F24 with Polynomial Representation
| ||||||||
(0000) | (0001) | (0010) | (0011) | (0100) | (0101) | (0110) | (0111) | |
(1000) | (1001) | (1010) | (1011) | (1100) | (1101) | (1110) | (1111). | |
The irreducible polynomial used will be f(x) = x4 + x + 1. The following are sample calculations. Addition
(0110) + (0101) = (0011). Multiplication
(1101) (1001) Exponentiation
To compute (0010)5, first find
Then
Finally, (0010)5 Multiplicative InversionThe element g = (0010) is a generator for the field. The powers of g are: | ||||||||
g0 = (0001) | g1 = (0010) | g2 = (0100) | g3 = (1000) | |||||
g4 = (0011) | g5 = (0110) | g6 = (1100) | g7 = (1011) | |||||
g8 = (0101) | g9 = (1010) | g10 = (0111) | g11 = (1110) | |||||
g12 = (1111) | g13 = (1101) | g14 = (1001) | g15 = (0001). | |||||
The multiplicative identity for the field is g0 = (0001). The multiplicative inverse of g7 = (1011) is g-7 mod 15 = g8 mod 15 = (0101). To verify this, see that (1011) (0101) = (x3 + x + 1) (x2 + 1) mod f(x) = x5 + x2 + x + 1 mod f(x) = ( x4 + x + 1)(x) + (1) mod f(x) = 1 = (0001), which is the multiplicative identity. | ||||||||
| ||||||||
|