 .

Frog

Liver
Ovaries

A

11.0
34.2

B

14.6
41.2

C

14.3
32.5

D

12.2
26.2

Sourc e: Korfmacher, W. A.• Hansen. E. B.• and Rowland .
K L. "T issue distribution of 2.3,7, 8-TC DD in bullfro gs
obtained from a 2.3. 7,8-TCDD-eontaminated area." Chemo­
sphere. Vol. 15. No.2. Feb. 1986. p 125. Reprinted with
permi ssion. C opyright 1986, Pergamon Press, Ltd.

9.43 Merck Research Labs conducted an experiment to evaluate the effect of a new drug using the Single-T
Swim ma ze . Nineteen impregnated dam rats were captured and allocated a dosage of 12.5 milligrams of
the drug . One male and one female pup were randomly selected from each resulting litter to perform in
the swim maze. Each rat pup is placed in water at one end of the maze and allowed to swim until it
successfully escapes at the opposite end. If the rat pup fails to escape after a certain period of time, it is
placed at the beginning end of the maze and given another attem pt to escape. The experiment is repeated
until three successful escapes are accomplished by each rat pup. The number of swims required by each
pup to perform three successful escapes is reported in the table on page 464 . Is there sufficient evidence of
a difference between the mean number of swims required by mal e and female rat pups? Use the MIN1TAB
printout on page 464 to conduct the test (at a = .10 ).
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... . .. .. ... ... . . . . . . . . .. .. . . . . . . ....... . . . . . . . . . . . . . . . .. . . . . . .

Litter Male Female Litter Male Female

I 8 5 II 6 r:
)

2 8 4 12 6 3
3 6 7 13 12 5
4 6 3 14 3 8
5 6 5 15 3 4
6 6 3 16 8 12
7 3 8 17 3 6
8 5 10 18 6 4
9 4 4 19 9 5

10 4 4

Sou rce: Th omas E. Bradstreet, Merck Research Labs, BL 3-2, West Point, Penn . 19486.

TEST OF MU = 0.000 VS MU N.E . 0.000

N MEAN STDEV SE MEAN T PVALUE
Swimoiff 19 0.368 3.515 0.806 0.46 0.65

9.44 Refer to the Journal of Environmental Engineering (Feb. 1986) study of winter heat loss in wastewater
treatment clarifiers, Exercise 8.40. The data, reproduced in the table, were used to compare the mean day­
long clear-sky solar radiation levels (in BT U/sq. ft. ) at two midwest sites. A SAS printout for a test to compare
the means follows. Interpret the results of the test.

Date St. Joseph, Mo. Iowa Great Lakes

December 21 782 593
January 6 965 672
January 21 948 750
February 6 1,181 988
February 21 1,414 1,226
March 7 1,633 1,462
March 21 1,852 1,698

Source : Wall, D. J., and Peterson , G . "Model for winter heat loss in uncove red
clarifiers." [ou m al 0; Enviro n men ta l Eng ineering, Vol. 112, No. I, Feb. 1986,
p. 128.

Analysis Variable : RADDIFF

Nabs T Prob>ITI

7 11. 7649303 0 .0001
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9.10 Testing a Population Proportion

In Section 9.3, we gave severa l examples of a statistical test of hypothesis for a pop­
ulation proportion p. When the sample size is large , the sample proportion of suc cesses

p is approximately normal and the general formulas for conduc ting a large-sample z
test (given in Section 9.3 ) can be applied.

The procedure for testin g a hypothesis about a popul ation proportion p based on
a large sample from the target populat ion is described in the box. (Recall that p
represents the probabili ty of succ ess in a bin omial experime nt.) For the procedure to
be valid, the sam ple size mu st be sufficiently large to gua rantee approxima te normali ty

of the sam pling distribution of the sample prop orti on , b, As with con fide nce intervals,
a general rule of thumb for determining whether n is "suffi ciently large " is th at both

np and nq are greater than or equal to 4.

Large-Sample Test of Hypothesis About a Population Proportion............. . .. ... .............

One-Tailed Test

Ho: P = Po
Ha : p > Po

[or H a : P < Po]

Test statistic:

Two-Tailed Test

Ho:p = Po
Ha : P =1= Po

Beiection region: Iz I > Zcr/2

EXAMPLE 9.16

where qo = 1 - Po

Beiection region: z > Zcr

[or z < - zcr]

Assumption: The sam ple size n. is sufficiently large so that the approximation
is valid. As a rule of thumb, the condition of "suffic iently large" will be satisfied
when np ;::: 4 and nq ;::: 4.

Controversy su rrounds the use of weathering steel in the construction of h ighway
bridges. Critics have rece ntly cited serious corrosive problems with weathering stee l
and are currentl y urging states to prohibit its LIse in br idge const ruct ion . O n th e othe r
hand , the steel corporations claim that these cha rges are exaggerated and report that
95 % of all weather ing steel bridges in opera tio n show "good" performan ce, with no
major corrosive dam age. To test thi s claim , a team of engineers and stee l industry
experts evaluated 60 randomly selected wea the ring steel bridges an d found 54 of them
showing "good " performance. Is there evide nce, at a = .05, that the true proportion
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of weathering steel highway bridges that show "good" performance is less than. 95,
the fi gure quoted by the steel corporations?

Solution Th e parameter of interest is a population proportion, p. We want to test

Ho: P = .95

Ha : p <.95

where p is the true proportion of all weathering steel highway bridges that show "good"
performance.

At significance level ex = .05, the null hypothesis will be rejected if

Z < -Z.0 5

that is, Ho will be rejected if

Z < - 1.645 (see Figure 9.18)

The sample proportion of bridges that show "good" performance is

, 54 90P = 60 = .

FIGURE 9.18 ~ I( z)

Rejection region for Example 9.16

RejectHo r zl= - 1.645

Observed value of test statis tic
z =-1.78

Thus, the test statistic has the value

Z = p- Po = .90 - .95 = -I. 78
v'poqo/ n v'(.95)(.05)/60

Th e null hypothesis can be rejected (at ex = .05), since the computed value ofz
falls within the rejection region. Th ere is sufficient evidence to support the hypothesis
that the proportion of weathering steel highway bridges that show "good" performance
is less than .95. [Note that both np = 60(.90) = 54 and nq = 60(.10) = 6 exceed 4.
Thus, the sample size is clearly large enough to guarantee the validity of the hypothesis
test.]
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Although small-sample procedures are available for testing hypotheses about a
population proportion, the details are omitted from our discussion. It is our experience
that they are of limited utility, since most surveys of binomial populations (for example,
opinion polls) performed in the real world use samples that are large enough to employ
the techniqu es of this section.

EXERCISES

9.45 Researchers at the University of Rochester studied the friction that occurs in the paper-feeding process of a
photocopier (Journal of Engineering for Industry, May 1993). The experiment involved monitoring the
displacement of individual sheets of paper in a stack fed through the copier. If no sheet except the top one
moved more than 25% of the total stroke distance, the feed was considered successful. In a stack of 100
sheets of paper, the feeding process was successful 94 times. The success rate of the feeder is designed to
be .90. Test to determine whether the true success rate of the feeder exceeds .90. Use a = .10.

9.46 Staying too long in a spa pool can result in overheating, which in the case of a pregnant woman, may cause
fetal malformation. But how long is too long? Based on their work in this area, several researchers hypothesize
that 75% of women, immersed in a spa with water temperature of 40°C, will become uncomfortably hot
when their ear canal (core) temperature reaches 40°C. As a result, subjective discomfort is suggested as a
possible safeguard against overheating. Thi s finding was apparently contradicted by an Australian study of
24 healthy, nonpregnant women (New England Journal of Medicine, Sept. 20, 1990). Only II of the 24
women (46%) were uncomfortably hot when their core temperature reached 40°C. Test the hypothesis that
the true percentage of healthy, nonpregnant women who become uncomfortably hot when their core
temperature reaches 40°C is less than 75%. Use a = . 10.

9.47 Distortions that occur on a computer graphics terminal screen are often due to data being lost in the
communications linkage process between the terminal and the computer. A manufacturer of a new data­
communications error controller claims that the chance of losing data with the controller in operation is
only .01. To test this claim, the communications link between a graphics terminal and computer is monitored
with the error controller in operation. Of a random sample of 200 on-screen graphic items, six were distorted
because of data errors in the communications link. Does the sample evidence refute the manufacturer's
claim? Use a = .05.

9.48 The National Science Foundation, in a survey of 2,237 engineering graduate students who earned their
Ph.D.degrees, found that 607 were U.S. citizens; the majority (1,630) of the Ph.D . degrees were awarded
to foreign nationals (Science, Sept. 24, 1993). Conduct a test to determine whether the true proportion of
engineering Ph. D. degrees awarded to foreign nationals exceeds .5. Use a = .0 l.

9.49 Concerned about airport and airline security, the Federal Aviation Administration (FAA) has begun imposing
sanctions against airlines that fail security tests. One series of tests conducted at Los Angeles Internat ional
Airport (LAX) showed that security guards detected only 72 of the 100 mock weapons carried on by FAA
inspectors or included in their carry-on luggage (Gainesville Sun , Dec. II , 1987). According to the FAA,
this "detection rate was well below the national rate of .80." Is there sufficient evidence to conclude that
the mock weapon detection rate at LAX is less than the national rate of .so? Test using a = . 10.
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9.50 As part of the evaluation for an environmental impact statement of proposed hydroelectric design on the
Stikine River in British Columbia, researchers conducted prelimin ary investigations of the effects of human ­
induced disturbances on the behavior of the resident mountain goat population (Environmental Manage­
ment, Mar. 1983). Goat responses to exploration activities, including close-flying helicopters, fixed-wing
aircraft, human bipedal movement, and loud blasts from geological drilling activities, were recorded for
n = 804 goats. The researchers observed that 265 goats displayed a severe flight response to local rock or
plant cover. Test the hypothesis that over 30% of the resident mountain goats will show a severe response
to human-induced disturbances. Use (l' = .05.

9.51 Architects and engineers, faced with public-sector (i.e., government) cuts, are turning to private-sector clients
to fill an increasing share of their workloads. According to some researchers, the decrease in popularity of
public-sector work among small, medium, and large architecture-engineering (A- E) firms has been dra­
matic. Two years ago, one-third of all A-E firms reported they relied on public sector projects for most (if
not all) of their work. In a recent survey of 60 A-E firms, 10 indicated that they depended so heavily on
government contracts. Do the sample data provide suffi cient evidence to conclude that the percentage of
A-E firms that rely heavily on public-sector clients has declined during the past 2 years? Use (l' = .05.

9.11 Testing the Difference Between Two Population Proportions
..................................................................

The meth od for performing a large-sample test of hypothesis about (PI - Pz), the
difference between two binomial proportions, is outlined in the accompanying box.

When testing the null hypothesis that (PI - Pz) equals some specified di£ference­
say, Do-we make a distinction between the case Do = 0 and the case Do =f:. O. For
the special case Do = 0, i.e., when we are testing Ho: (PI - Pz) = 0 or, equivalently,
Ho: PI = Pz, the best estimate of PI = pz = P is found by dividing the total number
of successes in the combin ed samples by the total n.umber of observations in the two
samples. That is, if YI is the number of successes in sample 1 and yz is the number
of successes in sample 2, then

A YI + yzP=
n l + nz

In this case, the best estimate of the standard deviation of the sampling distribution
of (PI - Pz) is found by substituting P for both PI and Pz:

Plql + pzqz = .Jpq + pq = Ipq(l- + l-)
a(j)l - pz) = nj nz nl nz 'V nl nz

For all cases in which Do =f:. 0 [for example , when testing Ho: (PI - Pz) =
.2], we use PI and pz in the formula for a(P I-PZ)' However, in most practical situations,
we will want to test for a difference between proportions-that is, we will want to test
Ho: (PI - Pz) = O.
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One-Tailed Test

Ho: (PI - pz) = Do
Ha : (Pl - pz) > Do

[or H,, : (PI - /Jz) < Do]

Test statistic:

Rejection region: Z > Za

[or Z < - za]

When Do + 0,

Two-Tailed Test

Hn: (PI - pz) = Do
U,,: (PI - pz) + Do

Rejection region : Iz[ > za/Z

Plql + pzqz
TlI nz

When Do = 0,

~, "( l 1)(TU'I -PZ) =pq- + -
n l nz

where the total number of successes in the combined sample is (YI + yz) and .

, , , YI + yz
PI= pz = P = - .-. - -

fll + I1Z

Assumption: The sample sizes, nl and fl Z, are sufficiently large. This will be
satisfied if flI/JI 2: 4, fllql 2: 4, and I1ZPZ 2: 4, TJ zqz 2: 4.

Th e sample sizes TlI and I1Z must be sufficiently large to ensure that the sampl ing
distributions of PI and P z , and hence of the difference ( P I - pz), are approximately
normal. The rule of thumb used to determine if the sample sizes are "sufficiently
large" is the same as that given in Section 8.9, namely, that the quantities flIP] ,
flZP z, fl lql , and flZqz are all greater than or equal to 4. [Note: If the sample sizes are
not sufficiently large, PI and P2 can be compa red using a techniqu e to be discussed
in Chapter 10.]



470 Chapter 9 I Tests of Hypotheses

EXAMPLE 9.17 Recently there have been int ensiv e camp aigns encour aging people to save energy by
carpooling to work. Som e cities have crea ted an incenti ve for carpooling by designating
certain highway traffic lan es as "car -pool on ly" (i.e., only cars with two or more
passengers can use these lan es). To eva luate the effectiveness of this plan, toll booth
personnel in one city monitored 2,000 rand oml y selected car s prior to establishing
car-pool-only lan es, and 1, 500 cars after the ca r-poo l-o nly lanes were established. The
results of the study are sho wn in Table 9.5, where Yl and yz represent the numbers
of cars with two or m ore passeng ers (i.e. , ca r-poo l riders) in the "before" and "after"
samples, respecti vely. Do the data indica te th at the fracti on of cars with car-pool riders
has increased over thi s period? Use a = .05.

TABLE 9.5 Results of Carpooling Study. Example
9.16

Sample Size
Car-Pool Riders

Before
Car-Pool

Lanes
Established

n l = 2,000
YI = 655

After Car-Pool
Lanes

Established

nz = 1,500
yz = 576

Solution If we define PI and pz as the true propo rtions of car s with car-pool riders before and
after establi shing ca r-poo l lanes , respectively, the elements of our test are:

Ho: (PI - pz) = 0

Ha : (PI - pz) < 0

(T he test is one -tailed sinc e we are int erested only in determining whether the pro­
portion of ca rs with ca r-pool riders has increased, i.e., whether pz > pJ.l

Test statistic: z = (PI - pz) - 0
a (PI-PZ)

Rejection region: a = .0 5
Z < - Za = - Z .05 = - 1.645 (see Figure 9.19)

We now calculate the sample pro porti ons of cars with car-pool riders :

- 652 '26PI = 2000 = .),

The test statistic is

- 576 38o: = 1 500 = . 4,
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I (z)

o-1 .645
Rejection

region1--------1

FIGURE 9.19 ~
Rejection region for Example 9.17

-3.56

where

A Yl + yzp=
nl + nz

652 + 576
2,000 + 1,500 = .351

Thus,

- 3.56
- .058
.0163

.326 - .384

(.351)(.649)(2,600 + I, ~OO)
Since z = - 3.56 falls in the rejection region, th ere is sufficien t evidence at a = .05
to conclude that th e proportion of all cars with car-poo l riders has increased after
establish ing car-pool lanes. We could place a confidence interval on (PI - pz) if we
were interested in estima ting the extent of the increase.

EXERCISES

9.52 Scientists have linked a catastrophic decline in the number of frogs inh abiting the world to ultraviolet
radiation from the earth 's tattered ozone layer (Tampa Tribune, Mar. 1, 1994). The Pacific tree frog, however ,
is not believed to be in decline because it produ ces an enzyme that appears to protect its eggs from ultraviolet
radiati on . Research ers at Oregon State Un iversity compared the hatching rates of two groups of Pacific tree
frog eggs. O ne group of eggs was sh ielded with ultraviolet-blocking sun shades, whe reas the second grou p
was not. The n umber of eggs successfully hatch ed in each group is provided in the table. Compare th e
hatching rates of the two gro ups of Pacific tree frog eggs with a test of hypoth esis. Use a = .0 1.

To tal Number
N um ber Hatched

Sun-Shaded Eggs

70
34

Unshaded Eggs

80
31



472 Chapter 9 / Tests of Hypotheses

9.53 Calcium blockers are among several classes of medicines common ly prescribed to relieve high blood pressure.
A study in Denmark has found that calcium blockers may also be effective in reducing the risk of heart
attacks (Tampa Tribune, Mar. 23, 1990). A total of 897 Danish patients, each recovering from a heart
attack, were given a daily dose of the drug Verapamil, a calcium blocker. After 18 months of follow-up,
146 of these patients had recurr ing heart attacks. In a contro l group of 878 people-each of whom took
placebos-1 80 had a heart attack. Do the data provide sufficient evidence to infer that calcium blockers
are effec tive in reducing the risk of heart attacks? Test using a = .01.

9.54 Every 10 years the Mechan ics Division of ASEE conducts a nationwide survey on undergraduate mechanics
educa tion at colleges and un iversities. In 1985, 66 of the 100 colleges surveyed covered fluid statics in their
undergraduate engineering program, compared to 43% in the 1975 survey (Engineering Education, Apr.
1986). Assuming that 100 colleges were also surveyed in 1975, conduc t a test to determine whether the
percentage of colleges covering fluid statics increased from 1975 to 1985. Use a = .0 1.

9.55 A study was conducted to determine the impact of a multifunction workstation (MFWS) on the way managers
work (Datamation, Feb. 15, 1986). Two groups of managers at a St. Louis-based defense agency took part
in the survey: a test group consisting of 12 managers who currently use MFWS software and a control group
of 25 non-MFWS users. One question on the survey concerned the information sources of the managers.
In the test group (MFWS users), 4 of the 12 managers reported that their major source of information is
the computer, whereas 2 of the 25 in the control group (non-M FWS users) rely on the computer as their
major source of information.
a. Is there evidence of a difference between the proportions of MFWS users and non-MFWS users who

rely on the computer as their major information source? Test using a = . 10.
b. Are the sample sizes large enough for the approximation procedure, part a, to be valid?

9.56 Home solar heating systems can be categorized into two groups, passive solar heating systems and active
solar heating systems. In a passive solar heating system, the house itself is a solar energy collector, whereas
in an active solar heating system, elaborate mechanical equipment is used to convert the sun 's rays into
heat. Consider the difference between the proportions of passive solar and active solar heating systems that
require less than 200 gallons of oil per year in fuel consumption. Independent random samples of 50 passive
and 50 active solar-heated homes are selected and the numbers that required less than 200 gallons of oil
last year are noted, with the results given in the table. Is there evidence of a difference between the proportions
of passive and active solar-heated homes that requ ired less than 200 gallons of oil in fuel consump tion last
year? Test at a level of signifi cance of a = .02.

Number of homes

Number that required less than
200 gallons of oil last year

Passive
Solar

50

37

Active
Solar

50

46

9.57 In 1982, 371 manufacturing and retailing compa nies were surveyed to determine the extent to which logistics
information systems were implemented. A follow-up survey of 459 fi rms was conducted in 1987 to measure
the 5-year trend in computerization of logistics information (Industrial Engineering, July 1990). One of
the survey items focused on the percentage of fi rms that had comp uterized external market data. From
1982 to 1987, this percentage increased from 25% to 33%. Use this information to test for a significant
increase in the percentage of fi rms with computerized external market data over the 5-year period. Test
using a = .05.
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9.12 Testing a Population Variance..................................................................
Recall from Section 8. 10 that the pivotal statistic for estimating a population variance
u 2 does not possess a normal (z) distribution. Th erefore, we cannot apply the procedure
outlined in Section 9.4 when testing hypotheses about u 2.

Wh en the sample is selected from a normal population, however, the pivotal
statistic possesses a chi-square (X2) distribution and the testcan be conducted as outlined
in the box. Note that the assumption of normality is required regardless of whether
the sample size n is large or small.

Test of Hypothesis About a Population Variance (J'2.......................... ......

One-Tailed Test

H«: u2 = un
H,,: u2 > un

[or H": u 2 < u5]

Two-Tailed Test

Ho: 0 u2 = un
H": u 2

-=f=. U5

Test statistic:

EXAMPLE 9.18

7 (n - l)s2
X- = 7

Uij

Rejection region: Rejection region:

X
2 > X2 (or X2 < X2 0) X2 < X2 or X2 > X2

a I-a 0 0 l -a /2 a / 2

where x; and XI -a are values of X2 that locate an area of a to the right and a
to the left, respectively, of a chi-square distribution based on (n - I) degrees of
freedom.

[Note: u5 is our symbol for the particular numeri cal value specified for u2 in
the null hypothesis.]

Assumption: The population from which the random sample is selected has
an approximate normal distribution.

Refer to Example 8. 15 concerning the variability of the amount of fill at a cannery.
Suppose regulatory agencies specify that the standard deviation of the amount of fill
should be less than .1 ounce. The quality control supervisor sampled n = 10 cans
and mesured the amount of fiJI in each. The data are reproduced here. Does this
information provide sufficient evidence to indicate that the standard deviation U of
the fiJI measurements is less than . 1 ounce?

7.96 7.90 7.98 8.01 7.97 7.96 8.03 8.02 8.04 8.02
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Solution Since the null and alternative hypotheses must be stated in terms of a 2 (rather than
a), we will want to test the null hypothesis that a 2 = . (I1 against the alternative that
a 2 < .01. Therefore, the elements of the test are

Ho: a 2 = .01 (i.e., a = .1)

Ha : a 2 < .01 (i.e., a < .1)

Assumption: The populaton of fill amounts is approximately normal.

. . (n - 1)s2
Test statistic: X2 = 2

ao

Rejection region: The smaller the value of S2 we observe, the stronger the evi­
dence in favor of Ha . Thus, we reject Ho for "small values" of
the test statistic. With IX = .05 and 9 df, the X2 value for
rejection is found in Table 8 of Appendix 11 and pictured in
Figure 9.20. We will reject Ho if X2 < 3.32511. (Remember
that the area given in Table 8 of Appendix 11 is the area to the
right of the numerical value in the table. Thus, to determine
the lower-tail value that has IX = .05 to its left, we use the
X29 5 column in Table 8.)

FIGURE 9.20 ~ f( 2)

Rejection region for Example 9.18

o t 3 6

1.44 IRejection ___
region

3.325

j - a = .95

9 12 15 18

To compute the test statistic, we need to find the sample standard deviation, s.
Numerical descriptive statistics for the sample data are provided in the SAS printout
shown in Figure 9.21. The value of s, shaded in Figure 9.21, is s = .043. Substituting
s = .043, n = 10, and a5 = .01 into the formula for the test statistic, we obtain

2 = (10 - 1)(.043? = 1 66
X .01 .

Conclusion: Since the test statistic, X2 = 1.66, is less than 3.32511, the supervisor
can conclude (at IX = .05) that the variance of the population of all amounts of fill
is less than. 01 (a < .1). If this procedure is repeatedly used, it will incorrectly reject
Ho only 5% of the time. Thus, the quality control supervisor is confident in the
decision that the cannery is operating within the desired limits of variability.
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Moments
FIGURE 9.21 ~

SAS printout: Descriptive
statistics for Example 9.18

Variable=FILL

N
Mean
Std Dev
Skewness
USS
CV
T:Mean=O
Sgn Rank
NUIlI A= 0

10
7.989

0.043063
-0.8538

638.2579
0.539032
586.6587

27.5
10

SUIlI Wgts
SUIlI
Variance
Kurtosis
CSS
Std Mean
Prob> ITI
Prob> S

10
79 .89

0.001854
0.479371

0.01669
0.013618

0.0001
0.0020

EXERCISES

Quantiles(Def=5)

100\ Max 8.04 99\ 8.04
75\ Q3 8.02 95\ 8.04
50\ Med 7.995 90\ 8.035
25\ Q1 7.96 10\ 7.93
0\ Min 7.9 5\ 7.9

1% 7.9
Range 0.14
Q3-Q1 0.06
Mode 7.96

9.58 Refer to the [oumal {or Engineering {or Industry (May 1993) study of deep hole drilling under drill chip
congestion, Exercise 9.21. Test to determine whether the true standard deviation of drill chip lengths differs
from 75 mm. Recall that for n = 50 drill chips, s = 50.2.

9.59 Recording electrical activity of the brain is important in clinical problems as well as in neuroph ysiological
research . To improve the signal-to-noise ratio (SNR) in the electrical activity, it is necessary to repeatedly
stimulate subjects and average the responses-a procedure that assumes that single responses are homo­
geneous. A study was conducted to test the homogeneous signal theory (IEEE Engineering in Medicine and
Biology Magazine, Mar. 1990). The null hypothesis is that the variance of the SNR readings of subjects
equals the "expected" level under the homogeneous signal theory. For this study, the "expected" level was
assumed to be .54. If the SNR variance exceeds this level, the researchers will conclude that the signals
are nonhomogeneous.
a. Set up the null and alternative hypotheses for the researchers.
b. SNRs recorded for a sample of 41 normal children ranged from .03 to 3.0. Use this information to

obtain an estimate of the sample standard deviation. [Hint: Assume that the distribution of SNRs is
normal , and that most of the SNRs in the population will fall within JL ± Zo; i.e., from JL - Lo to
JL + Zo: Note that the range of the interval equals -lo.]

c. Use the estimate of s in part b to conduct the test of part a. Test using n: = .10.

9.60 "The most common method of disinfecting water for potable use is free residual chlorination . Recently,
preammoniation (i.e., the addition of ammoni a to the water prior to applying free chlorine) has received
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considerable attention as an alternative treatment. In one study, 44 water spec imens treated with pream­
moniation were found to have a mean effl ue nt turbidity of I. 8 and a standa rd deviation of .16 (American
Water Works Journal, Jan . 1986). Is the re sufficien t evidence to indi cate th at the variance of the effl u­
ent turbidity in water spec ime ns disinfected by the pream mon iation meth od exceeds .00 16? (T he value
.00 16 represents the known effl ue nt turb idity variance of water speci me ns treated with free chlorine .) l est
using a = .0 I.

9.61 In an y canning process, a manufacturer will lose money if the cans contain eithe r sign ifican tly m ore or
significantl y less than is claim ed on the label. Accordingly, canners pay close attention to the amount of
their product being dispensed by the can -filling machines. Consider a compan y that produces a fast-dryin g
rubber cement in 32-ounce aluminum cans. A qu ali ty control inspector is interested in testing whether the
variance of the amount of rubber cement dispen sed into the cans is more than . 3. If so, the dispensing
machine is in need of adj ustment. Since inspection of the canning proc ess requires that the disp en sing
machines be shut down , and shutdowns for any len gth y period of tim e cost the company thousands of
dollars in lost revenue, the inspector is able to obtain a random sam ple of on ly 10 ca ns for testin g. After
mea suring the weights of their co ntents, the inspect or computes the foll owin g sum mary statistics:

x = 31. 55 ounces s = .48 ounce

a. Does the sam ple evidence indicate that the dispensing machines are 111 need of adjustment? Test at
significance level a = .0 5.

b. What assumption is necessary for the hypothesis test of part a to be valid?

9.62 Polychlorinated biph en yls (PC Bs), used in the manufacture of large electri cal transformers and capacitors,
are extremely ha zard ou s co ntam inants when released into the environme nt. The Environmental Protection
Agency (EPA) is experimenting with a new device for measuring PCB concentration in fish . T o check the
precision of the new instrument, seven PCB readings were taken on the same fish sample. The data are
recorded here (in parts per million ):

6.2 5.8 5. 7 6. 3 5.9 5.8 6.0

Suppose the EPA requires an instrument that yields PCB readings with a varian ce of less than. 1. Does the
new instrument meet the EPA's specifications? Test at a = .05.

9.13 Testing the Ratio of Two Population Variances
..................................................................

As in the one-sample case, the pivotal statistic for comparing two population vari­
ances, crT and cr~, has a nonnormal sam pling distribution . Recall from Section 8.11
that the ratio of the sample variances sf!s ~ possesses, under ce rtain conditions,
an F distribution .

The eleme nts of the hypothesis test for the ratio of two population vanances,
crT!crt are given in the box.
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Test of Hypothesis for the Ratio of Two Population Variances aVaf
Independent Samples...... ............- - .

One-Tailed Test

(1" 2

Ha : ---! >
(1" 2

[or, f-Ia : ~~ < 1J
Test statistic:

F - ~ [ F' - ~J< - 2 or - ?
S2 ' Sf

Rejection region:

F > Fa

Two-Tailed Tes t

(1"T _
~ -a :z

Test statistic:

F = Larger sample variance
Smaller sample variance

!
'2 '

~ when sf > s~so,

= ~ when s ~ > sf
Sf

Rejection region:

F> Fa / 2

EXAMPLE 9.19

where Fa and Fa / 2 are values that locate area a and a / 2, respectively, in the "
upper tail of the F distribution with VI = numerator degrees of freedom (i.c.,
the df for the sample variance in the num erator) and V 2 = denominator degrees
of freedom (i.e., the dHor the sample variance in the denominator).

Assumptions: 1. Both of the populations from which the samples are selected
have relative frequency distribut ions that arc approximately
norm al.

2. Th c random samples are selected in an independent man ner
from the two populations.

Heavy doses of ethylene oxide (ETa) in rabbits have been shown to alter signifi cant ly
the DNA structure of cells. Although it is a known mut agen and suspected carcinogen,
ETa is used quite frequently in sterilizing hospital supplies. A study was conducted
to investigate the effect of ETa on hospital personn el involved with the sterilization
process. Thirty-one subjects were randomly selected and assigned to one of two tasks.
Eighteen subjects were assigned the task of openin g the sterilization package that
contain s ETa (task I). Th e remaini ng 13 subjects were assigned the task of opening
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and unloading the sterilizer gun filled with ETO (task 2). After the tasks were per­
formed, researchers measured the amou nt of ETO (in milligrams) present in the
bloodstream of each subject. A summar y of the results appears in Table 9.6. Do the
data provide suffic ient evidence to indicate a difference in the variability of the ETO
levels in subjects assigned to the two tasks? Test using a = .10.

TABLE 9.6 Summary Data for Example 9. 19

Task I Task 2

Solution

Sample Size
Mean
Standard Deviation

Let

18
5.90
I. 93

13
5.60
3.10

(J"t = Population variance of ETO levels in subjects assigned task 1

(J" ~ = Population variance of ETO levels in subjects assigned task 2

For this test to yield valid results, we must assume that both samples of ETO
levels come from normal populations and that the samples are independent.

The hypotheses of interest are then

2
Ho: ~-I ( (J"t = (J" ~ )2 -

(J"2

2
Ha :

(J"J f.
((J"t f. (J" ~ )

(J"~

The nature of the F tables given in Appendix II affects the form of the test statistic.
To form the rejection region for a two-tailed F test we want to make certain that the
upper tail is used, because only the upper-tail values of F are shown in Tables 9-12
of Appendix II. To accomplish this, we will always place the larger sample variance
in the numerator of the F test statistic. Th is has the effect of doublin g the tabulated
value for a , since we double the probability that the F ratio will fall in the upper tail
by always placing the larger sample variance in the num erator. Th at is, we make the
test two-tailed by putting the larger variance in the num erator rather than establishing
rejection regions in both tails.

Thus, for our example, we have a denominator st with df = n 1 - 1 = 17 and
a numerator s~ with df = 11 2 - I = 12. Ther efore, the test statistic will be

F = Larger sample variance = ~
Smaller sample variance st

and we will reject Ho: (J"t = (J" ~ for a = .10 when the calculated value of F exceeds
the tabulated value:

Fa / 2 = F 0 5 = 2.38
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We can now calculate the value of the test statistic and complete the analysis:

F = ~ = (3 .10)~ = 9.61 = 2 58
51 (1.93) 3.72 .

When we compare this to the rejection region shown in Figure 9.22, we see that
F = 2.58 falls in the rejection region. Therefore, the data provide sufficient evidence
to indicate that the population variances differ. It appears that hospital personnel
involved with opening the sterilization package (task I) have less variable ETO levels
than those involved with opening and unloading the sterilizer gun (task 2).

FIGURE 9.22 ~ fiF)

Rejection region for Example 9.19

o
2 1=;,3 4 s

Rejection region

2.38

6

What would you have concluded in Example 9.19 if the value of F calculated
from the samples had not fallen in the rejection region? Would you conclude that the
null hypothesis of equal variances is true? No, because then you risk the possibility
of a Type II error (failing to reject Ho if Ha is true) without knowing the value of {3,
the probability of failing to reject Ho: O'f = O'~ if in fact it is false. Since we will not
consider the calculation of {3 for specific alternatives, when the F statistic does not
fall in the rejection region, we simply conclude that insufficient sample evidence exists
to refute the null hypothesis that O'f = O'~ .

Example 9.19 illustrates the technique for calculating the test statisticand rejection
region for a two-tailed test to avoid the problem of locating an F value in the lower
tail of the F distribution. In a one-tailed test this is much easier to accomplish since
we can control how we specify the ratio of the population variances in Ho and Ha .

That is, we can always make a one-tailed test an upper-tailed test. For example, if we
want to test whether O'f is greater than O't then we write the alternative hypothesis
as

(i 2 2)i.e., 0'1 > 0'2
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and the appropriate test statistic is F = sf!s ~. Conversely, if we want to test whether
a T is less than a~ (i.e, whether a~ is greater than a T), we write

a~
Ha : 2> I (i.e., a~ > aT)

aj

and the corresponding test statistic is F = s~/sr.

EXERCISES

9.63 Refer to Exercise 9.35. Recall that an Environmental Science & Technology study was conducted to compare
the mean oxon/thion ratios at a California orchard under two weather conditions- foggy and clear/cloudy.
Test the assumption of equal variances required for the comparison of means to be valid. Use a = .05.

Date Condition Thion Oxon Oxon/T hion Ratio

Jan. 15 Fog 38.2 10.3 .270
17 Fog 28.6 6.9 .241
18 Fog 30.2 6.2 .205
19 Fog 23.7 12.4 .523
20 Fog 62.3 (Air sample lost)
20 Clear 74. 1 45.8 .618
21 Fog 88. 2 9.9 .112
21 Clear 46.4 27.4 .591
22 Fog 135.9 44.8 .330
23 Fog 102.9 27.8 .270
23 Cloudy 28.9 6.5 .225
25 Fog 46.9 11.2 .239
25 Clear 44.3 16.6 .375

Sou rce: Seiber . J. N. . et 01. "Air and fog deposition residue s of four organophosphate insecticides used on
dormant orchards in the San Joaq uin Valley, Ca liforni a." Environmental Science & Technology, Vol. 27,
No. JO. Oct. 1993, p 2240 (Table V)

9.64 Wet samplers are standard devices used to measure the chemical composition of precipitation . Th e accuracy
of the wet deposition readings, however, may depend on the numb er of samplers stationed in the field .
Experimenters in The Netherlands collected wet deposition measurements using anywhere from one to
eight identical wet samplers (Atmospheric Environment, Vol. 24A, 1990). For each sampler (or sampler
combination) data was collected every 24 hours for an entire year; thus, 365 readings were collected per
sampler (or sampler combination). When one wet sampler was used, the standard deviation of the hydrogen
readings (measured as percentage relative to the average reading from all eight samplers) was 6.3%. When
three wet samplers were used, the standard deviation of the hydrogen readings (measured as percentage
relative to the average reading from all eight samplers) was 2.6%. Conduct a test to compare the variation
in hydrogen readings for the two sampling schemes (i.e., one wet sampler versus three wet samplers). Test
using a = .05.

9.65 An experiment was conducted to study the effect of reinforced fl anges on the torsional capacity of reinforced
concrete T-beams (Journal of the American Concrete Institute, Jan.-Feb. 1986). Several different types of
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T-beams were used in the experiment, each type having a differe nt flange width. The beams were tested
under combined torsion and bending until failure (cracking). One variable of interest is the cracking torsion
momen t at the top of the flange of the T-beam. Cracking torsion moments for eight beams with 70-cm slab
widths and eight beams with 100-cm slab widths follow:

70-cm slab width:
100-cm slab width:

6.00,7.20, 10.20, 13.20, 11.40,13.60,9.20,11.20
6.80,9.20,8. 80, 13.20,1 1.20, 14.90, 10.20, 11.80

a. Is there evidence of a difference in the variation in the cracking torsion moments of the two types of
T-beams? Use IX = . 10.

b. Wh at assumptions are required for the test to be valid?

9.66 Refer to the general trace organic monitoring study discussed in Exercise 7.21 . The total organic carbon
(TOC) level was measured in water samples collected at two sewage treatmen t sites in England. T he
accompanying table gives the summary information on the TOC levels (measured in mg/l) found in the
rivers adjacent to the two sewage facilities. Since the river at the Foxcote sewage treatment works was subject
to periodic spillovers, not far upstream of the plant's intake, it is believed that the TOC levels found at
Foxcote will have greater variation than the levels at Bedford. Does the sample information support this
hypothesis? Test at IX = .05.

Bedford Foxcote

nJ = 61 n2 = 52
YI 5.35 )12 = 4.27
SI = .96 S2 = 1.27

Source: Pinchin, M. J. "1\ study of the trace
organics profiles of raw and potable water sys­
terns." Journal af the Institllte of Water Engi­
neers & Scientists, Vol. 40, No. I, Feb. 1986.
p. 87.

9.67 Refer to the speechread ing study introduced in Exercise 9.41. A second experiment was condu cted to
compare the variability in the sentence perception of normal-hearing individuals with no prior experience
in speechreading to those with experience in speechreading. The sample consisted of 24 inexperienced and
12 experienced subjects. All subjects were asked to verbally reproduce sentences under several cond itions,
one of which was speechreading supplemented with sound-pressure information . A summary of the results
(percentage of correct syllables) for the two groups is given in the table. Conduct a test to determine whether
the variance in the percentage of correctly reproduced syllables differs between the two groups of speech­
readers. Test using IX = . 10.

Inexperienced
Speechreaders

nl = 24
YI 87.1
SI = 8.7

Experienced
Speechreaders

n2 = 12
5'2 = 86.1
82 = 12.4

Source: Breeuwer, M., and PIamp, R. "Speechrcading
supplemented with auditorily presented speech param­
eters." loumal of the Acous/ical Society of America, Vol.
79, No. Z, Feb. 1986, p. 487.
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OPTIONAL EXERCISES
9.68 Suppose we want to test Ho: O'T= O' ~ versus Ha : ifT#- O' ~. Show that the rejection region given by

sT ST
2 > Fa / z or 2 < F(l- a / Z)
Sz Sz

where F depends on VI = (n I - I ) df and v: = (nz - I ) df, is equi valent to the rejection region given by

ST
2 > Fa / z where F depend s on VI numerator df and Vz denominator df
Sz

or

S ~ *2 > F a / Z where F * depend s on v : numerator df and VI den ominator df
SI

[Hint: Use the fact (proof om itted) that

I
F(I - a / Z) = -F*

a/Z

where F depends on V j numerator df and v i denominator df and F * depends on v i numerator df and Vj

denominator dE]

9.69 Use the results of Optional Exerci se 9.68 to show that

p( Larger sample variance > F z) = a
Smaller sam ple variance a /

where F depend s on numerator df = [(Sam ple size for numerator sample variance) - I] and denominator
df = [(Sampl e size for denominator sample varian ce) - I]. [Hint: First write

p( Larger sample variance F ) _ p(ST F
-=S-m-a"7I:-le-r-s-am--"--p7Ie- va- r-ia-n-c-e > a / Z - ~ > a / Z

Then use the fact that P(F > Fa / z) = a/2.]

9.14 Summary

This chapter presents the basic conce pts of a statistica l test of a hypothesis about one
or more population parameters. Tests of hypotheses are used when th e ultimate prac­
tical objective of an inferen ce is to reach a decision about the value(s) of the
parameter(s). We can evaluate the goodness of the inference in terms of a and {3, the
probabilities of making incorrect decisions.

The close relationship between estimation and hypoth esis testing is apparen t when
we compare the statistics employed for the se two purposes. The statistics used to
construct confidence intervals for parameter s in Ch apter 8 were th en used to test
hypoth eses about the sam e param eters in Chapter 9. These tests are sum ma rized in
Tables 9.7a and 9.7b.

In the following chapters, we will present som e very useful m eth odology for
analyzing multivariable experiments. As you will subseque ntly learn, the confidence
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intervals and tests that we will employ are based on an assumption of normality. Thus ,
the statistics that we will use to construct confidence intervals and test hypotheses
possess sampling distributions that are the familiar t, X2, and F distributions ofCha pters
7, 8, and 9.

TABLE 9.7a Summary of Hypothesis Tesu: One-Sample Case

Null Po int Additional
Parameter (e) Hypothesis (Ho) Estimator (0) Test Stat istic Sample Size Assumptions

Il I-' = 1-'0 Y Y- I-'o Y - I-'O n ~ 30 None
z =--"'--

a/ Y;; slY;;

Y - 1-'0 n < 30 Normal
1=--

populationslY;;
where 1 is based on v = (n - I)
degrees of freedom

p P = Po - y P- Po n large enough so that None
P = -

z =~ np ~ 4 and nq ~ 4n

crZ fI Z = fI 5 sZ (n - l )sZ All n NormalxZ = - -Z- where populationfIo
xZ has a chi-square distribution
with v = (n - I) degrees of freedom

TABLE 9.7b

Parameter (e)

Summary of Hypothesis Tesu: Two-Sample Case

Null Point
Hypothesis (H 0) Estimator (0) Test Statistic Sample Size

Additional
Assumptions

(Ill - 1-'2)
Independent
samples

(1-'1 - I-'z) = Do (y - Yz )
(If we want to
detect a
difference
between 1-'1
and I-'Z. then
Do = 0.)

None

(Yl - yz) - Do
1 = -'-'--;=:'::::::::::::===

Is~ (..!.- + ..!.-)'J nl nz

where 1 is based on v =
nj + nz - 2 degrees
of freedom and

SZ = (nl - l )sr + (nz - l )s ~

P nl + nz - 2

Either n l < 30
or nz < 30 or both

Both populations
normal with equal
variances (fIr= fID

(For situations in
which fIr oF fI~ ,

see the modifica­
tions listed in the
box on page 455.)

(conlinued)
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• YI + yz
where P = - - ­

n l + n2

Point Additional
Estimator (e) Test Statist ic Sample Size Assumptions

d = 2,7=ld;/n d - Do All nd Population of
Mean of t = - - (If nd 2 30, then the differences d, is
sample

Sd/~ standard normal (z) test normal
differences where t is based on v = (nd ~ 1) may be used.)

degrees of freedom

(PI - pz) For Do = 0: n I and n2 large enough Independen t

(PI - pz) so that n lP I 2 4, samples
z = njqj 2 4 and n2Pz 24,"C I)pq - + - nzqz 2 4

n l nz

iLd = Do (If we
want to detect
a difference
between iLl
and iLz, then
Do = 0.)

(PI - pz) = Do
(If we want
to detect a
difference
between PI
and pz, then
Do = 0.)

Summary of Hypothes is Iests; Two-Sample Case, continued

Null
Hypothesis (H 0)Parameter (8)

TABLE 9.7b

iLd =

(iLl - iLz)
Matched
pairs

For Do ~ 0:

Z = (P I - P2 ) - Do

Plql + PZqZ
n j nz

Z17
1 = I

a~

(i.e ., aT = a~)

For H. : a T> a~ :

z
F =~

s~

For H. : d > at:
2

F = ~
ST

For H, : aT~ d :
Larger SZ

F = Smaller SZ

All nl and n2 Independent
random samples
from norma l
population s

where the distribution of F is
based on VI = numerator degrees
of freedom and v: = denominator
degrees of freedom

SUPPLEMENTARY EXERCISES

9.70 One of the keys to occupational therapy is patient motivation. A study was conducted to determine whether
purposeful activity (defined as tasks that are goal-directed) provides intrinsic motivation to exercise perform­
ance (Journal of Occupational Therapy, Mar. 1984). Twenty-six females were recruited to take part in the
study. Each female subject was instructed to perform two similar exercises, jumping rope (the purposeful
activity) and jumping without a rope (the nonpurposeful activity), until their perceived exertion level reached
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17 on the RPE scale (i.e. , until they had worked their bodies "very hard"). Th e length of time (in minutes)
that each subject jumped was then recorded for each of the two exercises and the difference d, (computed
by subtracting the length of jumping time without rope from the length of jumping time with rope) was
calculated. A summary of the 26 differences is provided here:

a= 41. 84 seconds

Sd = 110.28 seconds

On e theory held by occupational therapists is that those performing a purposeful activity are more motivated,
and hence, tend to fatigue less easily. Test the hypothesis that the mean exercise time for the purposeful
activity (jumping with a rope) exceeds the mean exercise time for the nonpurposefuJ activity (jumping
without a rope). Use a = .05.

9.71 Suppose you want to determin e whether users of data processors have a preference between word processors
A and B. If users have no preference for either of the two word processors (i.e., if the two systems are
identical), then the probability p that a user prefers system A is p = . 5. Let y be the number of users in a
sample of 10 who prefer system A, and suppose you want to test Ho: P = . 5 against Ha : P =F . 5. One
possible test procedure is to reject Ho if y :5 1 or y ;::: 8.
a. Find a for this test.
b. Find {3 if P = .4. What is the power of the test?
c. Find {3 if P = .8. What is the power of the test?

9.72 T he quality control department of a paper compan y measures the brightness (a measure of reflectance) of
finished paper on a periodic basis throughout the day. Two instrume nts that are available to measure the
paper specimens are subject to error, but they can be adjusted so that the mean readings for a control paper
specimen are the same for both instruments. Suppose you are concerned about the precision of the two
instruments-namely, that instrument 2 is less precise than instrument I . To check this theory, five mea­
surements of a single paper sample are made on both instrumen ts. The data are shown in the tabJe. Do
the data provide sufficient evidence to indicate that instrument 2 is less precise than instrument I? Test
using a = .05.

Instrument 1

29
28
30
28
30

Instrument 2

26
34
30
32
28

9.73 The testing department of a tire and rubber company schedules truck and passenger tires for durability tests.
Currently, tires are scheduled twice weekly on Rexible processors (machines that can handle either truck or
passenger tires) using the shortest processing time (SIT) approach. Under SIT, the tire with the shortest
processing time is scheduled first. Company researchers have developed a new scheduling rule which they
believe will reduce the average Row time (i.e., the average completion time of a test) and lead to a reduction
in the average tardiness of a scheduled test. To compare the two scheduling rules, 64 tires were randomly
selected and divided into two groups of equal size. One set of tires was scheduled using SIT, the other
using the proposed rule. A summary of the Row times and tardiness (in hours) of the tire tests is provided in
the table on page 486.
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Flow Time
Mean Variance

Tardiness
Mean Variance

SPT
Proposed Rule

158.28
117.07

8,532.80
5,208.53

5.26
4.52

452.09
319.4 1

a. Is there sufficient evidence at a = .05 to conclude that the average Aow time is less under the proposed
scheduling rule than under the SPT approach?

b. Is there sufficient evidence at a = .05 to conclude that the proposed scheduling rule will lead to a
reduction in the average tardiness of tire tests?

9.74 Refer to thc reinforced concrete T-beam cracking experiment described in Exercise 9.65 . The experimental
results were compared to the theoretical results obtained using the failure surface method of predicting
ultimate load capacity. Th e actual and theoretical ultimate torsion moments for six T-beams with 40-cm
slab widths arc given in the table. Con duct a test to determin e whether the experimental mean ultimate
torsion mom ent differs from the theoretical mean ultimate torsion moment. Use a = .05.

T-Beam

Experimental result
Theoretical result

1

4.70
4.63

2

5.20
4.65

3
5.40
5.60

4

5.40
5.60

5
4. 30
3.62

6
4.80
3.62

Source: Zararis, P D. , and Peru-lis C . Jr. "Reinforced concrete T-b"a ll" in torsion and bending." Journal of
the American Concrete Ins/;/u/e. Vol. 83, No. I. jall.- Fcb. 1986, p. 153.

9.75 A problem that occurs with certain types of mining is that SOme byproducts tend to be mildly radioactive
and these products sometimes get into ou r freshwater supply. T he EPA has issued regulations concerning
a limit on the amount of radioactivity in supplies of drinking water. Particularly, the maximum level for
naturally occurring radiation is 5 picocuries per liter of water. A random sample of 24 water specimens
from a city's water supply produced the sample statistics ji = 4.61 picocuries per liter and s = .87 pieocuric
per liter.
a. Do these data provide sufficient evidence to indicate that the mean level of radiation is safe (below the

maximum level set by the EPA)? Test using a = .0 1.
b. Why should you want to use a small value of a for the test in part a?
c. Calculate the value of f3 for the test if /-La = 4.5 picocuries per liter of water.
d. Calculate and interpret the p-value for the test.

9.76 Usually, when trees grown in greenhou ses are replanted in their natural habitat, there is only a 50% survival
rate. However, a recent General Telephone and Electronics (GT E) advertisement claimed that trees grown
in a particular environment ideal for plant growth have a 95% survival rate when replanted. Th ese trees
are grown inside a mountain in Idaho where the air temperature, carbon dioxide conte nt, and humidity
are all constant, and there are no major disease or insect problems. A key growth ingredient-l ight-is
supplied by specially made GTE Sylvania Super-Metalarc lamps. Th ese lights help the young trees develop
a more fibrous root system that aids in the transplantation. Suppose that we want to challenge GTE's claim,
i.e., we want to test whether the true proportion of all trees grown inside the Idaho mountain that survive
when replanted in their natural habitat is less than. 95. We randomly sample 50 of the trees grown in the
controlled environment, replant the trees in their natural habitat, and observe that 46 of the trees survive.
Perform the test at a level of significance of a = .0 l.

9.77 A parallel processor, or paracompuier, consists of autonomou s processing elements (PEs) sharing a centra l
memory. Researchers at New York University have recently designed such a paracornputer, called the NYU
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Ultracomputer. To assess the impact of network delay on overall ultracorn puter performance , the researche rs
simulated central memory access time for sample instruct ions from a parallel version of a NASA weather
program. Two sets of access times were simulated-one set processed with 16 processing elements, the other
set with 48 processing elemen ts. With 16 PEs, the average cen tral me mory access time was 8.94 seconds,
whereas with 48 PEs the average cen tral memor y access time was 8.83 seconds. Assume that n = 1,000
instructions were simulated for each of the two programs, with standard deviations equal to 3.10 and 3. 50,
respectively. This informati on was not provided in the researchers' report. Is there suffic ient evidence to
indicate a difference between the average central memory access times of instructions processed with 16
and 48 PEs? Test using (\' = .05.

9.78 In the manufacture of mach inery, it is essential to utilize parts that conform to specifications. In the past,
diameters of the ball bearings produced by a ce rtain manufacturer had a variance of .00 156. To cut costs,
the manufacturer instituted' a less expensive production method. T he variance of the diameters of 100
randomly sampled bearings produced by the new process was .0021I. Do the data provide suffi cient evidence
to indicate that diameters of ball bearings produced by the new process are more variable than those produced
by the old process? Test at (\' = .05.

9.79 The ion balanc e of our atmosphere has a significant effect on hu man health . A high concentration of
positive ions in a room can indu ce fatigue, stress, and respiratory problems in the room's occupants, However,
research has shown that introduction of additional negative ions into the room 's atmosphere (through a
negative ion generator), in combination with constant ventil ation , restores the natural balance of ions that
is conduc ive to hum an health . On e experiment was conducted as follows. O ne hundred employees of a
large factory were randomly selected and divided into two groups of 50 each. Both groups were told that
they would be working in an atmosphere with an ion balance cont rolled through negative ion generators.
However , unkn own to the employees, the genera tors were switched on on ly in the experimental group's
work area. At the end of the day, the number of em ployees reportin g migraine, nau sea, fatigue, faintness,
or some other physical discomfort was recorded for each group. The results are summarized in the table.

Numb er in Sample

Numb er in Sample Who Experience
Some Type of Physical Discomfort

Experimental Croup
(Ion generators on)

n[ 50

3

Control Croup
(Ion generators off)

n 2 = 50

12

a. Perform a test of hypothesis to determine wheth er the proportion of empl oyees in the experimental group
who experience some type of physical discomfort at the end of the day is significantly less than the
corresponding proportion for the con trol group. Use a significance level of (\' = .03.

b. Compute the p-value for this test.

9.80 T he use of computer equi pment in business is growing at a phenomenal rate. A recent study revealed that
184 of 616 working adults now regularly use a personal computer, microcomputer, computer terminal , or
word processor on the job (Journal of Advertising Research, Apr. / May 1984). Is this sufficient evidence to
indicate that the proportion of all working adult s who regularly use computer equipment on the job exceeds
25%? Test using (\' = .05.

9.81 The means and standard deviations shown in the table summarize information on the strengths (modules
of rupture at ground line, in pounds per square inch ) for two types of wooden poles used by the utili ty
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industry. Do the data provide sufficient evidence to indicate a difference in the variance of the strengths of
wooden poles made from coastal Douglas fir and southern pine? Test using (l' = .02.

Species

Coastal Douglas fir
Southern pine

Sample Size

11 8
147

Sample Mean

8,380
8,870

Sample Standard Deviation

644.62
611.72

Source: Goodman , J. R., Vanderb ilt, M. D. , and C riswell, M. E. "Reliability-based design of wood transmission line
structures." Journal or Structural Engineering, Vol. 109, No. 3, 1983, pp. 690- 704.

9.82 Th e accompanying table provides data on the theoretical (calculated) and experimental values of the vapor
pressures for dibenzothiophene , a heterocycloaromatic compound similar to those found in coal tar. If the
theoretical model for vapor pressure is a good model of reality, the true mean difference between the
experimental and calculated values of vapor pressure for a given temperature will equal O.

Temperature
(DC)

100.60
101.36
104.60
106.44
108.70
110.96
112.62
115.21

Vapor Pressure
Experimental Calculated

.282 .276

.314 .307

.335 .350

.404 .390

.422 .444

.513 .505

.554 .554

.642 .640

Temperature
(DC)

116.69
119.38
121.08
123.61
124.90
127.74
130.24
131.75

Vapor Pressure
Experimental Calculated

.669 .695

.834 .805

.890 .882
1.01 1.01
1.07 1.08
1.26 1.25
1.42 1.43
I. 55 I. 54

Source: Edwards, D. R. , and Prausnitz , J. M. "Vapor pressures of sa me sulphur-containing, coal-related compound s." Journal orChemical
and Engineering Data, Vol. 26, 1981, pp. 121- 124 Copy right 1981 American C hemical Society. Reprint ed with permission.

a. Do the data provide sufficient evidence to indicate that the mean difference differs from O? Test using
(l' = .05.

b. Calculate and interpret the p-value for the test.

9.83 A machine is set to produce bolts with a mean length of 1 inch. Bolts that are too long or too short do not
meet the customer's specifications and must be rejected. To avoid producing too many rejects, the bolts
produced by the machine are sampled from time to time and tested as a check to determine whether the
machine is still operating properly, i.e., producing bolts with a mean length of I inch. Suppose 50 bolts
have been sampled, and y = 1.02 inches and s = .04 inch. Does the sample evidence indicate that the
machine is producing bolts with a mean length not equal to 1 inch; i.e. , is the production process out of
control? Test using (l' = .01.

9.84 Heat stress in dairy cows can have a dramatic negative effect on milk production. High temperatures tend
to reduce a cow's food intake, which in turn reduces milk yield. Researchers in the IFAS Dairy Research
Unit and the Department of Agricultural Engineering at the University of Florida have developed design
criteria for the construction of shade structures that they believe will help alleviate heat stress for dairy cows.
In one experiment, 31 Holstein cows in the last trimester of pregnancy were divided into two groups. Sixteen
cows were given access to a shade structure and the remaining 15 cows were denied shade. Researchers
recorded the 100-day milk yield (in pounds) of each cow after calving. Th e mean milk yields of the two
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groups are shown in the accompan ying table. Is there sufficient evidence to indicate a difference between
the mean milk yields of cows given access to shade and cows denied shade? Use a = .10. (Assume the
standard deviations of milk yields are equal to 40 pounds for both groups.)

Sample Size
Mean

Shade

16
367.4

No Shade

15
330.8

Sou rce: "M inimizing heat stress for dairy cows."
FloridaAgricultural Research 83, Vol. 2. No. I. Win­
ter 1983, pp. 10- 13.

COM PUTER LAB: Testi ng Means

In this section, we present the computer commands for conducting tests of hypotheses concerning population
means. Both packages, SAS and MINITAB, can perform t tests about fL, (fLl - fLz ) for independent samples,
and (fLl - fLz ) for paired samples. (Remember, for large samples, the t and z statistics are nearly equivalent. )
Tests about variances and proportions are not available in SAS or MINITAB.

SAS

a. One-Sample Test-Test Ho: fL = 8.5 in Example 9.8

Command
line

]

Input data values
(3 observations per line)

} Student' s t test

8.83 8.17 12.00
PRDC MEANS T PRTi
VAR TESTRAT;

DATA BONES; }
I NPUT RAT I 0 @@; Data entry instructions
TESTRAT=RATID-8.5i
CARDS;
10.73 8.118 8.52

I
2
3
4

5
6

COMMAND 3 The transformed variable TESTRAT is computed by subtracting the hypothesized mean (fL = 8.5)
from each value of RATIO.

COMMANDS 5-6 The PROC MEANS statement commands SAS to conduct a t test on the values of the variable
TESTRAT (specified in line 6). SAS will test the null hypothesis Ho: fL T E ST RAT = 0, which is equivalent to testing
Ho: fLRATIO = 8.5.

OUTPUT Th e p-value reported in SAS is a two-tailed observed significance level. Divide this reported value in half
to obtain the p-value for a one-tailed test. [Note: The SAS output for this program is displayed in Figure 9.2 3a.]
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b. Two-Sample Test, Independent Samples -Test Ho: JJ-l - JJ-z = 0 in Example 9.14

Command
line

I DATA DISKS; }Data entry instructions2 INPUT DRIVE TIME @@;
3 CARDS;

1 59 1 73 7a 1 61

1
Input data values
(4 observations per line)

2 86 2 53 2 68 2 39
4 PROC TTEST; }Student's I test5 CLASS DRIVE; VAR TIME;

COMMAND 2 TIME is the variable of interest. DRIVE is a grouping variable that takes on two values (e.g. , 1
and 2).

COMMANDS 4-5 The TTEST procedure conducts a t test on the difference in means of the variable TIME for the
two groups identified by DRIVE.

OUTPUT SAS calculates the t value for both the equal population variances case and the unequal variances case.
[Note: The SAS output for this program is displayed in Figure 9. 23b.]

c. Two-Sample Test, Paired Samples-Test Ho : JJ-d = 0 in Example 9.15

Command
line

Data entry instructions

Input data values
(I observation per line)

Student's t lest

2.a2 2.33
PRDC MEANS T PRT;
VAR DIFF;

DATA CLOUD; }
INPUT SEED UNSEED;
DIFF=SEED-UNSEED
CARDS;
1.75 I.G2 1

}

I
2
3
4

5
6

COMMANDS 2-3 The variables SEED and UNSEED contain the measurements for each member of the matched
pair. The difference, DIFF, is computed in line 3.

OUTPUT [Note: The SAS output for this program is displayed in Figure 9. 23c.]

FIGURE 9.23 ~ a.
SAS output for computer lab Analysis Variable : TESTRAT

N Obs T Prob>ITI

41 4.0303238 0.0002
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b.

TTEST PROCEDURE

Variable I TIME

DRIVE N Mean Std Dev Std Error Minimum Maximum

1 13 68.23076923 18.65991178 5.17532836 33.00000000 102.0000000
2 15 53.80000000 15 .80777386 4.08154966 34 .00000000 86.0000000

Variances T DF Prob>ITI
---------------------------------------
Unequal 2.1894 23.7 0.0387
Equal 2.2163 26.0 0.0356

For HOI Variances are equal, F' = 1.39 DF (12,14) Prob>F' 0.5482

c.
Analysis Variable DIFF

N obs T Prob>ITI

6 3.0066442 0 .0299

MINITAB
a. On e-Sample t Test-Test Ho: I.t = 8.5 in Example 9.8

Command
line

3
4

SET RATIOS IN Cl
NAME Cl= 'RATIO '
10.73 8.1I8 8.52

9.93 8.17 12.0 0
TTEST OF MU=50 ON

AL TERNAT It.IE =+ 1 •

]
C 1; }

Data entry instruction

Input data values
(3 observations per line)

Student's t test

COMMANDS 3-4 The TTEST procedure performs a t test on the differen ce between the mean of the variable read
in CI and the hypothesized value specified in the MU = subcommand (line 3). The subcommand ALT E RNA­
TIVE= + I (line 4) requ ests that a one-tailed upp er-tailed test be performed. Use ALTERNATIVE = - I for a
lower-tailed test. If the subcommand is not used , a two-tailed test is perfor med.

OUTPUT [Note: The MINITAB output for thi s program is displayed in Figur e 9.24a on page 493. ]
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b. Two-Sample Test, Ind epend ent Samples-Test Ho: J-Ll - J-L z = 0 in Example 9. 14

Command
line

SET DISK1 DATA IN C1 Data entry instruction
59 73 74 61 }Input data values

(4 observations per line)

2 SET DISK2 DATA IN C2
71 63 40 34

}Input data values
(4 observations per line)

3 TWOSAMPLE T C1 C'" }~ ,
Student's t test

4 POOLED.

COMMANDS 3-4 TWOSAMPLE performs a t test on the differen ce between the means of the data in C I and C2.
T he subcommand POOLED (line 4) requ ests that a pooled sample variance be used . (T his is appropriate when
the population variances are equa l.) If you want MINITAB to adjust the t statistic and degrees of freedom for the
un equal variances case, omit the POOLED subcomma nd.

GENERAL Use the ALTERNATIVE subcommand to obtain a one-tailed test.

OUTPUT [Note: The MINITAB output for this program is displayed in Figure 9. 24b .]

c. Tw o-Sample Test, Paired Sampl es-Test Ho: J-Ld = 0 in Example 9 . 15

Comma nd
line

2
3
4

READ DATA IN C1 C2
1.75 1.62

2.42 2.33
SUBTRACT C2 FROM C1 , PUT IN C3
NAME C3='DIFF '
TTEST OF MU=O ON DATA IN C3

Data entry instruction

]

Input data values
(I observation per line)

Student's t test

COMMANDS 1-2 The data in columns C I and C2 are the measurem ents for each member of the matched pair.
C3 contains the differen ce between the measurements.

COMMAND 4 TTEST performs a t test on the mean of the differenc es in C3.

GENERAL Use the ALTERNATIVE subcommand to obtain a on e-tailed test.

OUTPUT [Note: The MINITAB output for this program is displayed in Figure 9 .24c. ]
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TEST OF MU = 8.500 VS MU G.T. 8.500fiGURE 9.24 ~
MINITAB output for Computer
lab

a.

RATIO
N

41
MEAN

9 .258
STDEV
1.204

SE MEAN
0 .188

T
4 .03

P VALUE
0 .0001

b. TWOSAMPLE T FOR d isk 1 VS disk2
N MEAN STDEV SE MEAN

disk1 13 68.2 18 .7 5.2
disk2 15 53.8 15.8 4 .1

95 PCT CI FOR MU disk1 - MU disk2: ( 1. 0, 27 .8 )

TTEST MU d isk1 MU disk2 (VS HE): T= 2.22 P=0 .036 DF= 26

POOLED STDEV = 17.2

c. TEST OF MU 0.0000 VS MU N.E. 0.0000

References

DIFF
N
6

MEAN
0.16 3 3

STDEV
0 .1331

SE MEAN
0 .0543

T
3 .01

P VALUE
0 .030

.... ..............................................................
Freedman, D., Pisani, R., and Purves, R., Statistics. New

York: W W Norton and Co., 1978.

Hoel, P. G. Introduction to Mathematical Stati stics, 6th ed.
New York: Wiley, 1987.

Hogg, R. v., and Craig, A. T. Introduction to Mathematical
Statistics, 4th ed. New York: Macmillan, 1978.

McClave, ]. T, and Dietrich, F. H. II. Statist ics, 6th ed.
San Francisco: Dellen, 1994.

Mendenhall, W Introduction to Probability and Statistics,
8th ed. Boston: Duxbury, 1990.

Mendenhall, W , Wackerly, D. D., and Scheaffer, R. L.
Mathematical Stati stics with Applications, 3rd ed. Bos­
ton: Duxbury, 1989.

Mood, A. M., Graybill, F. A., and Boes, D. Introduction to
the Theory of Stati stics, 3rd ed. New York: McGraw­
Hill, 1974.

Snedecor, G. W, and Cochran, W G. Statistical Methods,
7th ed. Ames, Iowa: Iowa State University Press, 1980.


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	1159
	1160
	1161
	1177
	1178
	1179
	1180
	1181
	1182
	2.48a
	2.48b
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493



